Journal publications

See also Chris Rycroft's profile on Google Scholar and complete CV.
  1. J. Lu and C. H. Rycroft, TriMe++: Multithreaded triangular meshing in two dimensions, Comput. Phys. Commun., accepted (2024). [arXiv preprint]
  2. Y. Sun, J. W. M. Bush, S. E. Spagnolie, and C. H. Rycroft, The hydrodynamics of marbling art, Phys. Rev. Fluids, accepted (2024).
  3. E. A. Lazar, J. Lu, C. H. Rycroft, and D. Schwartz, Voronoi topology in two dimensions: theory, algorithms, and applications, Modelling Simul. Mater. Sci. Eng., accepted (2024). [arXiv preprint]
  4. X. Ding, V. Sanchez, K. Bertoldi, and C. H. Rycroft, Unravelling the Mechanics of Knitted Fabrics Through Hierarchical Geometric Representation, Proc. Roy. Soc. A 480, 20230753 (2024). [DOI link] [arXiv preprint]
  5. M. Leembruggen, J. Andrejevic, A. Kudrolli, and C. H. Rycroft, Bendability parameter for twisted ribbons to describe longitudinal wrinkling and delineate the near-threshold regime, Phys. Rev. E 109, L053001 (2024). [DOI link] [arXiv preprint]
  6. N. Boffi, Y. Guo, C. H. Rycroft, and A. Amir, How microscopic epistasis and clonal interference shape the fitness trajectory in a spin glass model of microbial long-term evolution, eLife 12, RP87895 (2023). [bioRxiv preprint] [DOI link]
  7. L. Gaucherand, A. Iyer, I. Gilabert, C. H. Rycroft, and M. M. Gaglia, Transcriptome-wide analysis of the influenza A virus endoribonuclease PA-X cut sites identifies preferred cleavage characteristics that allow it to distinguish between host and viral mRNAs, Nature Microbiology 8, 1304–1317 (2023). [bioRxiv preprint] [DOI link]
  8. Y. L. Lin, S. N. Smith, E. Kanso, A. N. Septer, and C. H. Rycroft, A subcellular biochemical model for T6SS dynamics reveals winning competitive strategies, PNAS Nexus 2, pgad195 (2023). [bioRxiv preprint] [DOI link]
  9. E. Medina, C. H. Rycroft, and K. Bertoldi, Nonlinear shape optimization of flexible mechanical metamaterials, Extreme Mechanics Letters 61, 103015 (2023). [DOI link]
  10. M. Leembruggen, J. Andrejevic, A. Kudrolli, and C. H. Rycroft, A computational model of twisted elastic ribbons, Phys. Rev. E 108, 015003 (2023). [DOI link] [arXiv preprint]
  11. J. Lu, E. Lazar, and C. H. Rycroft, An extension to Voro++ for multithreaded computation of Voronoi cells, Comput. Phys. Commun. 291, 108832 (2023). [DOI link] [arXiv preprint]
  12. N. J. Derr, T. Dombrowski, C. H. Rycroft, and D. Klotsa, Fluid inertia and the scallop theorem, J. Fluid Mech. 952, A8 (2022). [DOI link] [arXiv preprint]
  13. J. Andrejevic and C. H. Rycroft, Simulation of crumpled sheets via alternating quasistatic and dynamic representations, J. Comput. Phys. 471, 111607 (2022). [DOI link] [arXiv preprint]
  14. B. Deng,* A. Zareei,* X. Ding, J. C. Weaver, C. H. Rycroft, and K. Bertoldi, Inverse design of mechanical metamaterials with target nonlinear response via a neural accelerated evolution strategy, Advanced Materials 34, 2206238 (2022). [DOI link]
  15. N. Andrejevic,* J. Andrejevic,* B. A. Bernevig, N. Regnault, F. Han, G. Fabbris, T. Nguyen, N. C. Drucker, C. H. Rycroft, and M. Li, Machine-learning spectral indicators of topology, Advanced Materials 34, 2204113 (2022). [DOI link] [arXiv preprint]
  16. S. Mishra, S. M. Rubinstein, and C. H. Rycroft, Computing the viscous effect in early-time drop impact dynamics, J. Fluid Mech. 945, A13 (2022). [DOI link] [arXiv preprint]
  17. S. Donoughe, J. Hoffmann, T. Nakamura, C. H. Rycroft, and C. G. Extavour, Nuclear speed and cycle length co-vary with local density during syncytial blastoderm formation in a cricket, Nat. Commun. 13, 3889 (2022). [bioRxiv preprint] [DOI link]
