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Abstract

This thesis presents a hybrid fully-Eulerian numerical method for fluid–structure interaction
(FSI) simulation. The new method (LB-RMT) combines the reference map technique (RMT) and
the lattice Boltzmann (LB) method to simulate the interaction between the solid and the fluid, and
incorporates an extrapolation zone to update the solid-fluid interface. It simplifies the inter-phase
coupling by taking advantage of the two Eulerian-based methods: the RMT permits both the solid
and the fluid to be represented on a single fixed mesh, and the LB method uses a mesoscopic proba-
bilistic view of particle motion to simplify macroscopic hydrodynamics update. The LB-RMT also
provides a novel approach to mesoscopically simulating solid deformation. Examples consisting of a
quasi-incompressibleNavier–Stokes fluidwith compressible neo-Hookean solids show thismethod is
flexible and robust in handling standard fluid–structure interactions and deformable solidswith sharp
corners bending and twisting in fluid. A convergence study demonstrates the LB-RMT is of second-
order accuracy, improved from the previous first-order RMT. Themethod can be extended to handle
dissolving solids andmultispecies cases like fluid–solid–gas simulation in two and three dimensions.
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0
Introduction

Fluid–structure interaction (FSI), commonly pivoted around the study of the interaction be-

tween a moving or stationary deformable solid with its submerging or internal fluid (Dowell & Hall

2001;Wang 2008; Bazilevs et al. 2013), poses intriguing numerical challenges for computational fluid

and solid mechanics. Since the FSI problems live in both the fluid and the solid worlds, the numerical

methods chosen for such simulations need to be robust and flexible enough to handle both phases.
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Typical numerical methods for fluid simulations use an Eulerian perspective (Chorin 1967; An-

derson et al. 1997; Versteeg &Malalasekera 1995; Hirt et al. 1974), where often a rectangular or other

standard-shaped simulation domain is discretized by a fixed mesh. Each grid point contains informa-

tion on the hydrodynamic fields like velocity, density, and pressure at that particular position. An

Eulerian-based method tracks the time-dependent changes in hydrodynamics of the entire fluid do-

main and offers three advantages: a direct global description of the hydrodynamic fields, a straightfor-

ward fixed mesh setup, and an easy implementation of the incompressible flow constraint if needed.

Whereas for solid simulations, or interface tracking between the fluid and the solid, Lagrangian-

based methods are more favored (Zienkiewicz & Taylor 1967; Sulsky et al. 1994; Hoover et al. 2006;

Belytschko et al. 2013) since the simulation only tracks a small mesh or a set of markers that repre-

sents either the solid or its boundary. Mesh points or markers move with the solid, replacing the need

to track a fixed-shaped simulation domain that encloses the entire trajectory of the solid movement.

Given the extra operations required to update the solid mesh or markers, a Lagrangian-based method

is still more consistent with the solid framework and thus more often used to describe its dynamics.

The key challenge for FSI simulations is to reconcile the discrepancy in the preferred discretiza-

tion frameworks for the fluid and the solid, and to design a method that can connect both phases.

Existing methods have successfully addressed this concern and produced credible results in airfoil

modeling (Shur et al. 1999; Shyy et al. 2010), arterial blood flow (Bazilevs et al. 2006; Gerbeau &

Vidrascu 2003), and biolocomotion (Shelley &Zhang 2011; Zöttl & Stark 2012). Thesemethods can

be loosely categorized into four types. One type is to simulate both the fluid and the solid in a mesh-

free approach, like the immersed particle method (Rabczuk et al. 2010), the material point method

(Stomakhin et al. 2013) and the smoothed particle hydrodynamics method (Gingold & Monaghan

1977; Tasora et al. 2015). Without the need for a mesh, this type of method removes any potential

complexity led by different choices of frameworks, and automatically ensures mass conservation and

generates the interface between phases. It can additionally generate particle-based fluid, where a splash
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of water may be a serendipitous byproduct that is sometimes laborious to reproduce with Eulerian-

based methods. Another type is to use Lagrangian-based methods for both the fluid and the solid,

like the finite-element procedure (Rugonyi & Bathe 2001; Bathe 2006). In addition to the standard

Lagrangian finite-element discretization of the solid, a second Lagrangian mesh is introduced to rep-

resent the fluid. This fluid mesh has to conform to the solid boundary, and is often unstructured to

describe complex and flexible topologies (Persson et al. 2007, 2009; Persson & Peraire 2009).

The next type of FSI methods, also has the most applications, is to use Eulerian-based method

for the fluid and Lagrangian-based method for the solid (Peskin 1977; Mittal & Iaccarino 2005). It

discretizes the fluid on a fixed mesh, and uses an additional set of Lagrangian markers to represent

the solid boundary. One technique to bridge the two phases is to calculate the surface tension forces

along the solid boundary markers and then forward these forcing terms to update the fluid domain.

This type of methods provides an intuitive discretization setup of the two phases, and is broadly used

to track rigid or deformable solids in fluid flow. One widely cited example is the immersed boundary

method (Peskin 2002; Griffith et al. 2009; Fai et al. 2013), which has long been used to simulate swim-

ming, flapping, and elastic objects in biomechanical applications (Zhang et al. 2000; Watanabe et al.

2002; Zhu & Peskin 2002; Connell & Yue 2007).

These methods above more or less leverage the Lagrangian framework to describe the fluid and

the solid, adding time-dependent complexity of tracking and updating the Lagrangianmarkers. With-

out the requisite of utilizing Lagrangian frameworks or switching between Eulerian and Lagrangian

frameworks, the discretization and implementation of FSI methods will be only on one fixed grid,

where both the fluid and solid can be described using Eulerian methods. The last type of FSI meth-

ods is an example of such, which either uses a level set function to describe the topological changes of

the solid–fluid interface, like the level set method (Sethian 1999; Osher & Sethian 1988), or uses the

usual Eulerian framework for the fluid and an Eulerian framework to describe the continuum solid

(Udaykumar et al. 2003;Rycroft&Gibou2012;Rycroft et al. 2015) of large-strain (Gurtin et al. 2010)
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and hyperelastic materials (Truesdell 1955), like the reference map technique (Kamrin &Nave 2009;

Kamrin et al. 2012; Valkov et al. 2015; Rycroft et al. 2018). The latter example uses a reference map

field, defined as an Eulerianmapping from the deformed framework to the unreformed framework of

the solid on the fixedmesh, and a level set function to describe the interface between the fluid and the

solid. Thismethod leads to a unified, simple, explicit finite-difference calculation of solid deformation,

feasible to be combined with any finite-difference methods for fluid simulation.
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Figure 1: Illustrations of the domain discretization for the four types of numerical methods in fluid–structure interactions.
(i) Mesh‐free approach: the fluid and the solid are represented by particles. (ii) Lagrangian‐based method for both phases:
unstructured meshes are initialized to discretize the solid geometry and the submerging fluid. (iii) Eulerian‐based method
for the fluid and Lagrangian‐basedmethod for the solid: the fluid is discretized by a fixedmesh, and the solid is represented
by markers. These solid markers can be off grid points. (iv) Eulerian‐based method for both phases: the fluid and the solid
are discretized by one fixed mesh, and the solid boundary is represented by a level set function.
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The reference map technique (RMT) plausibly inherits all the advantages of an Eulerian-based

method, along with its fully-Eulerian framework in discretizing continuum solids. It has proven first-

order accuracy and stability to simulate large solid deformation in fluid, including examples of flexible

rods, a flapping swimmer, and a rotor with sharp corners in incompressible fluid (Rycroft et al. 2018).

The current implementation of the RMT uses second-order finite-difference methods to calculate

the advective terms and stresses. It uses the projection method of Chorin (1967, 1968) to impose

incompressibility for the fluid, whereby a finite-element-based Poisson problem for the pressure is

solved (Bell et al. 1989; Almgren et al. 1996; Yu et al. 2003, 2007), which is used to project the velocity

to be divergence free. While the Poisson problem can be solved efficiently using themultigridmethod

(Briggs et al. 2000), it still represents the most computationally expensive part of the current RMT

implementation, taking upward of two-thirds of the total computation time (Rycroft et al. 2018).

A promising alternative to the current finite-difference-based implementation is to use the lattice

Boltzmann (LB) method for the fluid update (Succi 2001; Krüger et al. 2017; Chen &Doolen 1998).

The LB method is an Eulerian-based simulation technique for computational fluid dynamics, which

originated from the kinetic theory of gases (Higuera& Jiménez 1989;Rivet&Boon 2005; Succi 2001)

in statistical physics. It also uses a fixedmesh to represent a rectangular simulation domain, where each

grid point corresponds to a fluid node. Rather than containing the macroscopic hydrodynamic fields

as the fluid nodes in the other Eulerian-based methods, the LB nodes are assigned with probability

distribution functions. These probability distribution functions, also denoted as the particle popu-

lations (Krüger et al. 2017), are the statistical quantities associated with each fluid node to represent

the particle density in the designated discrete velocity space at the current space and time. The macro-

scopic quantities in the continuity andNavier–Stokes equations (Batchelor 2000; Landau & Lifshitz

1987), like the density and velocity, are retrieved from this statistical view of fluidmotion as moments

of the populations (He & Luo 1997). The LB method has unique advantages in three distinct as-

pects: First, it requires no special adjustments to include complex rigid obstacles (Succi et al. 1989;
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Martys & Chen 1996) and minimal additions to handle multiphase fluids (Aidun & Clausen 2010;

He et al. 1999;Grunau et al. 1993), thusmaking themethod popular in porousmedia (Pan et al. 2006;

Guo & Zhao 2002; Sahimi 2011) and multicomponent flow (Shan & Doolen 1995; Martys & Chen

1996). Second, since the LB method is quasi-incompressible (Succi 2001; Krüger et al. 2017), i.e. it

is incompressible if the simulated flow has been fully-developed and the simulation domain is a long

channel to decrease back-propagating waves at the initial frames of simulation, the incompressibility

constraint has been encoded into themethod. No extra calculation ormethod is needed to impose this

constraint. Lastly, the LB method is also suitable for parallelization (Kandhai et al. 1998; Amati et al.

1997; Bernaschi et al. 2009) due to the nature of its loop-based implementation. Heavy on the mem-

ory allocation, the method can be improved with the multi-threaded performance and be customized

for diverse, complex obstacles and boundary conditions.

The other reason to link the LBmethod with the RMT is its analogy to the immersed-boundary-

lattice-Boltzmann method (IB-LBM), a method (Feng & Michaelides 2004) that combines the IB-

based solid boundary with the LB-based fluid for FSI simulations. Since the IBmethod uses the force

density (Peskin 1977) along the Lagrangian solidmarkers to represent the boundary, it can be coupled

with any fluid solver that supports external forcing, like the LBmethod (Guo et al. 2002; Huang et al.

2011; Ginzburg et al. 2008; Shan & Chen 1993; He et al. 1998). Though this method has desirable

results in simulating elastic objects in viscous flow like flexible sheets (Zhu et al. 2011) and red blood

cells (Bagchi 2007; Zhang et al. 2007; Sui et al. 2008; Li et al. 2013; Wang et al. 2013; Krüger et al.

