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[1 INFINITE SEQUENCES AND SERIES

111 Sequences

10.

1.

. (a) A sequence is an ordered list of numbers. It can also be defined as a function whose domain is the set of positive integers.

(b) The terms a,, approach 8 as n becomes large. In fact, we can make a,, as close to 8 as we like by taking n sufficiently

large.

(c) The terms a,, become large as n becomes large. In fact, we can make a,, as large as we like by taking n sufficiently large.

. (a) From Definition 1, a convergent sequence is a sequence for which lim a, exists. Examples: {1/n},{1/2"}

n— 00

(b) A divergent sequence is a sequence for which lim a,, does not exist. Examples: {n}, {sin n}

an = L so the sequence is 2 2 2’ 2! 2’ = 2 é § E Q
ERC d M+ 20+ 2@+ 2@+ 26)+ 10 [ 3579 1S
a 777:2_1 sothese uenceis 1_1 4_1 9_1 16_1 25_1 = § i § %
COn = E 4 1+1° 4419417169 1225+1° [ 1510017726 [

(=)t .{1 -1 1 -1 1 } {1 1 1 1 1 }
.an:—n,sothesequencels —, =5, =% = =F =4q= .

51’ 52’ 53 5& L5 5° 25’125 625’3125 "

. 3 5
. Qy = COS n%r, so the sequence is {cos%,cosmcos %,cos 27, cos %, .. } =4{0,-1,0,1,0,...}.

111 111 1 1

1 1
» n = 5 th i S e A s mr (Y50 A ) ) R
™ esequencels{z! 314" 51 6 } {2 6’24’ 120" 720 }

ZJn SO a1 ‘= = _—1 and the sequence is
w1 T T o q

Sl 2 48 w4 5 ) (12 34 5
27241'6+1’244+17120+1"""" 2’3" 725" 121777

. a1 =1, ant1= ban—3. Each term is defined in terms of the preceding term. a2 = 5a1 —3 =5(1) — 3 = 2.

a3 =5a5=3="5(2) —3=7. as=>5a3—3=5(7)—3=232. as=>5as —3=>5(32) —3=157.

The sequence is {1,2,7,32,157,...}.
A, a 6 as 6 as 3 ay 1
@M=D Anpr = 2= T BT T3 “w=3 T3 BTy T
The sequence is {6,6,3,1, 1,...}.
- =2 g _ an g 2 2 ge = 02 2/3 2 P B 2/5 2
et T T e P T 1xa 1+2 3 P T 1+a 1+2/3 5 YT 14as 1+2/5 7
a4 2/7 2 : 22 2 2
e 5277 =3 The sequence is {2,2,2,2,2 1.
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958 [ CHAPTER11 INFINITE SEQUENCES AND SERIES

12. a1 = 2,a2 = 1, ap41 = an — an—1. Eachterm is defined in term of the two preceding terms.
a3:a2—a1:1—2:—1. a4:a3—a2:—1—1:—2. a5:a4—a3:—2—(—1):—1.

as = as —ag = —1 — (—=2) = 1. Thesequenceis {2,1,-1,—-2,—1,1,...}.

. . . 1
13. {4, 4. 5. 4. 55, ---}. The denominator is two times the number of the term, n, s0 a,, = o

n
14. {4, —1,3, —%. &, ...} Thefirst term is 4 and each term is —3 times the preceding one, s0 a,, = 4(—%)”71,
15. {—3,2,—3,5,—15,...}. The first term is —3 and each term is —2 times the preceding one, 50 a, = _3(_%)71—1.

16. {5,8,11,14,17,...}. Each term is larger than the preceding term by 3, so a, = a1 +d(n — 1) =54 3(n=1) = 3n+ 2.

17. {3,-%,%,—%,28 .}, The numerator of the nth term is n* and its denominator is . + 1. Including the alternating signs,

27 506
f1_n
ta, = (—1)""" ——.
we get an, = (—1) ]
I . nm (n=1)m
18. {1,0,—1,0,1,0,—1,0,...}. Two possibilities are a,, = sin —- and a, = cos 5
a”
19. T 3n
"7 14+6n 0.5¢ W e e e o o o o o
041 °
1 0.4286
2 0.4615
3 0.4737
4 0.4800 o T s T 0w
> 0.4839 It appears that lim. a, =0.5.
6 0.4865 ‘Ghba
7 0.4884 . 3n . (3n)/n . 3 3 1
lim = lim —— = lim —— = - = =
8 0.4898 n—oo 14+6n  n—oo (1+6n)/n n-cel/n+6 6 2
9 0.4909
10 0.4918
20. ” a,
n | ap =2+ —(_1) 31
n .
1 1.0000 27 P
2 2.5000 .
3 1.6667
4 2.2500 R R
5 1.8000 : o )
6 21667 t appears that nLIIolo an = 2.
7 1.8571 . (—1)" ' () o
8 2.1250 A (2 + T) = Jim 24 lim " =24 0=2since Tim o =0
9 1.8889 1)
d by Th 6, li =0.
10 2.1000 and by Theorem 6, lim ~—= =0
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a,
S N e .
1 e ® o o o o
1 0.5000 ’
2 1.2500 .
3 0.8750
4 10625 0 + + + + 51 + + + + 110 ”
5 0.9688
6 1.0156 It appears that nlin;o an = 1.
7 0.9922 lim (1+ (=2)") = lim 1+ lim (—3)" =1+ 0 = since
8 1.0039 n—oo n—oo n—oo
9 0.9980 lim (—3)" =0by(9).
10 1.0010
a,
# n | ap=1+ 107 44
n — 9” ] o L[]
1 2.1111 1 e
2 2.2346 7t
3 2.3717 B
4 2.5242 01111511111110n
5 2.6935
6 2.8817 It appears that the sequence does not have a limit.
7 3.0908 ” "
3 33931 lim 19% = lim (%) , which diverges by (9) since % > 1.
9 3.5812
10 3.8680
2 _3+5m°  (3+50)/n®  5+3/n’ 540 c
-anfn_'_n2 = ) 1+1/n,soanﬁl—+of5a5nﬂoo. onverges
2 2
24. a, = 3+5n = @Byt 5n7)/n = 3/n+5n,s0an — o0 as n — oo since lim §+5n = oo and
1+n (I'+n)/n 1/n+1 n—oo \ n
. 1 .
lim (— + 1) =0+41 =1. Diverges
n—o0 n
Lont n*/n? n . i _
25. an = s T o g YL 1_2/n2,soan — ooasn — oosince lim n = oo and
. 2\ _ .
nlLHOIO 1-— =)= 1—-0=1. Diverges
26. a, =2+ (0.86)" — 2+ 0=2asn — oosince lim (0.86)" = 0 by (9) with »r = 0.86. Converges

27.

31’1,

an:3”77":7—n: (§) ,s0 lim an:Oby(9)withr:%.

7

n—o00o

Converges

(© 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

959



960

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

U CHAPTER11 INFINITE SEQUENCES AND SERIES

3/n 3vn/vn 3 3

n = = = — =3asn — oo. Converges

vn+2  (Vn+2)/yn 142/yn 140

Because the natural exponential function is continuous at 0, Theorem 7 enables us to write

lim a, = lim e V/V® = e (VM 0 g Converges
4" 4m/9™ (4/9)" 0 . . 4\"
"= = = — —— =0asn— lim (=) =
a 150"~ (TF9/9" (/9" 11 041 0 as n — oo since dm {5 0 and

n—oo

/14 4n? (14 4n?)/n? (1/n%) + 4 . . 5
n =\ T2 T (1+n2 /n? - \/(1/712) T1 Vi= 2asnﬂoos1ncenlLrgo(1/n ) = 0. Converges

an = cos [ —2— ) = cos L/n =cos [ —2—),s0an — cosm = —1 as n ~ oo Since_lim 1/n=0
" n+1) (n+1)/n - 1+1/n)’ " - n— 0o -

lim (%) =0by (9). Converges

Converges

n? n?//n3 . .
$0 a, — 0o asm — oo since lim 4/n = oo and

_ ___n
V3 +4n  /n3 4+ 4n/\/n3 \/1+4/n2’ n—oo
lim /14 4/n? =1. Diverges

an =

Ifo, = n2—41:2 then lim b, = lim (2n)/m = 2. Since the natural exponential function is

n—oo n—oo (n+2)/n :TILHOIO1+2/7L:I

continuous at 2, by Theorem 7, lim 2"/ ("+2) = glimn—oo bn — 2,

n—o00

Converges

1 1
2 n— oo n1/2

o
2y

hm lan| = hm
n— n—

= = 0) =0,s0 lim a, = 0by (6). Converges
2

_1\n+1
lim lim n/n = lim 1 = 1 =1. Thus, a, :( 1) n

that approach 1 and even-numbered terms that approach —1 as n — oo, and hence, the sequence {a., } is divergent.

has odd-numbered terms

4, = (2n = D! 4 (2n — ) = 1 — 0asn — oo. Converges
"Tn+l)!  @rrh@a)en—1)  (2n+1)(2n) ' &
Inn Inn 1 1
an = h = — =lasn — oco. Converges

In2n n2-+Inn %Jrl 0+1

an = sinn. This sequence diverges since the terms don’t approach any particular real number as n — oco. The terms take on

values between —1 and 1. Diverges

1

tan™ . _ . _ ™ .
an = lim tan™'n = lim tan™'2 = = by (3),s0 lim a, = 0. Converges
n n—oo T — 00 2 n—oo
2 2
_ n zwu . 2xwm .. 2 . .
@, =n?e”™ = —. Since lim — = lim == = lim — = 0, it follows from Theorem 3 that lim a, = 0. Converges
er z—o0 e z—oo e% z—oo e¥ n— 00
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42.

43.

44.

45.

46.

47.

48

49.

50.

51.

52.

Ly=2z" = lny= llnaﬁ,so lim Iny = lim ) =
x x— 00

SECTION 111 SEQUENCES [ 961

n+1
n

an =In(n+1) —Inn= ln< ) = ln(l + l) — In (1) = 0 as m — oo because In is continuous. Converges
n

2
cos™ n
0< =5

1 . . .1 2
< o [since 0 < cos®n < 1], sosince lim on = 0, {cos n} converges to 0 by the Squeeze Theorem.

n—oo on

ay, = ”/21+3n _ (2l+3n)l/n _ (212377,)1/71, _ 21/71,23 — 8. 21/77,’ so

lim a, =8 lim 21/" = §. 2limn—oe(1/n) — .90 — 8 by Theorem 7, since the function f(z) = 27 is continuous at 0.

n—o0o n—oo
Converges
sin(1/z) sint

sin(1/ n) Since lim = lim 5 [where t = 1/2] = 1, it follows from Theorem 3

an =nsin(l/n) = 1/7" s—oo 1)z t—0+

that {a. } converges to 1.

an =2""cosnm. 0< ‘co;m’ < zin = (%) ,s0 lim |an| =0by (9),and lim a, = 0by (6). Converges

y = <1+z> = lny:xln(1+g),so
x x

1 2
‘ o m(+2/e) u <1+2/r><*?> ) .
Jim Iny = lim == S i S e S o =

€T n
lim (1 + 2) = lim ™Y = ¢?, so by Theorem 3, lim <1 + 2) =e?. Converges
x n

T —00 Tr—00 n— oo

TH o Ty Lo o

r—0oo I z—oo 1 r—00 I

lim z'/* = lim ™Y = ¢ = 1, so by Theorem 3, lim ¥/n =1. Converges
n—o0

Tr—00 Tr—00

2 2
an =In(2n? +1) <In(n?+1) =In (2n a 1) =In (M> —In2asn — oco. Converges

n%+1 1+1/n?
2 2
fim U221 w — 9 fim 2L H g iy 1/Tx 0, s0 by Theorem 3, Tim Y2™° 0. Converges
r—00 xT Tr— 00 r—oo I T — 00 n—o00 mn

a, = arctan(Inn). Let f(x) = arctan(In ). Then lim f(x) = 5 since Inz — oo as  — oo and arctan is continuous.

T —00

Thus; lim a, = lim f(n) =%. Converges

n— oo 2

_ 2 2
an=n— VT IV/A T3 =n— Va2 Tdn T3 _n vn +4n+3'n+\/n +4n+ 3
1 n++vn?Z+4n+3

nP—(n®+4n+3) —4n — 3 B (—4n —3)/n B —4-3/n
n+vnZ+dn+3 n+vVnZ+dn+3  (n+vnZ+4dn+3)/n 1+ \/1+4/n+3/n2
so lim a, = —4-0 —4 = —2. Converges

n—o0 1+v1it0+0 2

(© 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



962 [ CHAPTER11 INFINITE SEQUENCES AND SERIES

53. {0,1,0,0,1,0,0,0,1,...} diverges since the sequence takes on only two values, 0 and 1, and never stays arbitrarily close to

either one (or any other value) for n sufficiently large.

1 1
11111111 _ _ P . o
54, {1,5,5,1,5,3,1,5,...}. Aop—1 = Eandazn = ni2 for all positive integers n. T}eréoan = 0 since
. .1 . . .
lim az2,—1 = lim — =0and lim a2, = lim = 0. For n sufficiently large, a,, can be made as close to 0
n— 00 n—oo N n— oo n—oo M + 2

as we like. Converges

nl 1 2 3 (n—=1) n _1 n ]
. n:_:_'_'_""'—'—>—'— f 1 [ , n 4
55. a 3n =35°3°%3 5 5 2 3 [forn > 1] 7 T ooasn— oo so {an} diverges
3 33 3 27
......... [ [ p—
~<1'3°5 [for n > 2] 2n—>0asn—>oo, so by the Squeeze

From the graph, it appears that the sequence {a, } = {(71)" :L_ 7 } is
n

divergent, since it oscillates between 1:and —1 (approximately). To prove this,

suppose that {a,, } converges.to L. If b, ‘= nLJrl’ then {b, } converges to 1,

n L T . n . .
and lim =% = 2 = L. Bt 2= (—1)", so lim & goes not exist. This

n—oo Op 1 bn n—00 Un

contradiction shows that {a,} diverges.

Fromthe graph, it appears that the sequence converges to 0.

sinn

|sinn|
‘an| = =

n—oo

1 .
< - so lim |a,| = 0. By (6), it follows that

n L

lim a, = 0.

n— 00

From the graph, it appears that the sequence converges to a number between

0.7 and 0.8.

a, = arctan n_2 = arctan M = arctan ; —
" n2+4,) (n2+4)/n2) 1+4/n?

arctan1 = % [~ 0.785] as n — oo.
60. 10 N From the graph, it appears that the sequence converges to 5.
5= V5" < /3 + 50 < V5 450 = V216
R = V25 5an o0 [lim 27 =20 1]
Hence, a,, — 5by the Squeeze Theorem.
\ /20

[continued]
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SECTION 111  SEQUENCES Ul 963

Alternate solution: Lety = (3° + 5°)"/". Then

4 g g @ 3V In3 +1In5
lim Iny = lim Mi lim M: lim (5)1196——1—11:111 ,
so lim y = ens — 5, and so { V3™ + 5n } converges to 5.
n?cosn
61. 2 From the graph, it appears that the sequence {a,} = {m } is
n
divergent, since it oscillates between 1 and — 1 (approximately). To
. 2
ol : . 51  prove this, suppose that {a,} converges to L. If by, = #, then
. an L an
{bn} converges to 1, and lim — = == L. But— = cosn, so
n—o0 Op 1 bn
N lim 2 does not exist. This contradiction shows that {an} diverges.

-2 n—oo Op

62. 190 5000
. 4
. NP 10 o> — 15

From the graphs, it seems that the sequence diverges. a, = 135 (2n—1)

. We first prove by induction that

n—1
an > (g) for all n« This is clearly truefor n = 1, so let P(n) be the statement that the above is true for n. We must

2n+1

show it is then truefor n + 1. apy1 = ay, -
n+1

(induction hypothesis). But

2n+1_ (3 "oop 41
n+1 —\2 n+1

[since2(2n'+ 1) >3(n+1) & 4n+2>3n+3 <& n> 1], andso we get that a1 > (g)"’l -3 = (2)" which

is P(n + 1). Thus, we have proved our first assertion, so since { (%)nfl} diverges [by (9)], so does the given sequence {a, }.

63. P N From the graph, it appears that the sequence approaches 0.
0 LB @non) 13 5 -1
" (2n)" T 2n 2n 2n 2n
<l.(1).(1) ..... (1)—i—>0asn—>oo
— 2n T o
1-3-5-.--- o2m—1
So by the Squeeze Theorem, 35 n( I ) converges to 0.
0\ ’ 10 (Qn)
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64.

65.

66.

67.

68.

69.

70.
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@ar=1any1=4—anforn>1. a1 =1lLax=4—a1=4—1=3,a3=4—a2=4—-3=1,
as=4—a3=4—1=3,a5 =4 — as =4 — 3 = 1. Since the terms of the sequence alternate between 1 and 3,

the sequence is divergent.

®)ar=2,a0=4—a1 =4—2=2,a3 =4 —az =4 — 2 = 2. Since all of the terms are 2, nan;Oan = 2 and hence, the
sequence is convergent.

(@) an, =1000(1.06)" = a1 = 1060, az = 1123.60, a3 = 1191.02, a4 = 1262.48, and a5 = 1338.23.

(b) lim a, = 1000 lim (1.06)", so the sequence diverges by (9) with » = 1.06 > 1.

n—oo

1.0025™ — 1

(a) Substitute 1 to 6 for n in 00 ( 0.0025

— n> toget [ = $0, I = $0.25, Is = $0.75, I, = $1.50,

Is = $2.51, and Is = $3.76.

(b) For two years, use 2 - 12 = 24 for n to get $70.28.

(a) We are given that the initial population is 5000, so Py = 5000. The number of catfish increases by 8% per month and is
decreased by 300 per month, so Py = Py + 8% Py — 300 = 1.08 Py — 300, P> =1:08P; — 300, and so on. Thus,
P, =1.08P,—1 — 300.

(b) Using the recursive formula with Po = 5000, we get P = 5100, P> = 5208, Pz = 5325 (rounding any portion of a
catfish), P, = 5451, Ps = 5587, and Ps = 5734, which is the number of catfish in the pond after six months.

%an if a, is an even number
an+41 = When a; =11, the first 40 terms are 11, 34, 17, 52, 26, 13, 40, 20, 10, 5,

3an, +1 if ay is an odd number
16,8,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4. When a; = 25, the first 40 terms are 25, 76, 38,
19, 58, 29, 88, 44, 22, 11, 34, 17,52, 26, 13, 40, 20, 10, 5,16, 8,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2, 1, 4.

The famous Collatz conjecture is that this sequence always reaches 1, regardless of the starting point a; .

If |r| > 1, then {r"} diverges by (9), so {nr"} diverges also, since |nr™| = n |r"| > |r"|. If |r| < 1 then

x

. . H . 1 . T .

lim zr® = lim =lm — = lim =0,s0 lim nr"™ =0, and hence {nr"} converges
z—00 z—oo PTE  woes (—Inr)r—*  z—oo —Inr n—oo

whenever |r| < 1.

(a) Let nan;o an = L. By Definition 2, this means that for every £ > 0 there is an integer N such that |a, — L| < &
whenever n > N. Thus, |ant1 — L| < e whenevern+1> N < n > N —1. It follows that nh—>Holo Gn+1 = L and so
lim a, = lim ap41.
n—oo n—oo

(b)If L = lim ay, then lim a,4+1 = Lalso,so L mustsatisfy L =1/(1+L) = L*+L—-1=0 = L:*1+‘/g

(since L has to be nonnegative if it exists).
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73.

