Contents

Homework 5

True/False?

a. the matrix product AB\cA\cB is defined for any two matrices A\cA and B\cB.

b. if the matrix product AB\cA\cB is defined then the matrix product BA\cB\cA also is defined.

c. if A\cA is an n×mn\times m matrix, and if Ax=0\cA x=0 for some xRmx\in\R^m then A=O\cA=\cO. (O\cO is the n×mn\times m zero matrix.)

d. if A\cA and B\cB are two n×nn\times n matrices then (A+B)2=A2+2AB+B2(\cA+\cB)^2=\cA^2+2\cA\cB+\cB^2

a. False A\cA and B\cB have to have compatible sizes: if A\cA is an n×mn\times m matrix then B\cB must be an m×km\times k matrix.

b. False If A\cA is n×mn\times m and B\cB is m×km\times k, then AB\cA\cB is defined. But, unless k=nk=n, BA\cB\cA is not defined.

c. False Ax=0\cA x=0 only means that xN(A)x\in N(\cA).

d. False This is only true if AB=BA\cA\cB=\cB\cA. See problem 6 below.

1. Composition of linear transformations is also linear

If A:VWA:V\to W and B:UVB:U\to V are linear transformations of vector spaces, then show that the composition AB:UWAB:U\to W also is linear. The composition is defined by (AB)(x)=A(B(x)))(AB)(x)=A(B(x)))

We have to show that (AB)(sx+ty)=s(AB)x+t(AB)y(AB)(sx+ty) = s(AB)x+t(AB)y for all x,yVx,y\in V and all s,tFs,t\in \F:

(AB)(sx+ty)=A(B(sx+ty))(def of AB)=A(sBx+tBy)(B is linear)=sA(Bx)+tA(By)(A is linear)=s(AB)(x)+t(AB)(y)(def of AB, twice)\begin{aligned} (AB)(sx+ty) &= A\left(B(sx+ty)\right) & (\text{def of }AB)\\ &=A\left(sBx+tBy\right) &(B\text{ is linear}) \\ &=sA(Bx) + tA(By) & (\text{$A$ is linear}) \\ &=s(AB)(x) + t(AB)(y) & (\text{def of $AB$, twice}) \end{aligned}

Therefore ABAB is linear.

2. Reflection, projection, and their matrices

Let α(0,π2)\alpha\in(0, \frac\pi2) be a given angle, and let α\ell_\alpha be the line in R2\R^2 through the origin whose slope is tanα\tan\alpha (its equation is y=xtanαy=x\tan\alpha).
Let Sα:R2R2S_\alpha:\R^2\to\R^2 be reflection in the line α\ell_\alpha. You may assume that SαS_\alpha is linear.

a. Find the matrix of SαS_\alpha with respect to the standard basis {e1,e2}\{e_1, e_2\}

b. Find the matrix of SαS_\alpha with respect to the basis {v,w}\{v, w\} where v=(cosαsinα)v=\binom{\cos\alpha}{\sin\alpha}, w=(sinαcosα)w=\binom{-\sin\alpha}{\cos\alpha}. Suggestion: first make a drawing of the line α\ell_\alpha and the vectors v,wv,w.

c. Verify in both cases a and b that the matrix M\mathcal{M} you get satisfies M2=I\mathcal{M}^2=I.

d. Let Pα:R2R2P_\alpha:\R^2\to\R^2 be perpendicular projection on the line α\ell_\alpha. Find the matrix of PαP_\alpha with respect to the standard basis {e1,e2}\{e_1, e_2\}. Hint: use geometry to show that Pαx=12(Sαx+x)P_\alpha x = \frac12 (S_\alpha x+x) and conclude that Pα=12(Sα+I)P_\alpha= \tfrac12 (S_\alpha + I).

e. Find the matrix of the projection PαP_\alpha with respect to the basis v=(cosαsinα)v=\binom{\cos\alpha}{\sin\alpha}, w=(sinαcosα)w=\binom{-\sin\alpha}{\cos\alpha}.

a. Use a drawing to compute the coordinates of Sαe1S_\alpha e_1 and Sαe2S_\alpha e_2. Finding Sαe2S_\alpha e_2 :

Sαe1=(cos2αsin2α)S_\alpha e_1 = \binom{\cos2\alpha}{\sin2\alpha}, and Sαe2=(cos(π22α)sin(π22α))=(sin2αcos2α)S_\alpha e_2=\binom{\cos(\frac{\pi}{2}-2\alpha)}{-\sin(\frac{\pi}{2}-2\alpha)} = \binom{\sin 2\alpha}{-\cos 2\alpha}.