  18. E. A. Lazar, J. Lu, and C. H. Rycroft, Voronoi cell analysis: The shapes of particle systems, Am. J. Phys. 90, 469 (2022). [DOI link] [arXiv preprint]
  19. S. Dussi and C. H. Rycroft, Less can be more: Insights on the role of electrode microstructure in redox flow batteries from two-dimensional direct numerical simulations, Phys. Fluids 34, 043111 (2022). [Final draft] [DOI link] [arXiv preprint]
  20. X. Wang, K. Kamrin, and C. H. Rycroft, An Eulerian method for mixed soft and rigid body interactions in incompressible fluids, Phys. Fluids 34, 033604 (2022). [DOI link] [arXiv preprint]
  21. Y. L. Lin, N. J. Derr, and C. H. Rycroft, Eulerian simulation of complex suspensions and biolocomotion in three dimensions, Proc. Natl. Acad. Sci. 119, e2105338118 (2022). [DOI link] [arXiv preprint]
  22. N. Tanjeem, W. H. Wilkin, D. A. Beller, C. H. Rycroft, and V. N. Manoharan, Geometrical Frustration and Defect Formation in Growth of Colloidal Nanoparticle Crystals on a Cylinder: Implications for Assembly of Chiral Nanomaterials, ACS Appl. Nano Mater. (2021). [DOI link]
  23. J. E. S. van der Hoeven, S. Kraemer, S. Dussi, T. Shirman, C. H. Rycroft, D. C. Bell, C. M. Friend, and J. Aizenberg, Quantitative 3D Characterization of Catalytic Nanoparticle-Support Interfaces, Advanced Functional Materials, 2106876 (2021). [DOI link]
  24. J. Andrejevic, L. M. Lee, S. M. Rubinstein, and C. H. Rycroft, A model for fragmentation kinetics of crumpled thin sheets, Nat. Commun. 12, 1470 (2021). [DOI link] [arXiv preprint]
  25. H. Nesser, D. J. Jacob, J. D. Maasakkers, T. R. Scarpelli, M. P. Sulprizio, Y. Zhang, and C. H. Rycroft, Reduced-cost construction of Jacobian matrices for high-resolution inversions of satellite observations of atmospheric composition, Atmos. Meas. Tech. 14, 5521–5534 (2021). [DOI link]
  26. K. Kontolati, D. Alix-Williams, N. M. Boffi, M. L. Falk, C. H. Rycroft, and M. D. Shields, Manifold learning for coarse-graining atomistic simulations: Application to amorphous solids, Acta Materialia 215, 117008 (2021). [DOI link] [arXiv preprint]
  27. G. P. T. Choi and C. H. Rycroft, Volumetric density-equalizing reference map with applications, J. Sci. Comput. 86, 41 (2021). [DOI link]
  28. N. J. Derr,* D. C. Fronk,* C. A. Weber, A. Mahadevan, C. H. Rycroft, and L. Mahadevan, Flow-driven branching patterns in a porous medium, Phys. Rev. Lett. 125, 158002 (2020). [DOI link] [arXiv preprint]
  29. C. H. Rycroft, C.-H. Wu, Y. Yu, and K. Kamrin, Reference map technique for incompressible fluid–structure interaction, J. Fluid Mech. 898, A9 (2020). [Final draft] [DOI link] [arXiv preprint]
  30. T. Kumar, C. H. Rycroft, and T. L. Jackson, Eulerian Thermo-mechanical Simulations of Heterogeneous Solid Propellants using an Approximate Projection Method, Combustion and Flame 219, 198–211 (2020). [DOI link]
  31. N. M. Boffi and C. H. Rycroft, Parallel three-dimensional simulations of quasi-static elastoplastic solids, Comput. Phys. Commun. 257, 107254 (2020). [DOI link]
  32. N. M. Boffi and C. H. Rycroft, A coordinate transformation methodology for parallel three-dimensional simulations of quasi-static elastoplastic solids, Phys. Rev. E 101, 053304 (2020). [DOI link]
  33. E. Medina, P. E. Farrell, K. Bertoldi, and C. H. Rycroft, Navigating the landscape of nonlinear mechanical metamaterials for advanced programmability, Phys. Rev. B 101, 064101 (2020). [DOI link]
  34. G. P. T. Choi, B. Chiu, and C. H. Rycroft, Area-preserving mapping of 3D ultrasound carotid artery images using density-equalizing reference map, IEEE T. Med. Imaging 67, 2507–2517 (2020). [DOI link]
  35. D. Fortunato, C. H. Rycroft, and R. I. Saye, Efficient operator-coarsening multigrid schemes for local discontinuous Galerkin methods, SIAM J. Sci. Comput. 41, A3913–A3937 (2019). [DOI link]