74.

75.

76.

7.

78.

79.

80.
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Since {ax } is a decreasing sequence, an, > an+1 for all n > 1. Because all of its terms lie between 5 and 8, {a, } is a
bounded sequence. By the Monotonic Sequence Theorem, {a,, } is convergent; that is, {a,, } has a limit L. L must be less than

8 since {a, } is decreasing, so 5 < L < 8.

Since {an} = {cosn} = {0.54, —0.42, —0.99, —0.65,0.28, . . .}, the sequence is not monotonic. The sequence is bounded

since —1 < cosn < 1 for all n.

an = M3 is decreasing since a,+1 = 2(n +11) 3 = 2n1—|— 5 < 2n1—|- 3= an for each n ><1. The sequence is
bounded since 0 < a, < £ foralln > 1. Note that a; = 2.
1-n _1—(n+1) 1—n -n 2 2 .
& & & —nf—2 3>-n“"—2n < 3> 0,which
Ap > Qpi1 2+n>2+(n+1) 2+n>n—|—3 n n+3>-—n n > 0, whic
. . . . . 1—n . 1/m—1 .
is true for all n > 1, so {a, } is decreasing. Since a; = 0 and lim = lim = —1, the sequence is bounded

n—»oo2+n n—»oo2/n+1_
(-1 <an <0).
The terms of a,, = n(—1)" alternate in sign, so the sequence is not monotonic. The first five terms are —1, 2, —3, 4, and —5.

Since lim |an| = lim n = oo, the sequence is not bounded.

Since {a,} = {2 + (_—1)} = {1,24,1%, ...}, the sequence is not monotonic. The sequence is bounded since
n
1<a, < g for all n.
an, =3 —2ne " Let f(z) =3 =2xe *.Then f(x) = 0 — 2[x(—e™") + e~ *] = 2e”*(z — 1), which is positive for

x > 1, so f is increasing on (1, co). It follows that the sequence {a,} = {f(n)} is increasing. The sequence is bounded

below by a1 = 3 — 2e* ~ 2.26 and above by 3, so the sequence is bounded.

an =1 —3n+3. Let f(x) = 2® — 3z + 3. Then f'(z) = 32° — 3 = 3(2® — 1), which is positive for z > 1, so f is
increasing on (1, co). It follows that the sequence {a, } = {f(n)} is increasing. The sequence is bounded below by a; = 1,

but is not bounded above, so it is not bounded.

For {\/5 \/24/2,1/2 V22, } a1 = 2Y2 ap = 2%/% a3 = 27/8, . s0a, = 203" ~D/2" = 21-(1/2")

lim ap = lim 2'~(1/2") =21 =2,
Alternate solution: Let L = lim a,. (We could show the limit exists by showing that {a,, } is bounded and increasing.)

Then L mustsatisfy L = v2-L = [L*=2L = L(L—2)=0. L # 0 since the sequence increases, so L, = 2.

(a) Let P, be the statement that a,+1 > a, and a, < 3. P is obviously true. We will assume that P, is true and

then show that as a consequence P, 41 must also be true. an+2 > ant1 < V24 @ny1 > V2 +an, &

24 apn41 > 24+an <  ant1 > ap, which is the induction hypothesis. an+1 <3 & V24a, <3 &
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2+4+ap, <9 & apn <7, which is certainly true because we are assuming that a,, < 3. So P, is true for all n, and so

a1 < an < 3 (showing that the sequence is bounded), and hence by the Monotonic Sequence Theorem, lim a, exists.
n—00

(b) If L = lim an,then lim any1 = Lalso,soL=+v2+1L = L[*’=24+L & I[°-L-2=0 &

n—oo

(L+1)(L—-2)=0 < L =2 [since L can’t be negative].

8. a1 =1ap41 =3— i We show by induction that {a,, } is increasing and bounded above by 3. Let P,, be the proposition

Qan
. . 1 1
that an+1 > an and 0 < a,, < 3. Clearly P; is true. Assume that P, is true. Then a,,+1 > an = < A =
An+1 n
1 1 1 1 . - .
— > ——. Now apt2 =3 — >3— — =ant1 < Ppi1. This proves that {a,, } is increasing and bounded
An+1 an An+1 an

above by 3,50 1 = a1 < a, < 3, thatis, {a, } is bounded, and hence convergent by the Monotonic.Sequence Theorem.

If L = lim ap,then lim an,y1 = Lalso,so L must satisfy L=3—-1/L = I?-3L+1=0 = L:LQ‘/E.

n— 00

But L > 1,50 [ = 35,

1
3—a,

82. a1 = 2,an+1 = We use induction. Let P, be the statement that 0 < an+1 < a, < 2. Clearly P is true, since

az =1/(3 —2) = 1. Now assume that P, is true. Then anf1'<.an = —Gny1 > —Gn = 3 —ant1 >3—an, =
1 < 1
3—ant+1 ~ 3—an

An42 = = ap+1- Also ant2 > 0 [since 3 — an+1 is positive] and a1 < 2 by the induction

1

hypothesis, so Py, 1 is true. To find the limity we usethe fact that lim a, = lim any1 = L= 3=

n— oo n— oo

=

L’ -3L+1=0 = L:%.ButLSZsowemusthaveL:3’T‘/g.

83. (a) Let a,, be the number of rabbit pairs in the nth month. Clearly a1 = 1 = az. In the nth month, each pair that is
2 or more months old (that is, a,, 2 pairs) will produce a new pair to add to the a,,—1 pairs already present. Thus,

an = Gn-1 + an—2a,s0 that {an} = {f»}, the Fibonacci sequence.

f}+1 — n 1 = fn _ fnfl +fn72 :1+ fn72 _1+ 1

fnfl fnfl fnfl o

1
=1+ L = lim ang,
fnfl /fn—2 an—2 n—oo

(b) an =

S

then L = lim @,—1 and L = lim a,_2, so L must satisfy L:1+% = I[?-L-1=0 = L[=2%

n—oo 2

[since L must be positive].
n—o0 n—oo

84. (a) If f is continuous, then f(L) = f( lim an) = lim f(an) = lim ans1 = lim a, = L by Exercise 70(a).

(b) By repeatedly pressing the cosine key on the calculator (that is, taking cosine of the previous answer) until the displayed

value stabilizes, we see that L ~ 0.73909.
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85. (a) 50 From the graph, it appears that the sequence {Z— }

86.

87.

88.

89.

SECTION 111 SEQUENCES Ul 967

e N !

N 1)
converges to 0, that is, lim - = 0.

n—oo MN!

1 0.03
(b) e ~ e ~
=0.1
Y y=0.001
75 o\ : /125 9.5 0 T 155

From the first graph, it seems that the smallest possible value of N corresponding to ¢ = 0.1 is 9, since n° /n! < 0.1
whenever n > 10, but 9% /9! > 0.1. From the second-graph, it seems that for ¢ = 0.001, the smallest possible value for N

is 11 since n° /n! < 0.001 whenever n > 12.

Lete > 0 and let N be any positive integer larger thanIn(e)/In |r|. Ifn > N, thenn > In(e)/In|r| = nln|r| <lne
[since || <1 = In|r| < 0] = In(r|")<lne = |r|" <e = |r" —0| < e, and so by Definition 2,

lim " =0.

n—0o0

Theorem 6: If lim |a,| = 0then lim — |a,| =0, and since — |an| < an < |an|, we have that lim a,, = 0 by the
n—o0 n—oQ n—o0

Squeeze Theorem.

Theorem 7: If lim a, = L and the function f is continuous at L, then lim f(a,) = f(L).

Proof: We must show that, given a number ¢ > 0, there is an integer N such that | f(a.) — f(L)| < € whenever n > N.
Suppose e > 0. Since fis continuous at L, there is a number 6 > 0 such that | f(z) — f(L)| < e if |x — L| < 0. Since

lim.a, = L,there is an integer N such that |a, — L| < § if n > N. Suppose n > N. Then 0 < |an, — L| < 4, so

n—00

|f(an)— f(L)] <e.

To Prove: If lim a, = 0and {b,} is bounded, then lim (anb,) = 0.

n—oo
Proof: Since {b,} is bounded, there is a positive number M such that |b, | < M and hence, |ax| |br| < |an| M for

alln > 1. Lete > 0 be given. Since lim a, = 0, there is an integer N such that |a, — 0| < % if n > N. Then

|anbn — 0 = |anbn| = |an||bn] < |an| M = |an — 0] M < % .M = e foralln > N. Since & was arbitrary,

lim (anby) =0.

n—o0
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bn+1 _ n+l

b—

90. (a) a

="+ e+ 0" 20 + 0" 30 4+ ba" T 4 a

S e R e A A (TS DT

(b) Since b — a > 0, we have b — a1 < (n+ )" (b—a) = " —(n+1P"(b—a) <" =
b"[(n+ 1)a — nb] < a™.

I - 1\" 1\
(c) With this substitution, (n + 1)a —nb =1, and so b" = (1 + —> < gt = (1 + ) .
n n+1
I - 1\" /1 1\" 1\
(d) With this substitution, we get [ 1 + — -1 <1l = 1+— ) <2 = 1+ — <4
2n 2 2n 2n
(€) an < azn since {an} is increasing, so a, < az, < 4.

(f) Since {a, } is increasing and bounded above by 4, a1 < a,, < 4, and so {a, } is bounded and monotonic, and hence has a

limit by the Monotonic Sequence Theorem.

91. (a) First we show that a > a1 > b1 > b.

2
alfblz“;rb—\/cﬁ:%(af%/@er):é(\/_—\/E) >0 [sincea>b] =" a1 > bi. Also

a—alza—%(a—i—b):%(a—b)>0andb—b1:b—\/a_zx/l_)(\/l;—\/ﬁ) < 0,s0a > ai > by > b. In the same

way we can show that a1 > a2 > ba > b and so the given assertion is true for n = 1. Suppose it is true for n = k, that is,

ark > ak41 > br1 > bi. Then
2
= 2(art1 + bry1) — \/ahr1bes1 = %(akﬂ —=2y/apq1bry1 + bk+1) = %(1/ak+1 - \/bk-Jrl) >0,

Qg2 — bry2

1 1
k11 — Gry2 = Qky1 — 5 (k1 + bry1) = 5 (ary1 —beta) > 0, and

bit1 — bigz = br1 — /@kt1bit1 = /Oeg1 (\/bk+1 - \/ak+1) <0 = agt1 > ars2 > bryo > brya,

so the assertion is true for n = k 4 1. Thus, it is true for all n by mathematical induction.

(b) From part (a) we have a > an > any1> bnt1 > by > b, which shows that both sequences, {a, } and {b,}, are

monotonic and bounded. So they are both convergent by the Monotonic Sequence Theorem.

(c) Let lim a, =« and lim b,= . Then lim apy1 = lim A + bn = a= 04_—1—5 =

2a=a+p = a=7p.
92. (a) Lete > 0. Since lim a2, = L, there exists Ny such that |as, — L| < e forn > Np. Since lim a2ny1 = L, there
n— o0 n— oo

exists Na such that |azn4+1 — L| < € forn > Na. Let N = max {2N1,2N; + 1} and let n > N. If n is even, then
n = 2m where m > Ni, 50 |an — L| = |a2m — L| < €. If nis odd, then n = 2m + 1, where m > Na, so

|an — L| = |a2m+1 — L| < e. Therefore lim a, = L.

n—oo

— — 1 _ 3 _ _ 1 _ 7 _ _ 1 _ 17 3
(b)al—l,a2—1+m75—15,@3—1+5—/2—g—14,@4—1+T/5—§—1416,

a5 =1+ gots = 8 ~ 1413793, a5 = 1 + = = 22 ~ 1414286, a7 = 1 + 75y = 22 ~ 1.414201,
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as = 1+ qo57155 = 577 ~ 1.414216. Notice that a1 < a3 < as < a7 and az > a4 > ae > as. It appears that the
odd terms are increasing and the even terms are decreasing. Let’s prove that as,—2 > a2, and a2,—1 < a2n+1 by

1 < 1
1+ ask_2 1+ agk

mathematical induction. Suppose that agx—2 > azk. Then 1 + agx—2 > 1+ a2 =

1+ ——mm8M <1+ = a2k—1 < Q241 = 1+ag_1<1 +agky1 =
1+ azk—2 1+ ask
1 - + 1 1 . >1 - azx > a We have thus shown, b
1+ agk—1 1+ agk+1 1+ asp—1 1+ asest = G2k 2k+2- , by

induction, that the odd terms are increasing and the even terms are decreasing. Also all termsdie between 1 and 2, so both
{an} and {b, } are bounded monotonic sequences and are therefore convergent by the Monotonic Sequence Theorem. Let

lim ag, = L. Then lim ag,+2 = L also. We have

G — 14 1 . 1 4+ 3an,
T T I 141 /(T +an) | (B+2a.)/(1+an) 3 2a,
4 n L . 4
SO A2nt2 = ﬂ. Taking limits of both sides, we get L = + g = BL+2[*=4+3L = L[*’=2 =

3+ 2a2n, 342L

L =+/2 [since L > 0]. Thus, lim az, = /2. Similarly we find that lim az,41 = /2. So, by part (a),

lim a, = /2.

bp b lim p, bp
93. (a) Suppose {p, } converges to p. Then p,+1 = “ = limp,4 = ——o-—o = p= =
a+ pn n—oo a+£w;nl a+p
pP’dap=bp = plp+a—->b=0 = p=Oorp=>b—a.
b " b . :
(b)prn+1:$:a—< - pnsmcel—l—&>1.
a—+ pn 1+ Pn a a
a
b b b\’ b b\’ b\"
(¢) Bypart (b), p1 < | = |po,p2 < |=|p1 < | =) po,ps < | = |p2 < (=] po,etc. In general, p, < [ = | po,
a a a a a a
) ) b\" . o . b
so lim p, < lim [ — ) “po=0sinceb < a. [By(7), lim " =0if —1<r < 1. Herer =— € (0,1).
n—oo n—00 a n—o0 a
(d) Let a < b. We first show, by induction, that if po < b — a, then p,, < b — a and pr,+1 > pn.
h _ _bpo _ po(b—a—po) .
For n'=.0, we have p1 — po = —po=————%>0since po < b —a. So p1 > po.
a+po a + po

Now we suppose the assertion is true for n = k, that is, pr < b — a and px+1 > pr. Then

b b— bpr — —-b b—a—
Pe_ _ a( @) + bpr — apk — bpx = o @ = pi) > 0 because pr, < b — a. So
a+ Pk a+ Pk a+ Pk

b—a=pikr1=b—a—

b b—a—
Pr+1 < b—a. And prio — pry1 = _OPk+1 — i1 = Pr1( Pr+1)
@ Pt a + Pr+1

> 0 since px4+1 < b — a. Therefore,
Pk+2 > Pk+1. Thus, the assertion is true for n = k + 1. It is therefore true for all n by mathematical induction.
A similar proof by induction shows that if po > b — a, then p,, > b — a and {p,, } is decreasing.

In either case the sequence {p, } is bounded and monotonic, so it is convergent by the Monotonic Sequence Theorem.

It then follows from part (a) that lim p, = b — a.
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LABORATORY PROJECT Logistic Sequences

1. To write such a program in Maple it is best to calculate all the points first and then graph them. One possible sequence of
commands [taking po = % and k = 1.5 for the difference equation] is
t:="t’;p(0):=1/2;k:=1.5;
for j from 1 to 20 do p(j):=k*p(j-1)*(1-p(j-1)) od;
plot([segq([t,p(t)] t=0..20)]1,t=0..20,p=0..0.5,style=point);
In Mathematica, we can use the following program:
pl0]=1/2
k=1.5
pli_]:=k*p[j-1]*(1-p[J-1])
P=Table[p[t], {t,20}]

ListPlot[P]

With po = % and k = 1.5:

n Pn n Pn n Pn

0105 7 | 0.3338465076 | 14 | 0.3333373303 0-; N

1| 0.375 8 | 0.3335895255 | 15 | 0:3333353318

2 | 0.3515625 9 | 0.3334613309 | 16 | 0.3333343326 e

3 | 0.3419494629 | 10 | 0.3333973076 |17 | 0.3333338329

4 | 0.3375300416 | 11 | 0.3333653143 | 18 0.3333335831

5 | 0.3354052689 | 12 | 0.3333493223 | 19| 0.3333334582

6 | 0.3343628617 | 13 | 0.3333413274 | 20 | 0.3333333958 o ~ 20
With po = % and k = 2:5:

n Pn n Pn n Pn

0105 710.6004164790 | 14 | 0.5999967417 1( <

1 | 0.625 8.1 0.5997913269 | 15 | 0.6000016291

2 | 0.5859375 9 | 0.6001042277 | 16 | 0.5999991854

3 | 0.6065368651 | 10 | 0.5999478590 | 17 | 0.6000004073 | | "ttt

4 | 0.5966247409 | 11 | 0.6000260637 | 18 | 0.5999997964

5 | 0.6016591486 | 12 | 0.5999869664 | 19 | 0.6000001018

6 | 0.5991635437 | 13 | 0.6000065164 | 20 | 0.5999999491 o - 20

Both of these sequences seem to converge (the first to about %, the second to about 0.60),
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Withpo = £ and k = 1.5:

n Pn n Pn n Pn

0 | 0.875 7 | 0.3239166554 | 14 | 0.3332554829
1 | 0.1640625 8 | 0.3284919837 | 15 | 0.3332943990
2 | 0.2057189941 9 | 0.3308775005 | 16 | 0.3333138639
3 | 0.2450980344 | 10 | 0.3320963702 | 17 | 0.3333235980
4 | 0.2775374819 | 11 | 0.3327125567 | 18 | 0.3333284655
5 | 0.3007656421 | 12 | 0.3330223670 | 19 | 0.3333308994
6 | 0.3154585059 | 13 | 0.3331777051 | 20 | 0.3333321164

With po = £ and k = 2.5:

n Dn n Dn n Dn

0 | 0.875 7 | 0.6016572368 | 14 | 0.5999869815
1 | 0.2734375 8 | 0.5991645155 | 15 | 0.6000065088
2 | 0.4966735840 | 9 | 0.6004159972 | 16 | 0.5999967455
3 | 0.6249723374 | 10 | 0.5997915688 | 17 | 06000016272
4 | 0.5859547872 | 11 | 0.6001041070 | 18 | 0.5999991864
5 | 0.6065294364 | 12 | 0.5999479194 |19 | 0.6000004068
6 | 0.5966286980 | 13 | 0.6000260335 | 20 | 0.5999997966

The limit of the sequence seems todepend.on k, but not on po.

