Solutions to the practice problems

Look here for some solutions to the practice problems

The third midterm

Location

In class, B102 during regular lecture time Thursday November 24

Topics

Linear Transformations

Matrices of linear Transformations

Determinants

Format

The exam will have the following three kind of problems:

Things to know

Practice problems

Computations with matrices

a. Matrix products: Homework 5, problem 4 & problem 5

b. Consider the following matrices:

A=(131201),B=(33)A= \mat 1 & 3 & -1 \\ 2 & 0 & 1\rix, \qquad B= \mat 3 & 3\rix

Compute each of the following matrix expressions, if they are defined:

  1. ABAB, BABA, AAAA^\top, AAA^\top A
  2. BBBB^\top, BBB^\top B
  3. A2A^2
  4. (AA)2(AA^\top)^2
  5. ABBAA^\top B^\top B A
  6. AA+BBAA^\top+BB^\top
  7. AA+BBAA^\top+B^\top B

Compute the matrix of T:VVT:V\to V with respect to a given basis of VV

a. V=P4(R)V=\cP_4(\R), the standard basis {1,x,x2,x3,x4}\{1,x,x^2,x^3,x^4\}, Tf(x)=f(x)xf(x)Tf(x) = f''(x)-xf'(x)

b. V=R2V=\R^2 and T:R2R2T:\R^2\to\R^2 is given by T(x1,x2)=(2x1,x2)T(x_1, x_2) = (2x_1, x_2).

c. VV is the vector space

V={(x1,x2,x3)R3x1+x2+x3=0},V=\{(x_1,x_2,x_3)\in\R^3 \mid x_1+x_2+x_3=0\},

with basis {u,v}\{u,v\} where

u=(110),v=(011),u = \tmat 1\\-1\\0\trix, \qquad v=\tmat 0\\1\\-1 \trix,

and T:VVT:V\to V is the linear transformation

T(x1,x2,x3)=(x3,x1,x2).T(x_1, x_2, x_3) = (x_3,x_1,x_2).

Compute some determinants

a. From the book, page 237,Problem 4

b. For which value of aRa\in\R is (1a1a11111) \tmat 1 &a &1\\a & 1 & 1 \\ 1 & 1 & 1 \trix invertible?

c. Compute the determinant of (11111123451357914710131591317)\tmat 1& 1 & 1& 1& 1\\ 1& 2 & 3& 4& 5\\ 1& 3 & 5& 7& 9\\ 1& 4 & 7& 10& 13\\ 1& 5 & 9& 13& 17 \trix

d. Let A=(121201503)A=\tmat 1& 2 & 1\\ 2& 0 &-1 \\ -5& 0 &3 \trix, and let B=A1B=A^{-1}. Compute the cofactor matrix of AA. Then use the cofactor formula to compute b11b_{11}, b12b_{12}, and b13b_{13}.

e. Let A=(121201503)A=\tmat 1& 2 & 1\\ 2& 0 &-1 \\ -5& 0 &3 \trix. Use row reduction (or “Gaussian elimination”) to compute A1A^{-1}.

f. For which values of tRt\in\R are the vectors

u=(12t),v=(21t),w=(1t0)u=\mat 1 \\ 2 \\ t\rix,\quad v=\mat 2 \\ 1 \\ t\rix,\quad w=\mat 1 \\ t \\ 0\rix

a basis of R3\R^3?

True/False?

  1. For any k×k\times \ell matrix AA, the matrix product AAAA^\top is always defined, no matter what kk and \ell are.
  2. If A=(131201)A= \tmat1 & 3 & -1 \\ 2 & 0 & 1\trix, then det(AA)=det(A)det(A)\det(AA^\top) = \det (A) \det (A^\top)
  3. If AA is a square matrix then det(AA)0\det(A^\top A) \geq 0
  4. If AA is a square matrix with A=AA=-A^\top, then detA=detA\det A^\top = \det A
  5. If AA is a 3×33\times 3 square matrix with A=AA^\top=-A then detA=0\det A=0
  6. If AA is a square matrix with A2=OA^2=O then A=OA=O
  7. If AA is an n×nn\times n matrix and if there is a nonzero vector xFnx\in\F^n with Ax=0Ax=0 then detA=0\det A = 0.
  8. If AA is a square matrix with A2=OA^2=O then detA=0\det A=0.
  9. From the book: §4.4, page 236, problem 1—if a T/F question claims some equation, and you think it is wrong, say how the equation can be fixed.