Hence the matrix of SαS_\alpha with respect to the standard basis is

[Sα]e1,e2=(cos2αsin2αsin2αcos2α)[S_\alpha]_{e_1, e_2} = \mat\cos2\alpha & \sin 2\alpha \\ \sin 2\alpha & - \cos 2\alpha\rix

b. The vector vv lies on the line of reflection, so Sαv=vS_\alpha v=v. The vector ww is perpendicular to the line of reflection, so Sαw=wS_\alpha w=-w. Therefore the matrix of SαS_\alpha with respect to the basis {v,w}\{v, w\} is

[Sα]v,w=(1001).[S_\alpha]_{v,w} = \mat 1 & 0 \\ 0 & -1\rix .

c. The first matrix we found was M=[Sα]e1,e2=(cos2αsin2αsin2αcos2α)\cM = [S_\alpha]_{e_1, e_2}= \tmat\cos2\alpha & \sin 2\alpha \\ \sin 2\alpha & - \cos 2\alpha\trix, so we find

M2=(cos2αsin2αsin2αcos2α)(cos2αsin2αsin2αcos2α)=(cos22α+sin22αcos2αsin2αsin2αcos2αsin2αcos2αcos2αsin2αsin22α+cos22α)=(1001)=I\begin{aligned} \cM^2 &= \mat\cos2\alpha & \sin 2\alpha \\ \sin 2\alpha & - \cos 2\alpha\rix \mat\cos2\alpha & \sin 2\alpha \\ \sin 2\alpha & - \cos 2\alpha\rix \\ &=\mat\cos^22\alpha+\sin^22\alpha & \cos2\alpha \sin2\alpha - \sin2\alpha\cos2\alpha\\ \sin2\alpha\cos2\alpha-\cos2\alpha\sin2\alpha & \sin^22\alpha + \cos^22\alpha \rix\\ &=\mat 1 & 0 \\ 0 & 1\rix = I \end{aligned}

For the other matrix M=[Sα]v,w=(1001)\cM=[S_\alpha]_{v,w} = \tmat1 & 0 \\ 0 & -1\trix the computation is easier and also gives M2=I\cM^2=I.

d. Pαx=12(x+Sαx)P_\alpha x = \frac12 (x+S_\alpha x), so we have Pαe1=(12(1+cos2α)12sin2α)P_\alpha e_1 = \binom{\frac12(1+\cos2\alpha)}{\frac12 \sin2\alpha} and Pαe2=(12sin2α12(1cos2α))P_\alpha e_2 = \tmat \frac12 \sin2\alpha \\ \frac12 (1-\cos 2\alpha)\trix. Thus

[Pα]e1,e2=(12(1+cos2α)12sin2α12sin2α12(1cos2α))[P_\alpha]_{e_1, e_2} = \mat \frac12(1+\cos2\alpha) & \frac12 \sin2\alpha \\ \frac12 \sin2\alpha & \frac12 (1-\cos 2\alpha) \rix

e. [Pα]v,w=(1000)[P_\alpha]_{v, w}=\tmat 1 & 0 \\ 0 & 0 \trix

3. Some matrix products

Compute AB\mathcal A \mathcal B and BA\mathcal{B}\mathcal{A} for the following matrices

a. A=(1221) \mathcal{A}=\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, B=(1141) \mathcal{B}=\begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}

AB=(9363)\cA\cB= \tmat 9 & 3 \\ 6 & 3 \trix, BA=(3369)\cB\cA = \tmat3 & 3 \\ 6 & 9\trix

b. A=(1a01) \mathcal{A}=\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}, B=(1b01) \mathcal{B}=\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}

AB=(1a+b01)\cA\cB=\tmat 1 & a+b \\ 0 & 1\trix, and BA=(1a+b01)\cB\cA=\tmat 1 & a+b \\ 0 & 1\trix, so for these matrices AB=BA\cA\cB=\cB\cA

c. A=(1a001b001) \mathcal{A}=\begin{pmatrix} 1 & a & 0 \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} , B=(1c001d001) \mathcal{B}=\begin{pmatrix} 1 & c & 0 \\ 0 & 1 & d \\ 0 & 0 & 1 \end{pmatrix} .