2. Withpo = £ and k = 3.2:

n Pn n Pn n Pn

0 | 0.875 7 | 0.5830728495 | 14 | 0.7990633827
11 0.35 8 | 0.7779164854 | 15 | 0.5137954979
2 | 0.728 9 | 0.5528397669 | 16 | 0.7993909896
3-0.6336512 10 | 0.7910654689 | 17 | 0.5131681132
47[.0.7428395416 | 11 | 0.5288988570 | 18 | 0.7994451225
5 | 0.6112926626 | 12 | 0.7973275394 | 19 | 0.5130643795
6 | 0.7603646184 | 13 | 0.5171082698 | 20 | 0.7994538304

LABORATORY PROJECT LOGISTIC SEQUENCES U

\ J
0 20
1
e ™
\ J
0 20
1
e N
\N 7 20

It seems that eventually the terms fluctuate between two values (about 0.5 and 0.8 in this case).
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3. With po = £ and k = 3.42:

INFINITE SEQUENCES AND SERIES

n Pn n Pn n Pn

0 [ 0.875 7 | 0.4523028596 | 14 | 0.8442074951
1 | 0.3740625 8 | 0.8472194412 | 15 | 0.4498025048
2 | 0.8007579316 9 | 0.4426802161 | 16 | 0.8463823232
3 | 0.5456427596 | 10 | 0.8437633929 | 17 | 0.4446659586
4 | 0.8478752457 | 11 | 0.4508474156 | 18 | 0.8445284520
5 | 0.4411212220 | 12 | 0.8467373602 | 19 | 0.4490464985
6 | 0.8431438501 | 13 | 0.4438243545 | 20 | 0.8461207931

With po = % and k = 3.45:

n Pn n Pn n Pn

0 | 0.875 7 | 0.4670259170 | 14 | 0.8403376122
1 | 0.37734375 8 | 0.8587488490 | 15 | 0.4628875685
2 | 0.8105962830 9 | 0.4184824586 | 16 | 0.8577482026
3 | 0.5296783241 | 10 | 0.8395743720 | 17 | 0.4209559716
4 | 0.8594612299 | 11 | 0.4646778983 | 18 | 0.8409445432
5 | 0.4167173034 | 12 | 0.8581956045 | 19 | 0.4614610237
6 [ 0.8385707740 | 13 | 0.4198508858 | 20 | 0.8573758782

From the graphs above, it seems that for k between 3.4 and 3.5, the terms eventually fluctuate between four values. In the

graph below, the pattern followed by the terms s 0.395, 0.832,0.487,0.869, 0.395, . . .. Note that even for £ = 3.42 (as in the

first graph), there are four distinct ‘branches”; even after 1000 terms, the first and third terms in the pattern differ by about

2 x 1079, while the first and fifth terms differ by only 2 x 107°. With py = % and k = 3.48:

1

-

50
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po = 0.5, k = 3.999

From the graphs,itseems that if py is changed by 0.001, the whole graph changes completely. (Note, however, that this might
be partially due to accumulated round-off error in the CAS. These graphs were generated by Maple with 100-digit accuracy,
and different degrees of accuracy give different graphs.) There seem to be some some fleeting patterns in these graphs, but on

the whole they are certainly very chaotic. As k increases, the graph spreads out vertically, with more extreme values close to 0
or 1.

11.2 Series

1. (a) A sequence is an ordered list of numbers whereas a series is the sum of a list of numbers.

(b) A series is convergent if the sequence of partial sums is a convergent sequence. A series is divergent if it is not convergent.

118

an = 5 means that by adding sufficiently many terms of the series we can get as close as we like to the number 5.
1

n

n
In other words, it means that lim,, .o s, = 5, where sy, is the nth partial sum, thatis, > a;.
i=1
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(18

an = lim s, = lim [2—3(0.8)"] = lim 2—3 lim (0.8)" =2 — 3(0) =2
n=1 n—oo n—00 n—00 n—00

n?—1 (=1 . 1-1/n® 1-0

4§a—lims—lim = lim —+—— im l
' 1 n_’ﬂHOO n_nﬂoo4n2+1_n4>oo(4n2+1)/n2_n—>oo4+l/’n2 _4+0_4

n=

5For§ ! Qn = L S*a*#*E*OBS*s—i—a*l—i— L
B A A Y SR R T P e R T

= 0.55,

s3 = s2 +as =~ 0.5611, s4 = s3 + a4 = 0.5648, s5 = s4 + a5 =~ 0.5663, s¢ = s5 + ag =~ 0.5671,

s7 = s¢ + a7 = 0.5675, and sg = s7 + as = 0.5677. It appears that the series is convergent.

1 1 1
31:a1:—:1,32:sl+a2:1+3—z1.7937,

— 1
6. For —_—an = —.
S3 = So + a3z =~ 2.4871, s4 = s34+ a4 = 3.1170, s5 = s4 + a5 = 3.7018, sg = s5 + as ~ 4.2521,
s7 =8¢ + ar = 4.7749, and sg = s7 + ag ~ 5.2749. It appears that the series is divergent.

o0
7. For Z sinn, a, =sinn. s =a; =sinl = 0.8415, so = s1 + a2 = 1.7508,

n=1
s3 = 82 + a3z ~ 1.8919, s4 = s3 + a4 = 1.1351, s5 = s4 +as = 0.1762, sg = s5 + ag =~ —0.1033,
s7 = s¢ + a7 = 0.5537, and sg = s7 + as = 1.5431. It appears that the series is divergent.

0o (71)71—1 B n—ll B _ 1 _ N o 1 _
8. FOI"nng,an —(—1) m S1=a1 = ? =1,82 =81 +a2—1—5 = 0.5,

1
s3 =82 +az3 =0.5+ ? =~ 0.6667, s4 = s3 + a4 =0.625, s5 = s4 + a5 = 0.6333, s = s5 + ag ~ 0.6319,

s7 = 8¢ + ar = 0.6321, and ssg = s7 + as ~0.6321. It appears that the series is convergent.

3 y .
n| ' ()
1| —2.40000 0 "
2 | —1.92000
3 | —2.01600
4| —1.99680 o
5 | —2.00064
6 | —1.99987 S -
7 From the graph and the table, it seems that the series converges to —2. In fact, it is a geometric
8 | —1.99999
9 | —2.00000 series witha = —2.4 and r = —%, S0 its sum is i (_152)n =3 :?_41) _ —12;1 —
10 | —2.00000 e 5 '

Note that the dot corresponding to n = 1 is part of both {a, } and {s, }.

TI-86 Note: To graph {a, } and {s, }, set your calculator to Param mode and DrawDot mode. (DrawDot is under
GRAPH, MORE, FORMT (F3).) Now under E (t) = make the assignments: xt1=t, ytl=12/(-5)"t, xt2=t,
yt2=sum seq(ytl,t,1,t,1) . (sum and seq are under LIST, OPS (F5), MORE.) Under WIND use
1,10,1,0,10,1,-3,1,1 to obtain a graph similar to the one above. Then use TRACE (F4) to see the values.
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o

0.54030
0.12416
—0.86584
—1.51948
—1.23582
—0.27565
0.47825
0.33275
—0.57838
—1.41745

3

Sn

© 00 N O Ot = W N

fu—
o

0.44721
1.15432
1.98637
2.88080
3.80927
4.75796
5.71948
6.68962
7.66581
8.64639

3

Sn

© 00 O Ot = W N =

—
o

4.90000

8.33000
10.73100
12.41170
13.58819
14.41173
14.98821
15.39175
15.67422
15.87196

SECTION11.2 SERIES U 975

2
~
(@)
0 1
{s.} )
-2
. e . . .
The series Y cosn diverges, since its terms do not approach 0.
n=1
10
{s.} -
{4}
0 1

o
The series >

n
n=1 \/712 + 4

diverges, since its terms do not approach 0.

() .

)

0 L N ST S 1

From the graph and the table, we see that the terms are getting smaller and may approach 0,

and that the series approaches a value near 16. The series is geometric with a1 = 4.9 and

. oo 7t 4.9 4.9 =
r = 0.7, so its sum is = = — =16.3.
n; 10™ 1-07 0.3
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13. 2

n Sn o

2 | 1.00000 TS

3| 1.33333 '

4 | 1.50000

5 [ 1.60000

6 | 1.66667 © (a,)

7| 1.71429 0N s L S AT

8 | 1.75000

9| 177778 From the graph and the table, we see that the terms are getting smaller and may approach 0,
10 | 1.80000 and that the series may approach a number near 2. Using partial fractions, we have
11 | 1.81818 Xk: 2k ( 2 2 )

n=en?-n H\n—-1 n

-(--6-2)-69

(T 2N (2 2
k—2 k=1 k-1 k

2
=2 T
Ask—>oo,2—z—>2,so§ = 2.
1, K n=2 ME
1
n Sn
1 | 0.36205 t }.
2 | 0.51428 .
3 | 0.59407 )
4 | 0.64280
5 | 0.67557 . {a.})
6 | 0.69910 o e e sy
7 | 0.71680 )
s | 073059 From the graph and the table, we see that the terms are getting smaller and may approach 0, and
9 | 074164 that the series may approach a number near 1.
10 | 0.75069 zk: (Sin 1 sin ! ) = (sin 1 —sin 1) + (Sin 1 sin 1)
n=1 n n+1 2 2 3
+- 4 <sin ! +sinl)
k—1 k
+ (sin1 — sin ! )
k k+1
=sinl —sin p—

As k — 00,sin1 — sin —sinl —sin(0 = sin 1, so

1
k+1

(.1 1
> <51ng—s1nn+1

n=1

) =sinl =~ 0.84147.
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2 2 .
15. (a) nan;o an = nlirgo Z’m—:l—l =380 the sequence {ay} is convergent by (11.1.1).

o0
(b) Since lim a, = % # 0, the series >, a,, is divergent by the Test for Divergence.

n=1

16. (a) Both >_ a; and Y a; represent the sum of the first n terms of the sequence {a, }, that is, the nth partial sum.
i=1 j=1

n n
(b) > a; =aj +a; +---+a; =na;, which, in general, is not the same as >, a; = a1 + a2 + -+ + an.
i=1 —_— i=1
n terms

17.3— 44+ L8 — & 4 ... is a geometric series with ratio r = —3. Since |r| = 3 > 1, the series diverges.

4

a
P ST
1—-r 1-3/4 6

18.4+3+2+ f—g + -+ is a geometric series with ratio 2. Since |r| = 2 < 1, the series converges to

19. 10 — 2+ 0.4 — 0.08 + - - - is a geometric series with ratio — 2 = —2. Since |r[ = /< 1, the series converges to

a 10 10 50 25

1-r 1-(-1/5) 6/5 6 3

20. 2+ 0.5+ 0.125 + 0.03125 + - - - is a geometric series withratio r = %2 =2 Since |r| = 1 < 1, the series converges

a 2 2 8

°1T—+ " 1-1/4a 3/4 3

21, Z 12(0.73)" " is a geometric series with first term a = 12 and ratio r = 0.73. Since |r| = 0.73 < 1, the series converges

a 12 12 42(100) 400
1—-r 1-073 027 27 9~

oo oo n
1 L L 1 . 1 . 1 .
22, Z i =5 Z — |". The latter series is geometric with @ = — and ratio r = —. Since |rr| = — < 1, it converges to
T ™ ™ U
m

5

1 . . 1
= ———. Thus, the given series converges to 5 (—1) =
T —

1-1/7 @w—-1 m—1
23 f(_s)nil lfj _3 nilThltt ies i tric with @ = 1 and ratio = —3. Since |r| = 2 < 1, it
DTl ) . The latter series is geometric with a = 1 and ratio 7 = —2. Since [r| = 2 < 1,1
converges to T 2. Thus, the given series converges to (3)(2) = 1.
e o] (oo}
3t n . o . .
24, Z Sy = 3 Z (—2)" is a geometric series with ratio r = —£. Since |r| = £ > 1, the series diverges.
n=0 (_ ) n=0
oo eZn oo (62)n oo 62 n 62 62
25. Z T = Z ST = 62 (E) is a geometric series with ratio r = 5 Since |r| = E[z 1.23] > 1, the series
n=1 n=1 n=1
diverges.
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e 2n—1 o — oo n

-2 2 2 . . . . . 4 . 4 .

26. Z 63—n = Z L Z ( ) is a geometric series with ratio r = 3 Since |r| = 3> 1, the series

n=1 n=1 n=1

diverges

1 1 x 1 11 . . . . .
217. 3 + 5 + =+ D + I +--.= Z e = 3 Z o This is a constant multiple of the divergent harmonic series, so

n=1 n=1

it diverges.
B i+t -+ E+tsmtmst o =(G+x+a3+ )+ (3+F+ =5+ ), which are both convergent

geometric series with sums 1 1/ 13 79 = % and - 3/ 19 79 = i, so the original series converges and its sum is % + i = g.

24n . 2/n+1 1

29. © i by the Test for Di 1 = 1li =1 === #0.

2 1 — 2 iverges by the Test for Divergence since im an = lim -——— = lim in—2 o #
30 Z dlver es by the Test for Divergence since hm k72 lim _ W 1#£0

' kt% ges by g o K2 — 2k + B kool 2fk +5/k2 7
3 f: gntlg—n = f: 3n.3t 3 i 3Y The latter series is geometric with a = 8 and ratio r = 3 Since |r| = 3 <1
' T Tz \a) £ ~ 1 s Titv

. 3/4 . .

it converges to -3/ = 3. Thus, the given series converges.to 3(3) = 9.

oo oo oo
32, Z [(=0.2)™ + (0.6)" '] = Z(—O.Z)" + Z:(O.G)”_1 [sum of two geometric series]

n=1 n=1 =

__ 02 a4 157
T 1-(-02) 1-06 6 2 3

G 1 1 1 1

33. ; e diverges by the Test for Divergence since nlgréo yymp= = 150 =1 #0.

34.

35.

36.

n—oo en n— oo n—oo

oo n
2" + 4" 2" 4" 2" 4" 4
E ; diverges by the Test for Divergence since lim R lim (— + —) > lim (—) =00

Z (sin 100)” is a geometric series with first term a = sin 100 [~ —0.506] and ratio = sin 100. Since |r| < 1, the series

sin 100
to ———— =~ —0. .
converges to T sin 100 0.336
i —— diverges by the Test for Divergence since lim 1t 1#0
=T+ ’ O
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oo 2
3. >0 1 (%) diverges by the Test for Divergence since

=1 2n?
n“+1 n°+1
1 n = lim 1 In{ 1 0
oo ™ T s n(z 2 1) n<nﬂn§o 2n2 1) #
oo 0o 1 k 0 1
38. \/5 k= (—) is a geometric series with first term a = (—) = 1 and ratio r = —. Since |r| < 1, the
; (v2) ; % g 7 % @
. 2
series converges to = V2 =~ 3.414.
1-1/vV/2 V2-1
39. > arctan n diverges by the Test for Divergence since lim a, = lim arctann = £ # 0.

40. Z ( 53n 2) diverges because Z ﬁ =2 Z = d1verges (If it converged, then 5 2 21 E would also converge by

=1
Theorem 8(i), but we know from Example 9 that the harmonic series ), — diverges.) If the given series converges, then the
n

n=1

n= 1

571

n=1

difference Z ( 3 + 2) - > i must converge (since Z i is a convergent geometric series) and equal Z % but
n=1

x 2 . .
we have just seen that > — diverges, so the given series must also diverge.
n

n=1

o 0 n
M. > in = (1) is a geometric series with first term a = 1 and ratio r = l Since |r| = 1 < 1, the series converges
n=1¢€ n=1 € e e
1/e 1/e e 1 1 .
= S- = . By E le 8, ———— = 1. Thus, by Th 8
0 T-1je 1-1jc ¢ e-T: y-Example Z w1 1) us, by Theorem 8(ii),
1 x> 1 & 1 1 1 e—1 e
z::(e" (n+1)) nz::le”—i_nzzzln(nJrl) efl+ 671+671 e—1
42 f idl erges by the Test for Divergence since li li < li Gyl lim Ly} li < #0
'nln Vg Y ) Vg lnoloan_nLH;oTLZ_xLH;o:BQ_xﬂoo2$_acl»nolo2_OO '
. . . . X2
43. Using partial fractions; the partial sums of the series > g e
n=2 -

=3 mzé <¢i1_ii1)

ORI NS U A WS U W A SRR S WA B |
- 3 2 4 3 5 n—3 n-—1 n—2 n
. . . . 1 1
This sum is a telescoping seriesand s, =1 + = — —— — —.
2 n—-1 n
& 2 . . 1 1 1 3
S, 2 r oy e = (”5 Tl a) )
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44. For the series In——
nzl + 1

$Sn=(In1-In2)+ (In2—-In3)+ (In3—-In4)+---+lnn—In(n+1)]=Inl—-In(n+1)=—In(n+ 1)

[telescoping series]

Thus, lim s, = —oo, so the series is divergent.
S n 3 (1 1 . . . .
45. For the series Z ( + 3) =3 - ) =>(=- 3 [using partial fractions]. The latter sum is
n=1 (N i=1 2 i=1\? ?
(1—%)+(%—%)+(%—%)+(%—%)+---+(ﬁ—%)+(ﬁ—%ﬂ)+(ﬁ—ﬁz)+(%—$)
=1+4+35— 735 — 755 — 55 [telescoping series]
o 3 : : 1,1 1 1 1 1,1 _ 1
Thus,n;lm :T}eriosn:nhango(l—i—§+§ s e —m) =1+ 35+ 3 = %+ Converges

= 1 1
46. For the series Z (— —
— \\Vn n + 1)
1

et ()= () () (e Y

[telescoping series]

> 1 1 1 1 1 1
Thus, —_— — = lim s, = lim [ — — =——0==. Converges
; (x/ﬁ ¢n+1> oo T nnoo \ VA n+1> Vi 2 ¢

!

o0
47. For the series ) (el/" - el/(”"'l)),

n=1

S = i (el/i _ el/(i+1)) = (' — eM2) 4 (V2 — MB) 4. At (el/n _ el/(n+l)) — o _ M/ (ntD)
[telescoping series]

OO
Thus, Y (el/” - el/(”“)) = lim's, = lim (e — el/("“)) =e—e’=e—1. Converges

n=1 n—+0o n—0o0

48. Using partial fractions, the partial sums of the series Z 3
an3—n

o 1 & 1,12 1/2) 1@ 1 2 1
S"_izzi(zel)(wl)_;( i+i71+i+1>_2i;2<i71 i+i+1)
CLf(ro2 my T2 1y L2 1y 12 1)

T2\l 23 2 3 4 3 45 4 5 6

+1_2+1+1_2+l+1_2+1
n—3 n—2 n-—1 n—2 n—1 n n—1 n n+1

Note: In three consecutive expressions in parentheses, the 3rd term in the first expression plus

the 2nd term in the second expression plus the 1st term in the third expression sum to 0.

_lfrozo1o12 1N 11 1

“2\1 2 2 ' n n n+l) 4 o2n 2n+42
o 1 . L 1 1 1 1

Thus’n;ni*—n_r}inéos”_v}irﬂo(zl 2n+2n+2)_4'
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49. (a) Many people would guess that < 1, but note that = consists of an infinite number of 9s.

(b) £ =0.99999... = % + % + 10900 + 10%00 = Z 10—” which is a geometric series with a; = 0.9 and

0.9 0.9 .
=01 —@—l,thatls,:c—l.

r = 0.1. Its sum is

(c) The number 1 has two decimal representations, 1.00000. .. and 0.99999. ...

(d) Except for 0, all rational numbers that have a terminating decimal representation can be written in more than one way. For

example, 0.5 can be written as 0.49999 . . . as well as 0.50000. . ..

