MATH 2B: SAMPLE MIDTERM #1

- This exam consists of 5 questions and 85 total points.
- Read the directions for each problem carefully and answer all parts of each problem.
- Please show all work needed to arrive at your solutions (unless instructed otherwise). Label graphs and define any notation used. Cross out incorrect scratch-work.
- No calculators or other forms of assistance are allowed. Do not check your cell phones during the exam.
- Clearly indicate your final answer to each problem.

1. (15 points)

a. Estimate the area under the graph of $f(x) = x^2 + x$ from x = 0 to x = 3 using 3 approximating rectangles and left endpoints.

$$\Delta z = \frac{3.0}{3} = 1$$
 Le(+ endpoints 0,1,2
 $\Delta z = \Delta n (0) + \Delta n (11) + \Delta n (12)$
= 0 + 2 + 6 = 8

b. Estimate the area under the graph of f(x) = x - 1 from x = 0 to x = 6 using 3 rectangles and midpoints.

$$\Delta x = 6.0 = 2$$
 medpoint 1,3,5
 $\Delta x = 6.0 = 2$ medpoint 1,3,5
 $\Delta x = 6.0 = 2$ medpoint 1,3,5
= 2.0 + 2.2 + 2.4
= 12

c. Find an expression for the area under the graph of $f(x) = x^2 + x$ from x = 2 to x = 5 as a limit of Riemann sums. (You do not need to evaluate the limit.)

$$\Delta x = \frac{5 \cdot 2}{n} = \frac{3}{n}$$

$$f(n) = n^2 + x$$

$$x_i = a + i \Delta x = 2 + \frac{3i}{n}$$

A:
$$\lim_{n\to\infty} \sum_{i=1}^{n} f(ni) \Delta x$$

$$= \lim_{n\to\infty} \sum_{i=1}^{n} \frac{3}{2} \left[\left(\frac{2}{n} + \frac{3}{n} \right)^{\frac{1}{n}} + \left(\frac{2}{n} + \frac{3}{n} \right) \right]$$

2. (15 points) Evaluate each of the following indefinite integrals.

a.
$$\int x\sqrt{3x^2-1}\,dx$$

$$\int_{N} \sqrt{3u^{2}-1} \, dn = \frac{1}{6} \int \sqrt{u} \, du = \frac{1}{6} \cdot \frac{2}{3} u^{2} + C$$

$$\left[\frac{1}{9} (3u^{2}-1)^{\frac{3}{2}} + C \right]$$

b.
$$\int \frac{1-\sin^2(x)}{\cos x} dx$$

$$\int \frac{1-\sin^2 u}{\cos u} \, du = \int \frac{\cos^2 u}{\cos u} \, du = \int \frac{\sin u}{\cos u} \, du = \int \frac{\sin u}{\cos u} \, du = \int \frac{\sin u}{\cos u} \, du$$

c.
$$\int \sin(7\theta + 5) d\theta$$

$$\int_{\pi i} (70+5) d\theta = \frac{1}{7} \int_{\pi i} \sin u du = -\frac{1}{7} \cos u + C \left[-\frac{1}{7} \cos \left(\frac{70+5}{7} \right) + C \right]$$

3. (15 points)

a. Find the average value of the function $f(x) = \tan^3(x) \sec^2(x)$ on the interval $[0, \frac{\pi}{4}]$.

$$\frac{4}{\pi} \int_0^{\pi/4} \tan^3 x \sec^2 x \, dx = \frac{4}{\pi} \int_0^1 u^3 \, du = \frac{4}{\pi} \left[\frac{u^4}{4} \right] = \frac{1}{\pi}.$$

U: Fan x

du = nect n dre

when n=0 0= tan 0=0

b. A particle moves along a line so that its velocity at time t is v(t) = |2 - t|. Find the displacement of the particle during the time period $0 \le t \le 3$.

12-61 = 2-6 when 2-620 that is 226

$$\int_{12-41}^{2} dt = \int_{2-4}^{2} 2-4 dt + \int_{2}^{3} 4-2 dt$$

$$= \left[24-\frac{4^{2}}{2}\right]_{0}^{3} + \left[\frac{4^{2}}{2}-24\right]_{1}^{3}$$

$$= 4-2+\frac{9}{2}-6-2+4$$

$$= \frac{5}{2}$$

- 4. (20 points)
 - a. Complete the blanks in the following statement of the Fundamental Theorem of Calculus.

Fundamental Theorem of Calculus:

Suppose f is continuous on [a,b]. If $g(x) = \int_a^x f(t) dt$, then $g'(x) = \underbrace{\int_a^x f(t) dt}$ and $\int_a^b f(x) dx = \underbrace{F(b) - F(a)}$, where F is any antiderivative of f.

b. Use the Fundamental Theorem of Calculus to evaluate the following.

i.
$$\frac{d}{dy} \int_2^y \frac{\sin(t)}{t^2 + 3} dt \qquad \boxed{= \frac{\sin y}{y^2 + 3}}$$

ii.
$$\frac{d}{dx} \int_{x}^{x^{4}} \sqrt{t} dt = 4x^{\frac{1}{2}} \sqrt{x^{\frac{1}{2}}} - \sqrt{x^{\frac{1}{2}}}$$

$$= 4x^{\frac{5}{2}} - \sqrt{x^{\frac{1}{2}}}$$

c. Answer each of the following questions. No work or explanation is needed.

i. If f(t) is measured in dollars per year and t in years, what are the units of $\int_0^{10} f(t) dt$?

ii. True/False: All continuous functions have derivatives.

Palse

iii. True/False: All continuous functions have antiderivatives.

tuce

iv. Below is the graph of a function v(t). Let $g(x) = \int_0^x v(t) \, dt$.

Find each of the following:

$$g(0) = 0$$
, $g(2) = 3$, $g'(1) = 2$, $g'(4) = 1$

- 5. (20 points) Let S be the region bounded by $y = x^3$ and $y = \sqrt{x}$.
 - a. Find the area of the region S.

$$A = \int_{0}^{1} \sqrt{x} - x^{3} dx = \left(\frac{2}{3} x^{\frac{3}{2}} - \frac{x^{4}}{4} \right)_{0}^{1}$$

$$= \frac{2}{3} - \frac{1}{4} \left(\frac{5}{12} \right)$$

b. i. Find the volume of the solid obtained by revolving the region S about the x-axis.

the x-axis is Ruizontal. Thus we integrate with

Crossection at a perpendicular to the x-axis

$$V = \int_{-\pi}^{\pi} \pi \left(x - x^{6} \right) dx = \pi \left(\frac{x^{2}}{2} - \frac{x^{\frac{2}{2}}}{7} \right) = \frac{5\pi}{14}$$

ii. Set up an integral to find the volume obtained by revolving S about the y-axis. (You do not need to evaluate the integral.)

- washer wish the gravis $V = \pi \int_{0}^{1/2} y^{\frac{1}{2}} y^{2} dy$
- - iii. Set up an integral to find the volume obtained by revolving S about the line y=5. (You do not need to evaluate the integral.)

Veriable:
$$x$$

to section at x prependicular to the x exis

where $x = 5.\sqrt{x}$ and $x = 5.x^3$
 $V = \pi \int_0^1 (5.x^3)^{\frac{1}{2}} - (5.\sqrt{x})^{\frac{1}{2}} dx$