MATH 2B MULTIPLE CHOICE SAMPLE QUESTIONS, SPRING 2017

- 1. (Section 4.9) The function F(x) satisfies F'(x) = 3x(x-2) and F(0) = 1. What is F(1)?
 - a. -3
 - b. -3/2
 - (°C.) -1
 - d. 0
 - e. 3/2

FIGURE 1. This shows the graph of a function f(x) referred to in Questions 2 and 3.

- 2. (Section 4.9) Let F(x) denote an antiderivative of f(x), where y = f(x) is shown in Figure 1. Which of the following can we deduce about F(-5)?
 - a. We have F(-5) > 0, because f(-5) > 0.
 - b. We have F(-5) < 0, because f'(-5) < 0.
 - c. We have F(-5) > 0, because f'(-5) > 0.
 - (d) We cannot deduce any information about whether F(-5) is positive or negative.
- 3. (Section 5.2) Figure 1 shows the graph of a function y = f(x). Imagine we estimate both of the integrals $\int_{-6}^{-4} f(x) dx$ and $\int_{2}^{4} f(x) dx$ using Riemann sums with 20 rectangles and left endpoints. Which of the following is true?
 - a. The estimate of $\int_{-6}^{-4} f(x) dx$ is an under-estimate and the estimate of $\int_{2}^{4} f(x) dx$ is an over-estimate.

- b. The estimate of $\int_{-6}^{-4} f(x) dx$ is an over-estimate and the estimate of $\int_{2}^{4} f(x) dx$ is an underestimate.
 - c. The estimates of $\int_{-6}^{-4} f(x) dx$ and $\int_{2}^{4} f(x) dx$ are both over-estimates.
- d. The estimates of $\int_{-6}^{-4} f(x) dx$ and $\int_{2}^{4} f(x) dx$ are both under-estimates.
- 4. (Section 5.2) Define the numbers A and B as follows:

$$A = \int_0^{10} |x^2 - 10x + 3| dx$$
 and $B = \int_0^{10} |x^2 + 10x - 3| dx$.

Which of the following statements is true?

- a. $A \ge 0$ and $B \le 0$
- b. $A \leq 0$ and $B \leq 0$
- (c) $A \ge 0$ and $B \ge 0$
- d. $A \leq 0$ and $B \leq 0$
- 5. (Section 5.3) Let $f(x) = \int_x^3 \sin(2t) dt$. Compute f'(x).

$$(a)f'(x) = -\sin(2x)$$

- b. $f'(x) = \sin(6) \sin(2x)$
- c. $f'(x) = -2\cos(2x)$
- d. $f'(x) = \frac{1}{2}\cos(2x)$
- 6. (Section 5.4) A wolf population begins with 100 wolves and increases at a rate of n'(t) wolves per week. What does the quantity

$$100 + \int_0^8 n'(t) dt$$

represent? No explanation is necessary.

- a. The average number of wolves in the population during the first 8 weeks.
- b. The average rate of change of the wolf population over the first 8 weeks.
- (c) The total number of wolves in the wolf population after the first 8 weeks.
- d. The number of wolves gained by the wolf population during the first 8 weeks.
- 7. (Section 5.5) Compute $\int \frac{1/2}{x+1} dx$.

a.
$$\ln(x+1) + \frac{1}{2} + C$$

b.
$$\frac{1}{2} \ln(x) + C$$

(c)
$$\ln \sqrt{x+1} + C$$

d.
$$\frac{-1}{2(x+1)^2} + C$$

8. (Section 5.5) Compute $\int_0^1 e^{x+e^x} dx$.

(a)
$$e(e^{e-1}-1)$$

b.
$$e^{e^{e^{\epsilon}}}$$

c.
$$e^{e-1}$$

d.
$$e^e$$

e.
$$(e-1)e^{e-1}$$

9. (Section 6.1) Which of the following represents the area between the two curves $y = \sin(x)$ and $y = \cos(x)$ in the interval $0 \le x \le \frac{\pi}{2}$?

a.
$$\int_0^{\pi/2} \left(\sin(x) - \cos(x) \right) dx$$

b.
$$\int_0^{\pi/2} \left(\cos(x) - \sin(x) \right) dx$$

c.
$$\frac{1}{\pi/2} \int_0^{\pi/2} \left(\sin(x) + \cos(x) \right) dx$$

$$\left(\frac{1}{2} \int_0^{\pi/4} \left(\cos(x) - \sin(x) \right) dx + \int_{\pi/4}^{\pi/2} \left(\sin(x) - \cos(x) \right) dx \right)$$

- 10. (Section 6.2) The definite integral $\int_0^4 \pi y \, dy$ represents the volume of which of the following solids?
 - a. The region bounded by the y-axis, $x=\sqrt{y}$, and y=2, rotated about the y-axis
 - (b) The region bounded by the y-axis, $x = \sqrt{y}$, and y = 4, rotated about the y-axis
 - c. The region bounded by the x-axis, $y = \sqrt{x}$, and x = 2, rotated about the x-axis
 - d. The region bounded by the x-axis, $y=\sqrt{x}$, and x=16, rotated about the x-axis
- 11. (Section 6.5) Which of the following represents the average of the function $f(x) = \cos^2(x^2)$ over the interval from x = 0 to $x = \pi/2$?

b.
$$\int_0^{\pi/2} f'(x) \, dx$$

c.
$$\frac{f(\pi/2) - f(0)}{\pi/2}$$

d.
$$\sqrt{f(\pi/2)f(0)}$$

12. (Section 7.1) Using integration by parts, we see that $\int x \ln x \, dx$ is equal to which of the following?

a.
$$\frac{x^2 \ln x}{2} - \int \frac{x}{2} dx$$