  36. J. Hoffmann,* Y. Bar-Sinai,* L. Lee, J. Andrejevic, S. Mishra, S. M. Rubinstein, and C. H. Rycroft, Machine learning in a data-limited regime: Augmenting experiments with synthetic data uncovers order in crumpled sheets, Science Advances 5, eaau6792 (2019). [DOI link]
  37. L. Gaucherand,* B. K. Porter,* R. E. Levene, S. K. Schmaling, E. L. Price, C. H. Rycroft, Y. Kevorkian, C. McCormick, D. Khaperskyy, and M. M. Gaglia, The influenza A virus endoribonuclease PA-X usurps host mRNA processing machinery to limit host gene expression, Cell Reports 27, 776–792 (2019). [DOI link]
  38. Y. Tang, L. Zhang, Q. Guo, B. Xia, Z. Yin, J. Cao, J. Tong, and C. H. Rycroft, Analysis of the pebble burnup profile in a pebble-bed nuclear reactor, Nucl. Eng. Design 345, 233–251 (2019). [DOI link]
  39. J. Hoffmann, S. Donoughe, K. Li, M. Salcedo, and C. H. Rycroft, A simple developmental model recapitulates complex wing venation patterns, Proc. Natl. Acad. Sci. 115, 9905–9910 (2018). [DOI link]
  40. O. Gottesman, J. Andrejevic, C. H. Rycroft, and S. M. Rubinstein, A state variable for crumpled thin sheets, Communications Physics 1, 70 (2018). [DOI link]
  41. C. A. Weber, C. H. Rycroft, and L. Mahadevan, Differential Activity drives Instabilities in Biphasic Active Matter, Phys. Rev. Lett. 120, 248003 (2018). [DOI link]
  42. G. P. T. Choi and C. H. Rycroft, Density-equalizing maps for simply-connected open surfaces, SIAM J. Imaging Sci. 11, 1134–1178 (2018). [DOI link]
  43. T. G. Fai and C. H. Rycroft, Lubricated Immersed Boundary Method in Two Dimensions, J. Comput. Phys. 356, 319–339 (2018). [DOI link]
  44. V. Gulizzi, C. H. Rycroft, and I. Benedetti, Modelling intergranular and transgranular micro-cracking in polycrystalline materials, Comput. Method Appl. M. 329, 168–194 (2018). [DOI link]
  45. T. G. Fai, R. Kusters, J. Harting, C. H. Rycroft, and L. Mahadevan, Active elastohydrodynamics of vesicles in narrow, blind constrictions, Phys. Rev. Fluids 2, 113601 (2017). [DOI link]
  46. A. R. Hinkle, C. H. Rycroft, M. D. Shields, and M. L. Falk, Coarse-graining atomistic simulations of plastically deforming amorphous solids, Phys. Rev. E 95, 053001 (2017). [DOI link]
  47. M. Vasoya, C. H. Rycroft, and E. Bouchbinder, Notch fracture toughness of glasses: Rate, age and geometry dependence, Phys. Rev. Applied 6, 024008 (2016). [DOI link]
  48. A. Lieb, C. H. Rycroft, and J. Wilkening, Optimizing intermittent water supply, SIAM J. Appl. Math. 76, 1492–1514 (2016). [DOI link]
  49. C. H. Rycroft and M. Z. Bazant, Asymmetric collapse by dissolution or melting in a uniform flow, Proc. Roy. Soc. 472, 20150531 (2016). [DOI link]
  50. M. M. Gaglia, C. H. Rycroft, and B. A. Glaunsinger, Transcriptome-Wide Cleavage Site Mapping on Cellular mRNAs Reveals Features Underlying Sequence-Specific Cleavage by the Viral Ribonuclease SOX, PLOS Pathog. 11, e1005305 (2015). [DOI link]
  51. C. H. Rycroft, Y. Sui, and E. Bouchbinder, An Eulerian projection method for quasi-static elastoplasticity, J. Comput. Phys. 300, 136–166 (2015). [DOI link]
  52. B. Valkov, C. H. Rycroft, and K. Kamrin, Eulerian Method for Multiphase Interactions of Soft Solid Bodies in Fluids, J. Appl. Mech. 82, 041011 (2015). [DOI link]
  53. G. Venugopalan,* D. Camarillo,* K. D. Webster, C. D. Reber, H. El-Samad, J. A. Sethian, V. M. Weaver, D. A. Fletcher, and C. H. Rycroft, Multicellular Architecture of Malignant Breast Epithelia Influences Mechanics PLOS ONE 9, e101955 (2014). [DOI link]
  54. C. M. Freeman, K. L. Boyle, M. Reagan, J. Johnson, C. H. Rycroft, G. J. Moridis, MeshVoro: A three-dimensional Voronoi mesh building tool for the TOUGH family of codes, Computers & Geosciences 70, 26–34 (2014). [DOI link]