2013), it still requires an additional Lagrangian framework to represent the solid boundary, and extra

calculations to interpolate the velocity of the solid markers using the fluid nodes. Another limitation

of IB-LBM lies in its simulation domain, where the entire mesh is filled with fluid nodes and only a

set of mesh-independent markers to represent the solid boundary. This setup leaves no information

to simulate the deformation or the kinematics inside the solid. One remedy is to add interior markers

like the direct-forcing and fictitious-domain methods (Nie & Lin 2010; Feng &Michaelides 2009).
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This thesis combines the RMT and the LB method to numerically simulate the interaction be-

tween deformable solids in submerging incompressible fluid. This hybrid fully-Eulerian method re-

quires only one fixed mesh, where each grid point represents either a fluid node or a solid node, de-

pending on the level set function that separates the fluid and the solid. The RMT operates on the

solid nodes and describes the solid deformation by tracking the solid reference map and calculating

the solid stress using the deformation gradient tensor (Plohr & Sharp 1988; Trangenstein & Colella

1991; Liu & Walkington 2001) and a chosen solid constitutive relation. This solid stress is then for-

warded to the LB method as external force density on the solid nodes. The LB method updates all

the nodes, with either standard LB routines for fluid nodes, or forcing-termmodified LB routines for

solid nodes. An additional extrapolation zone (Valkov et al. 2015;Rycroft et al. 2018) around the solid

nodes is appended to extrapolate the solid reference map and update the solid and fluid nodes based

on the level set function. This new method brings together the unique advantages of its two parent

methods, i.e. representing both the fluid and the solid with one method on a fixed mesh, and calculat-

ing the hydrodynamics without heavy-lifting numerical burden. It also offers a novel perspective on

simulating solid deformation and fluid–structure interaction in a mesoscopic probabilistic view.

The thesis is divided into four parts. Chapter 1 introduces the theory of the reference map tech-

nique for solid deformation and the lattice Boltzmann method for fluid dynamics, supplemented

with the algorithm overviews of two methods and a short description of the fluid–structure inter-

action configuration. Chapter 2 studies the link between the two methods and how to derive the

lattice-Boltzmann-based reference map technique (LB-RMT) for fluid–structure interaction simula-

tions. Discretization details of the numerical methods are also provided in this chapter. Chapter 3

presents three examples: A convergence study of solid shear wave simulation, a deformable sheet in

the Poiseuille flow, and rotors in initially quiescent flow. Chapter 4 concludes the strengths and weak-

nesses of the hybrid method and discusses its future extensions and applications.
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1
Theory of Solid Deformation and

Lattice Boltzmann Fluid

Theproposedhybridmethod for simulating fluid–structure interaction is based on the reference

map technique (Rycroft et al. 2018) and the lattice Boltzmann method (Succi 2001). This chapter

introduces the fundamentals of the reference map technique, which uses an Eulerian framework to
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describe solid deformation, and the lattice Boltzmannmethod, whichmesoscopically reconstructs the

macroscopic fluid quantities.

1.1 ReferenceMap Technique

1.1.1 Overview of the ReferenceMap Technique

The key to the reference map technique is to describe the solid deformation (Lubliner 2008; Gurtin

et al. 2010) in the Eulerian framework. We first introduce an undeformed reference configuration

of the hyperelastic solid at time t = 0 with coordinate system X⃗ , and after some time, the reference

configuration is deformed to a new coordinate system x⃗. Consider a time-dependentmapping χ⃗ from

the undeformed coordinate system X⃗ to the deformed coordinate system x⃗, i.e. x⃗ = χ⃗(X⃗, t). The

deformation gradient tensorF (Plohr&Sharp 1988; Trangenstein&Colella 1991; Liu&Walkington

2001) is denoted as

F(X⃗, t) =
∂χ⃗

∂X⃗
. (1.1)

X⃗

Initial undeformed
coordinate system X⃗

Deformed coordinate
system x⃗ at time t

Mapping χ⃗(X⃗, t)

Figure 1.1: Illustration of the hyperelastic solid deformation, where a time‐dependent mapping χ⃗(X⃗, t) is applied to an
initially undeformed solid with reference coordinate system X⃗ and results in a deformed coordinate system at time t.

The deformation gradient tensor F(X⃗, t) can also be expressed in terms of the reference map

field ξ⃗(x⃗, t) (Gurtin et al. 2010), which is an Eulerianmapping from the deformed coordinate system
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x⃗ to the undeformed coordinate system X⃗ . ξ⃗(x⃗, t) represents the inverse mapping of χ⃗, i.e. X⃗ =

ξ⃗(x⃗, t) = χ⃗−1(x⃗, t). The reference map field has an initialization of ξ⃗(x⃗, 0) = x⃗, and satisfies the

advection equation with a material velocity v⃗,

∂ξ⃗

∂t
+ (v⃗ · ∇)ξ⃗ = 0⃗. (1.2)

By the chain rule, the deformation gradient tensorF(ξ⃗, t) can be rewritten as

F(ξ⃗(x⃗, t), t) =

(
∂ξ⃗(x⃗, t)

∂x⃗

)−1

, (1.3)

which can be used to describe the Cauchy stress of the solidσ in an Eulerian framework with a choice

of constitutive relation f . Here we choose f to be a compressible neo-Hookean elastic solid model

(Rivlin & Saunders 1951), thus the solid stress can be denoted as

σ = f(F) = GJ −5/3B ′ + κ(J − 1)I⃗ , (1.4)

where the quantities in Eq. (1.4) are summarized in the Table 1.1.

Symbol Meaning Explanation

G small-strain shear modulus unit: Pa

κ bulk modulus ≈ 3G

J determinant ofF J = det(F)

B left Cauchy–Green tensor B = FFT

B ′ deviatoric part ofB B ′ = B− 1
3 trace(B)I⃗

Table 1.1: Symbols and their physical or mathematical meanings of the chosen neo‐Hookean elastic solid model (Eq. (1.4)).
An explicit evaluation equation or relevant information for each symbol is also listed.

This explicit formof the solid stressσ gives information to the thematerial velocity v⃗(x⃗, t) of the solid
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with density ρs, which satisfies the momentum equation

ρs

(
∂v⃗

∂t
+ (v⃗ · ∇)v⃗

)
= ∇ · σ. (1.5)

1.1.2 Overview of the Algorithm

The simulation domain is discretized by a fixed Eulerianmesh, whose nodes can be deformed to a new

position according to the solid deformation. Assign a reference map field ξ⃗ to the mesh, we can track

each nodal evolution and calculate the deformation gradient tensor F (Eq. (1.3)) at a given time t.

With the choice of constitutive relation f , the deformation gradient tensorF tells us the value of the

solid stressσ (Eq. (1.4)). Combined with the momentum equation (Eq. (1.5)), the divergence of the

solid stress∇ · σ formulates how the material velocity v⃗ changes with respect to time t. Starting at a

timestepn, theRMTfinds thematerial velocity for the next timestepn+1based on the referencemap.

The algorithm of the velocity field and reference map field update is summarized below, followed by

the discretization details in Chapter 2.

Algorithm 1:Update the solid kinematic fields using the RMT.

1 Begin

2 Initialize the velocity field v⃗0 and the reference map field ξ⃗0;

3 LOOP v⃗ n+1, ξ⃗ n+1 ← v⃗ n, ξ⃗ n

4 Compute the reference map gradient (Eqs. (2.13) – (2.16));

5 Calculate the deformation gradient tensorFn;

6 Calculate the solid stressσn;

7 Calculate the updated velocity field v⃗ n+1;

8 Calculate the updated reference map field ξ⃗ n+1 (Eq. (2.12)).

9 end
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1.2 Lattice BoltzmannMethod

1.2.1 Overview of the Lattice BoltzmannMethod

Based on the kinetic theory of gases (Higuera & Jiménez 1989; Rivet & Boon 2005), the lattice Boltz-

mann (LB) method is an alternative to other traditional computational fluid dynamics methods, like

the family of finite-difference, (Baliga&Patankar 1980;LeVeque2007), finite-element (Hughes 2012),

and finite-volume methods (LeVeque et al. 2002; Tryggvason et al. 2001), in the continuum realm.

With a minimal form of the Boltzmann kinetic equation (Krüger et al. 2017), the LB method recon-

structs the macroscopic hydrodynamic quantities, namely the density field ρf and the velocity field

v⃗, of the Navier–Stokes equation with a mesoscopic representation of fluid particles. A mesoscopic

probabilistic view of particle motion is introduced into the macroscopic hydrodynamics, and the lat-

ter is characterized by a probability distribution function f(x⃗, v⃗, t), also known as the population, of

a fluid particlewithmolecular velocity v⃗ being present at position x⃗ at a given time t. Themacroscopic

quantities can thus be retrieved as an integral in the velocity space (Succi 2001),

ρf (x⃗, t) =

∫
f(x⃗, v⃗, t) dv⃗, (1.6)

which denotes the fluid density, and similarly, the local fluid velocity is denoted as

v⃗(x⃗, t) =

∫
f(x⃗, v⃗, t)v⃗ dv⃗

ρf (x⃗; t)
. (1.7)

In a two-dimensional discrete space and time domain, the velocity space is reduced to nine discrete

velocities (Shan et al. 2006), c⃗i. This latticemodel is referred to asD2Q9 (Qian et al. 1992). D2 stands

for two dimensions, and Q9 represents the nine possible directions for a single particle to move, in-

cluding the one staying at rest. For one lattice in such domain, there are nine populations fi associated
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with it, each representing the probability distribution of the particle velocities in one timestep.

bc

bc bc bc

bc bc bc

bc bc

i− 1, j i, j i+ 1, j

i, j − 1

i, j + 1

i− 1, j − 1

i− 1, j + 1

i+ 1, j − 1

i+ 1, j + 1

f1

f2

f3

f4

f5f6

f7 f8

f0

Figure 1.2: Diagram of theD2Q9 lattice model for the two‐dimensional LB method. Each fi is a probability distribution
function of a particle velocity at (i, j) in the direction of the black arrow. The grey lattices are the neighboring lattices,
which will receive the fi’s contribution in the next timestep.

Theblack arrows in Figure 1.2 represent the nine discrete velocities c⃗i, which respectively indicate how

a particle at (i, j) travels to its neighboring lattices. Since the LB method uses unit grid spacing and

unit timestep in its discrete domain, i.e.∆x = 1 and∆t = 1, c⃗i =
∆x⃗i
∆t

are denoted as

c⃗1 = (1, 0) c⃗5 = (1, 1)

c⃗2 = (0, 1) c⃗6 = (−1, 1)

c⃗3 = (−1, 0) c⃗7 = (−1,−1)

c⃗4 = (0,−1) c⃗8 = (1,−1)

(1.8)

with c⃗0 = (0, 0) representing the stationary motion. The neighboring lattices associated with the

velocities in the left column in Eq. (1.8) are called the first neighbors, and the ones with the right are

the second neighbors. The one at rest, which is the particle at (i, j) itself is called the zeroth neighbor.

There are different values of weightwi associated with different level of neighbors, listed in Table 1.2.
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neighbor fi 0th 1st 2nd

number 1 4 4

weightwi 4/9 1/9 1/36

Table 1.2: Attributes of the weights and number of each level of neighbors to one lattice in theD2Q9 model.