50. a; =1,an = (5—n)an—1 = a2 =(5—2)a1 =3(1) =3, as =(5—3)az =2(3) =6, as =(5~4)az = 1(6) =6,
) 4
as = (5 — 5)as = 0, and all succeeding terms equal 0. Thus, > an, = > an.=1+3+ 6+ 6=16.
n=1 n=1
= 8 8 8 1 a 8/10 8
1.08=—=+—+--- ha=— =—=.1 ==
51. 0.8 0 + 102 + is a geometric series with a 0 and r 0 t converges to =7~ T-1/10 9
— A 4 . . . . 4 1 46/1 4
52. 0.46 = 1—060 + Wgz + -- - is a geometric series with a = W(SO andr = 100° It converges to I ir =7 _6/1/2(())0 = 9—2
— 516 = 516 516 = 516 . ; . . 516 1
53. 2516 =2+ 0% + 106 +---. Now 1—03 + 106 + - -+ is a geometric series with a = 0% andr = 08 It converges to
a 516/10°  516/10° 516 — 516 2514 838
= = = — . Thus, 2.5 24— =—+ = ——.
1—7r 1-1/103  999/10% 999" s, 2.516 "9 + 999 999 333
35 35 35 35 . . . . 35 1
54, 10.135 = 10.1 + 10° + 105 + .-+ Now 1—03 + 105 + - - is a geometric series with a = 10% andr = 107 It converges
a 35/10° 35/10° 35 35 9999 + 35 10,034 5017
t = — = ——Thus, 10.135 = 10.1 + — = = = .
°T—r  T-1/102 99/10° 990 > * 990 990 990 495
567 567 567 = 567 . . . . 567
55. 1.234567 = 1.234 + — 106 —|— —5 + . Now 106 + 10° + - - is a geometric series with a = 106 and
r= 2 It converges 0 —— = 567/10° = 567/10° __o6r _ _21 Thus
T10% £ 1—r 1-1/103  999/103 ~ 999,000 37,000 ’
—— 21 1234 21 45,658 21 45,679
1.234567 =1.234 = == =
K Pit 37,000 1000 + 37,000 37,000 37,000 37,000
NI 71,358 71,358 71,358 = 71,358 . . . . 71,358
56. 5.71358 = 5 + B 1010 + ---. Now 05 oo + - - - is a geometric series with a = 05 and
v L converges to —%— — 71,358/10°  71,358/10° 71,358 23,786 Thus
T 10%” g 1—7 1-—1/105  99,999/105 ~ 99,999 ~ 33,333 ’

_ 23,786 166,665 23,786 190,451
’ 33,333~ 33,333 ' 33,333 33,333 °
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57. 3O (—5)"a" =

58.

59.

60.

61.

62.

63.

64.

U CHAPTER11 INFINITE SEQUENCES AND SERIES

(—5x)™ is a geometric series with r = —5x, so the series converges < |r| <1 <

18

n=1 n=1

|-bz| <1 < |z < %, thatis, —1 < = < £. In that case, the sum of the series is @ _ _Thr T .
1—r 1—(-bz) 145z

(z 4+ 2)™ is a geometric series with = z + 2, so the series converges < |r|<1 & |z+2|<1 &

18

3
Il
-

a T+ 2 _ x+2
I—-r 1—(z+2) -—-z-4’

—1l<x+2<1 <« —3<x< —1.Inthatcase, the sum of the series is

x (x—2)" &, —2\". . L —2 .
3 @=2" =3 (%) is a geometric series with r = xT, so the series converges < |r| <1/ &

-2
$3 ‘<1 & —l<—<1 & -3<r—2<3 & -—1<x<b5. Inthatcase, the sum of the series is
a 1 _ 1 3
l—r [ _2-2 3-(2-2) 55—z
3 3

S (—4)"(x —5)" = > [~4(x — 5)]" is a geometric series with r = —4(z — 5), so the series converges <
=0

Irf<1 & |-4(z-5)|<1 & |z-5|<i & —-l<az-5<i & 1<z <2l Inthatcase, the sum of

a 1 . 1
1—r 1—[-4(x—5)] 4z—19

the series is

> 2" & " . . . 2 . 2
== (—) is a geometric series with 7= =, so the series converges < |r|<1 < |=|<1 <
n=0 " n=0 X T

1 x

2<|z| < x>2orz < —2. Inthat case, the'sum of the series is T _ = .
1—r 1-2/z z-2

x sin"z X [sinz\". . L sinx .
> g = > 3 isa geometric series with r = , so the series converges < |r| <1 &
n=0 n=0

1 3

<1 < |sinz| < 3, which is true for all z. Thus, the sum of the series is @ _ - = —.
1—r 1—(sinz)/3 3—sinz

sin x

(" )" is a geometric series with 7 = €, so the series converges < [r|<1 < [€°]<1 &

18

>
ent —
n=0

n=0

—-1<e’ <1l & 0<e’ <1l & ac<O.In'[hatcase,thesumoftheseriesis1 T —.
—-r —e

Because l — 0 and In is continuous, we have lim ln< l)
n n

n—0o0

We now show that the series . In (1 + 1) = (
n

n=1

) Z n(n + 1) — Inn| diverges.

sn=(MI2—-In1)+ (In3—-In2)+---+(In(n+1)—Inn)=In(n+1) —Inl =In(n+1).

Asn — 00, 8, = In(n 4+ 1) — oo, so the series diverges.
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65.

66.

67.

68.

69.

SECTION11.2 SERIES U

After defining f, We use convert (£, parfrac) ; in Maple, Apart in Mathematica, or Expand Rational and

2
. . . 1 1 1 . .
Simplify in Derive to find that the general term is % =5 m So the nth partial sum is

ISR RS N W U O WV W B VO IR B DN B
T\ (B3 ) 23 23 33 nd (n+1)3) (n+1)3
The series converges to lim s, = 1. This can be confirmed by directly computing the sum using

sum (f,n=1..infinity); (in Maple), Sum[f, {n, 1, Infinity}] (in Mathematica), or Calculus Sum

(from 1 to co) and Simplify (in Derive).

See Exercise 65 for specific CAS commands.
! = ! + ! — ! — ! + i So the nth partial sum is
"5 —5n® +4n  24(n—2) | 24(n+2) 6(n—1) 6(n+1) R
12 4 6 4 1
S"‘ﬂkz:%( k—1+E_k+1+k+2)

CL[(Aage a1 4 e 4
24 1 2 3 4 5 n—2 mn—1 n+1 n—+ 2

The terms with denominator 5 or greater cancel, except for a few terms with n in the denominator. So as n — oo,
1/1 3 3 1 1/1 1

Sp—>—|-—=F+=-—=-==(- )= =.
24\1 2 3 4 24\ 4 96

Forn =1,a; = 0since s; = 0. Forn > 1,

n—1 (h-1)-1" (n—-Dn—(Mm+1)(n—2) 2
an = Sn — Sp—1 = — = =
n+l. (n—1)+1 (n+1)n n(n+1)
S 1—1/n
Also, an = lim s, = lim =
ngl n—oo n—oo 1 4 ]_/’r'L

am=s1=3-1=2 Forn#1,

,n)_|:3_(n_1)27(n71)i|__£ n—l%_?(n—l) n n—2

Also, Z an = hm Sn= lim (3 — 2%) = 3because lim — &

lim —— =
n=1 n— oo oo 2% z—00 2% In 2

983

(a) The quantity of the drug in the body after the first tablet is 100 mg. After the second tablet, there is 100 mg plus 20% of

the first 100-mg tablet; that is, 100 4+ 0.20(100) = 120 mg. After the third tablet, the quantity is 100 + 0.20(120) or,

equivalently, 100 4 100(0.20) + 100(0.20)>. Either expression gives us 124 mg.
(b) From part (a), we see that Q1 = 100 4 0.20 Q...
(©) Qn = 100 + 100(0.20)* + 100(0.20)% + - - - + 100(0.20)"*

= 3°100(0.20)""* [geometric with @ = 100 and r = 0.20].
i=1

The quantity of the antibiotic that remains in the body in the long run is lim Qn = 117%020 111(;(5) =125 mg.
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70. (a) The concentration of the drug after the first injection is 1.5 mg /L. “Reduced by 90%” is the same as 10% remains, so the
concentration after the second injection is 1.5 + 0.10(1.5) = 1.65 mg/L. The concentration after the third injection is

1.5 4 0.10(1.65), or, equivalently, 1.5 + 1.5(0.10) + 1.5(0.10)>. Either expression gives us 1.665 mg/L.

(b) Cn = 1.5+ 1.5(0.10)* + 1.5(0.10)% + - - - + 1.5(0.10)*

= ﬁj 1.5(0.10)""'  [geometric with @ = 1.5 and ~ = 0.10].
i=1
~15[1—(0.10)"] 1.5 D "
By (3), Cp, = 010 _0.9[1 (0.10) }_3[1 (0.10)"] mg/L.

(c) The limiting value of the concentration is lim C, = nhlrolo 2[1-(0.10)"] = 3(1 — 0) = 2 mg/L.

n—oo o3
71. (a) The quantity of the drug in the body after the first tablet is 150 mg. After the second tablet, there is:150 mg plus 5%
of the first 150- mg tablet, that is, [150 + 150(0.05)] mg. After the third tablet, the quantity is

[150 + 150(0.05) + 150(0.05)%] = 157.875 mg. After n tablets, the quantity (in mg) is

150(1 =0.05") _ 3000

150 4 150(0.05) + - - - + 150(0.05)™~*. We can use Formula 3 to write this as 120,05 19

(1—0.05™).

(b) The number of milligrams remaining in the body in the long run is nlin;o [%(1 —0.05")] = %80 (1 -0)=157.895,

only 0.02 mg more than the amount after 3 tablets.

72. (a) The residual concentration just before the second injection is De” “'; before the third, De™ %7 4 De™*?7'; before the

DefaT (1 _ efanT)

(n+1)st, De %" 4+ De~ T 4 ... 4 Dé """ This sum'is equal to [ [Formula 3].
—e a
DefaT 1 _ efanT D —aT 1— aT D
(b) The limiting pre-injection concentration is nler;o T E s ) = el — e(iaT 0) . ZaT =T
D oT L ~ oT
(@) T 1 >C = D>C(e"" —1),s0 the minimal dosage is D = C'(e*” — 1).

73. (a) The first step in the chain occurs when the local government spends D dollars. The people who receive it spend a

fraction ¢ of those D dollars, that is, Dc dollars. Those who receive the Dc dollars spend a fraction c of it, that is,

Dc? dollars. Continuing in this way, we see that the total spending after n transactions is

D(1—c"
Sn=D+Dc+Dc2+~~~+Dc”’1:%by@).
D(1—c" D D . .
(b) lim S, = lim (L=c") = lim (1—-c")=—— [Slnce0<c<l = lim c"z()}
n—oo n— 00 1—c 1—cn—oo 1—c n—oo

:g [sincec+s=1] = kD [sincek =1/s]

If ¢ = 0.8, then s = 1 — ¢ = 0.2 and the multiplieris k = 1/s = 5.
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74. (a) Initially, the ball falls a distance H, then rebounds a distance 7 H, falls r H, rebounds 72 H, falls 72 H, etc. The total
distance it travels is

H+2rH+2rH+2rH+ - =HQ+2r+2r +2r° + - )= H[1+2r(1+r+7r*+--.)]

1 1+7r
T —r)} = H(:) meters

(b) From Example 3 in Section 2.1, we know that a ball falls % gt® meters in ¢ seconds, where g is the gravitational

acceleration. Thus, a ball falls h meters in ¢ = /2h/g seconds. The total travel time in seconds is

/ﬁ—i—Q\/%r—&—Z\/ﬁr?—l—Q\/ﬁrf‘—&—---: /ﬁ[1+2ﬁ+2ﬁ2+2\/}3+...]
g g g g g
2H

(1+2yr[1+ Va+ videe--])

g

W) T

985

(c) It will help to make a chart of the time for each descent and each rebound of the ball, together with the velocity just before

and just after each bounce. Recall that the time in seconds-needed to fall h'meters is y/2h/g. The ball hits the ground with

velocity —g v/2h/g = —+/2hg (taking the upward direction to be positive) and rebounds with velocity
kg +/2h/g = k \/2hg, taking time k /2h /g toreach the top of its bounce, where its velocity is 0. At that point,

its height is k2h. All these results follow, from the formulas for vertical motion with gravitational acceleration —g:

%:—g = v:%:vo—gt = y:yo—l—vot—%gtz.
number of time of speed before speed after time of peak
descent descent bounce bounce ascent height
1 V2H/g 2Hyg k+2Hyg k+\/2H/g kK*H
2 V2k2H /g V2k2Hg k\/2k?Hg | k+\/2k2H/g | Kk'H
3 V2k3H/g 2k Hg k\2kiHg | k\/2k*H/g kK°H

The total travel time in seconds is

,/g—&-k,/ﬁ—kk,/ﬁ—ka,/g+k2,/ﬁ+---:,/E(1+2k+2k2+2k3+---)
g9 g g g9 g g9
:,/%[1+2k(1+k+k2+---)]
2H 1 _ 2H1+k
V7 {H%(lfk)]_ g T-k

Another method: We could use part (b). At the top of the bounce, the height is k?h = rh, so V1 = k and the result follows

from part (b).
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75.

76.

1.

78.

79.

U CHAPTER11 INFINITE SEQUENCES AND SERIES

3 (14 ¢)™™ is a geometric series with @ = (1 +¢) 2 and r = (1 + ¢) ", so the series converges when
n=2
‘(1+c)71’ <l & |l14¢>1 & 14c>lorl4+ec<—-1 & c¢>0o0rc< —2. We calculate the sum of the

_ . (1+¢)? 1\ 1 )
series and set it equal to 2: —————= =2 & Te =2-2— ) & 1=21+0¢)°-21+¢) <
c

1-(1+4¢) 1+ec

2 +2c—1=0 & c= _Qﬁ\/ﬁ: j[‘/g_l.However,thenegativerootis inadmissible because —2 < =2=1 < 0.

— V3-1
SOC—T.
= nc o c\n : . : c\0 c c : 1 1
St e = > (e°)" is a geometric series with a = (e“)” = 1 and r = €. If e® < 1, it has sum ——,s0 —— =10 =
n=0 n=0 1 —ec 1 —ec
H=1-¢ = =35 = c=hq.

e = BT L2l B L ln S (14 1) (14 1) (14 1) (14 1) " > 1]

123 n

Thus, e > n+ 1and lim e’ = co. Since {s,, } is increasing, lim s, = oo, implying that the harmonic series is
n—oo n—oo
divergent.

The area between y = 2" ' andy = 2™ for 0 < z < 1 s 1.1

1

/1($n71—x")dm: @ ) _1
0 n n+ll, n ntl

_(n+1)—n _ 1
T onn+1l) T a4l n=2

We can see from the diagram that asn — oo, the sum of the areas
between the successive curves approaches the area of the unit square,

> 1
that is, 1. So — =1 —0.1 1.1
n; n(n+1) \ Y,
—0.1

Let d,, be the diameter of C},. We draw lines from the centers of the C'; to

the center of D (or.C), and using the Pythagorean Theorem, we can write

124 (1= 3 )h= (L4 3a) o

1=(1+ %d1)2 -(1- %d1)2 = 2d; [difference of squares] = di = 3.

Similarly,

1= (1+3d2)® = (1 —di — Ldo)® = 2do + 2dy — &3 — dudo

= (2—d1)(d1+d2) =4
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81.

82.

83.

84.

85.

86.

SECTION11.2 SERIES U 987

1 (1—di)? 2 2 [1— (di +d2)]? .
dy = s = 277d1,1: (1+3ds)" = (1—di —d2 — 3d3)” & ds= m,andmgeneral,

(1-3r,di)? 11
dn4+1 = ~——==—— If we actually calculate dz and ds from the formulas above, we find that they are = = —— and

2= di 6 2-3
1 1 . . 1 . . .
— = —— respectively, so we suspect that in general, d,, = ———. To prove this, we use induction: Assume that for all
12 3-4 n(n+1)
k<n,dp = S Then z di=1-— L [telescoping sum]. Substituting this into our
ST EE+D) kRl A ntl ntl pIng sum. g
n 1° 1
L (n+1)* 1
formula for dp 11, we get dny1 = L L - = 1; To = CESCETIE and the induction is complete.
n+1 n+1

Now, we observe that the partial sums Y -, d; of the diameters of the circles approach 1 as n. = oo; that is,

MS

o0
Z (n ) = 1, which is what we wanted to prove.

3
Il
-

|CD| = bsin8, |DE| = |CD|sin6 = bsin?0, |EF| = |DE|sinf = bsin® 0, .. .. Therefore,

|CD|+ |DE| + |EF|+ |FG|+---=1 Z sin™ 6 = 6(17200) since this is a geometric series with r = sin 0
and [sind] <1 [because 0 <0 < Z].
Theseries1 —1+1—1+1—1+4 - .4 diverges (geometric series with 7 = —1) so we cannot say that

0=1-14+1—1+1—1+ -4

o=}
If Z an is convergent, then hm an = 0 by Theorem 6, so lim 1 #0,andso ) 1 is divergent by the Test for
Qn

n—00 n

n=1 n=1

Divergence.

> can = nllngo domca; = hm ey ai=c hm > ai =cYy oo an, which exists by hypothesis.

If 3" can, were convergent, then Y (1/¢)(can) = > an would be also, by Theorem &(i). But this is not the case, so Y can

must diverge.

Suppose on the contrary that > (a, + b,) converges. Then > (a, + b,) and 3 a,, are convergent series. So by
Theorem 8(iii), Y [(an + bn) — axn] would also be convergent. But > [(an + bn) — an] = > bn, a contradiction, since

> by, is given to be divergent.

No. For example, take > a, = > nand Y b, = > (—n), which both diverge, yet Y (an + bn) = > 0, which converges

with sum 0.
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87. The partial sums {s, } form an increasing sequence, since s, — sn—1 = an > 0 for all n. Also, the sequence {s } is bounded
since s, < 1000 for all n. So by the Monotonic Sequence Theorem, the sequence of partial sums converges, that is, the series

> an is convergent.

_ 1 _ 1 _ fnfn-kl — fnfn—l _ fn+1 - fn—l _ (fn—l + fn) - fn—l o 1 _
ey S 3% S Y Ny SR ey U A Sy SR A AR
0 3 —— = f( - ;> [from part (a)]
fn 1fn+1 o =2 fn lfn fnfn+1 P

in \(75-75)* (7~ 78) * (5r 7)1 (o )
n—oo |\ fife  fafs fafs  fafa fafa  fafs fa-1fn  fadnt1

Y L R T
nooo\ fifo  fafet1/)  fife 141

=1 because f,, — 0o asn —00.