AB=(1a+cad01b+d001)\cA\cB = \tmat1 & a+c & ad \\ 0 & 1 & b+d \\ 0 & 0 & 1\trix, BA=(1a+cbc01b+d001)\cB\cA = \tmat1 & a+c & bc \\ 0 & 1 & b+d \\ 0 & 0 & 1\trix

d. A=(a1a2)\cA=\mat a_1 & a_2\rix, B=(b1b2)\cB=\mat b_1 \\ b_2\rix.

AB=(a1b1+a2b2)\cA\cB = (a_1b_1+a_2b_2), BA=(a1b1a2b1a1b2a2b2)\cB\cA = \tmat a_1b_1 & a_2b_1 \\a_1b_2 & a_2 b_2 \trix. In this example AB\cA\cB and BA\cB\cA both are defined, but they don't even have the same size.

4. Matrix powers

Consider the matrix A=(010001100)\cA=\left(\begin{smallmatrix} 0&1&0 \\ 0&0&1 \\ 1&0&0 \end{smallmatrix}\right)

a. Compute A3\cA^3. Then compute A2020\cA^{2020}.

A2=(001100010)\cA^2 = \tmat0&0&1\\1&0&0\\0&1&0\trix, A3=(100010001)\cA^3=\tmat1&0&0\\0&1&0\\0&0&1\trix, i.e. A3=I\cA^3=I. Once you know A3=I\cA^3=I you get A4=AA3=AI=A\cA^4=\cA\cA^3=\cA I=\cA, A5=A2A3=A2\cA^5=\cA^2\cA^3=\cA^2, A6=A3=I\cA^6=\cA^3=I, ... etc.

Since 2020=6733+12020=673\cdot 3+1, you get A2020=A3673+1=A1=A\cA^{2020} = \cA^{3\cdot673+1}=\cA^1=\cA.

b. Find the inverse of A\cA.

AA2=A3=I\cA\cA^2=\cA^3=I and A2A=A3=I\cA^2\cA=\cA^3=I, so A2\cA^2 is the inverse of A\cA.

c. Find a 2×22\times2 matrix B\cB for which B5=I\cB^5=I. (hint: rotations).

B=I=(1001)\cB=I=\tmat 1&0\\0&1\trix is a valid answer. To find other answers consider the rotation matrices R(θ)=(cosθsinθsinθcosθ)\cR(\theta) = \tmat\cos\theta & -\sin\theta \\\sin\theta&\cos\theta\trix, where θR\theta\in\R.
We know from lecture that R(θ)R(ϕ)=R(θ+ϕ)\cR(\theta)\cR(\phi)=\cR(\theta+\phi). Therefore

R(ϕ)5=R(ϕ)R(ϕ)R(ϕ)R(ϕ)R(ϕ)=R(5ϕ)\cR(\phi)^5 = \cR(\phi)\cR(\phi)\cR(\phi)\cR(\phi)\cR(\phi)=\cR(5\phi)

Choose ϕ\phi so that 5ϕ=2π5\phi=2\pi, i.e. choose ϕ=25π=72\phi=\frac25\pi = 72^\circ, then

B=R(25π)=(cos25πsin25πsin25πcos25π)\cB=\cR(\frac25\pi)=\mat\cos\frac25\pi&-\sin\frac25\pi\\ \sin\frac25\pi&\cos\frac25\pi\rix

satisfies B5=I\cB^5=I.

5. Derivatives and matrices

Let V=Pn(R)V=\cP_n(\R) be the space of polynomials of degree at most nn, and let β={1,x,x2,,xn}\beta=\{1, x, x^2, \dots, x^n\} be the standard basis on VV

a. Find the matrix of the linear transformation D:VVD:V\to V given by (Df)(x)=f(x)(Df)(x)=f'(x).