The sum of the nine weights of neighboring lattices is strictly one:

1× 4

9
+ 4× 1

9
+ 4× 1

36
= 1. (1.9)

With theninediscrete velocities c⃗i, the integral formsofmacroscopic fluidquantities canbe reduced to

summations of the populations fi(x⃗, t). These summations correspond to the moments of probabil-

ity distribution functions. The integral form of themacroscopic fluid density ρf in Eq. (1.6) becomes

the zeroth moment of the populations fi,

ρf (x⃗, t) =

8∑
i=0

fi(x⃗, t). (1.10)

The first moment corresponds with the integral form of the macroscopic fluid velocity in Eq. (1.7)

and refers to the macroscopic fluid momentum J⃗ ,

J⃗(x⃗, t) = ρf (x⃗, t)v⃗(x⃗, t) =

8∑
i=0

c⃗ifi(x⃗, t), (1.11)

and the macroscopic fluid velocity v⃗ is

v⃗(x⃗, t) =
1

ρf (x⃗, t)

8∑
i=0

c⃗ifi(x⃗, t). (1.12)

Suppose the fluid model can be described by a quasi-incompressible (Succi 2001; Krüger et al.
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2017) Navier–Stokes equation using the macroscopic fluid quantities,

∂tv⃗ + v⃗ · ∇v⃗ = ν∆v⃗ − 1

ρf
∇p (1.13)

where v⃗ is the macroscopic fluid velocity, p is the fluid pressure, and ν is the kinematic viscosity under

the incompressibility condition,

∇ · v⃗ = 0. (1.14)

Rather than directly discretizing this systemof nonlinear partial differential equations in Eqs. (1.13)&

(1.14), the LBmethod reconstructs the fluid density ρf and the local fluid velocity v⃗ by updating the

populations fi(x⃗, t) based on the Bhatnagar–Gross–Krook (BGK) model (Bhatnagar et al. 1954),

fi(x⃗+ c⃗i∆t, t+∆t) = fi(x⃗, t)− ω [fi(x⃗, t)− f eq
i (x⃗, t)] (1.15)

where from left to right each term represents:

• fi: the probability distribution function (population) of the fluid particle in the i-th direction,

• ∆t: the timestep in the LB method, denoted to be∆t = 1,

• c⃗i: the discrete velocity in the i-th direction, also known as the lattice velocity,

• ω: the relaxation frequency, ω =
∆t

τLB
,

– τLB is the relaxation time to the local equilibrium, and can bemodified in the simulation,

– τLB controls the kinematic viscosity ν = c⃗ 2
s

(
τLB −

∆t

2

)
= c⃗ 2

s

(
∆t

ω
− ∆t

2

)
,

– c⃗s is the speed of sound in the LB lattice unit, chosen to be c⃗s =
√

1

3
(Eq. (A.4)),

• f eq
i : the local Maxwell–Boltzmann equilibrium distribution function.
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This local equilibriumdistribution functionf eq
i is validonlywhen theparticle is close to theMaxwell–

Boltzmann equilibrium (Gombosi & Gombosi 1994), and can be approximated by a second-order

Taylor expansion (Succi 2001),

f eq
i (x⃗, t) = f eq

i (ρ, v⃗) = wi ρ

[
1 +

v⃗ · c⃗i
c 2s

+
(v⃗ · c⃗i) 2 − c 2s v⃗

2

2c 4s

]
. (1.16)

The second-order expansion is sufficient to get the momentum flux tensor, which contains the shear

stress information. This f eq
i matches the first two moments (Chapman & Cowling 1952), the fluid

density ρf and velocity v⃗,

ρf (x⃗, t) =

8∑
i=0

fi(x⃗, t) =

8∑
i=0

f eq
i (x⃗, t),

J⃗(x⃗, t) = ρf (x⃗, t)v⃗(x⃗, t) =
8∑

i=0

c⃗ifi(x⃗, t) =
8∑

i=0

c⃗if
eq
i (x⃗, t),

(1.17)

but generally does not match the second moment, which corresponds to the energy flux, unless at

equilibrium. The second moment models how energy dissipates in viscous fluid, i.e. how the particle

distribution moves away from the Maxwell–Boltzmann equilibrium. Therefore, the simulation pa-

rameters have to be within a certain range, or else the simulation will break down since the particle

distribution is too far from the equilibrium, resulting in the probability distribution function at equi-

librium f eq
i being invalid. For example, the relaxation time τLB is typically chosen between (0.5, 1.0].

If below 0.5, the kinematic viscosity will be nonphysically negative, and if above 1.0, the fluid particle

will be too far away from its equilibrium.

This BGKmodel in Eq. (1.15) can also be rearranged to generate two LB routines,

fi(x⃗+ c⃗i∆t, t+∆t)− fi(x⃗, t)︸ ︷︷ ︸
Streaming

= −ω [fi(x⃗, t)− f eq
i (x⃗, t)]︸ ︷︷ ︸

collision

. (1.18)
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The collision routine shows how the populations fi of a particle interact amongst each other locally

and how they move toward their Maxwell–Boltzmann equilibrium due to collisions. The momen-

tum is conserved in the collision routine, whereas the kinetic energy is not, thus resulting in energy

dissipation in the form of viscosity. The equation of the collision operator is

Ωi = −ω(fi − f eq
i ). (1.19)

This collision operator can be further combined with fi to calculate the post-collision population f̂i,

f̂i = fi +Ωi∆t = (1− ω)fi + ωf eq
i , (1.20)

which corresponds to the new population fi at the corresponding neighbor for the next timestep.

bc

bc bc bc

bc bc

bc bc

i− 1, j i+ 1, j

i, j − 1

i, j + 1

i− 1, j − 1

i− 1, j + 1

i+ 1, j − 1

i+ 1, j + 1

f1

f2

f3

f4

f5f6

f7 f8

bc
i, j

f̂1

f̂2

f̂3

f̂4

f̂5f̂6

f̂7 f̂8

f0

Figure 1.3: Diagram of the streaming routine for the two‐dimensional LB method. The grey arrows and labels show the
original position of the nine post‐collision populations f̂i. Each f̂i moves from its grey position in the direction of dashed
arrow to its neighboring lattice. f̂i then becomes the new fi of the neighboring lattices in the next timestep.
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In the streaming routine, illustrated in Figure 1.3, f̂p moves forward to its neighboring lattice

along the c⃗i direction, and its value is taken to update the value of fi for the next timestep. There

is no information lost in the process since streaming is local and exact up to machine precision. The

equation for the streaming routine is

fi(x⃗+ c⃗i∆t, t+∆t) = f̂i(x⃗, t). (1.21)

Eq. (1.18) and Eq. (1.21) are first-order updates in time since the updated term equals one timestep

multiplying the direct change. Eq. (1.21) is also the Navier–Stokes equation in the spirit of the LB

method (Succi 2001). Since the LB method steps forward with a unity timestep, ∆t = 1, the LB

method can be viewed as a finite-difference method looped over a fixed Eulerian simulation domain

where nine populations are associated with each node. This feature makes the LB method easy to

implement and parallelize (Kandhai et al. 1998; Amati et al. 1997; Bernaschi et al. 2009) since the

code base is characterized by two nested loops.

1.2.2 Overview of the Algorithm

On a two-dimensional simulation domain discretized by a fixed Eulerian mesh, we can track the evo-

lution of the hydrodynamic terms, in particular the fluid density ρf and velocity v⃗, with themoments

of the populations fi attributed to each node. In one timestep, we first calculate the fi at equilibrium

f eq
i with known fluid density ρf and velocity v⃗ from the previous timestep. Coupled with fi, we

use this f eq
i in the collision routine to compute the post-collision distribution f̂i. In the streaming

routine, the f̂i moves to its neighboring lattice in the direction of c⃗i, and becomes the new fi of the

neighboring lattice in the next timestep. Then in the next timestep, we recalculate the zeroth and first

moments to retrieve the updated fluid density ρf and velocity v⃗. The algorithm of the LB method

is summarized below, with the four key routines in the loop (equilibrium, collision, streaming,

18



and hydro). More details regarding how to incorporate external forces (Guo et al. 2002) and adjust

the discretization to be second-order in time (Krüger et al. 2017), how to apply boundary conditions

(Succi 2001) and how to initialize the fi (Krüger et al. 2017) will be discussed in Chapter 2.

Algorithm 2:Update the hydrodynamic fields using the LB method.

1 Begin

2 Initialize the fluid density field ρf , velocity field v⃗0, and fi;

3 LOOP f n+1
i , ρn+1

f , v⃗ n+1 ← fi
n, ρn

f , v⃗
n

4 equilibrium: Calculate f eq
i

n using ρn
f and v⃗ n (Eq. (1.16));

5 collision: Calculate f̂i
n
as a result of local f n

i and f eq
i

n collision (Eq. (1.20));

6 streaming: Update f n+1
i of the neighboring lattices with f̂i

n
(Eq. (1.21));

7 hydro: Calculate ρn+1
f (Eq. (1.10)) and v⃗ n+1 (Eq. (1.12));

8 end

1.3 Fluid–Structure Interaction

The configuration of the fluid–structure interaction modelled in the thesis is a deformable solid im-

mersed within the fluid. This compressible neo-Hookean (Eq. (1.4)) solid can bend, twist and move

with the fluid flow. A level set function ϕ(x⃗, t) (Sethian 1999; Osher & Sethian 1988) is added to

the configuration to describe the solid boundary. It is also used to label the phase of each node (fluid,

solid, or within the extrapolation zone) based on the signed distance function values,

label of node =



solid, if ϕ < 0

fluid, if ϕ > ϵ

within extrapolation zone, if 0 ≤ ϕ ≤ ϵ

(1.22)
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The reference map ξ⃗ is only defined in the solid region. The extrapolation zone of width ϵ links the

purely solid and purely fluid region, and the nodes within the extrapolation zone can switch between

the two phases depending on their reference map values and the level set function. In order to obtain

the referencemapwithin the extrapolation zone, a least-squares regression procedure is used to obtain

the extrapolated reference map values (Rycroft et al. 2018)—see Chapter 2 for further details.

This fluid–structure interaction configuration involves the followingquantities in their respective

regions of solid only, fluid only, and global in both phases:

Global

velocity field v⃗

Solid Fluid

solid density ρs fluid density ρf

solid stressσ fluid kinematic viscosity ν

reference map field ξ⃗

Table 1.3: Quantities and their valid regions involved in the FSI simulation. The velocity field v⃗ is define in both the fluid
and the solid region. The solid density ρs, solid stress σ and reference map field ξ⃗ are only denoted in the solid region;
whereas the fluid density ρf and fluid kinematic viscosity ν only in the fluid.

The entire simulation domain is discretized with a fixed mesh, where the solid nodes are attributed

with the global velocity v⃗, the solid density ρs, the reference map field ξ⃗ and the solid stress σ, and

the fluid nodes are attributed with the global velocity v⃗, the fluid density ρf and the fluid kinematic

viscosity ν. The extrapolation zone is updated at each timestep and extrapolated to refresh the solid–

fluid interface. Every node is assigned with the nine populations fi to process the LB routines. Since

each node carries mesoscopic information of the populations for both the fluid and the solid, the new

hybrid method will not be requiring separate routines to calculate the solid density ρs and the fluid

density ρf . Their calculations can be unified using the zeroth moment of the particle populations

(Eq. (1.10)). Due to this setup, the hybridmethod does not need to abide by the region differentiation
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(Table 1.3) when calculating the FSI quantities. It extends the mesoscopic view from the fluid to the

solid, resulting in a unified representation of the entire simulation domain. The thesis proposes to

use the RMT for the solid stressσ and solid reference map ξ⃗ update, and the LBmethod for the fluid

density ρf , solid density ρs, and global velocity v⃗ update for FSI simulations. Compared with the

previous RMT-based FSI numerical methods (Kamrin et al. 2012; Valkov et al. 2015; Rycroft et al.