© Z

M

fn
(fn 1fn f'nf'n+1 ) [as above]

& 1

;(fn 1 fn+1>
(DG G Plg2) )
s [\f1 0 fs fo fa fao s fa fe fo—1 fapr

1 1 1 1
=lm|{—4——-—— ):1+1—0—0:2 because f,, — coasn — oo.
”"oo(fl f2 fn fn+1

fn 1fn+1

89. (a) At the first step, only the interval (3, Z) (length z)is removed. At the second step, we remove the intervals (3, 2) and
(g, %), which have a total length of 2 - (%)2 At the third step, we remove 2 intervals, each of length (%)3 In general,
at the nth step we remove 277 * intervals, each of length (%)", for a length of 2"~ - (%)n = % (%)"71. Thus, the total

oo
length of all removed intervals.is Z %(%) = 11423/3 =1 [geometric series with a = % andr = %] Notice that at

the nth step, the leftmost interval that is removed is ((%)” , (%)"), so we never remove 0, and 0 is in the Cantor set. Also,

the rightmost interval removed is (1 - (%) "1 (%)"), so 1 is never removed. Some other numbers in the Cantor set

12 192 7 8
303> 9792 9>and g.

b) The area removed at the first step is =; at the second step, 8 - (& 2; at the third step, (8)% - (% ’ In eneral, the area
P1S 35 p 9 P ) g

removed at the nth step is (8)" ' (3)" = 3 (%)nil, so the total area of all removed squares is
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a1 1 2 4 1 1 1000
az 2 3 1 4 1000 1
as 1.5 2.5 2.5 2.5 500.5 500.5
a4 1.75 2.75 1.75 3.25 750.25 250.75
as 1.625 2.625 2.125 2.875 625.375 375.625
ae 1.6875 2.6875 1.9375 3.0625 687.813 313.188
ar 1.65625 | 2.65625 | 2.03125 | 2.96875 656.594 344.406
as 1.67188 | 2.67188 | 1.98438 | 3.01563 672.203 328797
aog 1.66406 | 2.66406 | 2.00781 | 2.99219 664.398 336.602
aip | 1.66797 | 2.66797 | 1.99609 | 3.00391 668.301 332.699
a1 | 1.66602 | 2.66602 | 2.00195 | 2.99805 666.350 334.650
a1z | 1.66699 | 2.66699 | 1.99902 | 3.00098 667.325 333.675
The limits seem to be %,%, 2, 3,667, and 334. Note that the limits appear to be “weighted’”” more toward a2. In general, we
guess that the limit is w.
(b) An+1 — An = %(an + an—l) — Qn = 7%(6%, - an—l) = 7% [%(an—l + an—2) - an—l]
n—1
=4[ —ann)] = o= (e - )

Note that we have used the formula ar, = 5 (ax—1 +ax—g) atotalof n — 1 times in this calculation, once for each k

between 3 and n + 1. Now we can write

an = a1+ (a2 —a1) + (a3 < a2) + -+ + (@n-1 — an—2) + (an — an-1)

n—1 n—1

= Y (a1 —aw)=a1+ > (1) (a2 —a1)
k=1 k=1
and so
im a, = —a) 3 (1) = et ) ma g 2(ag—ay) = 202
Jim a, = ax + (a2 a1)k§1( 3 =a1+ (a2 al)[l — (71/2)} =a1+2(a2 —a1) = T
0 n 1 1 2 5 5 3 23
1. F - = — = = = - = — = — - = —
M@k ) =T -2 3 T23 &% 6 12.3.4
23 4 119 . (n+1)!—1
e ! =
4 =gy * 283 4.5 120° The denominators are (n + 1)!, so a guess would be s, T 1)
- 1 2r-1 _ _(k+1)! -1
(b)Forn=1,s1 = 3= "o , so the formula holds for n = 1. Assume s, = CES] . Then
s _(E+1)! -1 k41 —(k+1)!_1+ k+1 B+ = (E+2)+k+1
T TR D T R+2)! T (k1) k+D)I(k+2) (k +2)!
_(k+2) -1
(k+2)!
Thus, the formula is true for n = k + 1. So by induction, the guess is correct.
1 n= lim ————— =1 1—-—| =1 — =1
(© lim s = lim —2=55= = lim 1= 2= andso 32 v 1!
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Let 71 = radius of the large circle, 2 = radius of next circle, and so on.
From the figure we have ZBAC = 60° and cos 60° = r1/ |AB], so

|AB| = 2ry and |DB| = 2r2. Therefore, 2r1 =71 + 12 + 2r2 =

r1 = 3r2. In general, we have r,41 = %rn, so the total area is

1 1 1
Azﬂr%+37rr§+37rr§+---:Wr%+37rr§(l+§+3—4+§+--->
1
= mr} + 3773 - 1179 1/9 =mri + %TK‘T%
tan 30° 1 1
Since the sides of the triangle have length 1, | BC| = £ and tan 30° = Thus, = g = ——,
s s | =2 1/2 2 2\/§ 2 613

2 2
soA=m (2—\1/5) + % (GL\/?_)) = % + % = % The area of the triangle is ? so the cireles occupy about 83.1%

of the area of the triangle.

11.3 The Integral Test and Estimates of Sums

1. The picture shows that as = / —_— dx y |
y="13
= 5 d d L g dx. Th
as = 313 — dz, an soonsonzzn < —is d@yThe
integral converges by (7.8.2) with p = 1.3 > 1, so the series converges. G g, T
5
of 1 2 3 1 X
2. From the first figure, we see that fl x)dr < Z a;. From the second figure, we see that Z a; < f1 x) dx. Thus, we

=1 i=

have2a1<f1 z)dr < Zal

i= =1

y y = flx) Y

a | a| a3 | a, | as A | az | a4 | 4s | g

of 1 2 3 4 5 g% of 1 2 3 4 5 6%

3. The function f(x) = 2~ is continuous, positive, and decreasing on [1, o0), so the Integral Test applies.

o] t —27t
-3 s -3 T x T _1 1 1
[ [t i (5] < im (g ) =5

oo

Since this improper integral is convergent, the series Z n 3 is also convergent by the Integral Test.

n=1
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4. The function f(z) = 273 is continuous, positive, and decreasing on [1, c0), so the Integral Test applies.
oo t 0.7t 0.7
—0.3 T —0.3 1 T — i t_ — _1 =
/1 v dv=lim e dx_tgrgo|:0,7:|l_tll>rgo<0,7 o.7>_°°'

oo

Since this improper integral is divergent, the series Z n~%3 is also divergent by the Integral Test.

n=1

5. The function f(z) =

2 . . .. . .
5 I is continuous, positive, and decreasing on [1, 00), so the Integral Test applies.
T —

oo t t
/ 2 dx = lim 2 dr = lim {% In(5z — 1)] = lim E In(5¢t — 1) — %lnél =0o0.
1

5z —1 t—oo [1 Sz —1 t—o0 , toee

o0
Since this improper integral is divergent, the series Z is also divergent by the Integral Test.
n=1

5n —1
6. The function f(z) = m is continuous, positive, and decreasing on [1, 00), so the Integral Test applies.
/w;dx— fim [ Gz - 1) dr = lim | —L (3z 1) i 1 1 j_1
L Br—1)4" T iS00 ) T tooo [(—3)3 L ot | 9(Bt—1)3 0 9.23| 72

Since this improper integral is convergent, the series Z ( is also convergent by the Integral Test.
=1

= -
3n —1)4

7. The function f(z) = is continuous, positive, and decreasing on [1, 00), so the Integral Test applies.

_r
2 +1

t

t—oo

oS} t
/1 ﬁL—l—l dr = tlirgo/l $2::_ 7 de'= lim B In(z? + 1)] ) = % lim [In(t* 4+ 1) — In2] = oo. Since this improper

n
n?+1

o0
integral is divergent, the series ) is also divergent by the Integral Test.
n=1

8. The function f(z) = #2e72’ is continuous, positive, and decreasing (%) on [1, 00), so the Integral Test applies.
o . t . 27t .
/ 22" G Vit 2% dz = lim 716713 - lim (eft3 — 671) 1 0— Ep i
1 t—oo fq t—o0 3 1 3 t—oo 3 € 3e

n

. .. . . N _n3 .
Since this improper integral is convergent, the series > n?e is also convergent by the Integral Test.

n=1
) ) _ 9.3
@ f ()= $26’13(—3x2) + 6713(21:) = xe’zg(—3x3 +2)= 93(273393) <0 forz>1
e(L‘
> 1 . . .
9. > —5 isap-series with p = /2 > 1, so it converges by (1).
n=1MN

& & 1 . . . o . . .
10. 5 p 09999 = —5 o990 18 @ p-series with p = 0.9999 < 1, so it diverges by (1). The fact that the series begins with
n=3 n-

n=3

n = 3 is irrelevant when determining convergence.

1.1+ % + 2i7 + 6i4 + 1—;5 4= nzijl % This is a p-series with p = 3 > 1, so it converges by (1).
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12.

13.

14.

15.

16.

17.
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- + L + = 1 + i + x +- i The function f(x) = L is continuous, positive, and decreasing on [1, co)
57779 BT Homts T 2w+3 » POSTVE: SOR 09

so the Integral Test applies.

oo t t
/1 2I1+ S do= tlilzlo/l 2ml+ 5 do = lim [% In(2z + 3)} = lim [% In(2t+3) — 1In 5] = 00, 50 the series

OO
diverges.
2 s
: + = + L + L + L + - i The function f(z) = is continuous, positive, and decreasing on
377 T 15 19T S T a1 » POSTIVE: £

[1,00), so the Integral Test applies.

oo t t
/1 ! gz — tim 2 ! 42— lim [iln(4x - 1)]1 = Jim [iln(4t —1) - glns} — 00, s0 the sefies

dr —1 t—oo [; 4z —1 t—oo
diverges.
ngl 4n —1 &
1+ 1 + L + 1 + 1 + —ioj L —i ! This is a p-series with.p =3 > 1, so it converges by (1)
2v2  3v3  4V4 55 nsin/n o nd? P=z-" ges By
X vnt+d XRfyn 4\ X1 x4 0= 1. L 3
nz=:1 nz ngl n2 + nz )= nzzzl 37 + nz=:1 = ZZ: 57z 1sa convergent p-series withp = 2 > 1.
> 4 > 1 . ) . .
> —= Z o is a constant multiple of a convergent p-series with p = 2> 1, so it converges. The sum of two
n=1 n n=1

convergent series is convergent, so the original series is convergent.

The function f(z) = 7 +\/_3 72 is continuous and positive on [1,00).
fi(z) = 1+ 23%)2 = (1+:1:3/2) RN TEIBP <Oforx >1,s0 fis

decreasing on [1, 00), and the Integral Test applies.

< \/_ : . \/_ . 2 3/2 t substitution
1 1+$3/2 e S tli>r[olo 1 1+x3/2 dx = hnélo |:§1n(1+1' )]1 withw = 1 + z3/2

= lim [2In(1+/%) — 2In2] =
- N
so the series Zl Tomre diverges.
=

The function f(x) = is continuous, positive, and decreasing on [1, 00), so we can apply the Integral Test.

_1
2 +4
0o 1 t 1 . 1 1T t 1 .. [t /1
/1 x2+4dx7tlioo/1 x2+4dx*tlir&[§tan 5}1*5152%{”“ 2) —tan(3
1 (1
72{2 tan (2)}

& 1
Therefore, th i —
erefore, the series ;:31 Z 4

converges.
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18. The function f(z) = is continuous, positive, and decreasing on [1, 00), so the Integral Test applies.

1
2+ 2z + 2
< 1 . t 1 . t
/1 P dr = tlingo/l m dx = tli>rgo [arctan(x + 1)} )
= tlim [arctan(t + 1) — arctan 2] = g — arctan 2,

oo
1
so the series —————— converges.
; n24+2n+2 &

19. The function f(z) = x4x—+4 is continuous and positive on [2, 00), and is also decreasing since
4 2y _ 3043 2_ .6 2019 _ 4
fl(x) = (=" + 4)(§ix+)4)2x (427) = 1(1? - 4;52 = I(i‘112+ 4:;2) < 0 forx > +/12: 1.86, so we can use the

Integral Test on [2, 00).

oo 3 t 3 +
/2 xf—H dr = Jim | for L do = lim [i In(a* + 4)}2 = lim. [i In(t* 4 4) — 21n 20} = 0, 50 the series
; I diverges, and it follows that ; e diverges as well:
. 3z —4 2 . Y . . o . L
20. The function f(x) = ==+ [by partial fractions] is continuous, positive, and decreasing on [3, co) since it

2—-2r T x-—2

is the sum of two such functions, so we can apply the Integral Test.

2 —x t—o0 r T —2 —o0

o] _ t t
/ 3z 4dx: lim {2_,_ ! }dm: lim [21nx+ln(m—2)} :tlim[QInt—i—ln(t—?)—Zlni’)}:oo.
3 3 3 tmee

x 3n 4
The integral is divergent, so the series » 37; is divergent.
n=3 N —n
1 . . . . . , 1+Inz
2. f(x) = is continuous and positive on'[2, 00), and also decreasing since f'(z) = ————— < 0 for > 2, so we can
zlnz z2(lnx)?

dzr = lim [In(lnz)]} = lim [In(Int) — In(In2)] = oo, so the series i

rinr t— o0 t— oo

oo 1 .
use the Integral Test. / - diverges.
2

n=2
22. The function f(z) = 11;_290 is continuous and positive on [2, 00), and also decreasing since
2
—(1 2 — 2zl 1-21
flz)=2 Qfz) — In2)Qe) _2—2enz 2% < 0forz > e'/2 ~ 1.65, so we can use the Integral Test

(1’2)2 x4 x3

on [2,00).

*Inz . "Inz . Inzl’ t by parts with
/2 ?dm:tllrgo 9 ?dm:t£%<{_T:|2+A de |:u:lnz,dv:(1/w2)da::|
: Int | In2 17°) u .. 1/t 2 1 1\ In2+1
12%(‘7*7*{_5} )-JH&(—T+77+§)— 7

oo
. Inn
so the series E —5- converges.
n

n=2
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23. The function f(x) = xe™™ = — is continuous and positive on [1, 00), and also decreasing since
e

f(z) = £ «(i;)zxe = ((;;217) = 1;1: < 0forz > 1[and f(1) > f(2)], so we can use the Integral Test on [1, c0).

oo t t t .
_ . - . - _ by parts with
re “dr= lim ze “dxr = lim [—me x} + [ e %dx Y parts with |
1 t—oo [y t—o0 1 1 u=ux,dv=e “dx

t
= lim (fte fie 1+|:76 z} )— lim (f%JrlfltJrl)
t—00 1 t—oo \ e e e e
e
t—o0 e €

oo
so the series E ke™® converges.

k=1
24. The function f(z) = ze " = % is continuous and positive on [1, 00), and also decreasing since
e
e 1—ze™ 22 1-22°
f(z) = )2 = — < Oforz > \/g ~ 0.7, so we can use the Integral Test on [1, c0).
er er

o, o, ot 2 1 1 e k2
/ ze " dr=lim [ ze ™ dr= lim [—le e } = lim (—16 "+ ie ): 5 so the senesz ke~
1 e

t—o0 1 t—o00 2 1 t—oo
k=1

converges.

. 1 1 1
25. The function f(x) = o =—- ;_,_ p

[by.partial fractions] is continuous, positive and decreasing on [1, 0o),

so the Integral Test applies.

> 1 1 '
/ f(z)dz = lim (————I— )dx: lim {—— —Inz+1In(z+1)
1 1

t—o0 22 <z x+1 tooo| 1
:tlim {—%—&—ln#—l—l—an] =04+0+1—1In2

2 1
The 1ntegral converges, so the series E .3 converges.
n=1 M

+n

26. The function f(z) = is positive, continuous, and decreasing on [1, o). [Note that

ar
zt 41
z* +1— 4z 1=3z*

fl(z) = e — e < 0on[1,00).] Thus, we can apply the Integral Test.

oo t 1 t
z s 3 (22) o 1 ~1, 2 1 1,2 1, 1
/1 4 +1 do = tlirgo 1 1+ (22)? du = tlgrolo 2 tan" (27) - 2 tlgrolo[tan (t") —tan™" 1] = 5

N n
so the series » —

——— converges.
n=1"1 +1 g
. cosTL . . . .
27. The function f(z) = NG is neither positive nor decreasing on [1, 00), so the hypotheses of the Integral Test are not
T
X, CoSTN

satisfied for the series

n=1 \/ﬁ
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2
The function f(z) = f(f 1; is not decreasing on [1, c0), so the hypotheses of the Integral Test are not satisfied for the
x
series 5 cos”n
n=1 1 + n2 '

o0
We have already shown (in Exercise 21) that when p = 1 the series ) ﬂ diverges, so assume that p 7~ 1.
n=2n(lnn

fl@) = :B(Tlx)l’ is continuous and positive on [2, o), and f'(z) = _aﬁp(lzi:girl < 0ifx > eP so that f is eventually
decreasing and we can use the Integral Test.
(e} 1—-p7t 1—p 1—p
[ L e im [ porp £ 1] = G [RO T (n2)
> z(lnz)? t—o0 -p ], t—oo | L=p 1—p

This limit exists whenever 1 —p < 0 < p > 1, so the series converges for p > 1.

fz) =

-1 is positive and continuous on [3, 0o). For p > 0, f clearly decreases on [3, 00); and for p < 0,
zlnz [In(lnz)?

it can be verified that f is ultimately decreasing. Thus, we can apply the Integral Test.

0o t ~p —p+17t
I:/s ﬁ: lim/g Mdaz: lim {ML [for p # 1]

In(Inz)]p  t—oo zlnzx t—o00 —-p+1

-p+1 =p+1

= lim {[ln(lnt)]ﬂwl [ln(1n3)]fp+1}’

t—oo

which exists whenever —p+1 <0 & p> 1. 1fp =1, then I = lim [In(In(In x))]g = oo. Therefore,

8

1
—_ i 1.
7 Ton ()] converges for p. >

Clearly the series cannot converge if p > —%, because then nlLII;o n(1 +n?)P # 0. So assume p < —%. Then

f(x) = 2(1 + )P is continuous, positive, and eventually decreasing on [1, c0), and we can use the Integral Test.

1 . 2\pt1 41
= lim [(14¢°)PT —2P77).
= sy A (1) |

2 p+1

0 2\p+17t
/ 2(1+ 2)de = lim {l (L+2) }
1

t—o0

OO
This limit exists and is finite < p+1<0 < p< —1,sotheseries 3. n(1 + n?)? converges whenever p < —1.
n=1

1 L Inz . .. .
Ifp <0, lim n_: = oo and the series diverges, so assume p > 0. f(z) = n_;v is positive and continuous and f'(z) < 0
x

n—oo M

for z > €'/P, so f is eventually decreasing and we can use the Integral Test. Integration by parts gives

oo 1-p _ _ t
/ hl—?dm = lim | [(A=p) 1;11‘ 1 (forp#1) = ;2 [lim P [(1—p)Int — 1] + 1}, which exists
1 7P t=oo (1-p) 1 (1 —p)" Hmoo

> 1
whenever 1 —p <0 < p> 1 Thus, > n_pn converges < p> 1.
n=1 T
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33. Since this is a p-series with p = z, {(x) is defined when = > 1. Unless specified otherwise, the domain of a function f is the
set of real numbers x such that the expression for f(z) makes sense and defines a real number. So, in the case of a series, it’s

the set of real numbers x such that the series is convergent.

= 1 © 1 1 w2
4. —_ = —_ - — = — -1
34. (a) n§2 — nz::1 =T [subtract a1 ] 5
1 =1 11 1 7 49
X rr-tecse (etete)=5 @
| 12 1 1(x° LS
O eE S inw ﬁ(?) =21
= (3\' = 81 > 1 ™\ _ or
35. -] = — =281 — =81 =) =
@ 2 (n) oA =8 90) 10
(b)Z i+i+i+ —ii—ﬂif i+i [subtract & anda]—w—zlfl—7
 (k—2)* 2) 38 T g T Tkt T 90 \1e ot ! 790 16
36. (a) f(x) = 1/2* is positive and continuous and f’(z) = —4/x° ishegative for > 0, and so the Integral Test applies.
> 1 1 1 1 1
— = = — 4+ — 4+ — 4...4+ — ~1.082037.
n; 1 NS0 = 4 tort 3 +o 08 082037

> 1 . 1] . 1 1 1 , _
Rip < /10 e dxr = tlirgo {—39@3] . = tlirrolo (fﬁ + W) = 3000° so the error is at most 0.0003.

> 1 1
(b)310+/11 deSSSSer/lO Fdl’ = S10+ —/——= (11)3_ §s <810+ —0——==

1.082037 + 0.000250 = 1.082287 < s < 1.082037 + 0.000333 = 1.082370, so we get s ~ 1.08233 with

3(10)3

error < 0.00005.