(When n=3n=3) To find the matrix of DD with respect to the basis {1,x,x2,x3}\{1, x, x^2, x^3\} compute D(1),D(x),D(x2),D(x3)D(1), D(x), D(x^2), D(x^3) and express them as linear combinations of {1,x,x2,x3}\{1,x,x^2, x^3\}:

D(1)=0=01+0x+0x2+0x3D(x)=1=11+0x+0x2+0x3D(x2)=2x=01+2x+0x2+0x3D(x3)=3x2=01+0x+3x2+0x3\begin{aligned} D(1)=0&=0\cdot 1+0\cdot x+0\cdot x^2+0\cdot x^3\\ D(x)=1&=1\cdot 1+0\cdot x+0\cdot x^2+0\cdot x^3\\ D(x^2)=2x&=0\cdot 1+2\cdot x+0\cdot x^2+0\cdot x^3\\ D(x^3)=3x^2&=0\cdot 1+0\cdot x+3\cdot x^2+0\cdot x^3\\ \end{aligned}

The coefficients of D(1)D(1) go in the first column of the matrix of DD, etc. We get

D=(0100002000030000)\cD = \mat 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \rix

For any value of nn the matrix D\cD is an (n+1)×(n+1)(n+1)\times(n+1) matrix, given by

D=(01000002000003000000n000000)\cD = \mat 0 & 1 & 0 & 0& & 0 \\ 0 & 0 & 2 & 0& & 0 \\ 0 & 0 & 0 & 3& & 0 \\ & & & & \ddots& \\ 0 & 0 & 0 & 0& 0& n \\ 0 & 0 & 0 & 0& 0& 0 \rix

b. Assume that n=3n=3 and let D\cD be the matrix of DD you found in a. Compute D2\cD^2, D3\cD^3, ... and Dk\cD^k for each integer kNk\in\N.

D2=(0020000600000000)\cD^2 = \tmat0&0&2&0\\0&0&0&6\\0&0&0&0\\0&0&0&0\trix, reflecting the fact that D(D(1))=0D(D(1))=0, D(D(x))=0D(D(x))=0, D(D(x2))=D(2x)=2D(D(x^2))=D(2x)=2, and D(D(x3))=D(3x2)=6xD(D(x^3))=D(3x^2)=6x.

D3=(0006000000000000)\cD^3=\tmat0&0&0&6\\0&0&0&0\\0&0&0&0\\0&0&0&0\trix, D4=(0000000000000000)=O\cD^4=\tmat0&0&0&0\\0&0&0&0\\0&0&0&0\\0&0&0&0\trix=O

D5=D6==O\cD^5=\cD^6=\cdots=O

c. Compute the matrix T\cT of the linear transformation T:VVT:V\to V defined by Tf(x)=f(x+1)Tf(x) = f(x+1) (assume again n=3n=3).

Compute T(1),T(x),T(x2),T(x3)T(1), T(x), T(x^2), T(x^3) and express them as linear combinations of {1,x,x2,x3}\{1,x,x^2, x^3\}:

T(1)=1=11+0x+0x2+0x3T(x)=x+1=11+1x+0x2+0x3T(x2)=(x+1)2=x2+2x+1=11+2x+1x2+0x3T(x3)=(x+1)3=x3+3x2+3x+1=11+3x+3x2+1x3\begin{aligned} T(1)=1&=1\cdot 1+0\cdot x+0\cdot x^2+0\cdot x^3\\ T(x)=x+1&=1\cdot 1+1\cdot x+0\cdot x^2+0\cdot x^3\\ T(x^2)=(x+1)^2=x^2+2x+1&=1\cdot 1+2\cdot x+1\cdot x^2+0\cdot x^3\\ T(x^3)=(x+1)^3=x^3+3x^2+3x+1&=1\cdot 1+3\cdot x+3\cdot x^2+1\cdot x^3\\ \end{aligned}

Therefore the matrix T\cT of TT is

T=(1111012300130001)\cT=\mat 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \\ \rix

d. Show that T=I+D+12!D2+13!D3\cT=I+\cD+\frac1{2!}\cD^2 + \frac1{3!}\cD^3.