2018), an explicit calculation of the fluid stress for the FSI simulation also will not be needed in this

new hybrid method. The fluid stress has been built into the LB equilibrium equation (Succi 2001) in

the BGKmodel (Eq. (1.18)), which is automatically calculated if performing the entire LB algorithm.

Fluid, ϕ > ϵ

Extrapolation zone, 0 ≤ ϕ ≤ ϵ Solid reference map ξ⃗(x⃗, t)

Global velocity field v⃗(x⃗, t)

Solid, ϕ < 0

Figure 1.4: Illustration of the reference map configuration for a fluid–structure interaction with a deformable solid im‐
mersed in fluid on a fixed Eulerian grid. A signed distance function denotes the level set functionϕ(x⃗, t), where a positive
distance represents the fluid and a negative represents the solid. The extrapolation zone generates a smooth transition
between the two phases, defined as 0 ≤ ϕ ≤ ϵ where ϵ is the width of the extrapolation zone.
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2
Lattice-Boltzmann-Based

Reference Map Technique

Thekeytocombine the latticeBoltzmannmethod (LBM)and the referencemap technique (RMT)

into one fully-Eulerian method is to forward the RMT-based solid stress as the external force density

into the LB-based routines. Solid deformation can be quantified by the solid stress, whose expression
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is consistent with the force density. Since the LB method supports external forcing (Guo et al. 2002;

Huang et al. 2011; Ginzburg et al. 2008; Shan & Chen 1993; He et al. 1998), it can theoretically ac-

cept a solid stress and extend the notion of mesoscopic fluidmotion tomesoscopic solid deformation.

This is realized by modifying the collision operator and the moments of the particle populations in

the LB method. The resulting lattice-Boltzmann-based reference map technique (LB-RMT) for a

fluid–structure interaction simulation utilizes its parent methods respectively:

• the RMT tracks the solid reference map ξ⃗ and the solid stressσ,

• the LB method tracks the global velocity v⃗, the fluid density ρf , and the solid density ρs.

2.1 Lattice-Boltzmann-Based Solid Deformation

Imagine that a lattice in the LB domain now represents a solid, if we are to directly apply the usual

LB method, the simulation will lack the information regarding the solid deformation. In order to

have an accurate kinematical description of the solid lattice, we need to pass in the information of

the solid forces into the LB routines. Let us first simplify our simulation domain to be solid only to

derive the theory of the LB-based solid deformation. In the RMT, the material velocity v⃗ satisfies the

macroscopic momentum equation

ρs
Dv⃗

Dt
= ∇ · σ, (2.1)

where σ is the solid stress and ρs is the solid density. The momentum (Eq. (1.11)) or the material

velocity v⃗ in the LB method equivalently satisfies the macroscopic momentum equation

ρf
Dv⃗

Dt
= ∇ · σf (2.2)

where σf represents the fluid stress and ρf is the fluid density. For a simulation node in the LB

method, it represents the fluid whose macroscopic hydrodynamics can be mesoscopically retrieved
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using the moments of particle populations, including the fluid stressσf (Succi 2001). In order to ex-

tend the attribute of the simulation node to contain solid, i.e. rewrite Eq. (2.1) in the language of the

LB method, the only change is to add the solid stress into the LB routines. Since all the macroscopic

hydrodynamic quantities are expressed in terms of fi in the LBmethod, we can simply add the correc-

tion of the solid stress∇·σ to the current LB first moment. One direct modification is to change the

first moment and the collision operator. Adding the correction of the divergence of the solid stress to

Eq. (1.11) in the LB method results in

J⃗ = ∇ · σ +
8∑

i=0

c⃗ifi(x⃗, t). (2.3)

In order to reflect this net change in the momentum equation on each individual population fi, we

can modify the collision operator from Eq. (1.19) so that each fi will now carry the information of

the solid stress,

Ωi = −ω (fi − f eq
i ) +wi

∇ · σ
c 2
s

· c⃗i. (2.4)

This preliminary connection between the LB method and RMT is summarized in the table below:

Material Velocity First Moment Collision Operator

RMT ρDv⃗
Dt = ∇ · σ

LBM ρDv⃗
Dt = ∇ · σf

∑8
i=0 c⃗ifi(x⃗, t) Ωi = −ω (fi − f eq

i )

LB-RMT ρDv⃗
Dt = ∇ · σ +∇ · σf ∇ · σ +

∑8
i=0 c⃗ifi(x⃗, t) Ωi = −ω (fi − f eq

i ) +wi
∇·σ
c 2
s
· c⃗i

Table 2.1: Overview of the comparison between the RMT and LB method, and the derivation of the LB‐RMT using the
solid stress correction in the first moment, and the resulting collision operator.

Note that in thismodification, each solid node inherits a fluid stress that is built into the LBmethod in

the equilibrium step (Succi 2001), in addition to its solid stress. This automatically leads to additional

viscous stress in the solid, which is in fact desired in the RMT implementation. The previous RMT

24



(Rycroft et al. 2018) incorporates an artificial viscous stress inside the solid to stabilize the simulation.

Bymesoscopically calculating the solid stress, the LB-based solid deformation stabilizes the simulation

with a built-in viscous stress in the solid at no additional computation cost.

2.2 Modification of the Lattice BoltzmannMethodwith Forces

Mathematically speaking, directly adding the correction term to the first moment and the collision

operator (Table 2.1) in the LB method does not violate the continuity equation and the momentum

equation. However, this crude modification will result in unstable simulations with uncontrollable

noise caused by discrete lattice artifacts (Krüger et al. 2017). Since the solid stress is analogous to the

force density, a promising alternative is to add forces to the LB method (Guo et al. 2002).

A general approach to incorporating any arbitrary force density into the LB method requires a

second-order accuracy in the velocity space and time to avoid instability. The standard LB method

summarized in Chapter 1 is only first-order in velocity space (Eq. (1.12)) and in time (Eq. (1.19)).

With specific modifications to two LB routines, collision and hydro, forces become present in the

LB method. The macroscopic density and velocity, i.e. the zeroth and first moment of the particle

populations, of a fluid particle now contain the half-force correction (Krüger et al. 2017),

ρ =
∑
i

fi +
∆t

2

∑
i

Fi

v⃗ =
1

ρ

∑
i

fic⃗i +
∆t

2ρ

∑
i

Fic⃗i.

(2.5)

This new definition of velocity v⃗, which is of second-order in velocity space, is the physical velocity of

the fluid particle, taken to be the average velocity of the pre-collision and post-collision values. The

collision operator also becomes second-order in time, with a change of variable τ̄ = τ + ∆t
2 (Dellar
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2001; Chen &Doolen 1998),

Ωi = −
1

τ̄
(fi − f eq

i ) +

(
1− ∆t

2τ̄

)
Fi, (2.6)

and the post-collision population is also changed to a second-order expression with ω̄ = 1
τ̄ ,

f̂i = fi +Ωi∆t = (1− ω̄)fi + ω̄f eq
i +

(
1− ∆t

2τ̄

)
Fi. (2.7)

Suppose the external force density is denoted as F⃗i macroscopically, its mesoscopic definition Fi in

the nine discrete velocity space takes the form

Fi = wi

(
c⃗i − v⃗

c2s
+

(c⃗i · v⃗)c⃗i
c4s

)
· F⃗ , (2.8)

and in the context of the fluid–structure interaction, the force density is the solid stress, i.e. F⃗ = ∇·σ.

First-Order Standard LBMethod Second-Order LBMethod with Forces

hydro
ρ =

∑
i fi

v⃗ = 1
ρ

∑
i fic⃗i

ρ =
∑

i fi +
∆t
2

∑
i Fi

v⃗ = 1
ρ

∑
i fic⃗i +

∆t
2ρ

∑
i Fic⃗i

equilibrium f eq
i = wi ρ

[
1 +

v⃗ · c⃗i
c 2s

+
(v⃗ · c⃗i) 2 − c 2s v⃗

2

2c 4s

]
collision Ωi = − 1

τ (fi − f eq
i ) Ωi = − 1

τ̄ (fi − f eq
i ) +

(
1− ∆t

2τ̄

)
Fi

streaming fi(x⃗+ c⃗i∆t, t+∆t) = f̂i(x⃗, t) = fi +Ωi∆t

Table 2.2: Comparisons in the main routines between the first‐order LB method and the second‐order LB method with
external forces. The equilibrium and stream routines are left unchanged in the force modification, with exceptions in
the half‐time correction in the hydro and external force density in collision routines.
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2.3 Overview of the Algorithm

With thenewcollision routineof theLB-based soliddeformation, thehybridmethodconnects the two

Eulerian-basedmethods together onto one fixed backgroundmesh. For the FSI simulation configura-

tion shown in Figure 1.4, the simulation starts with an initial global velocity field v⃗0, initial densities

of both fluid ρf and solid ρs, an initial solid reference map field ξ⃗0, and a level set function ϕ that

describes the solid–fluid interface. The RMT calculates the solid stressσ based on the reference map

deformation gradient tensor, and this solid stress is then passed to the solid nodes as force density. The

LB method updates the density fields, ρf and ρs, and the global velocity field v⃗ with the correspond-

ing routines on the fluid nodes and the solid nodes. After the kinematic fields update, the reference

map is extrapolated to the extrapolation zone to update the solid–fluid interface and relabel the solid

and fluid nodes based on the new signed distance. The key is to shuffle the ordering of routines in

Algorithm 1 and Algorithm 2. Here we represent the algorithm of the lattice-Boltzmann-based ref-

erence map technique (LB-RMT) in Algorithm 3, where blue represents the LB-native routines, red

represents the RMT-native routines, and purple represents hybrid routines.

2.4 NumericalMethod

The simulationdomain (Figure2.1) has lengthL andheightH . Denotenx gridpoints along thex axis

andny grid points along they axis, with grid spacing of unit length∆x = ∆y = 1. There arenx×ny

physically-defined nodes, among which fluid nodes are blue and solid nodes are red. Two extra layers

of buffers are padded to each boundary in order to perform the second-order upwindingmethod and

impose boundary conditions, leading the total number of nodes in the grid to be (nx+4)×(ny+4).

The solid–fluid interface is represented by a purple line, which is surrounded by an extrapolation zone.

The extrapolation zone has width ϵ = 5, i.e. five layers. The nodes in each layer are represented with

a different color and a corresponding indicator value of their level number.
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Algorithm 3: LB-RMT of FSI with extrapolation zone.

