
1. Find all the critical points of the function

f(x, y) = sinx+ y2 + 2y cosx+ 1

and classify them (maximum, minimum or saddle point)

2. Determine if the following statements are true or false. If they are true, explain why, otherwise
provide a counter-example.

(a) ∫ 2

−1

∫ 6

0
x2 sin(x− y)dxdy =

∫ 6

0

∫ 2

−1
x2 sin(x− y)dydx.

(b) ∫ 1

0

∫ x

0

√
x+ y2dydx =

∫ x

0

∫ 1

0

√
x+ y2dxdy.

(c) ∫ 2

1

∫ 4

3
x2eydydx =

(∫ 2

1
x2dx

)(∫ 4

3
eydy

)
.

(d) ∫ 1

−1

∫ 1

0
ex

2+y2 sin(y)dxdy = 0.

(e) If f is continuous on [0, 1], then∫ 1

0

∫ 1

0
f(x)f(y)dxdy =

[∫ 1

0
f(x)dx

]2
.

(f) ∫ 4

1

∫ 1

0
(x2 +

√
y) sin(x2y2)dxdy ≤ 9.

(g) If f has a local minimum at (a, b) and f is differentiable at (a, b), then ∇f(a, b) = 0

(h) If (2, 1) is a critical point of f and

(∂xxf(2, 1)) (∂yyf(2, 1)) < (∂xyf(2, 1))2

then f has a saddle point at (2, 1).

(i) If f(x, y) has two local maxima, then f must have a local minimum.

(j) There exists a function f with continuous second-order partial derivatives such that

∂xf(x, y) = x+ y2 and ∂yf(x, y) = x− y2. (1)

(k)

fxy =
∂2f

∂x∂y
. (2)

3. (a) Evaluate ∫∫
D

1

(x2 + y2)n/2
dA,



where n is an integer, and D is the region bounded by the circles with center in the origin
and radii r and R, such that 0 < r < R. (Hint: use polar coordinates.)

(b) For what values of n does the integral above have a limit when r → 0+.

4. Show the following identities:

(a) ∫ 1

0

∫ 1

0

1

1− xy
dxdy =

∞∑
n=1

1

n2
(3)

Hint: expand the integrand as a geometric series, and interchange the order of the sum
and integrals.

(b)

∫ 1

0

∫ 1

0

∫ 1

0

1

1− xyz
dxdydz =

∞∑
n=1

1

n3
(4)

5. Suppose that a function F is defined as

F (x, y) = f(x, g(x)k(y), h(x, y)),

where f, g, h, k are twice differentiable functions. Find

∂2F

∂x∂y

in terms of the partial derivatives of f, g, h, k.

6. Let g : R2 → R a function twice differentiable, and let f be a function defined on Ω = {(x, y) ∈
R2, y 6= 0} twice differentiable such that f(x, y) = g(xy, x/y).

Suppose, that f satisfies
∂2f

∂x2
+
∂2f

∂y2
= 0

and define u = xy and v = x
y . Show that g satisfies

(
uv +

u

v

) ∂2g
∂u2

+ 2(1− v2) ∂
2g

∂u∂v
+
v

u
(1 + v2)

∂2g

∂v2
+ 2

v2

u

∂g

∂v
= 0.

Hint: use the equation that f satisfies, and compute the partial derivatives of f using the chain
rule on g.

7. A disk or radius 1 is rotating in the counter-clockwise direction at a constant angular speed ω.
A particle starts at the center of the disk and moves toward the edge along a fixed radius so
that it position at time t ≥ 0, is given by r(t) = tR(t), where

R(t) = cos(ωt)i + sin(ωt)j.

(a) Show that the velocity v of the particle is

v(t) = cos(ωt)i + sin(ωt)j + tvd
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where vd = R′(t) is the velocity of a point at the edge of the disk.

(b) Show that the acceleration a of the particle is given by

a = 2vd + tad

where, ad = R′′(t) is the the acceleration of a point on the edge of the disk. In this case,
2vd corresponds to the Coriolis acceleration.

(c) Compute the Coriolis acceleration of a moving particle that moves on a rotating disk
according to the equation

r(t) = e−t cos(ωt)i + e−t sin(ωt)j.

8. Suppose that you have two planets: one of mass M situated at y ∈ R3 and the other of mass m
located at x ∈ R3. Following the gravitation law we have that the force on the planet located
at x is given by

F = −γ Mm

|x− y|3
(x− y).

If x(t) is the position in the space of a planet of mass m that moves under the action of the
gravitational force due to a mass M located in the origin, then show that the energy, defined
as

E(t) =
m

2

∣∣∣∣dx(t)

dt

∣∣∣∣2 − γ Mm

|x(t)|
,

is preserved, i.e., show that E′(t) = 0.

Hint: you need to use Newton’s second law F = ma, where a = x′′(t). Moreover, you may
want to recall that |x(t)| =

√
x · x.

9. (a) Maximize
∑n

i=1 xiyi subject to the constraints
∑n

i=1 x
2
i = 1 and

∑n
i=1 y

2
i = 1.

Hint: computing the derivatives may seem overwhelming, this can be easily tackled by
exploiting the symmetry in the problem. In this case, you may want to treat x first and
then treat y, and then put them together in the equation for the Lagrange multipliers.

(b) Let a = 〈a1, a2, ..., an〉 and b = 〈b1, b2, ..., bn〉 two vectors in Rn.

Put

xi =
ai√∑n
j a

2
i

and yi =
bi√∑n
j b

2
i

and using the last question show that

a · b ≤ |a||b|.

This inequality is known as the Cauchy-Schwarz inequality.

Hint: recall that a · b =
∑n

i=1 aibi and |a| =
√∑n

j a
2
i

10. If JxK denotes the greatest integer in x, evaluate the integral∫∫
R
Jx+ yKdA
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where R = [1, 3]× [2, 5].

11. Evaluate the integral ∫ 1

0

∫ 1

0
emax(x2,y2)dxdy,

where max(x2, y2) means the larger of the numbers x2 and y2.

12. If f is continuous, show that∫ x

0

∫ y

0

∫ z

0
f(t)dtdzdy =

1

2

∫ x

0
(x− t)2f(t)dt

13. (Example from Statistical physics) We define the entropy of a system as the function S : Rn → R
defined as

S(x1, x2, ..., xn) = −
n∑
i=k

xk lnxk.

we aim to maximize this function.

(a) Find the domain of S, and compute its partial derivatives.

(b) Find a critical point and show that it is a maximum. (You will need to use a higher
dimension version of the second derivative test.)

(c) Find a critical point with the restriction that
∑n

k=1 xk = 1. Show that it is a maximum.

(d) Let E1 < E2 < E3 < ...En and E be given reals number (i.e. they are constant). In the
next questions we want to maximize S under the restrictions

n∑
k=1

xk = 1 and

n∑
k=1

xkEk = E

write the equations for the Lagrange multipliers. (You will obtain n+ 2 equations)

(e) Argue that the solution of the system of equations has the form xi = e−βEi/Z where
Z =

∑n
i=1 e

−βEi , and its known as the partition function.

(f) Write the equation to find beta (do not try to find it).

(g) Argue that the solution to the system maximizes S under the constraints.
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