  55. Q. Shi, R. P. Ghosh, H. Engelke, C. H. Rycroft, L. Cassereau, J. Sethian, V. M. Weaver, J. Liphardt, Rapid disorganization of mechanically interacting systems of mammary acini, Proc. Natl. Acad. Sci. 111, 658–663 (2014). [DOI link]
  56. G. I. Barenblatt, P. J. M. Monteiro, and C. H. Rycroft, On a boundary layer problem related to the gas flow in shales, J. Eng. Math. 84, 11–18 (2014). [DOI link]
  57. C. H. Rycroft, A. Dehbi, T. Lind, and S. Güntay, Granular flow in pebble-bed nuclear reactors: Scaling, dust generation, and stress, Nucl. Eng. Design. 265, 69–84 (2013). [Final draft] [DOI link]
  58. C. H. Rycroft and J. Wilkening, Computation of three-dimensional standing water waves, J. Comput. Phys. 255, 612–638 (2013). [DOI link]
  59. M. Pinheiro, R. L. Martin, C. H. Rycroft, and M. Haranczyk, High accuracy geometric analysis of crystalline porous materials, CrystEngComm 37, 7531–7538 (2013). [DOI link]
  60. M. Pinheiro, R. L. Martin, C. H. Rycroft, A. Jones, E. Iglesia, and M. Haranczyk, Characterization and comparison of pore landscapes in crystalline porous materials, J. Mol. Graph. Model. 44, 208–219 (2013). [DOI link]
  61. M. Theillard, C. H. Rycroft, and F. Gibou, A multigrid method on non-graded adaptive octree/quadtree cartesian grids, J. Sci. Comput. 55, 1–15 (2013). [DOI link]
  62. P. J. M. Monteiro, C. H. Rycroft, and G. I. Barenblatt, A mathematical model of fluid and gas flow in nanoporous media, Proc. Natl. Acad. Sci. 109, 20309–20313 (2012). [DOI link]
  63. C. H. Rycroft and E. Bouchbinder, Fracture toughness of metallic glasses: Annealing-induced embrittlement, Phys. Rev. Lett. 109, 194301 (2012). [DOI link] [arXiv preprint]
  64. K. Kamrin, C. H. Rycroft, and J.-C. Nave, Reference map technique for finite-strain elasticity and fluid–solid interaction, J. Mech. Phys. Solids 60, 1952–1969 (2012). [DOI link]
  65. L.-C. Lin, A. H. Berger, R. L. Martin, J. Kim, J. A. Swisher, K. Jariwala, C. H. Rycroft, A. S. Bhown, M. W. Deem, M. Haranczyk, and B. Smit, In silico screening of carbon capture materials, Nature Materials 11, 633–641 (2012). [DOI link]
  66. C. H. Rycroft and F. Gibou, Simulations of a stretching bar using a plasticity model from the shear transformation zone theory, J. Comput. Phys. 231, 2155–2179 (2012). [DOI link]
  67. T. F. Willems, C. H. Rycroft, M. Kazi, J. C. Meza, and M. Haranczyk, Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials, Microporous and Mesoporous Materials 149, 134–141 (2012). [DOI link]
  68. C. H. Rycroft, Y. Wong, and M. Z. Bazant, Fast spot-based multiscale simulations of granular flow, Powder Technol. 200, 1–11 (2010). [DOI link]
  69. C. H. Rycroft, Voro++: A three-dimensional Voronoi cell library in C++, Chaos 19, 041111 (2009). [DOI link]
  70. C. H. Rycroft, A. V. Orpe, and A. Kudrolli, Physical test of a particle simulation model in a sheared granular system, Phys. Rev. E. 80, 031305 (2009). [DOI link]
  71. C. H. Rycroft, K. Kamrin, and M. Z. Bazant, Assessing continuum relationships in simulations of granular flow, J. Mech. Phys. Solids 57, 828–839 (2009). [Older preprint] [DOI link]
  72. K. Kamrin, C. H. Rycroft, and M. Z. Bazant, The Stochastic Flow Rule: A Multi-Scale Model for Granular Plasticity, Modelling Simul. Mater. Sci. Eng. 15, S449–S464 (2007). [DOI link]
  73. C. H. Rycroft, G. S. Grest, J. W. Landry, and M. Z. Bazant, Analysis of Granular Flow in a Pebble-Bed Nuclear Reactor, Phys. Rev. E 74, 021306 (2006). [DOI link]
  74. C. H. Rycroft, M. Z. Bazant, J. W. Landry, and G. S. Grest, Dynamics of Random Packings in Granular Flow, Phys. Rev. E 73, 051306 (2006). [DOI link]