1 Begin

2 Initialize the global velocity field v⃗0, fluid density ρf , solid density ρs , and fi ;

3 Label the solid and fluid nodes using the level set function ϕ(ξ⃗0) ;

4 Initialize the solid reference map ξ⃗0 ;

5 LOOP ρn+1
f , ρn+1

s , v⃗ n+1, ξ⃗ n+1, f n+1
i ← ρnf , ρ

n
s , v⃗

n, ξ⃗ n, f̂i
n
, ϕ

6 Update the reference map ξ⃗ n+1 (Eq. (2.10));

7 Extrapolate the reference map values in the extrapolation zone ;

8 Relabel the fluid and solid nodes in the extrapolation zone using ϕ(ξ⃗ n+1);

9 Compute the reference map gradient (Eqs. (2.13)–(2.16)) ;

10 Calculate the deformation gradient tensorFn+1;

11 Calculate the divergence of solid stress∇ · σn+1 (Eq. (2.17));

12 equilibrium: Calculate f eq
i

n using ρn
f or ρn

s and v⃗ n (Eq. (2.19)) ;

13 collision: Calculate f̂i
n
as a result of local f n

i and f eq n
i collision (Eq. (2.6)) ;

14 bc: Apply the boundary conditions;

15 streaming: Update f n+1
i of the neighboring lattices with f̂i

n
(Eq. (2.20));

16 hydro: Update ρn+1
f , ρn+1

s , and v⃗ n+1 (Eq. (2.23));

17 end

28



bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc

bc bc bc bc bc

bc bc bc bc bc

bc bc
bc

bc bc

bc bc bc

bc bc bc bc bc

bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x

x x

x x

x x

x x

x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

bc

bc
bc

bc
bc

bc
bc

bc
bc

bc
bc

bc
bc

bc
bc

bc
bc

bc

bc bcbc bc

bc
bc

bc
bc

bc

bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

x
x

x

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

x
x

x x

x x

x
x

x x

x x

bc

bcbc

bc

bc

bc
bc

bc

bc
bc

bc

bc
bcbc

bcbc bc

bcbc bcbc bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc bc bc bc bc

bc bc

bc

bcbc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc
bc

bc

bc bc bc bc bc

bc bc

bc

bc

bc

bc
bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc bc bcbc bc

bc bc bcbc bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbcbcbc bc

bcbcbc bc

bc

bc

bc

bc

bc

x

n
x
+

4

n
y
+

4 0

0

y

x

bc x

flu
id
no

de

bu
ffe
rn

od
e

so
lid

no
de

bc bc bc bc bc bc

1
s
t
lay

er
2
n
d
lay

er
3
r
d
lay

er
4
th

lay
er

5
th

lay
er

so
lid
–fl

ui
d
in
te
rfa

ce
ex
tra

po
lat
io
n
zo
ne

H

L

Fi
gu

re
2.
1:
G
rid
se
tu
p
of
th
e
la
tti
ce
‐B
ol
tz
m
an
n‐
ba
se
d
re
fe
re
nc
e
m
ap
te
ch
ni
qu
e
fo
ra
tw
o‐
di
m
en
sio
na
lfl
ui
d–
st
ru
ct
ur
e
in
te
ra
cti
on
sim
ul
ati
on
.T
he
sim
ul
ati
on
do
m
ai
n

ha
sl
en
gt
h
L
an
d
he
ig
ht
H
,w
ith

n
x
×
n
y
ph
ys
ic
al
no
de
s.
Tw
o
la
ye
rs
of
bu
ffe
rn
od
es
ar
e
pa
dd
ed
to
ea
ch
sid
e,
gi
vi
ng
a
to
ta
lo
f(
n
x
+
4
)
×
(n

y
+
4
)
no
de
si
n
th
e

gr
id
.S
ol
id
no
de
s
ar
e
re
pr
es
en
te
d
in
re
d,
an
d
flu
id
no
de
s
ar
e
in
bl
ue
.T
he
so
lid
–fl
ui
d
in
te
rf
ac
e
is
m
ar
ke
d
by
th
e
pu
rp
le
lin
e,
an
d
th
e
ex
tr
ap
ol
ati
on
zo
ne
be
tw
ee
n
th
e

tw
o
ph
as
es
is
co
lo
re
d
in
lig
ht
bl
ue
.T
he
re
ar
e
fiv
e
la
ye
rs
in
th
e
ex
tr
ap
ol
ati
on
zo
ne
ba
se
d
on
th
ei
rd
ist
an
ce
s
to
th
e
in
te
rf
ac
e.
Th
e
no
de
s
in
ea
ch
la
ye
ra
re
as
sig
ne
d

w
ith
a
co
rr
es
po
nd
in
g
in
di
ca
to
rv
al
ue
,e
.g
.n
od
es
in
th
e
fir
st
la
ye
ra
re
gi
ve
n
an
in
di
ca
to
ro
fv
al
ue

1.

29



2.4.1 Initial Condition

A common choice to initialize the macroscopic fluid quantities in the LB method is to set the initial

density to be uniform and the initial velocity to be zero or some constant value (Krüger et al. 2017).

Once ρ0 and v⃗0 are initialized, a prevalent modeling choice is to initialize the populations of each

lattice fi(i = 0, . . . , 8) to the equilibrium values implied by these macroscopic variables,

fi(x⃗, 0) = f eq
i (ρ0, v⃗0). (2.9)

Here the method is modified to initialize the density and velocity fields of the fluid and the solid re-

spectively. Therefore, for fluid lattices, the initial density ρ0 is set to ρf , and solid lattices, to ρs .

2.4.2 ReferenceMap Update

Eq. (1.2) gives an update rule of the reference map ξ⃗. Suppose ξ⃗ = (X,Y ) and v⃗ = (u, v), this

advection equation of the reference map can be rewritten as

ξ⃗ n+1
i,j = ξ⃗ n

i,j − (u · ∂x + v · ∂y)ξ⃗ n
i,j . (2.10)

A second-order ENOupwindingmethod (Udaykumar et al. 2003; Shu 1998) is used for discretization

on the reference map for better accuracy. The second-order upwinding scheme is

∂ξ⃗i,j
∂x

=


3ξ⃗i,j − 4ξ⃗i−1,j + ξ⃗i−2,j

2∆x
if u > 0

−3ξ⃗i,j + 4ξ⃗i+1,j − ξ⃗i+2,j

2∆x
if u < 0

,

∂ξ⃗i,j
∂y

=


3ξ⃗i,j − 4ξ⃗i,j−1 + ξ⃗i,j−2

2∆y
if v > 0

−3ξ⃗i,j + 4ξ⃗i,j+1 − ξ⃗i,j+2

2∆y
if v < 0

.

(2.11)
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Each component of ξ⃗ n+1
i,j = (X n+1

i,j , Y n+1
i,j ) can be calculated respectively based the update rule

(Eq. (2.10)) and the discretized gradient of the reference map (Eq. (2.11)),

X n+1
i,j = X n

i,j−
(
u
∂X

∂x
+ v

∂X

∂y

)
Y n+1
i,j = Y n

i,j−
(
u
∂Y

∂x
+ v

∂Y

∂y

) (2.12)

2.4.3 Extrapolation in the Extrapolation Zone

The extrapolation routine is based on fitting a least-square regression (Rycroft et al. 2018) instead of

a conventional PDE-based method (Aslam 2004; Rycroft & Gibou 2012; Valkov et al. 2015). This

alternative reduces the complexity in keeping track of the level set ϕ and the reference map ξ⃗ values.
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Figure 2.2: Illustration of the reference map extrapolation in the extrapolation zone. The extrapolation starts from the
first layer in the extrapolation zone then moves outward to the next layer after all nodes have been extrapolated. A scan
window of width r = 5 centered at the target node is initialized, and the extrapolated reference map is calculated using
the solid nodes inside the scan window. If the result is invalid, then increase the scan window width r to include more
solid nodes.

Start at node (i, j) in the first layer of the extrapolation zone, the extrapolation procedure is:
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1. Initialize a scanwindowwith an initial width of r = 5 centered at (i, j) and count the number

of solid nodes. If there are less than two solid nodes, increase the width r, and repeat Step 1.

2. Use least-square regression to fit a linearmap ξ⃗extrap(x, y) = Ax+By+C using the available

reference map values of the enclosed solid nodes and their positions. If the linear map is ill-

defined, increase the width r and repeat Step 1 and 2.

3. Assign ξ⃗extrap to be the reference map values of node (i, j).

Once all nodes in thefirst layer havebeenprocessed,moveoutward to thenext level in the extrapolation

zone. After the extrapolation procedure, relabel the nodes in the extrapolation zone by calculating

their level set values. The extrapolation zone offers a smooth transition between the solid and the

fluid, requiring no additional bookkeeping about density, velocity, or no-slip solid–fluid interface.

2.4.4 Divergence of the Solid Stress

The purpose of Step 8, 9, 10 in Algorithm 3 is to calculate the divergence of the solid stress in Step

11, which to be used in the collision routine for solid nodes. The divergence of solid stress∇ · σi,j

is calculated based on the four intermediate solid stresses σi− 1
2
,j , σi+ 1

2
,j , σi,j− 1

2
, σi,j+ 1

2
to the left,

right, bottom, and top respectively. Each intermediate solid stress is computed from the Jacobian of

the reference map ξ⃗ with a second-order finite difference scheme (Rycroft et al. 2018). The gradient

involved to calculate the Jacobian for the left solid stressσi− 1
2
,j is

(
∂ξ⃗

∂x

)
i− 1

2
,j

=
ξ⃗i,j − ξ⃗i−1,j

∆x
,

(
∂ξ⃗

∂y

)
i− 1

2
,j

=
ξ⃗i,j+1 + ξ⃗i−1,j+1 − ξ⃗i,j−1 − ξ⃗i−1,j−1

4∆y
. (2.13)

The gradient involved to calculate the Jacobian for the right solid stressσi+ 1
2
,j is

(
∂ξ⃗

∂x

)
i+ 1

2
,j

=
ξ⃗i+1,j − ξ⃗i,j

∆x
,

(
∂ξ⃗

∂y

)
i+ 1

2
,j

=
ξ⃗i+1,j+1 + ξ⃗i,j+1 − ξ⃗i+1,j−1 − ξ⃗i,j−1

4∆y
. (2.14)
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The gradient involved to calculate the Jacobian for the bottom solid stressσi,j− 1
2
is

(
∂ξ⃗

∂x

)
i,j− 1

2

=
ξ⃗i+1,j + ξ⃗i+1,j−1 − ξ⃗i−1,j − ξ⃗i−1,j−1

4∆x
,

(
∂ξ⃗

∂y

)
i,j− 1

2

=
ξ⃗i,j − ξ⃗i,j−1

∆y
. (2.15)

The gradient involved to calculate the Jacobian for the top solid stressσi,j+ 1
2
is

(
∂ξ⃗

∂x

)
i,j+ 1

2

=
ξ⃗i+1,j+1 + ξ⃗i+1,j − ξ⃗i−1,j+1 − ξ⃗i−1,j

4∆x
,

(
∂ξ⃗

∂y

)
i,j+ 1

2

=
ξ⃗i,j+1 − ξ⃗i,j

∆y
. (2.16)

Each Jacobian is then coupled with the constitutive relation f to derive the intermediate solid stress.