(c) The estimate in part (b) is s =~ 1.08233 with error < 0.00005. The exact value given in Exercise 35 is 7* /90 ~ 1.082323.

The difference is less than 0.00001.

(d) Rn§/ m—idm:#.SORn<0.00001 = 3—7113 <1—é5 = 3n®>10° = n> {/(10)5/3 ~32.2,

that is, for n > 32.

37. (@) f(z) = % is positive and continuous and f’(x) = —33 is negative for z > 0, and so the Integral Test applies.
x x
x 1 1 1 1 1
A S1I0= == 4+ — + == e+ —— ~ 1.549768.
nX::I 2 S10 B + > + 32 + + 102 549768

oo o t
Rip < / — dx = lim {—1} = tlirgo (f% + 1—10) = 1—10, so the error is at most 0.1.
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>~ 1 1
(b)81o+/ —2d96§8§810+/ —dz = s+ <s<swo+q1; =
11 L 10 T

1.549768 + 0.090909 = 1.640677 < s < 1.549768 + 0.1 = 1.649768, so we get s ~ 1.64522 (the average of 1.640677
and 1.649768) with error < 0.005 (the maximum of 1.649768 — 1.64522 and 1.64522 — 1.640677, rounded up).

(c) The estimate in part (b) is s ~ 1.64522 with error < 0.005. The exact value given in Exercise 34 is 7° /6 ~ 1.644934.

The difference is less than 0.0003.

1
n< — - —. - —_— .
DR /n dx So R, < 0.001 1f < 1000 & n > 1000

flz)= xe 2% is continuous, positive, and decreasing on [1, 00), so the Integral Test applies. Using (2),
= 2 t ‘ 2 using parts with
—4r — 1 _ 1, . 2z 1,2z
Rng/ﬂ re dm_tllrgo([ 2 %€ ]"+/n 2¢ dl’) |:u:I,dU=€72IdI

. —1 n 1 1 1 2n+1
tl)rgo (2€2t + 26271, 46215 + 46277,) T 5 26277, + 4€2n 462n

. 1 oo
To be correct to four decimal places, we want Ze::l < %05 This inequality is true for n = 6.
5. n 1 2 3 4 5 6
86=n§162—n=€—2+g+€—6+6—8+€ﬁ+m=0.1810.

f(z) = 1/(22 + 1) is continuous, positive, and-decreasing on [1, c0), so the Integral Test applies. Using (2),

—1 i 1
102z + 1) } T 10(2n + 1)

R, < / (2z + 1) der = hm { . To be correct to five decimal places, we want
1 5

1 ~ —
mgﬁ & (2n+1)° >20,000 < n>1({/20,000 — 1) ~ 3.12,souse n = 4.

s—i; 1+i+l+i"‘0001446~000145

tT = (2n+1)5 36 " 56 76 g6

flz)= __#F is positive and continuous and f'(z) = _lnzt2 is negative for z > 1, so the Integral Test applies.
" z(lnw)? P © 22(Inz)3 & & PP

, > d -17° 1 ,
Using (2), we need 0.01 > / — Y _ lim |—| = ——. Thisis true for n > e'%% 50 we would have to add this
z(Inx)? Inz

n t—o0 11’1

o0
many terms to find the sum of the series >

N
n=2 n(ln TL) 2

to within 0.01, which would be problematic because

00 ~ 2.7 x 10%3,

E —1.001 __ Z 11001 is a convergent p-series with p = 1.001 > 1. Using (2), we get
n=1 n=1"
e —0.0017% t
—1.001 . x . 1 1 1000
fon = /n N dv = lim [—0.001] = —1000 lim Lo‘om} = —1000 (_W) = ~5oor- We want
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1000 L oo . 1000
R, < 0.000000005 < W <5x10 < n >W

1000

n> (2x10")7 =219 % 1009 &~ 1.07 x 10°" x 10"°%° = 1.07 x 10'+2%"

2
42. (a) f(z) = (thx) is continuous and positive for z > 1, and since f'(z) = 2inz(l-Inz)

poc < 0 for x > e, we can apply

Inz

2 2
. i -
the Integral Test. Using a CAS, we get / (7) dx = 2, so the series Y (%) also converges.
1 n=1

(b) Since the Integral Test applies, the error in s = s,, is R, < /

n

e (lnx>2 do — (lnn)2+21nn+2

n

(Inz)® +2lnz +2
x

(c) By graphing the functions y1 = and y» = 0.05, we see that y1 < y» forn > 1373.
(d) Using the CAS to sum the first 1373 terms, we get si373 ~ 1.94.
43. (a) From the figure, az + a3 + - - + an < )" f(z) dz, so with y

+-~+l§/ ldaz:zlnn.
n 1z

N

f@)==5+

Thus,snzl—i—l—l—l—}-l—}uu—l—l§1+lnn.
2 3 4 n

(b) By part (a), s196 < 1+ 1n10° ~ 14.82 < 15 and
5100 < 14+1n10° & 21.72 < 22.
44. (a) The sum of the areas of the n rectangles in the graph to the right is
11 1 "Hdr .
1+-+ -+ -+ —. Now / dz is less than this sum because
2 3 n 1 T

the rectangles extend above the curve y = 1/x, so

ntlq 11 1 .
/ —dr=In(n+1)<1+4+=+=+ -+ —, and since
1 x 2 3 n 0l 1 23 ... nntl x

1 1 1
lnn<ln(n+1),0<1+§+§+~--+E—lnn:tn,

(b) The area under f(z).= 1/x betweenz = nandz =n + 1is Y

<
I
==

n+1 d
/ ?x =In(n + 1) — Inn, and this is clearly greater than the area of i

0 n nt+l X
],so

the inscribed rectangle in the figure to the right {which is T
n

1 . .
tn —tnt1 = [In(n+1) —lnn] — P > 0, and S0 tn, > tny1, S0 {tn} is a decreasing sequence.

(c) We have shown that {¢,, } is decreasing and that ¢, > 0 for all n. Thus, 0 < ¢, < t; = 1, so {¢»} is a bounded monotonic

sequence, and hence converges by the Monotonic Sequence Theorem.
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, , 1 - . .
45. " = (™ b)lnn = (" ”)lnb =n"t = — This is a p-series, which converges for all b such that —Ilnb > 1 <

Inb< -1 & b<e ! & b<1/e [withd> 0]

46. For the series ) (

n=1

v

n n+l

(Lo
n n+1

—ct(e-1) (545 +gh o) - —
o 4 n n+1

c L 1
1 2 3 4 n n+1

ThuS,i(E— ! )ZlimanHm{ (c—l)i%—

. Since a constant multiple of a divergent series
n=1 \ 1 n+ 1 n— oo n— oo

n—+1

is divergent, the last limit exists only if ¢ — 1 = 0, so the original series converges only if ¢ = 1.

11.4 The Comparison Tests

1. (a) We cannot say anything about > ay. If a,, > b, for all n and > by, is convergent, then Y a,, could be convergent or

divergent. (See the note after Example 2.)
(b) If a,, < by, for all n, then Y a,, is convergent. [This is part/(i) of the Comparison Test.]
2. (a) Ifa,, > by, for all n, then Y ay, is divergent: [This.is part (ii) of the Comparison Test.]

(b) We cannot say anything about | a,,. If @, < by, for all n and > by, is divergent, then > a,, could be convergent or

divergent.
3 1 < — foralln > 1, so Z converges by comparison with Z L which converges because it is a p-series
e B ~ ges by comp 2 g p
withp =3 > 1.
4 ! — foralln > 2, so Z ! d1verges by comparison with Z which diverges because it is a p-series
N f < /n — f
withp= 1 < 1.
n—+1 n e

foralln > 1, so dlverges by comparison with Z ! , which diverges because it is a

1
. oy —=
nvn  nvno Vn nln\/_ n=1vVn

p-serieswithp = 3 < 1.

n—1 n n 1 Zn-1
’I’l?’——i-]_<n3—|—]_ —3:Fforalln21,50;n3+l

. . 1 .
converges by comparison with E —, which converges
n

n=1

because it is a p-series withp =2 > 1.

9" 9n 9\" = o 0 S
7. 31 10" <1gm = <E) foralln > 1. Z:: ()" is a convergent geometric series (|| = 5 < 1),s0 >

converges by the Comparison Test.
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6" 6" 6\" & evn. L <
il foralln > 1. Y (£)" is a divergent geometric series (|r] = £ > 1), so Z dlverges by
n=1 n=1

the Comparison Test.

% > % forallk > 3 [since Ink > 1 fork > 3],s0 > % diverges by comparison with > %, which diverges because it
k=3

. . . . . < Ink | . .
is a p-series with p = 1 < 1 (the harmonic series). Thus, > = diverges since a finite number of terms doesn’t affect the

k=1
convergence or divergence of a series.

ksin® b < K < LA forallk > 1, s0 Z kisin k converges by comparison with Z which converges
T+ k5 14k & k2 1+k° ges by comp k2’ g

because it is a p-series withp = 2 > 1.

VEk VE KV 1 Ve < 1
—_— < — = forall K > 1, b i ith —
T < v T3z = Joye fora ) Z BT converges y. comparison wi kX:: RIC

which converges because it is a p-series with p = % > 1.

(2k—1)(K* —1)  2k(K®) 2K 2 < (2k — 1)(k* —

=2 2 > A A S
(a2 R ks g oralk 2 lso 3 e Gy

which converges because it is a constant multiple of a p-series withp = 2> 1.

. . > 1
converges by comparison with 2 z k:_’

1+ cosn 2 foralln > 1 N2 . . . _1 1+ cosn by th
———— < —foralln > 1. Z prl a convergent geometric series (Jr| = < < 1), so Z o converges y the

en
n=1 n=1

Comparison Test.

1 1 1
< <
J3nt+1 V3nt v n4

converges because it is a p-series with p = % > 1.

. =N | .
converges by comparison with Y ——, which

foralln>1soz T 5
v 3n4 n=1 n4/3

gntl o 4.qn 4\" < (4\" < (4\" . L 4
>——=4( - | foralln>1 > 4(5) =4 (- | isadivergent geometric series (\T| =3> 1), S0
3n -2 3n 3 =1 \3 =1\ 3

oo 4n+1
> Cr— diverges by the Comparison Test.
n=1 -

1 . . . .
o § — foralln > 1, so Z —- converges by comparison with Z , which converges because it is a p-series with
p=2>1

- . . 1
Use the Limit Comparison Test with a,, = ——= and b,, = —
n?2+1

. Gn . n . 1 . . N

lim — = lim ————= = lim ———=—— =1 > 0. Since the harmonic series Y, — diverges, so does
n—oo by n—oo \/n2 +1 n—oo /1 4 (]_/n2) =1 n

e 1
ngl n2 + 1
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- . . 2
Use the Limit Comparison Test with a,, = ——— and b,,

1
VR RN
Pl

m @ = fm 2" oy 2 920 Since

di t p-seri = 1 < 1], the seri
A nﬂoo\/_+2 THOO1+2/\/_ is a divergent p-series [ p = 5 < 1], the series

T

e}

2

———— is also divergent.
nX::I \/7_l + 2 €

- . . n+1
Use the Limit Comparison Test with an = — and b, = —:
n°+n n
. an . (n+1)n? . ni4n 1+1/n . x 1. .

nlirr;o b nh—>Holo PICEE] = nh—>n;o o nlﬁoo TR = 1> 0. Since n;1 5 isa convergent p-series

[p = 2 > 1], the series ni::l :3—:_1” also converges.
Use the Limit Comparison Test with a,, = % and b, = %:
nILH;o Z—: = nlirr;o % = nlin;o TLGer—:L_Jlrl = nlin;o %Jnl!nz =1 > 0. Since ni; % is a convergent
p-series [p = 2 > 1], the series io:l %M also converges.
=

. . . V1 1
Use the Limit Comparison Test with a,, = vitn and b, =

2+mn ﬁ:

n v Vn? Vn V1i+1
lim = = lim Vit nyn = lim Y2 Vit n/ve? = lim yitln = 1> 0. Since Z i is a divergent p-series
n—o00 bn n—o00 2+n n—o0 (2+n>/n n—o0 2/n+1 n=1

[p=3 < 1], theseries )

n=1

also diverges.

2 V1i4n
24+n

- . . 2 1
Use the Limit Comparison Test with a,, = nte and b, = —:
(n+1)3 n?
lim 22 = lm M = lim i 1 > 0. Since z i is a convergent (partial) p-series [p = 2 > 1]
TLHOObn_TL——)OO (n—|—1)3 _nﬂoo(l_"_ 1) - 713n g p p- - ’
n+2
the series also converges.
Z 1) g
. . . 2 1
Use the Limit Comparison Test with a,, = St2n and b, = —:
(1+n2)2 n3
3 3 4 4 5 oo
lim 2% = lim Gl ) jm 22 I _ lim —*———= =2>0. Since ) a1 is a convergent
n—o00 bn n— o0 (]_ + n2)2 n— 00 (]_ —I— n2)2 1/(n2)2 n— 00 (_1f + 1) n=1 ’)’L3
. X 5+2n
p-series [p = 3 > 1], the series Z m also converges.

(© 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



1002 [ CHAPTER11 INFINITE SEQUENCES AND SERIES

n n n n 1
24.n+3 < 3 > 3 _ 3 :_(g> sotheserlesz

1 — "
nT T hxr iy 2.2 -3 dlverges by comparison with 5 2:: ( )

which is a constant multiple of a divergent geometric series [|r| = % > 1].  Or: Use the Limit Comparison Test with

n -+ 2m 2
"+1 "+1 "4+ 1 1 . . . .
25, nee”t— I > nee"t- = nfe"t— ol == for n > 1, so the series nzl —"J:- T diverges by comparison with the divergent
. . 1 .. . . "+1 1
harmonic series E —. Or: Use the Limit Comparison Test with a,, = e 1 and b, = —
—n ne™ + 1 n
26. If a,, = ; and b, = i, then
nvn2 —1 n?
an n/n . 1 1
lim — = lim ———— = lim = lim ==-=1>0,s0 conver es by the
n—oo bn n—00 74 /n2 n— A /n2 /n n—oo /1 _ 1/n2 1 nZZ n /n2 g y
o0

Limit Comparison Test with the convergent series >, —-

2 2
27. Use the Limit Comparison Test with a,, = (1 + l) e "and by = e ": lim dn _ lim (1 + l) =1 > 0. Since
n n

n—oo Op n—oo
> e " = > — isaconvergent geometric series [|r| = ¢ < 1], theseries ) (1 + —) e~ " also converges.
n=1 n=1 € — n
e/m 1 x el/n ; > 1
28. > — foralln > 1,s0 > divergesby comparisen with the harmonic series » , —.
n n=1 n=1
1 S}
29. Clearlyn! =n(n—1)(n—2)---(3)(2) >2-2-2----- 2.2=2""1s0 = < Z is a convergent geometric
n! =
. ) < 1 .
series [|r| = 4 < 1],s0 3 — converges by the Comparison Test.
n=1 b
n! 1-2.3-+--+(p=1)n _1 2 2
30, v <Z.Z 11 1 fi > 2, = =2>1 —
o .\ s orn so since z 5 converges [p 1, Z converges

n=1T

also by the Comparison Test.

L . . (1 1 N .
31. Use the Limit Comparison Test with a,, = sin (—) and b, = —. Then > a, and ) b, are series with positive terms and
n n

lim 2 = lim sin(1/n) = lim sinf = 1> 0. Since ) by, is the divergent harmonic series,

n—oo bp n— oo 1/n 6—0 0 n=1

>~ sin (1/n) also diverges. [Note that we could also use I’Hospital’s Rule to evaluate the limit:

n=1

. 1 (=122
lim M L lim cos(1/2) ( /2 ) = lim (:os1 =cos0=1]
z—00 /x z—00 —1/22 T 00 T
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. . . 1 1 . an . no 1
Use the Limit Comparison Test with a,, = peEEy and b, = - nlLHolo B nan;o prEsyib nan;o = 1
[since lim #'/* =1 by I’Hospital’s Rule] ,80 > % diverges [harmonic series] = > %1/ diverges.
00 n=1 n=1T "
10
1 1 1 1 1 1 1
= s ——— = 0.19926. N — th i
;5_1_”5 5+15+5+25+5+35+ +5+105 0.19926 0W5+n5<n5,s0 e error is
® 1 b -171" -1 1 1
<Tio < —dr=1 der = 1i — =1l — = =0. 25.
Hio = Tho < /10 P 2 S {43[;4]10 A\ 42+ o000 ) = 20000 — 000002
10 el/m el/1 el/2 el/3 1/10 el/m e
; v :T+?+?+~~+ ot =~ 2.84748. Now o~ gmfornZI,sotheerrorls
=9 t t
e . —4 . —e . —e e e
Rio<Tw< | Zdv=1 do = Jim [=2] = Jim (o )= ~ 0.000 906.
0= 410 = /10 A= e ar = 1E ], T i \33 T 3000/ ~ 3000
10 2 2 2 2 2
n;1 5 "cos?n = COS5 ! CO; 2 + CO5S3 S 4. + co551010 ~ 0.07393. Now co;n " < 5%, so the error is
o 1 t 5= t 5=t 5—10 1 s
Rio <Tio < —dz = li 5 7 dr = i — =1 ——t — | =—— < 6.4x107".
10 = 10_/;0 = T 10 v tggo[ ln5:l10 tggo( ln5+ 1n5> 5101n5 <
i ! - + ! + ! +---+¥~019788 Now ! < ! S so the
o 3n44n T 31441 T 32442 7 33 443 310 410 — ' 3n44n T 3n43n 2.307
error is

oo t -zt —t —10
R10§T10§/ ! de = lim l3_acd33= lim —13 = lim —13—4-1 3
2 2 t—oo 21n3

0 237 i—oo J1§ i—oo| 23], 1 2 In3
C_ 1 _77x10°°
©2-30In3 T ‘
Since n < 2 for each m, and since io: 2 is a convergent geometric series (|r| =1 < 1) 0.didods ... = 5= A
10 = 10n ' W= 10m 10 o =R

will always converge by the Comparison Test.

Clearly, if p < 0 then the series diverges, since lim =oo0. If0<p<1 thenn’lnn <nlnn =

n—oo NP Inn

1 & 1 . . x . .. .
> and > diverges (Exercise 11.3.21),s0 > diverges. If p > 1, use the Limit Comparison
nPlnn nlnn n—enlnn e nPlnn
Test with a,, = L and b, = L i by, converges, and lim - = lim L _ 0, so i also converges
" prlnn Y e £, n—oob, mn—oolnm ,=hnPlnn £es.

(Or use the Comparison Test, since n” Inn > n? for n > e.) In summary, the series converges if and only if p > 1.
Since Y an converges, lim a, = 0, so there exists NV such that |a, — 0| < 1foralln > N = 0<ua, <1 for
n—oo

alln >N = 0<a2 <a,. Since a, converges, so does 3 a2 by the Comparison Test.
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40. (a) Since lim (an/bn) = 0, there is a number N > 0 such that |a, /b, — 0] < 1 foralln > N, and so a, < by, since an

and b,, are positive. Thus, since Y b,, converges, so does > a,, by the Comparison Test.

. _Inn _ 1 an .. Inm . lnzn I 1/z
® (O Ifa, = 5 and b, = — , then nh—>Holo b nlirr;o = wlgr;o il erolo Z converges by
part (a).
. 1 1 n 1 1 . 1 . 2
(i) Ifa, = % and b, = o , then nll»n,olo Z—n = nlirréo % 111330 % 4 xlaoo 1/(2/3_) xlingo == 0. Now

> by, is a convergent geometric series with ratior = 1/e [|r| < 1], so Y a, converges by part (a).

