MATH 2B MULTIPLE CHOICE SAMPLE QUESTIONS, SPRING 2017

- 1. (Section 4.9) The function F(x) satisfies F'(x) = 3x(x-2) and F(0) = 1. What is F(1)?
 - a. -3
 - b. -3/2
 - (C)-1
 - d. 0
 - e. 3/2

FIGURE 1. This shows the graph of a function f(x) referred to in Questions 2 and 3.

- 2. (Section 4.9) Let F(x) denote an antiderivative of f(x), where y = f(x) is shown in Figure 1. Which of the following can we deduce about F(-5)?
 - a. We have F(-5) > 0, because f(-5) > 0.
 - b. We have F(-5) < 0, because f'(-5) < 0.
 - c. We have F(-5) > 0, because f'(-5) > 0.
 - (d) We cannot deduce any information about whether F(-5) is positive or negative.
- 3. (Section 5.2) Figure 1 shows the graph of a function y=f(x). Imagine we estimate both of the integrals $\int_{-6}^{-4} f(x) \, dx$ and $\int_{2}^{4} f(x) \, dx$ using Riemann sums with 20 rectangles and left endpoints. Which of the following is true?
 - a. The estimate of $\int_{-6}^{-4} f(x) dx$ is an under-estimate and the estimate of $\int_{2}^{4} f(x) dx$ is an over-estimate.

- b. The estimate of $\int_{-6}^{-4} f(x) dx$ is an over-estimate and the estimate of $\int_{2}^{4} f(x) dx$ is an underestimate.
 - c. The estimates of $\int_{-6}^{-4} f(x) dx$ and $\int_{2}^{4} f(x) dx$ are both over-estimates.
 - d. The estimates of $\int_{-6}^{-4} f(x) dx$ and $\int_{2}^{4} f(x) dx$ are both under-estimates.
- 4. (Section 5.2) Define the numbers A and B as follows:

$$A = \int_0^{10} |x^2 - 10x + 3| dx$$
 and $B = \int_0^{10} |x^2 + 10x - 3| dx$.

Which of the following statements is true?

- a. $A \ge 0$ and $B \le 0$
- b. $A \leq 0$ and $B \leq 0$
- (c) $A \ge 0$ and $B \ge 0$
- d. $A \leq 0$ and $B \leq 0$
- 5. (Section 5.3) Let $f(x) = \int_x^3 \sin(2t) dt$. Compute f'(x).
 - $(a.) f'(x) = -\sin(2x)$
 - b. $f'(x) = \sin(6) \sin(2x)$
 - c. $f'(x) = -2\cos(2x)$
 - d. $f'(x) = \frac{1}{2}\cos(2x)$
- 6. (Section 5.4) A wolf population begins with 100 wolves and increases at a rate of n'(t) wolves per week. What does the quantity

$$100 + \int_0^8 n'(t) dt$$

represent? No explanation is necessary.

- a. The average number of wolves in the population during the first 8 weeks.
- b. The average rate of change of the wolf population over the first 8 weeks.
- (c) The total number of wolves in the wolf population after the first 8 weeks.
- d. The number of wolves gained by the wolf population during the first 8 weeks.
- 7. (Section 5.5) Compute $\int \frac{1/2}{x+1} dx$.
 - a. $\ln(x+1) + \frac{1}{2} + C$
 - b. $\frac{1}{2}\ln(x) + C$

 - d. $\frac{-1}{2(x+1)^2} + C$

8. (Section 5.5) Compute $\int_0^1 e^{x+e^x} dx$.

(a)
$$e(e^{e-1}-1)$$

b.
$$e^{e^{e^c}}$$

c.
$$e^{e-1}$$

e.
$$(e-1)e^{e-1}$$

9. (Section 6.1) Which of the following represents the area between the two curves $y = \sin(x)$ and $y = \cos(x)$ in the interval $0 \le x \le \frac{\pi}{2}$?

a.
$$\int_0^{\pi/2} \left(\sin(x) - \cos(x) \right) dx$$

b.
$$\int_0^{\pi/2} \left(\cos(x) - \sin(x) \right) dx$$

c.
$$\frac{1}{\pi/2} \int_0^{\pi/2} \left(\sin(x) + \cos(x) \right) dx$$

- 10. (Section 6.2) The definite integral $\int_0^4 \pi y \, dy$ represents the volume of which of the following solids?
 - a. The region bounded by the y-axis, $x = \sqrt{y}$, and y = 2, rotated about the y-axis
 - (b) The region bounded by the y-axis, $x = \sqrt{y}$, and y = 4, rotated about the y-axis
 - c. The region bounded by the x-axis, $y = \sqrt{x}$, and x = 2, rotated about the x-axis
 - d. The region bounded by the x-axis, $y=\sqrt{x}$, and x=16, rotated about the x-axis
- 11. (Section 6.5) Which of the following represents the average of the function $f(x) = \cos^2(x^2)$ over the interval from x = 0 to $x = \pi/2$?