Use the values of Dk\cD^k that we computed in b above:

I+D+12!D2+13!D3==(1000010000100001)+(0100002000030000)+12(0020000600000000)+16(0006000000000000)=(1000010000100001)+(0100002000030000)+(0010000300000000)+(0001000000000000)=(1111012300130001)=T\begin{aligned} I+&\cD+\frac1{2!}\cD^2 + \frac1{3!}\cD^3 =\\ \\ &=\tmat 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \trix + \tmat 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \trix +\tfrac12\tmat0&0&2&0\\0&0&0&6\\0&0&0&0\\0&0&0&0\trix +\tfrac16\tmat0&0&0&6\\0&0&0&0\\0&0&0&0\\0&0&0&0\trix \\ &=\tmat 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \trix + \tmat 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \trix +\tmat0&0&1&0\\0&0&0&3\\0&0&0&0\\0&0&0&0\trix +\tmat0&0&0&1\\0&0&0&0\\0&0&0&0\\0&0&0&0\trix \\ &=\tmat 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \\ \trix\\ &=\cT \end{aligned}

6. Commutators

The commutator of two square matrices A\cA and B\cB is defined to be [A,B]=defABBA[\mathcal{A},\mathcal{B}] \stackrel{\rm def}{=}\mathcal{A}\mathcal{B}-\mathcal{B}\mathcal{A}. It is called the commutator because AB=BA\cA\cB = \cB\cA (“A\cA and B\cB commute”) holds if and only if [A,B]=0[\cA,\cB]=0.

a. Show that [A,B]=[B,A][\cA, \cB]=-[\cB,\cA] for all n×nn\times n matrices A,B\cA,\cB.

[B,A]=BAAB=AB+BA=(ABBA)=[A,B][\cB, \cA] = \cB\cA-\cA\cB = -\cA\cB+ \cB\cA = -\left(\cA\cB-\cB\cA\right)=-[\cA,\cB].

b. Compute [I,A][I, \cA] for any n×nn\times n matrix A\cA (II is the identity matrix).

For any n×nn\times n matrix A\cA one has $\cA I=I\cA=\cA $.
Therefore [A,I]=AIIA=AA=O[\cA,I]=\cA I-I\cA=\cA-\cA=O.

c. Show that [tA+sB,C]=t[A,C]+s[B,C][t\cA+s\cB, \cC] = t[\cA,\cC]+s[\cB,\cC] for all n×nn\times n matrices A,B,C\cA,\cB,\cC.

[tA+sB,C]=(tA+sB)CC(tA+sB)=tAC+sBCtCAsCB=tACtCA+sBCsCB=t(ACCA)+s(BCCB)=t[A,C]+s[B,C]\begin{aligned} [t\cA+s\cB, \cC] &= (t\cA+s\cB)\cC - \cC(t\cA+s\cB) \\ &= t\cA\cC+s\cB\cC - t\cC\cA- s\cC\cB \\ &= t\cA\cC- t\cC\cA+s\cB\cC - s\cC\cB \\ &= t\bigl(\cA\cC- \cC\cA\bigr)+s\bigl(\cB\cC - \cC\cB\bigr) \\ &= t[\cA,\cC]+s[\cB,\cC] \end{aligned}

d. Let C\cC be some n×nn\times n matrix, and compute [Ck,Cl][\cC^k,\cC^l] where k,lNk,l\in\N.
Then compute [A,B][\cA,\cB] where A=I+C2\cA= I+\cC^2 and B=C2C2\cB=\cC-2\cC^2.

For all k,lk,l one has CkCl=Ck+l\cC^k\cC^l = \cC^{k+l}, so [Ck,Cl]=CkClClCk=Ck+lCl+k=O[\cC^k,\cC^l]=\cC^k\cC^l-\cC^l\cC^k = \cC^{k+l}-\cC^{l+k}=O. First computation of [A,B][\cA,\cB] where A=I+C2\cA= I+\cC^2 and B=C2C2\cB=\cC-2\cC^2, directly from the definition of the commutator:

[I+C2,C2C2]=(I+C2)(C2C2)(C2C2)(I+C2)=C2C2+C32C4C+2C2C3+2C4=O(all terms cancel)\begin{aligned} \left[I+\cC^2, \cC-2\cC^2\right] &= (I+\cC^2)(\cC-2\cC^2)-(\cC-2\cC^2)(I+\cC^2) \\ &= \cC-2\cC^2+\cC^3-2\cC^4- \cC+2\cC^2-\cC^3+2\cC^4 \\ &=O \quad\text{(all terms cancel)} \end{aligned}

