MATH 2B: SAMPLE MIDTERM #1

o This exam consists of 5 questions and 85 total poinis.
o Read the directions for each problem carefully and answer all parts of each problem.

¢ Please show all work needed to arrive at your solutions (unless instructed otherwise). Label
graphs and define any notation used. Cross out incorrect scratch-work.

¢ No calculators or other forms of assistance are allowed. Do not check your cell phones
during the exam.

¢ Clearly indicate your final answer to each problem.

1. (15 points)
a. Estimate the area under the graph of f(z) = * + z from 2 = 0 to z = 3 using 3 approxi-
mating rectangles and left endpoints.

w ¢ Axs 3:9:0 le(b endpunle O 1,2

O o Am\.((o) r B i rA= ((1_]

b. Estimate the area under the graph of f(z) = z — 1 from z = 0 to © = 6 using 3 rectangles
and midpoints.
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c. Find an expression for the area under the graph of f(z) = 2® + z fromz = 2toz =5as a
limit of Riemann sums. (You do not need to evaluate the limit.)
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2. (15 points) Evaluate each of the following indefinite integrals.
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3. (15 points)
a. Find the average value of the function f(z) = tan®(z) sec?(z) on the interval [0, Z].
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b. A particle moves along a line so that its velocity at time ¢ is v(t) = |2 — ¢|. Find the
displacement of the particle during the time period 0 < ¢ < 3.
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4, (20 points)
a. Complete the blanks in the following statement of the Fundamental Theorem of Calculus.

Fundamental Theorem of Calculus:

Suppose f is continuous on [a,b]. If g(z} = [ f(t)dt, then ¢'(z) = é(at.) and
fﬂb f@)de =_€(b) - £ (a) | where F is any antiderivative of f.

b, Use the Fundamental Theorem of Calculus to evaluate the following.
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c. Answer each of the following questions. No work or explanation is needed.
i. If f(t) is measured in dollars per year and ¢ in years, what are the units of fom f@)dt?  dulloa,

. . . » . 3}
ii. True/False: All continuous functions have derivatives. { wboe
iii. True/False: All continuous functions have antiderivatives. Fane

iv. Below is the graph of a function v{t). Let g(z) = [, v(¢) dt.
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Find each of the following:
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5. (20 points) Let S be the region bounded by y = 2° and y :\/;5

a. Find the area of the region 5.
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i, Find the volume of the solid obtained by revolving the region S about the x-axis.
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ii, Set up an integral to find the volume obtained by revolving S about the y-axis. (You do

not need to evaluate the integral.) .
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iii. Set up an integral to find the volume obtained by revolving .S about the line ¥ = 5. (You
do not need to evaluate the integral.)
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