(a)
$$\frac{2}{\pi} \int_0^{\pi/2} f(x) dx$$

b.
$$\int_0^{\pi/2} f'(x) dx$$

c.
$$\frac{f(\pi/2) - f(0)}{\pi/2}$$

d.
$$\sqrt{f(\pi/2)f(0)}$$

12. (Section 7.1) Using integration by parts, we see that $\int x \ln x \, dx$ is equal to which of the following?

(a)
$$\frac{x^2 \ln x}{2} - \int \frac{x}{2} dx$$

b.
$$\frac{x^3}{2} - \int \frac{x^2}{2} dx$$

$$c. \ \frac{x^3 \ln x}{2} - \int 1 \, dx$$

$$d. \frac{x^2}{2} - \int \ln x \, dx$$

13. (Section 7.3) While solving a trigonometric substitution question, we find $x = \tan \theta$, where $0 < \theta < \pi/2$. Which of the following is equal to $\cos(\theta)$?

a.
$$\sqrt{x^2 - 1}$$

b.
$$\frac{1}{x} + \frac{1}{x+1}$$

$$\bigcirc \frac{1}{\sqrt{x^2+1}}$$

d.
$$\frac{x^2-1}{\sqrt{2}}$$

14. (Section 7.3) To compute the definite integral $\int_0^2 \sqrt{9-x^2} dx$, which of the following substitu-

(a.)
$$x = 3\sin(\theta)$$
 and $dx = 3\cos(\theta) d\theta$
b. $x = 3\tan(\theta)$ and $dx = 3\sec^2(\theta) d\theta$

b.
$$x = 3\tan(\theta)$$
 and $dx = 3\sec^2(\theta) d\theta$

c.
$$x = 3\sec(\theta)$$
 and $dx = 3\sec(\theta)\tan(\theta) d\theta$

d.
$$x = 9 - \theta^2$$
 and $dx = -2\theta d\theta$

15. (Section 7.8) What is wrong with the computation

$$\int_{-1}^{1} \frac{1}{x} dx = \ln|x| \Big]_{-1}^{1} = \ln(1) - \ln(1) = 0?$$

- a. The function $\ln |x|$ is not an antiderivative of $\frac{1}{x}$.
- b The function $\frac{1}{x}$ has an asymptote at x=0 so we should have used an improper integral.
- c. We are missing a "+C", so the final answer should be 0+C=C.
- d. The value ln(1) is not defined, so we can't say ln(1) ln(1) = 0.
- 16. (Section 11.4) Consider the series

$$A: \sum_{k=1}^{\infty} \frac{1}{2k-1} \text{ and } B: \sum_{k=1}^{\infty} \frac{1}{3k+1}.$$

Which of the following is the true statement?

- a. Both series converge.
- (b.) Both series diverge.
- Series A converges and series B diverges.

- d. Series A diverges and series B converges.
- 17. (Section 11.8) What is the interval of convergence of $\sum_{k=1}^{\infty} \frac{1}{2k} x^k$?
 - a. x = 0
 - b. $-2 < x \le 2$
 - c. $-2 \le x < 2$
 - d. $-1 < x \le 1$
 - $(e.)-1 \le x < 1$
- 18. (Section 11.8) What is the interval of convergence of $\sum_{k=0}^{\infty} \frac{k}{7^k} x^k$?
 - a. x = 0
 - b. -7 < x < 7
 - c. $-7 \le x < 7$
 - d. $-7 < x \le 7$
 - (e) $-7 \le x \le 7$
- 19. (Section 11.9) Which of the following is the power series representation of $\frac{2}{2+x}$?
 - a. $\sum_{n=0}^{\infty} \left(\frac{x}{2}\right)^n$
 - $\widehat{\text{(b.)}} \sum_{n=0}^{\infty} \left(\frac{-x}{2} \right)^n$
 - c. $\sum_{n=0}^{\infty} 2\left(\frac{x}{2}\right)^n$
 - d. $\sum_{n=0}^{\infty} \frac{(-x)^n}{2}$
- 20. (Section 11.10) Determine the value of $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$.
 - a. (
 - b. −*e*
 - $(c)\frac{1}{e}$
 - $d. \cos(e)$