41. (a) Since lim Z—" = 00, there is an integer N such that Z—” > 1 whenever n > N. (Take M = 1 in Definition 11.1.5%)

n—oo Op n

Then a,, > b, whenever n > N and since ) by, is divergent, Y _ a,, is also divergent by the Comparison Test.

®) @) Ifa, = liandbn = —forn>2 then Tim & = lim — = lim — % Jim S = Tim o = oo,

n—oo On n—oo Inn T—00 h’laj T—500 xT 2z — 00

x 1
by part —— is di t.
so by part (a), nXZ:Z [, 18 divergen

. 1 1 * . . . . . n . .
>ii) If a,, = % and b,, = - then > b, is the divergent harmonic series and dim " — lim Inn = lim Inz = 0,

— — —
n—=1 n—o0 Op n—00 T— 00

so Y an diverges by part (a).

n=1

1 an 1
42. Leta, = — and b, = —. Then lim — = lim — =0, but Y _ b, diverges while > a,, converges.

n—o0 Op, n—oo M

1
43. lim na, = lim In 5o we apply the Limit Comparison Test with b, = —. Since lim na, > 0 we know that either both

n—o00 n— o0 1/n n n— o0

. L > 1 . Lo
series converge or both series diverge; and we also know that > — diverges [p-series with p = 1]. Therefore, Y a,, must be
n

n=1
divergent.
. : . 8 . In(1+4+2) . 1 . .
44. First we observe that, by ’Hospital’s Rule, hn}) - = hr% T2 = 1. Also, if _ a,, converges, then lim a, = 0 by
1 In(1 . .
Theorem 11.2.6. Therefore,. lim L a+ an) = 1in% n( ;_ z) =1 > 0. We are given that > _ a,, is convergent and a,, > 0.
n— oo n z—

Thus, > In(1 + ax ) is.convergent by the Limit Comparison Test.

45. Yes. Since Y a,, is.a convergent series with positive terms, lim a, = 0 by Theorem 11.2.6, and }_ b, = >_sin(a,) isa

n— 00

sin(an)

series with positive terms (for large enough n). We have lim bn = lim =1 > 0 by Theorem 3.3.2. Thus, ) b,

n—0o0 Ap, n—oo Qn

is also convergent by the Limit Comparison Test.

46. Yes. Since ) a, converges, its terms approach 0 as n — oo, so for some integer N, a,, < 1 forall n > N. But then
S anbn = SN anby + 3200y anbn < SN anb, 4+ 320 by, The first term is a finite sum, and the second term

converges since > - . b, converges. So >  anb, converges by the Comparison Test.
n=1
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11.5 Alternating Series

1. (a) An alternating series is a series whose terms are alternately positive and negative.

(b) An alternating series > an = > (71)”71bn, where b, = |an|, converges if 0 < bp41 < by, foralln and lim b, = 0.
n=1 n=1 n— oo

(This is the Alternating Series Test.)

(c) The error involved in using the partial sum s,, as an approximation to the total sum s is the remainder R,, = s — s,, and the

size of the error is smaller than by, 1; that is, | R,,| < b,,11. (This is the Alternating Series Estimation Theorem.)

2 2 2 2 2 & 2
2.2 Z4Z o4 =S (-1 2 Nowb, = i fim b, = 0,50 th
373 + 779 17 nz::l( ) o1 ow b T 1 > 0, {b, } is decreasing, and nLII;Ob 0, so the
series converges by the Alternating Series Test.
2 4 6 8 10 x 2n 2n 2 2
3, 4 _ 42— 4= —1H" .Now lim b, = li = lim ——— = - #0. Si
5t 7T 9t 2 (0" o= Now B by = imom = im 9= = 7 7 0- Sinee
lim a, # 0 (in fact the limit does not exist), the series diverges by the Test for Divergence.
1 1 1 1 1 o (—=1)"+t 1 . . )
4, — - — + — — — f — — ... = ~——=— Nowb, = —— , {bn , lim b, =0,
In3 1In4 + In5 In6 + In7 n; In(n+2) ¥ In(n +2) > 0, {bn} is decreasing, and el 0

so the series converges by the Alternating Series Test:

oo oo _1 n—1 oo 1 ) ) )
5, Z an, = Z (Gt Z(fl)"_lbn. Now b, = e 0, {bn} is decreasing, and lim b, = 0, so the series

n=1 n=1 n=1

converges by the Alternating Series Test:

> = (-t & 4 1 . . . .
6. an = — = —-1)"""b,. Now b, = > 0, {b,} is decreasing, and lim b,, = 0, so the series
2= et Y Vs 7 O e} s decressing and fiy
converges by the Alternating Series Test.
5 4 S gz = 5 (<1)"b Now lim b, = lim % _ g #0. Since lim a,, # 0

(in fact the limit does not exist), the series diverges by the Test for Divergence.

S 0 2 > n? 1
;a ;( U ,;( )b Now lim b = i e T T M T e

Since lim a, # 0, the series diverges by the Test for Divergence.

n—o0

S}

& & 1 . . . .
9. Y an= > (-1)" "= > (-1)"bn. Now b,, = = > 0, {b,} is decreasing, and lim b,, = 0, so the series converges
n=1

n=1 n=1 n—oo

by the Alternating Series Test.
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10. b, = v > 0forn > 1. {b,} is decreasing for n > 2 since

2n+3
vz} (@r+3) (%fﬂ_m) —a'2(2)  157172((9p 4 3) — 44 32 s
= 5 = 5 = <Oforz > 3.
2z +3 (2z + 3) (2z + 3) 2/x (2x + 3)2
Vn/vn : 1 Lo vn
Also, lim b, = li =1 = 0. Thus, th -H" by th
so, lim Jim Gt 3)vn Jim Ny us, the series nZ::l( ) om 1 3 converges by the
Alternating Series Test.
n2
M. b, = —— > 0forn > 1. {b,} is decreasing for n > 2 since

n3 +4

22\ (2 4+ 4)(22) —2%(32%)  x(20® +8-32%)  x(8 —a%) <Oforz > 2 Al
Brd) (23 + 4)? T T @142 (a4 77 % T

2

1/n
O = L T g =

o0
= 0. Thus, the series > (—1)"** 4 converges by the Alternating Series Test.
n=1

n3 +
12. b, =ne™ " = 6% > 0forn > 1. {by,} is decreasing for n > 1 since (ze *) = z(=e %) +e * =e *(1 —z) < 0 for

o0
x > 1. Also, lim b, = O since lim LB i L = 0. Thus, theseties > (—1)"* ne™™ converges by the Alternating
x

n—oo xr—oo e T—00 €

Series Test.

e}
13. lim b, = lim e*" =¢® = 1,50 lim (—1)""%e* does not exist. Thus, the series 3 (—1)"'e?/™ diverges by the
n=1

n—oo n—0o00 n—oo

Test for Divergence.

™

o0
14. lim b, = lim arctann = Z,so lim (—1)"~!arctann does not exist. Thus, the series > (—1)
n=1

5 "=1 arctann diverges
n—oo n—oo n—00

by the Test for Divergence.

sin(n + ) _ (AP

15. a, = Ty A gy Now by, =7 mn \/_ > 0 forn > 0, {bn} is decreasing, and nlinolo bn, = 0, so the series
ni;o % converges by the Alternating Series Test.

16. an = nc;% ~~ (71)”2% = (—1)"bn. {bn} is decreasing for n > 2 since
(z27") =2(—2""In2)+ 2 =2"%(1—=zln2) < Oforz > ﬁ [~1.4]. Also, nan;O b, = 0 since
xlirgo % 2 xlirr;o WIHQ = 0. Thus, the series i neosnm converges by the Alternating Series Test.

n=1 n—00

17. i (=" sin(%). b = sm(n) > 0 forn > 2and sm(Z) > sin(nj_1>, and lim sin(%) =sin0 = 0, so the

series converges by the Alternating Series Test.
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SECTION 11.5 ALTERNATING SERIES 0 1007

T . L
(—) does not exist and the series diverges by the Test

n— 00

n n—oo

for Divergence.

n" onen-ee. n .on" . (=1)"n" . X n" .
19. —=—————>n = lim — =00 = lim ~———— does not exist. So the series > (—1)" — diverges
TL' 1-2..... n n— oo n' n—oo TL' n=1 TL'

by the Test for Divergence.

1
20. b, - =
1 Vitl+yn Vatl+vn Va+l+yn

21.

22

>0forn > 1. {bn} is decreasing and

_vn+ -vn Vntl+yn _ (nt1)-n

o0
lim b, = 0, so the series > (—1)" (v/n+ 1 — y/n) converges by the Alternating Series Test.
n=1

n—o0

1 The graph gives us an estimate for'the sum of the series
> (—0.8)"
ngl ] of —0:55.
{4}
+ 9
bs = (0'8—82 ~ 0.000 004, 56
{$:}
J
-1
> (=08)" L (=08)"
anjl n! e nX::I n!

~ —0.8 + 0:32 — 0.0853 + 0:01706 — 0.002 731 + 0.000 364 — 0.000 042 ~ —0.5507

Adding bg to s7 does not change the fourth decimal place of s7, so the sum of the series, correct to four decimal places,

is —0.5507.
0.2 i i i
- N The graph gives us an estimate for the sum of the series
o _ nflﬂ
WL | g
{a.} be = S ~ 0.000 023, so
e T S S S 9 86 ’ ’
. J
-0.1
e n 5 ne1 M
(D) s = 3 ()T
n=1 8 n=1 8

~ 0.125 — 0.03125 + 0.005 859 — 0.000 977 + 0.000 153 ~ 0.0988

Adding be to s5 does not change the fourth decimal place of s5, so the sum of the series, correct to four decimal places,

is 0.0988.
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_1\n+1
(=1) satisfies (i) of the Alternating Series Test because 5 < % and (i) lim ni =0, so the

>, 1
23. The series —_— =
p3) D) ;

nb
L 1 1 . .
series is convergent. Now bs = 5 = 0.000064 > 0.00005 and bg = 5 =2 0.00002 < 0.00005, so by the Alternating Series

Estimation Theorem, n = 5. (That is, since the 6th term is less than the desired error, we need to add the first 5 terms to get the

sum to the desired accuracy.)

& 1 . . . . 1 1
= nzzjl(—])n = satisfies (i) of the Alternating Series Test because m < B and

4

n

24. The series
n=1

R 1 .. 1 1

(i) lim —— = 0, so the series is convergent. Now b5 = ——= ~ 0.0008 > 0.0005 and bs = —— ~>0.0002 < 0.0005,
n—oo N3" 5.35 6-36

so by the Alternating Series Estimation Theorem, n = 5. (That is, since the 6th term is less than the desired error, we need to

add the first 5 terms to get the sum to the desired accuracy.)

_1\n—1
) — satisfies (i) of the Alternating Series Test because T 11)22n+1 < n2127l and (ii) nan;o # =0,

Lox (-1
25. Th ~—
e series n2=:1 35

1 .
FDE 5796 ~0.0004 <'0.0005, so by the Alternating

Series Estimation Theorem, n = 5. (That is, since the 6th term is less than the desired error, we need to add the first 5 terms to

.. 1
so the series is convergent. Now b5 = —— = 0.00125 > 0.0005 and bg =

get the sum to the desired accuracy.)

& 1\" & 1 1 1
26. The seri = = —1)™— satisfies (i) of the'Alternating Series Test b ——— < —and
e series nz::1 ( n) nz::I( ) — satisfies (i) of the Alternating Series Test because CEE < — an

. 1 Lo 1 1
(i) lim = 0, so the series is convergent. Now bs = 75 = 0.00032 > 0.00005 and bg = 5 ~ 0.00002 < 0.00005, so

by the Alternating Series Estimation Theorem, n = 5¢ (That is, since the 6th term is less than the desired error, we need to add

the first 5 terms to get the sum to the desired accuracy.)

1 1
2. b =g = 40,320

~ 0.000 025, so

S G D AUV G DI SIS SRS SUPUN
by PSS 2 g T g T g g Y 040972

Adding b4 to s3 does not change the fourth decimal place of s3, so by the Alternating Series Estimation Theorem, the sum of

the series, correct to four decimal places, is —0.4597.

(-~~~ 1 1 1 1 1 1 1 1 1

28. Ny =-— —— +— — —+— — — + — — — 4 — =0.985552. Subtracting b1o = 1/10° from sg

18

nbé

Il
-

n
does not change the fourth decimal place of sg, so by the Alternating Series Estimation Theorem, the sum of the series, correct

to four decimal places, is 0.9856.

> . _on 1 2 3 4 5 .
29. Z(_l) ne 2" & s5 = S+ 3%+~ 2o~ 0105025, Adding bs = 6/e'? ~ 0.000 037 to s5 does not
n=1

change the fourth decimal place of ss, so by the Alternating Series Estimation Theorem, the sum of the series, correct to four

decimal places, is —0.1050.
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31.

32,

33.

34.

35.

36.
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2 (-1t 1 1 1 1 1 1 , 1
I N S P _ _ ~ 0.223136. Adding by = —— =~ 0.000 0087 t
; dn 7 B S P S BT S-S R TS Me 0T =747 0 %6

does not change the fourth decimal place of sg, so by the Alternating Series Estimation Theorem, the sum of the series, correct

to four decimal places, is 0.2231.

+~~~+i—i+i—i+~~. The 50th partial sum of this series is an

= (-1 1
2 4 49 50 51 52

AN [
n=1 n

N~
Wl

. . —1)n—t 1 1 1 1 . .
underestimate, since L = 850 + ( ) + (— — —) + - - -, and the terms inparentheses are all positive.
n

51 52 53 54

s

The result can be seen geometrically in Figure 1.

! < n—lp ({1/nP} is decreasing) and lim % = 0, so the series converges by the Alternating Series Test.

pr>0,m7

n—1
Ifp <0, lim %

n—oo n

)nfl

> (-1
does not exist, so the series diverges by the Test for Divergence. Thus, ) (71)
n—=1 T

converges < p > 0.

oo _ n
is decreasing and eventually positive and lim b, = 0.forany p. So the series (n Jlr)p

n— oo

1
Clearly b, = converges (b
y - verges (by

n=1

the Alternating Series Test) for any p for which every by, is defined, that is, n + p # 0 for n > 1, or p is not a negative integer.

Inz)” Inz)’ ' (p—1 , , .
Let f(z) = ( n;) . Then f'(z) = (Inz) x(f ) < 0if x > €? so f is eventually decreasing for every p. Clearly
. (Inn)? . . , - . . .
nh 0 = 0if p <0, and if p > 0 we canapply I’'Hospital’s Rule [p + 1] times to get a limit of 0 as well. So the series
e () .
S (-1) ——— converges for all p (by the Alternating Series Test).
n=2

S ba, = 3. 1/(2n)2 clearly converges (by comparison with the p-series for p = 2). So suppose that 3° (—1)" "' b,,

converges. Then by Theorem 11.2:8(ii), so does >_ [(—=1)" 'bn + bn] =2(14+ 2+ 2 4+---) =22 But this

1
2n —1°
diverges by comparison with the harmonic series, a contradiction. Therefore, > (—1)"71 b, must diverge. The Alternating

Series Test does not apply since {b,, } is not decreasing.

(a) We will prove this by induction. Let P(n) be the proposition that s2,, = han — hyn. P(1) is the statement s = ha — h1,

whichiis true since 1 — 3 = (1+ 3) — 1. So suppose that P(n) is true. We will show that P(n + 1) must be true as a

consequence.

1 1 1 1 1

_r 1
2n+1 2n+2

= Sop, + = S2n+42

which is P(n + 1), and proves that sa,, = ha, — h,, for all n.
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(b) We know that ha, — In(2n) — v and h,, —lnn — yasn — co. So
Son = han — hn = [h2n — In(2n)] — (hn —Inn) + [In(2n) — Inn], and

lim sop =7v—7v+ hm [ln(2n) Inn]= lim In2+Inn—Inn) =1n2.

n—oo n— oo

11.6 Absolute Convergence and the Ratio and Root Tests

1.

1
by = > 0 forn > 1, {b,} is decreasing forn > 1, and lim b, =0, so Z

An+1

(a) Since lim = 8 > 1, part (b) of the Ratio Test tells us that the series > a,, is divergent.

n—oo | Anp

(b) Since lim dntll — 0.8 < 1, part (a) of the Ratio Test tells us that the series )  a,, is absolutely convergent (and

n—o00 an

therefore convergent).

An+41

= 1, the Ratio Test fails and the series a,, might converge or it might diverge.
an

(c) Since lim

=t .
converges by the Alternating

VA e &

> 1
Series Test. To determine absolute convergence, note that " ——= diverges because it.is ap-series with p = % < 1. Thus, the
n

n=1
oo n—1
series E ( ) is conditionally convergent.
= vn
1 (- 1)" .
bn = o] > 0 forn > 0, {b,} is decreasing for n > 0, and lim b, = 0, so Z B ] converges by the Alternating
n—oo n=0

. . 1
Series Test. To determine absolute convergence, choose a,, = — to get
n

n 1 . b 1 x . .. . .
'rLlerolo Z_n = nlL 0 % = nlggo n+ I'Q 5> 0, so ngl 5 1 diverges by the Limit Comparison Test with the
(—1 )” .
harmonic series. Thus, the series Z o 1s conditionally convergent.
n=0
0< —4—— 1 < — forn > 1 and Z — is a convergent p-series (p = 3 > 1), so i ! converges by comparison and
' n3 +1 et e nm1n? 41 Bes by comp

the series Z (1) is absolutely convergent.

3
- n +1
sinn —forn > 1 and L =1c<1 b
on < —forn an Z — is a convergent geometric series (r = = < ), SO Z converges by
n=1
comparison and the series Z ST s absolutely convergent.
n=1
. bp = nQL—i-él > 0 forn > 1, {b,} is decreasing for n > 2, and nan;o b, =0, so nZ::l(—l)”’l T converges by the

. . . 1
Alternating Series Test. To determine absolute convergence, choose a, = — to get
n
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1.

12.

13.

14.

15.
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2
m 2= fim Mgy A gy
n—oo Op n—oo n/(’n2+4) n—oo ']’L2 n—oo

1+4/n* =1>0,s0 Z dlverges by the Limit

o0
Comparison Test with the harmonic series. Thus, the series S (—1)""! is conditionally convergent.
n=1

_n
n2+4

n . 5 . . 1+1 - .
N I T I A
absolutely convergent by the Ratio Test.

.| Gng1 . —)ntt p? . n? 1 )

I — =1 — ——1 =1 —2 =2lim ———=2(1)=2>1 th
nLn;o An, nLHolo (n + 1)2 (-2)" nLHolo ( ) (n + 1)2 nLH;o (1 + 1/n) ( ) > 1» S0 The series
> (_22) is divergent by the Ratio Test.
n=1 n

. anta (—=1)m3n+t 2mn3 . 3 n® 3 . 1 3 3

1 —| = lim . =1 — =z lim —————=-(1)=2->1
nLH;o an n— 00 2"+1(n + ) (—1)"713” nl»nolo 2 (’I’L + 1)3 2 nl»rr;o (1 =+ 1/n)3 2( ) 2 > b
so the series Z is divergent by the Ratio Test.