Once the four intermediate stresses are computed, the divergence of solid stress at (i, j) is denoted as

∇ · σ =
(σi+ 1

2
,j)x − (σi− 1

2
,j)x

∆x
+

(σi,j+ 1
2
)y − (σi,j− 1

2
)y

∆y
. (2.17)
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Figure 2.3: Stencil setup for the calculation the divergence of solid stress. The red circle represents the current solid
node, and the red crosses represent the mid‐grid intermediate solid stresses. To compute these stresses, for example the
left solid stress (σs)i− 1

2 ,j
, six solid nodes in total are involved in the gradient calculations: (i, j), (i − 1, j) for the

x‐direction derivatives, and (i, j + 1), (i− 1, j + 1), (i, j − 1), (i− 1, j − 1) for the y‐direction derivatives.
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2.4.5 Equilibrium

The equilibrium step is local to each fluid lattice,

f eq
i = wi ρ

[
1 +

v⃗ · c⃗i
c 2s

+
(v⃗ · c⃗i) 2 − c 2s v⃗

2

2c 4s

]
, (2.18)

and explicitly, each fi is expanded as

f eq
0 (i, j) = ρw0

(
1− u2 + v2

2c⃗ 2
s

)
f eq
1 (i, j) = ρw1

(
1 +

u

c⃗ 2
s

+
u2

2c⃗ 4
s

− u2 + v2

2c⃗ 2
s

)
f eq
2 (i, j) = ρw2

(
1 +

v

c⃗ 2
s

+
v2

2c⃗ 4
s

− u2 + v2

2c⃗ 2
s

)
f eq
3 (i, j) = ρw3

(
1− u

c⃗ 2
s

+
u2

2c⃗ 4
s

− u2 + v2

2c⃗ 2
s

)
f eq
4 (i, j) = ρw4

(
1− v

c⃗ 2
s

+
v2

2c⃗ 4
s

− u2 + v2

2c⃗ 2
s

)
(2.19)

f eq
5 (i, j) = ρw5

(
1 +

u

c⃗ 2
s

+
v

c⃗ 2
s

+
uv

c⃗ 4
s

+
u2 + v2

2c⃗ 2
s

− u2 + v2

2c⃗ 4
s

)
f eq
6 (i, j) = ρw6

(
1− u

c⃗ 2
s

+
v

c⃗ 2
s

− uv

c⃗ 4
s

+
u2 + v2

2c⃗ 2
s

− u2 + v2

2c⃗ 4
s

)
f eq
7 (i, j) = ρw7

(
1− u

c⃗ 2
s

− v

c⃗ 2
s

+
uv

c⃗ 4
s

+
u2 + v2

2c⃗ 2
s

− u2 + v2

2c⃗ 4
s

)
f eq
8 (i, j) = ρw8

(
1 +

u

c⃗ 2
s

− v

c⃗ 2
s

− uv

c⃗ 4
s

+
u2 + v2

2c⃗ 2
s

− u2 + v2

2c⃗ 4
s

)
.

2.4.6 Collision

The collision step exchanges information between the local populations and their equilibrium, and

calculates the post-collision populations. There are two collision routines, one for fluid (Eq. (1.19))

and one for solid with external force density (Eq. (2.6)),
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Fluid Lattice

f0(i, j) = (1− ω)f0 + ωf eq
0

f1(i, j) = (1− ω)f1 + ωf eq
1

f2(i, j) = (1− ω)f2 + ωf eq
2

f3(i, j) = (1− ω)f3 + ωf eq
3

f4(i, j) = (1− ω)f4 + ωf eq
4

f5(i, j) = (1− ω)f5 + ωf eq
5

f6(i, j) = (1− ω)f6 + ωf eq
6

f7(i, j) = (1− ω)f7 + ωf eq
7

f8(i, j) = (1− ω)f8 + ωf eq
8

Solid Lattice (2.20)

f0(i, j) = (1− ω̄)f0 + ω̄f eq
0 +w0

(
1− ∆t

2τ̄

)
F0

f1(i, j) = (1− ω̄)f1 + ω̄f eq
1 +w1

(
1− ∆t

2τ̄

)
F1

f2(i, j) = (1− ω̄)f2 + ω̄f eq
2 +w2

(
1− ∆t

2τ̄

)
F2

f3(i, j) = (1− ω̄)f3 + ω̄f eq
3 +w3

(
1− ∆t

2τ̄

)
F3

f4(i, j) = (1− ω̄)f4 + ω̄f eq
4 +w4

(
1− ∆t

2τ̄

)
F4

f5(i, j) = (1− ω̄)f5 + ω̄f eq
5 +w5

(
1− ∆t

2τ̄

)
F5

f6(i, j) = (1− ω̄)f6 + ω̄f eq
6 +w6

(
1− ∆t

2τ̄

)
F6

f7(i, j) = (1− ω̄)f7 + ω̄f eq
7 +w7

(
1− ∆t

2τ̄

)
F7

f8(i, j) = (1− ω̄)f8 + ω̄f eq
8 +w8

(
1− ∆t

2τ̄

)
F8

with a change of variable ω̄ = 1
τ̄ , τ̄ = τ + ∆t

2 . The force (Eq. (2.8)) on each discrete velocity space is

F0 = w0(−uσsx − vσsy)

F1 = w1(
1− u

c2s
σsx +

−v
c2s

σsy +
u

c4s
σsx)

F2 = w2(
−u
c2s

σsx +
1− v

c2s
σsy +

v

c4s
σsy)

F3 = w3(
−1− u

c2s
σsx +

−v
c2s

σsy +
u

c4s
σsx)

F4 = w4(
−u
c2s

σsx +
−1− v

c2s
σsy +

v

c4s
σsy) (2.21)

F5 = w5(
1− u

c2s
σsx +

1− v

c2s
σsy +

u+ v

c4s
σsx +

u+ v

c4s
σsy)

F6 = w6(
−1− u

c2s
σsx +

1− v

c2s
σsy +

u− v

c4s
σsx +

−u+ v

c4s
σsy)
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F7 = w7(
−1− u

c2s
σsx +

−1− v

c2s
σsy +

u+ v

c4s
σsx +

u+ v

c4s
σsy)

F8 = w8(
1− u

c2s
σsx +

−1− v

c2s
σsy +

u− v

c4s
σsx +

−u+ v

c4s
σsy)

where the global velocity v⃗ = (u, v) and the net external force F⃗ = ∇ · σs = (σsx, σsy).

2.4.7 Boundary Conditions

The boundary conditions routine refers to the boundary conditions of the simulation domain, not

the solid–fluid interface. The current LB-RMT implementationmakes use of the extrapolation zone

to generate a smooth transition (Rycroft et al. 2018) between the solid and the fluid while preserv-

ing no-slip boundary conditions between the two phases. Contrary to the IB-LBM method (Feng

&Michaelides 2004), the LB-RMT does not require any definite calls on the solid–fluid interface to

interpolate the fluid velocity from the solid force density, nor to manually set the two velocities equal.

There are two types of boundary conditions involved in the simulation, periodic and no-slip.

Since the simulation domain is paddedwith two layers of ghost nodes, they act as buffers in copying or

reflecting boundary fluid nodes. The ghost nodes setup provides a relatively simple implementation

(Succi 2001) on all boundary nodes, though this on-node calculation sometimes only has first-order

accuracy due to the one-sided direction of population movements. More complex boundary condi-

tions can allow second-order accuracy along the boundaries (Krüger et al. 2017).

• Periodic boundary conditions:

On thex-axis, the left periodicity is imposed by filling the first buffer on the left with the popu-

lations of the rightmost column of the fluid, and the right periodicity is imposed by filling the

first buffer on the right with the populations of the leftmost column of the fluid. The period-

icities along the y-axis are analogously imposed by copying the top or the bottom row of the

fluid to the respective buffer nodes (Succi 2001).
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Figure 2.4: Diagram of the periodic boundary conditions on a simplified simulation domain. Along the x‐axis, at the right
fluid boundary, the right‐outward populations (f1, f5, f8) are copied to the first layer in the left buffer. And at the left
fluid boundary, the left‐outward populations (f3, f6, f7) are also copied to the first layer in the right buffer. The buffered
values in the first layer will then be streamed back to the fluid boundaries, thus imposing periodicity. Along the y‐axis,
the operations are analogous. At the top fluid boundary, the up‐outward populations (f2, f5, f6) are copied to the first
layer in the bottom buffer. And at the bottom fluid boundary, the down‐outward populations (f4, f7, f8) are also copied
to the first layer in the top buffer.

• No-slip boundary conditions:

No-slip boundary conditions, where the fluid velocity equals the solid velocity at the bound-

aries, are implemented by bouncing-back of the populations leaving the fluid region. This

direct on-node reflection only guarantees first-order accuracy (Succi 2001) but is quite simple

to implement, just need to reflect the outward populations back by storing their values in the

corresponding first-level buffer. The outward populations at each fluid boundaries are copied

as the opposite direction populations in the corresponding buffer nodes. These populations

then get streamed back to their original nodes, only reversed, and perform on-node bounce

back. The four corners of the first buffer layer need special handling since they only have one

population associated with the fluid region.
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Figure 2.5: Diagram of the no‐slip boundary conditions on a simplified simulation domain. For one node on the top first
buffer layer, the stored f4, f7, f8 populations correspond to the f2 of its lower, f5 of its lower‐left, and f6 of the lower‐
right fluid populations. For one node on the bottom first buffer layer, the stored f2, f5, f6 populations correspond to
the f4 of its upper, f7 of its upper‐right, and f8 of the upper‐left fluid populations. For one node on the left first buffer
layer, the stored f1, f5, f8 populations correspond to the f3 of its right, f7 of its upper‐right, and f6 of the lower‐right
fluid populations. For one node on the right first buffer layer, the stored f3, f6, f7 populations correspond to the f1 of
its left, f8 of its upper‐left, and f5 of the lower‐left fluid populations. The four corners in the first buffer layer are handled
differently, each with only one population bouncing back to the fluid region.

Since the simulation domain is paddedwith two layers of buffer, they relieve the necessity to separately

handlingboundary conditions on theboundaries and the corners (Zou&He1997). For theLB-native

routines, only the first buffer layer is used, and the second buffer layer is solely for the second-order

upwinding method in the RMT-native routines. The first-order no-slip boundary conditions is also

referred as fullway bounce-back, and there are other bounce-back methods, like the halfway bounce-

back (Ladd 1994), to ensure second-order accuracy on the no-slip boundary conditions.
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2.4.8 Streaming

This step pulls the contribution of each fi from the neighbouring lattices (Figure 1.3) and update

the lattice of interest. It sends the f̂i values to the neighboring lattices to be used as the new fi for the

next timestep update (Eq. (1.21)). The indices represents the positions (current, left, down, right, top,

lower-left, lower-right, upper-right and upper-left) of the neighboring lattices to the current lattice,

f0(i, j) = f0(i, j)

f1(i, j) = f1(i− 1, j), f2(i, j) = f2(i, j − 1)

f3(i, j) = f3(i+ 1, j), f4(i, j) = f4(i, j + 1) (2.22)

f5(i, j) = f5(i− 1, j − 1), f6(i, j) = f6(i+ 1, j − 1)

f7(i, j) = f7(i+ 1, j + 1), f8(i, j) = f8(i− 1, j + 1).

2.4.9 Macroscopic Quantities Update

The original hydro routine (Eqs. (1.10) & (1.12)) in the LB method has been extended to calculate

solid density and the global velocity (Eq. (2.23)). On a fluid node, the external force densities Fi are

set to zero, allowing one uniform update rule for all macroscopic quantities. The new routine is

ρ = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8

+
1

2
(F0 + F1 + F2 + F3 + F4 + F5 + F6 + F7 + F8)

u =
1

ρ
(f1 + f5 + f8 − f3 − f6 − f7) +

1

2ρ
(F1 + F5 + F8 − F3 − F6 − F7)

v =
1

ρ
(f2 + f5 + f6 − f4 − f7 − f8) +

1

2ρ
(F2 + F5 + F6 − F4 − F7 − F8).