Second, alternative, computation using the properties in b and c of this problem:

[I+C2,C2C2]=[I,C2C2]+[C2,C2C2]=O+[C2,C]2[C2,C2]=O+O2O=O\begin{aligned} \left[I+\cC^2, \cC-2\cC^2\right] &=[I, \cC-2\cC^2] + [\cC^2, \cC-2\cC^2] \\ &=O + [\cC^2,\cC] - 2[\cC^2, \cC^2]\\ &=O+O-2O\\ &=O \end{aligned}

e. Compute the commutator of

A=(0a3a2a30a1a2a10)B=(0b3b2b30b1b2b10)\mathcal{A} = \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \\ \end{pmatrix} \qquad \mathcal{B} = \begin{pmatrix} 0 & -b_3 & b_2 \\ b_3 & 0 & -b_1 \\ -b_2 & b_1 & 0 \\ \end{pmatrix}

Compare the result with the cross product of the vectors (a1a2a3)\tmat a_1\\[1pt] a_2\\[1pt] a_3\trix and
(b1b2b3)\tmat b_1\\b_2\\b_3\trix (for cross product see here or the second minute of this)

AB=(a2b2a3b3a2b1a3b1a1b2a1b1a3b3a3b2a1b3a2b3a1b1a2b2)BA=(b2a2b3a3b2a1b3a1b1a2b1a1b3a3b3a2b1a3b2a3b1a1b2a2)[A,B]=ABBA=(0a2b1a1b2a3b1a1b3a1b2a2b10a3b2a2b3a1b3a3b1a2b3a3b20)\begin{aligned} \cA\cB &= \tmat -a_2b_2-a_3b_3 & a_2b_1 & a_3b_1\\ a_1b_2 &-a_1b_1-a_3b_3 & a_3b_2\\ a_1b_3 & a_2b_3 & -a_1b_1-a_2b_2 \trix\\ \cB\cA &= \tmat -b_2a_2-b_3a_3 & b_2a_1 & b_3a_1\\ b_1a_2 &-b_1a_1-b_3a_3 & b_3a_2\\ b_1a_3 & b_2a_3 & -b_1a_1-b_2a_2 \trix\\ [\cA,\cB]=\cA\cB-\cB\cA&=\tmat 0&a_2b_1-a_1b_2 & a_3b_1-a_1b_3\\ a_1b_2-a_2b_1& 0 & a_3b_2-a_2b_3\\ a_1b_3-a_3b_1&a_2b_3-a_3b_2 & 0 \trix \end{aligned}

If we call C=[A,B]\cC=[\cA,\cB] then our computation shows that C\cC is of the form C=(0c3c2c30c1c2c10)\cC=\tmat0&-c_3&c_2\\c_3&0&-c_1\\-c_2&c_1&0\trix where

(c1c2c3)=(a2b3a3b2a3b1a1b3a1b2a2b1)=(a1a2a3)×(b1b2b3)\tmat c_1\\c_2\\c_3\trix =\tmat a_2b_3-a_3b_2 \\ a_3b_1-a_1b_3 \\ a_1b_2-a_2b_1 \trix =\tmat a_1\\ a_2\\ a_3\trix \times \tmat b_1\\b_2\\b_3\trix

f. Suppose A\cA and B\cB are two n×nn\times n matrices and suppose they satisfy

(A+B)2=A2+2AB+B2.(\cA+\cB)^2=\cA^2+2\cA\cB+\cB^2.

Show that AB=BA\cA\cB=\cB\cA.

Expand the square:

(A+B)2=(A+B)(A+B)=A(A+B)+B(A+B)=A2+AB+BA+B2\begin{aligned} (\cA+\cB)^2 &=(\cA+\cB)(\cA+\cB) \\ &=\cA(\cA+\cB) + \cB(\cA+\cB)\\ &=\cA^2 + \cA\cB + \cB\cA+\cB^2 \end{aligned}

So (A+B)2=A2+2AB+B2(\cA+\cB)^2=\cA^2+2\cA\cB+\cB^2 only holds if AB=BA\cA\cB=\cB\cA.