Preprints and manuscripts in review

  1. Y. Sun and C. H. Rycroft, A fully-integrated lattice Boltzmann method for fluid–structure interaction, submitted to J. Comput. Phys. (2024). [arXiv preprint]
  2. J. Lu and C. H. Rycroft, Numerical methods and improvements for simulating quasi-static elastoplastic materials, preprint (2024). [arXiv preprint]
  3. D. He, G. Reddy, and C. H. Rycroft, Energy-positive soaring using transient turbulent fluctuations, submitted to J. Fluid Mech. (2023). [arXiv preprint]
  4. N. J. Derr and C. H. Rycroft, A projection method for porous media flow, preprint (2022). [arXiv preprint]
  5. B. Xu, Z. Wu, J. Lu, M. D. Shields, C. H. Rycroft, F. Bamer, and M. L. Falk, Stochastic evolution elasto-plastic modeling of a metallic glass, submitted (2024).
  6. D. M.Barber, S. Edgar, M. S. Emanuel, M. D. Nelwood, B. Y. Ahn, B. Román-Manso, T. Cochard, J. Platero, K. Amini, C. H. Rycroft, S. Rubinstein, M. J. Aziz, and J. S. Lewis, Print-and-plate architected electrodes for electrochemical transformations under flow, submitted to Advanced Functional Materials (2024).

Conference publications and technical reports

  1. Y. Jin,* K. Zhou,* T. Proietti, C. McCann, C. H. Rycroft, and C. Walsh, A Data-based Approach to Simultaneously Align Both Local and Global Frames between an Inertial Measurement Unit(IMU) and an Optical Motion Capture System, BioRob 2022.
  2. V. Gulizzi, I. Benedetti, and C. H. Rycroft, A Novel Micro-Mechanical Model for Polycrystalline Inter-Granular and Trans-Granular Fracture, Key Engineering Materials 754, 177–180 (2017). [DOI link]
  3. C. H. Rycroft, T. Lind, S. Güntay, and A. Dehbi, Granular flows in pebble bed reactors: dust generation and scaling, proceedings of ICAPP 2012, Chicago, June 24–28, 2012. [Paper]
  4. T. Lind, S. Güntay, A. Dehbi, Y. Liao, and C. H. Rycroft, PSI Project on HTR Dust Generation and Transport, proceedings of HTR 2010, Prague, 2010.
  5. C. H. Rycroft, Voro++: A three-dimensional Voronoi cell library in C++, January 23rd 2009, Lawrence Berkeley National Laboratory, Paper LBNL-1430E. [Paper]

Master's theses from the Rycroft Group

  1. A. Young, Taming chaos: the simulated reconstruction of a chaotic multi-body experiment, master's thesis, Harvard University 2022.
  2. Z. Lyu, Data-driven analysis and modeling of erosion networks, master's thesis, Harvard University, 2021.
  3. Y. Sun, A lattice Boltzmann implementation of the reference map technique, master's thesis, Harvard University, 2020. [Full text]

PhD thesis

  1. C. H. Rycroft, Multiscale modeling in granular flow, submitted to MIT, September 2007. [More information]