(2.23)

The symbol ρ in Eq. (2.23) is substitute with corresponding ρf or ρs value given the label of the node.
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3
Results of the Lattice-Boltzmann-Based

Reference Map Technique

The LB-RMT code base is written in C++ with an OpemMPmultithreading support. Flow visualiza-

tions are post-processed in a Python plotting library Matplotlibwith output macroscopic quantities.

Three types of simulations using the LB-RMT are presented to demonstrate the accuracy, generality,
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and robustness of the hybrid method. First, we simulate a plane shear wave with known solutions

to the reference map equations on a periodic solid domain to prove a second-order accuracy of the

method. Second, we place a deformable sheet inside a periodic Poiseuille channel flow to demonstrate

the feasibility and generality of the method in fluid–structure interaction. In the last simulation, we

highlight the robustness of themethod in handling sharp corners and large twists with an extreme case

of two rotors in an initially quiescent flow. For simplicity, both the solid and the fluid are assumed to

have the same density value. No explicit routines are required to specify the solid–fluid interface, nor

to impose additional no-slip boundary condition along the interface.

3.1 Convergence Study of Plane ShearWaves in Solid Deformation

Stress is caused by deformation in solid, whereas it is caused by deformation rate in fluid. Since the

two phases have fundamental difference in how stress is formed, it is crucial to verify whether we can

extend a method that is designed for fluid mechanics to solid mechanics. This convergence study

is devised to study whether the LB-RMT captures how shear waves generate solid deformation in a

periodic domain [0, L)2 with an initial velocity field v⃗(x⃗, 0) and initial reference map field ξ⃗(x⃗, 0),

v⃗(x⃗, 0) = (0,−ωϵ sin(kx))

ξ⃗(x⃗, 0) =

(
x, y + ωϵ

ω cos(kx)− λ sin(kx)

ω2 + λ2

)
.

(3.1)

This initial condition corresponds to a plane shear wave with the exact solutions

v⃗(x⃗, t) =
(
0,−e−λtωϵ sin(kx− ωt)

)
ξ⃗(x⃗, t) =

(
x, y + ωϵe−λtω cos(kx− ωt)− λ sin(kx− ωt)

ω2 + λ2

)
.

(3.2)
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where k denotes the wavenumber, ω is the angular frequency, ϵ is a small amplitude parameter, and λ

is related with the energy dissipation rooted in the viscosity ν,

λ =
4π2

L2
ν. (3.3)

For each test, the simulation was ran for 5000 iterations with the same simulation setup: choose

the length L = 2 m, the relaxation time τLB = 1.0, the solid density ρs = 1500 kg/m3, the shear

modulus G = 15 Pa, the wave number k = 2π
L , the angular frequency ω =

√
G
ρs
, and the small

amplitude parameter ϵ = 0.001 m. The first study is to change the simulation resolution n × n

where n ∈ [200, 400, 800, 2000], i.e. decreasing grid spacing ∆x ∈ [0.01, 0.005, 0.0025, 0.001]

m. The simulated reference map ξ⃗ and the simulated y-component of the velocity field v of the last

iteration are compared with the exact solutions. The simulationL1 errors between the reference map

field and the exact solution, as well as the velocity and the exact solution, are respectively defined as

E
ξ⃗
=

1

n2

n∑
i

n∑
j

∣∣Xsimulated,(i,j) −Xexact,(i,j)
∣∣+ ∣∣Ysimulated,(i,j) − Yexact,(i,j)

∣∣ ,
Ev =

1

n2

n∑
i

n∑
j

∣∣vsimulated,(i,j) − vexact,(i,j)
∣∣ . (3.4)

Figure 3.1 shows the log–log plot of the relation between the grid spacing∆x and the simulation

error E
ξ⃗
, Ev . At a relative large grid spacing (∆x = 0.01 m), the LB-RMT has error within 10−5.

As the grid spacing decreases, both simulation errors decrease at a similar rate. At the finest resolution

of this convergence study (∆x = 0.001m), the method has an error within 10−7. Linear fitting on

the log–log plot shows that both the reference map error and the velocity error are approximately of

order 2. E
ξ⃗
is of order 1.83897 andEv is of order 1.71657. Though a more thorough study on the

grid spacing and the resolution needs to be performed, we can safely conclude that the LB-RMT is a

second-order method in space, which is consistent with the parenting second-order methods.
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Figure 3.1: log–log plot of the grid spacing∆x and the simulation errorEξ⃗, Ev .

The second study is to analyze how the innate fluid kinematic viscosity ν from the fluid LB

method affects the solid stress and deformation. The simulation ran at the same simulation parame-

ters, in addition to a fixed resolution 200×200with fixed∆x = 0.01m. Change the relaxation time

τLB in each simulationwith τLB ∈ [1.0, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55]. We see a very

clear of increase (Figure 3.2) in the simulation errors as the relaxation time τLB decreases, i.e. when

the viscosity ν decreases the simulation errors increase. Since the LB-RMT uses the fluid stress as the

artificial viscous solid stress, and the viscosity ν, or the relaxation time τLB, controls the fluid stress, a

smaller relaxation time τLB should correspond to amore accurate result, i.e. a smaller simulation error.

This counter-intuitive relation between the relaxation time τLB and the simulation error presented in

Figure 3.2 can be explained by the assumption that there is more viscosity in the system than the input

value. If we modify the dissipation term λ (Eq. (3.5)) with a linear relation on the relaxation time τ ,
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τm =
τLB + 1

2
, (3.5)

the modified τm ∈ [1.0, 0.975, 0.95, 0.925, 0.9, 0.875, 0.85, 0.825, 0.8, 0.775] is increased from

the input value, i.e. there is more viscosity in the system. If we focus onEv (the modification on the

dissipation termdoesnotworkwellwithE
ξ⃗
given the analytical solutionof ξ⃗),Ev nowdecreases as the

relaxation time decreases, which is consistent with our argument that the simulation error decreases

with the viscosity. In addition,Ev is of order 0.78626 to the relaxation time τLB. Though this value

cannot provide more substantial information of the viscosity, and the linear relation we proposed is

just one possible modification to the relaxation time, this modification confirms that there is more

viscosity in the LB-RMT. The origin of this increase of viscosity needs to be further studied.

Figure 3.2: Plot of the relation between the relaxation time τLB and the simulation error Eξ⃗, Ev . Modified simulation
errors are plotted in dashed lines. Though the simulations are more accurate with the modification in the input viscosity,
the log–log plot of the modified simulation errors does not conclude more information about their convergence.
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3.2 Deformable Sheet in the Poiseuille Flow

The secondLB-RMTexample is a simplefluid–structure interaction that involves only onedeformable

object in a periodic channel flow. A deformable sheet of size 0.2× 0.3m2 with an identity reference

map is centered at (0.6m, 0.5m), where a uniform force density that resembles a pressure-driven

Poiseuille flow is applied to all fluid nodes. The Reynolds number and the relaxation time of the fluid

are set toRe = 10 and τLB = 1.0, leading to the maximum velocity value of a purely Poiseuille flow

to be approximately 0.0167m/s. The solid has small-strainmodulusG = 0.15 Pa, meaning the sheet

can easily undergo large deformations. Both the fluid and the solid have density 1500 kg/m3. The sim-

ulation domain is [0, 3)×[0, 1)m2, with 300×100 resolution and a physical grid spacing∆x = 0.01

m. The simulation ran for 25000 iterations with a physical timestep∆t ≈ 0.577 s (Appendix A) and

outputted every 50 frames. Supplemental Movie 1 and 2 show the complete simulation.

The hybrid method successfully simulates a Poiseuille channel flow, and the sheet deforms with

the flowwhilemoving to the end of the channel. The solid referencemap is represented by the dashed

mesh, whose distortion shows how much the sheet has been deformed. As the simulation time in-

creases, the sheet starts from a uniform rectangle, unmoved and undeformed, to a similar-boomerang

shape, stretched and squished. This shape is consistent with the parabolic velocity profile of the

Poiseuille flow. The fluid at the center of the channel has the maximum velocity, thus pushing the

center part of the sheet forward faster compared with top and bottom. Due to the velocity difference

surrounding the solid, the sheet becomes more stretched at the lower-left and upper-left corners. Af-

ter the flow has been fully developed, the sheet continues to move to the end of the channel without

more changes in the reference map. Though the level set of the solid–fluid interface becomes discon-

tinuous at the two corners of the sheet near the end of the simulation due to the limitation of the grid

spacing, the hybrid method has proven to be stable even with a relatively large grid spacing value.

The density field of the solid and the fluid (Figure 3.3) changes with their interaction. If we were
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only having a Poiseuille flow with no solid immersed, the density field of the fluid should remain

unchanged due to the conservation of mass. However, the existence of the compressible solid sheet

changes the density profile of the fluid. Since the flow is pushing the sheet forward, more fluid clusters

behind the solid. As the simulation time increases, the fluid density increases at the concave boundary

of the solid, causing a decrease of the fluid density at the solid front. Inside the solid sheet, however,

the density remains mostly unchanged, except at the front and back boundaries. Since the constitu-

tive relation applied to the solid is compressible, the increase of the solid density at the concave side is

consistent with inertia. The solid particles would resist the change and hope to remain at their orig-

inal positions, causing a delay in their particle movement. Though there is no special handling to

the solid density and the fluid density, nor the solid–fluid interface, the hybrid method is capable of

distinguishing the two phases and generating a clear density division between them.

The global velocity field (Figure 3.4) is consistent with a Poiseuille channel flow. The velocity

starts out stationary, and as simulation time increases, the fluid flow is fully developed to a parabolic

velocity profile with the maximum velocity along the center axis. The fluid is capable of moving the

solid forward, whereas the solid is also capable of parting the fluid. The second phenomenon becomes

more visible after t = 10000∆t, where the velocity profile near the wall boundaries is bent because

the deformed sheet alters the path where the fluid can pass. Snapshot at t = 24500∆t shows that

the fluid velocity decreases at the concave boundary of the solid, which is consistent with the physical

intuitive that when a fluid flow knows there is a solid in front of it, it will find another path and have

lower velocity near the solid boundary. The solid also has a lower velocity inside compared with the

fluid flow. This means the solid initially moves with the flow speed, then it decreases. This loss of

kinematic energy is likely to be caused by viscosity, or due to the solid is compressible. The fluid flow

also has not reached the maximum value for a purely Poiseuille flow, which is likely to be caused by

the existence of a deformable solid and their interaction. Overall the LB-RMT shows a very smooth

velocity field transition and velocity update between the two phases.
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Figure 3.3: Snapshots at t = 0, 5000∆t, 10000∆t of the density fields of the channel flow and the deformable sheet.
Density undergoes very little change in the first half of the simulation, and is conserved in most regions.
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Figure 3.3: Snapshots at t = 15000∆t, 20000∆t, 24500∆t of the density fields of the channel flow and the de‐
formable sheet. Density changes are more prominent near the solid boundary when the solid is more deformed.
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Figure 3.4: Snapshots at t = 0, 5000∆t, 10000∆t of the velocity field. A parabolic velocity profile of the Poiseuille
flow develops along the channel. The fluid moves the sheet forward.
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Figure 3.4: Snapshots at t = 15000∆t, 20000∆t, 24500∆t of the velocity field. The stretched sheet has lower
velocity inside the solid, and changes the standard Poiseuille flow velocity profile near the no‐slip wall boundaries.
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3.3 Rotors in Initially Quiescent Flow

A rotor is placed in the center of an initially quiescent periodic channel flow. A periodic rotational

force is applied in the center circular region of the rotor. This anchoring force rotates the rotor first

clockwise then counter-clockwise. The rotor spins and twists with the anchor force, causing the ini-

tially stationary flow tomove as the simulation time increases. This example ismodeled after the seven-

pointed rotor presented by Rycroft et al. (2018) to test the stability and limitation of the LB-RMT in

capturing the solid–fluid interface of extreme cases like sharp corners and large twists.

