The first derivatives you find are $$z_x = -\frac{y+z}{x+3z^2} \text{ and }z_y = -\frac{x}{x+3z^2}$$ where $z=f(x,y)$. For the second midterm you will only be asked to find the first derivatives.
If this problem appears on the final exam, then you could also be asked to find one or all of the second derivatives. To do this, you differentiate these expressions, e.g. $$ z_{xy} = \frac{\partial z_x}{\partial y} = \frac{\partial}{\partial y} \left( -\frac{y+z}{x+3z^2}\right) $$ Apply the quotient rule: $$ z_{xy} = -\frac{(x+3z^2) \frac{\partial (y+z)}{\partial y} - \frac{\partial (x+3z^2)}{\partial y} (y+z)} {(x+3z^2)^2} $$ Remember that $z$ is a function of $x$ and $y$, and that we already have its $y$ derivative: $$ z_{xy} = -\frac{(x+3z^2) (1+z_y) - (0+6z z_y) (y+z)} {(x+3z^2)^2} = -\frac{(x+3z^2) (1+z_y) - 6z z_y (y+z)} {(x+3z^2)^2} $$ To complete the calculation you substitute $z_y = -\frac{x}{x+3z^2}$ which leads to this (not very nice) answer: $$ z_{xy} = -\frac{(x+3z^2) (1-\frac{x}{x+3z^2}) +6z \frac{x}{x+3z^2}(y+z)} {(x+3z^2)^2} $$ You could then simplify this, if necessary. You can compute the other derivatives in the same way. The answers, which will be posted tomorrow, are also not very pretty.