The rotor is centered at (1.5m, 0.5m) and has a vertex at
(
0.62 cos

(
2πk
7

)
, sin

(
2πk
7

))
for k ∈ Z.

Both the fluid and the rotor have density 1500 kg/m3 and are set to be stationary at the start of the

simulation. The center region of r < 0.02 m is pivoted with an oscillatory anchor force f⃗(x⃗) =

−0.00001(|x⃗| − 0.16)(Rθ(t)ξ⃗(x⃗)) where Rθ(t) is the rotational matrix with angle θ(t) = π(1 −

cos(t)). The domain is the same as the previous example, except the solid small-strainmodulus is now

G = 1 Pa. The simulation ran for 8000 iterations and outputted every 20 frames. It broke after the

4000-th iteration due to referencemap extrapolations. The vorticity field (Figure 3.5) shows the rotor

deforms first clockwise then counter-clockwise with the oscillatory angular acceleration. Vortices are

shed along the solid–fluid interface and excite the fluid flow. TheLB-RMTpreserves the sharp corners

across the simulation, and can hold large twists and bends to the rotor periodically. Supplemental

Movie 3 shows the complete simulation, where the seven-hold symmetry is preserved.
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Figure 3.5: Snapshots at t = 400∆t, 600∆t, 800∆t of the vorticity field of one rotor. Rotor spins from clockwise to
counter‐clockwise. Vortices are shed from the solid–fluid interface, and the fluid near the rotor has been excited.
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Figure 3.5: Snapshots at t = 1000∆t, 1200∆t, 1400∆t of the vorticity field of one rotor. The rotor continues to spin
counter‐clockwise, and is very twisted at t = 1400∆t. More fluid has been excited due to the rotor rotation.
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A second rotor is then added to the channel to introducemore variations. The two rotors are now

center at (0.75m, 0.5m) and (2.25m, 0.5m), with new anchor forces of f⃗(x⃗) = ±0.000025(|x⃗|−

0.16)(Rθ(t)ξ⃗(x⃗)). The simulation ran for 50000 iterations and outputted every 100 frames. The

two rotors spin at opposite directions with opposite oscillatory anchor forces. Supplemental Movie 4

shows the complete simulation, where more disturbance happens to the left rotor.

The vorticity field (Figure 3.6) first shows the two rotors still preserve the seven-pointed symme-

try. But as the flow exits from the right and re-enters from the left due to the periodicity along the

x-axis, the fluid breaks the symmetry of the left rotor, whose rotation starts to be asymmetrical and

unpredictable. Since the anchor force is still being applied to the left rotor, it slips around the anchor-

ing region and presents a swimmer-like movement. However, the left rotor still tries to restore to its

original center position as the simulation time increases. The simulation broke after the 46500-th

iteration; by then both rotors have been stretched and become asymmetrical.

The snapshots of the vorticity field in Figure 3.6 and Figure 3.7 capture the different states of the

spinning rotors. Figure 3.6 shows the steady state of the two rotors, when both rotors still have sym-

metry. The vortices are being shed from the solid–fluid interface, and the two rotors have the opposite

vorticity fields. Once the symmetry is lost, themotion of the rotors becomes unpredictable. Figure 3.7

shows the left rotor slips around the anchor and loses its symmetry with the swimmer-like movement.

However, the LB-RMT is still capable of simulating the rotors, preserving the sharp corners across

the simulation, and tracking the solid–fluid interface in these extreme periodic rotational cases.
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Figure 3.6: Snapshots at t = 2000∆t, 2200∆t, 2400∆t of the vorticity field of two rotors. The left rotor spins
clockwise and the right counter‐clockwise. Opposite vortices are shed from the seven points of the rotors.
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Figure 3.6: Snapshots at t = 2600∆t, 2800∆t, 3000∆t of the vorticity field of two rotors. The left rotor switches
spinning directions to counter‐clockwise and the right to clockwise. The entire channel flow has been excited.
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Figure 3.7: Snapshots at t = 9600∆t, 24300∆t, 40000∆t of the vorticity field of two rotors. The left rotor experi‐
ences more distortion due to flow disturbance, where some of its angles have swimmer‐like movements.

57



4
Conclusion

The thesis combines two Eulerian-based methods (Rycroft et al. 2018; Succi 2001) together to sim-

ulate fluid–structure interactions. The resulting hybrid lattice-Boltzmann-based reference map tech-

nique (LB-RMT) combines the benefits of the two methods: the reference map technique provides

a straightforward Eulerian description of large solid deformation, and the lattice Boltzmann method

with a simple implementation of fluid simulation. The LB-RMT formulates amesoscopic representa-

tion of solid deformation, and provides a novel approach to combining the fluid and the solid phases.
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It is capable of generating accurate simulation of solid deformation, fluidmotion and their interaction,

also has impressive results in handling large twists and sharp corners of flexible solids in fluid flow.

There are number of extensions to the numerical procedure to consider. First, the hybridmethod

needs to change the no-slip boundary conditions implementation from a first-order on-node (or full-

way) bounce-back method to a second-order halfway bounce-back (Krüger et al. 2017). The order

of the LB method is determined by that of its boundary conditions. Since all the other update rules

and discretization stencils are second-order in the current implementation, the LB-RMT should have

the potential to preserve second-order accuracy inmore generalized simulation domain in addition to

fully periodic. Second, the method should remove the restriction on the same density requirement of

the two phases. Though it is quite common to have the same solid and fluid densities in some biolog-

ical applications, this restriction limits the hybrid method from being suitable to more applications

with varying densities between the phases, or evenwithin a single phase. One possible solution is to ex-

tend the halfway bounce-back boundary conditions along the solid–fluid interface. This supplement

also opens the discussion of flexible solid boundary conditions for fluid–structure interaction in the

lattice Boltzmann literature. Lastly, the current code base has not fully optimized the parallelization

feature of the LB method. The nested-loops are not scaled properly with the number of threads to

performmultithreading, which need to be more carefully planned.

The results of the LB-RMT demonstrate the compatibility of the reference map technique with

general fluid simulationmethods and the feasibility of a uniformmesoscopic framework for both the

fluid and the solid. It underpins a base structure of numerical schemes with many potential future

directions. The solid–fluid interface study can be extended to handle dissolving solids with different

densities, whichwill be useful in fluid–sedimentmixture and erosion simulations. In addition, theLB-

RMTcan increase the simulationphases from two to three. Since the latticeBoltzmannmethod iswell

developed in fluid–gas simulation (Shan & Chen 1993; Swift et al. 1996), the hybrid method can be

further expanded to simulate multispecies cases like fluid–solid–gas simulation in both two and three
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dimensions. It will unify themesoscopic description for the three phases ofmatter and encompass the

different discretization setups and numerical schemes into one method. This overarching LB-RMT

can be combined with additional conditions, like chemical reactions or thermodynamics changes, to

create a time-lapse simulation of object phase change andmulti-object reaction. One of themany aspi-

rations of the LB-RMT is to develop a production-level fluid–structure interaction solver for physics-

based animation. The LBmethod has been used to produce fluid animation in game industry (Judice

et al. 2010), aswell as someLB-based fluid simulation packages in standard 3Dcomputer graphics soft-

ware like Blender (Thurey 2007). Its lightweight in computation and flexibility in handling complex

geometry make it suitable for physics-based simulation, especially for real-time game animation and

rendering. Throughout thedevelopmentof graphic cards and rendering techniques, thephysics-based

simulation in animation and game industry has always been seeking the balance among performance,

accuracy and aesthetics. The LB-RMTwill readily provide a state-of-the-art solution to generate solid,

fluid, gas and their interactions with only one method needed.
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A
Units Conversion

Theconvention in the latticeBoltzmann (LB)method is to set thediscrete timestep∆t and thediscrete

lattice spacing∆x to be unity and dimensionless,

∆t = 1 (A.1)

∆x = 1. (A.2)
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Then the lattice speed ci along the axis is also unity and dimensionless,

ci =
∆x

∆t
= 1. (A.3)

The speed of sound in theLBmethod is chosen to be cs =
√

1
3 , which is a dimensionless constant

and can be derived by the relation

c2s =
∑
i

wic
2
i =

1

3
(for most lattices). (A.4)

Since ones from the unities are hard to keep track of in the upcoming units conversion, let us

first introduce some dimensionless units in the LB method. The previous∆t is actually∆tLBM, and

similarly∆x is∆xLBM. Let T denote time andL length, then

∆tLBM = T (A.5)

∆xLBM = L (A.6)

ci,LBM =
L
T

(A.7)

cs,LBM =

√
1

3

L
T
. (A.8)

A conversion between the physical value of the speed of sound and the LB speed of sound is

cs,ph = cs,LBM
∆xph

∆tph
. (A.9)

The relation above gives the conversion between the LB units and the physical units. For example, the

compressible solid has a density of ρs = 1500 kg/m3, and the shear modulusG = 15 kg/(m·s2) (or
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Pa). The compressible solid has the speed of sound cs,ph, i.e. the shear wave speed,

cs,ph =

√
Gph

ρs,ph
= 0.1m/s (A.10)

where the subscript ph is added to distinguish from the LB quantities. Suppose∆xph = 0.01m,with

this known physical speed of sound cs,ph, one LB timestep corresponds to one physical timestep

∆tph =
cs,LBM
cs,ph

∆xph =

√
1
3

0.1m/s
× 0.01m =

√
3

30
s. (A.11)

Therefore, the key to connect the LB units and the physical units is the choice of ∆xph. Once the

simulation has set a value for∆xph, the physical timestep∆tph can be calculated. With the conversion

between time and space, other LB and physical quantities can be converted accordingly. Take the

shear modulus as an example, it has a dimensional unit of mass
length·time2 . Consider unit massM, then a

conversion between the physical value of the shear modulus and the LB shear modulus is

Gph = GLBM
M

∆xph ·∆t2ph
. (A.12)

Since∆xph is by choice and∆tph has been calculated given the physical values,

GLBM = Gph ·∆xph ·∆t2ph ·
1

M
= 15 · M/(m·s2) · 0.01m · (

√
3

30
s)2 · 1

M
=

1

2000
. (A.13)

Other simulation parameters, like the density ρ and kinematic viscosity ν, can be converted between

the LB units and the physical units analogously,

ρph = ρLBM∆x3ph ⇔ ρLBM = ρph
1

∆x3ph
(A.14)
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νph = νLBM
∆x2ph

∆tph
⇔ νLBM = νph

∆tph

∆x2ph
. (A.15)

The following table shows the values used of simulation parameters in the LB method, and their

corresponding physical values. Boxed values are preset or given during the simulation. Note that all

LB values are dimensionless.

Simulation Parameter LB Value Physical Value

Timestep∆t 1
√
3/30 s

Lattice Spacing∆x 1 0.01m

Speed of Sound cs
√

1/3 0.1m/s

Solid Density ρs 3/2000 1500 kg/m3

Shear ModulusG 1/2000 15 kg/(m · s2)

Table A.1: Value conversions between the LB units and the physical units.
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