. |ansr . -3)"* (2n+1)! , 1 1

1 =1 =1 —3)e———Fr—— (=3 lm ——————
noo | am | nveo ‘ Bt 3 | A e ey S w2

=3(0)=0<1
(=3)" -
so the series Z ————— is absolutely convergent.by the Ratio Test.
n=o (2n 4+ 1)!
lim |24 = Jim _1 k—' = lim —— ! =0 < 1, so the series i 1 is absolutely convergent by the Ratio Test

Since the terms of this series are positive; absolute convergence is the same as convergence.

= lim k+1 et = 1 lim L+ 1/k = 1(1) ~1 < 1, so the series
k—oo k 1 e e

€ k—oo

(k4 1)e= (D)
ke—k

Ap+1
ag

lim

k—oo

k—oo

zlim’

Z ke~* is absolutely.convergent by the Ratio Test. Since the terms of this series are positive, absolute convergence is the
same as convergence.

an+1
an

= lim

n—o0

lim.

n—o0

lim 10n+1 . (TL + 1) 42n+1
oo | (n 1 2) 42048 10"

10 n+1 5 R 10"
(42 . n+2) = g <1, so the series Tglm

is absolutely convergent by the Ratio Test. Since the terms of this series are positive, absolute convergence is the same as

convergence.
' n
nlLH;o aZ—:l = nh—>Holo {(17100%1)1 . 1(:3 } =] LH;O nl—(;_()l = 00, so the series n21 100 diverges by the Ratio Test.
. angr| (n+Dr"tt (=3)» ' T on+ll 7 l+1/n _m. . 7
e | T % | () e R e I I L R
series Z - 3 T diverges by the Ratio Test. Or: Since lim |an| = oo, the series diverges by the Test for Divergence.
n—o0
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16.

17.

18.

19.

20.

21.

22,

23.

. ansa |+ 1) (—10)7t? , 1 (n+1\° 1 1\ 1 1
1 =1 : = lim |— =1 142) =—(1)=—= <1
noo | Ty | oo | (—10)7F2 T p10 oo |10\ 0 0% \" "7 oM=<t
o 10
so the series ) W is absolutely convergent by the Ratio Test.
n=1\""
n . 1 ! . 1
lim |4 = Jim cos{(n + )m/3] i = lim _cos|(n+ /3] = lim —— =0<1 (where
n—oo| Gn n—oo (n+1)! cos(nm/3)| n—oo|(n+1)cos(nm/3)| n—ocon+1

0 < ¢ < 2 for all positive integers n), so the series Wis absolutely convergent by the Ratio Test.
n=1 .
. angr| (n+D! " (n4+Dn" n* 1 1
nh—>n;o Qan B nh—>Holo (n + 1)n+1 TL' B nh—vn;o (n + 1)n+1 B nh—>ngo (n + 1)" - nh—{go (1 + 1/71)” - € =< 1, 5% the

== 71 .
series » —- is absolutely convergent by the Ratio Test.
n=11

-~ ann . |(n+1)*100" n! . 100 (n+1\'° . 100 1\'°
1 =1 . =1 =1 14—
nLn’olo an 'nLn’olo (’fl —+ 1)' nl00100" 'nl»ngo n+1 n nLn;o n+1 + n
=0-1=0<1

oo n100100n

so the series is absolutely convergent by the Ratio Test:

n=1 n!
. lans 2(n+ 1)) (n!)? . (2n+2)2n+1) L (2+2/n)(24+1/n) 2.2
lim = lim |—— - = lim —————————= = lim = =4>1,
n—oo | Qn n—o00 ‘ [(n + ])!]2 (2n)' n—00 (n —+ 1)('{1, —+ 1) n— 00 (] =+ l/n)(l =+ 1/n) 1-1
X (2n)! .
so the series ) ()7 diverges by the Ratio Test.
n=1 (1.
-~ ant . (=)™ (n +1)! 1-3:5.-. (2n —1) . on+1
1 =1 - =1
ntoo | an | mseo|1-3-5- - (n—1)@2n+1) (—1)"—nl oo 20+ 1
L. 1+1/n X
=S, 7t
! ! | !
so the series 1 — 12—3 + 7 ?; B 1'34"5'7 4o (=) T35, n =1 + -+ - is absolutely convergent by
the Ratio Test.
g+2~5+2~5~8+2-5~8-11+.”_§2~5~8 11----- (Bn—1)
3 3.5.3-5-7 .3-5-7-9 =135 7-9--(2n4+ 1)
e @] g [22508 - Bn-1)Bn+2) 357 (2n +1)
n—oo | an n—ooo|3-5-7-----2n+1)2n+3) 2-5-8----- (Bn—-1)
.. 3n+2 . 3+2/n 3
e e R syl g
so the given series diverges by the Ratio Test.
. Gni1 2-4-6----- (2n)(2n +2) n! . 2n42 . 2(n+1)
1 =1 : = lim =—=2 = lim &~ ~2=2>1
oo | an ninio‘ (n+1) 246 (2n)| s il aese nil > 480
. X© 2.4.6--- 2 ) )
the series > 6T(n) diverges by the Ratio Test.
n=1 .
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26.

27.

28.

29.

30.

3.

32,

33.
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R ) 27 (p 4 1)! 5.8-11----- (3n +2) . 2(n+1) 2
I§ =1 . =1 ——= = - < 1,s0th
oo |, niri‘o‘&s-s-n--~-(3n+2)(3n+5) 3l W 3nys 3 e
. o 2" | . .
series ngl(_l)n T n BT o) is absolutely convergent by the Ratio Test.

2 2 ~ n
lim {/[an] = lim — L _ fim 1+ijn 1 < 1, so the series Z ( n’ +1 ) is absolutely convergent by the
noo

n—ooo2n2 +1  nooo 24 1/n? 2 2n2 +1
Root Test.
T — i o] 5D o 2 = Lo (=)
nlgr;o Ylan| = nlggo | = nlgr;o o= 0 < 1, so the series ngl vy is absolutely convergent by the Root Test.
lim {/lan| = lim } w = lim LI 0 < 1, so the series Z (_ )n : is absolutely convergent by the Root
Test.
2°n® 1 1
lim Yl|an| = = lim ————= =32 lim ———— =32 lim
Aim 3/ lan| n—oo (n + 1)5 n—oe /a1 n—oo (141/n)

n

=32(1)=32> 1,

n+1

co —on 5n
so the series Z ( > diverges by the Root Test.

2

n—0o0 n—oo

TL2 n oo n
lim V/|an| = lim ¥ (1 + %) = lim (1 + %) = e > 1 [by Equation 3.6.6], so the series ) (1 + %)
n— o0 n—=1

diverges by the Root Test.

lim {/lan| = lim %/|(arctann)”|= hm arctann = I > 1, so the series Z (arctann)™ diverges by the Root Test.
n— 00 n—oo n=0

> (=" . . . . 1 1 . .
> (=1) converges by the Alternating Series Test since lim —— = 0 and {—} is decreasing. Now Inn < n, so

n= Inn n—oo Inn Inn
1 1 1
> —, and since Z is the divergent (partial) harmonic series, Z —— diverges by the Comparison Test. Thus,
lnn n=2"1 n=2 Inn
> (=1)™. o
> is conditionally convergent.
i=slnn

-1 1-1 1 A 1-n\".
lim Ylen| = hm o — lim = = lim /n:—<1,sotheserlesz< n) is

n—oo 3n+2 n—oo3+2/n 3 2+ 3n

1-n\"
24 3n

absolutely convergent by the Root Test.

n=1

_9)n+1 nlo'n+l
(n+ 11072 (—9)n

On41 |
an

=l ’ 0n+1)|

n— oo n— oo

(—9n |9 1 9 9
1040 T i/m ~ 1000 = 10 < bsothe

series Z O” +1 is absolutely convergent by the Ratio Test.
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| an (n+ 15>+ 10m 5 (n+1) 5 1y _ 5.5 :
4. nlirr;o o nl_)00 Ton+2 ol nlin;o on =3 nh—{go 1+ =3 (1) = & > 1, so the series
e 2n
Z O g diverges by the Ratio Test. Or: Since lim a, = o0, the series diverges by the Test for Divergence
i T = tim (Y = i = B L - )
35. nlln;o Vlan| = hngO (lnn) —nlin;o o = m g = lim 1z wll)rgo x = 00, so the serles;(lnn)
diverges by the Root Test
sin(nm/6) 1 sin(nm/6)
36. T+ _1+n\/ﬁ 3/2,s0theser1es2
> 1

converges by comparison with the convergent p-series
1+ nvn £es by p gent p
> 3 (p = £ > 1). It follows that the given series is absolutely convergent
37, ‘ (=1)™ arctann

n2

7r/2 , S0 since Z /2

™1
T2 Z: n?
converges absolutely by the Comparison Test

38.

converges (p = 2 > 1), the given series > (=1
The function f(x)

)" arctann
n=1 ’fL2
1 . .
= is continuous, positive, and decreasing on [2, co)
rlnx
/oo dx = lim t dr = lim [In(Inz)]’ = lim [(In(In¢) =In(n 2)] = oo, so the series i (1" diverges
5 zlnz t—oo [, zlnz t—00 2 5o > Inn
1
by the Integral Test. Now {b, } = {— }

with n >/2 is a decreasing sequence of positive terms and lim b, = 0. Thus
39.

converges by the Alternating Series Test. It follows that Z

n—oo
)n

By the recursive definition, lim

is conditionally convergent
n 1 .
Jim_ aa: = lim 4512 1 3’ = g > 1, so the series diverges by the Ratio Test
40. By the recursive definition, lim | S| =" Jim ’M = 0 < 1, so the series converges absolutely by the Ratio Test
n—oo an n— oo \/E
by, cosnm > nOn
#41. The series Z = > (—1)"—=, where b, > 0forn >1 and lim b, = =.
n=1 n n=1 n 2
. Any1| o g (=1)"Tipntt n L n 1. 1 b cosn
}ergo o | = nh_{r;Q e =i nlingob i 2(1) = = < 1, so the series nzl ——
absolutely convergent by the Ratio Test
—_1)rt+t | n R — n
2 im |2 Z i (=) (n+ 1) ntbaby b | i (-D)(n+1)n
n—oo | ap n—oo | (n 4+ 1)"+t1b1by - - bpbyy1 (=) n! n—oo
= lim L( i
n— oo bn+1

nn
= lim ————
butr(n+ 1)t n—oo byga(n+1)"
n—limi #n—lim L 1.2
n+1)  nocoby \1+1/n)  nooobyp(1+1/n)n
|

so the series z (=1)

n"bl bobs - -+ by,

-<1
L=’
is absolutely convergent by the Ratio Test.
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3 3
(a) lim 1/(171/%1) = lim (3_71)3 = lim m = 1. Inconclusive
n— oo n—oo (n, n—oo n
(b) lim (Z tll) i lim 2t 1_ lim (% + QL) = % Conclusive (convergent)
n—oo n n n—oo n n—oo n

n—oo [ v/ + 1 (—3)”*1

(c) lim (=3 v

= 3,,}320 A/ - j_ 7= 3711320 A /ﬁ = 3. Conclusive (divergent)

2 2
@ lim |[—YHL LA g L g Lo WAl pconclusive
n—oo |14 (n+1) vn n—oc0 n 1/n2 4 (1+1/n)
We use the Ratio Test:
12 | 2
fo Jamen | ’ [t P/ O | ’ (n4 1)
. . . (n+1)? L . Y. .

Now if k£ = 1, then this is equal to lim m = 00, so the series diverges; if & = 2, the limit is

1 . . \ . . .
= — < 1, so the series converges, and if & > 2, then the highest power of n in the denominator is

. (n+1)°
lim 1

larger than 2, and so the limit is 0, indicating convergence. So the series converges for k > 2.

anrl

! . . 1 .
@ lim |2 = lim |[——— 2 = lim |2 | =|z] lim = |z| -0 =0 < 1, so by the Ratio Test the
n—oo | Qn n—oo (TL —+ 1)' " n—oo | M 4.1 n—oo n + 1
-
series », — converges for all z.
n=0 T

b) Since the series of part (a) always converges, we must have lim L — 0by Theorem 11.2.6.
p Y g o y

(a) Rn = an+1 + An+-2 + QAn+3 + QAn44 +---= An+1 (1 + Ont2 + dn+3 + dn+d + - >

An41 An+1 an+1

An42 An+43 An42 An44 Gn43 Gn2
antr | 14 + + -
An+1 An+2 An+1 An+3 An+2 An41

a1 (T +Php1 + rnaTnt1 + TagsPong2lner +00 ) (%)

An41

IA

ant1 (L4 rnga + 75 + 71 + -+ ) [since {rn} is decreasing] = F—

(b) Note that since {ry, } is increasing and r,, — L as n — oo, we have r,, < L for all n. So, starting with equation (%),

Rn = an+l(1 + Tn+41 + Tn42Tn+1 + Tn43Tn4+2Tn+1 + - ) S An+41 (1 + L + L2 + L3 +-- ) = f/ri—+2
1 1 1 1 1 1 661
= — ==+ -4+ — 4+ — + — = — = 0.68854. Now the rati
(a) ss5 nZ::Nl" 2+8+24+64+160 960 ow the ratios
o = 20l n2" = n form an increasing sequence, since
" e (et D2l 2t 1) § sequence,
n+1 n (n+1)* —n(n+2) 1 .
Tngl — Tp = — = = > 0. So by Exercise 46(b), the error
+ 2nt2) 2niD) 2miDmt2  2miDmio) y ®)
. . a6 1/(6-2°) 1
< = = —  U. .
inusing ss5 is R < T~ Tm 7, =12 192 0.00521
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. . L . 2
(b) The error in using s, as an approximation to the sum is R,, = f"ji = CESPaEs We want R,, < 0.00005 <
2

1 .
m < 0.00005 < (n+ 1)2" > 20,000. To find such an n we can use trial and error or a graph. We calculate

11
(114 1)2" = 24,576,50 511 = > % ~ 0.693109 is within 0.00005 of the actual sum.

n=1T "

3 10 . _Gpy1 o n+1 2" a4+l 1 1
+§+...+ﬁ~1.988.Therat10srn— s T wlnal —2(1+n>f0rma

3
Il
_
()
3
)
INIR )

11+1 12 . . . y
tl_ _ 5 < 1, so by Exercise 46(a), the error in using s1o to approximate the sum

decreasing sequence, and 11 = m =3 =11

11
es S a 5518 121
of the series ) o 8 Rio < 1 _ 20486

n=1 -1 —T11 — = 10,240 0.0118

49. (i) Following the hint, we get that |a,| < r™ for n > N, and so since the geometric series Y - ;7" converges [0 < r < 1],
the series 7\ |an| converges as well by the Comparison Test, and hence so does >~ | |an|, 50 > | an is absolutely
convergent.

(i) If lim %/]an| = L > 1, then there is an integer NV such that ¥/|an|> 1 forallm > N, so |an| > 1 forn > N. Thus,

lim an # 0,50 >, an diverges by the Test for Divergence.

n—oo

. > 1 . > 1 . .. .
(iii) Consider - [diverges] and n;1 o) [converges]. For each sum, nh_?f;o Y/|an| = 1, so the Root Test is inconclusive.

n=1

. lani .| [4(n 4 1)]1[1103 4 26,390(n 4=:1)] (n!)* 396*"
. lim == =1 .
5. @) lim === lim ’ [(n + 1)2 39640+ 1) (4n)! (1103 + 26,390n)
. (4n+4)(4n + 3)(4n + 2)(4n + 1)(26,390n + 27,493) 4* 1
= lim = = — <1,
n—>o00 (n + 1)43964(26,390n + 1103) 3964 994

] |
so by the Ratio Test, the series » . (tn)! (1103 + 26,390n)

converges.

=0 nl)4 3964n
) 1_2V2 i (4n)! (1103 + 26,390n)
T 9801 =5 (n!)4 3964

. 1 22 11
With the first term (n = 0), = ~ K\g; . %

which is 3.141 592 653 589 793 238 to 18 decimal places.

m ~ 3.141 592 73, so we get 6 correct decimal places of ,

_2V2 (1103 4! (1103 + 26,390)

With the second term (n = 1), 1 ™ 9801 1 3964
T

> = m~3.141592653 589 793 878, so

we get 15 correct decimal places of 7.
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51. (a) Since 3" ax, is absolutely convergent, and since |a,}| < |an| and |a;, | < |an| (because a;f and a;, each equal

either a,, or 0), we conclude by the Comparison Test that both > a;” and > a, must be absolutely convergent.

Or: Use Theorem 11.2.8.

(b) We will show by contradiction that both 3" a;} and 5~ a;, must diverge. For suppose that >_ a;} converged. Then so
would Y~ (a;} — 2an) by Theorem 11.2.8. But > (a,t — 3an) =3 [3 (an + |an]) — 3an] = 3 3 |an|, which

diverges because 3 a,, is only conditionally convergent. Hence, " a,} can’t converge. Similarly;neither can 5" a., .

52. Let Y by, be the rearranged series constructed in the hint. [This series can be constructed by virtue of the result of

Exercise 51(b).] This series will have partial sums s, that oscillate in value back and forth across . Since’ lim a, =0

(by Theorem 11.2.6), and since the size of the oscillations |s,, — 7| is always less than |a., | because.of the way > b,, was

constructed, we have that > b, = lim s, = 7.

53. Suppose that 3 a,, is conditionally convergent.

(@) >_nZa, is divergent: Suppose > n’a, converges. Then lim n®a, = 0 by Theorem 6 in Section 11.2, so there is an
n—00

. 1
integer N > Osuchthatn > N = n?|a,| < 1.Forn > N, we have |an| < —,s0 > |an| converges by
n>N

n?

. . . 1 -

comparison with the convergent p-series > 5 In other words, > a,, converges absolutely, contradicting the
n>N

assumption that 3" a,, is conditionally convergent. This contradiction shows that 3" n?a,, diverges.

Remark: The same argument shows that > nPay-diverges for any p > 1.

(=n"

nlnn

) 3
n=2

is conditionally convergent. It converges by the Alternating Series Test, but does not converge absolutely

{by the Integral Test, since the function f(z) = - 111 - is continuous, positive, and decreasing on [2, c0) and

o] t t _1\n
/ o _ lim / dv_ _ lim [ln(ln 1‘)] = oo]. Setting a, = (1) for n > 2, we find that
5 t—oo [y 2 nlnn

zlnz rlnxr t—oo

> Nap = > nm converges by the Alternating Series Test.
n=2 n=2

oo -1 n—1
It is easy to find conditionally convergent series . a,, such that } na, diverges. Two examples are > L and
n=1 n

e (-t . ‘ ‘ . ‘
> %, both of which converge by the Alternating Series Test and fail to converge absolutely because > |an| is a
n=1 n

p-series with p < 1. In both cases, > na,, diverges by the Test for Divergence.
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11.7  Strategy for Testing Series

1. Use the Limit Comparison Test with a,, = n3 -1 and b, = l:
n 1 n
2 3 2
n —1)n . — 1-1 . > 1. . . .
nh—{rolo Z_n = nli{.lo % = HILII;O 23 +T = nIL 0 Tl?n?’ =1 > 0. Since n2::1 - is the divergent harmonic series, the

series Z

also diverges.

g ol o o sy AL b ison with S~ =, whicH b it
Tl S 5 = 3 forn=>1s0 P converges by comparison wi p) 3> Which'converges because i
is a p-series withp = 2 > 1.
3 i (=" E = i (=1)"bn. Now b, = E > 0 forn > 2, {bn} is decreasing forn > 2, andlim b, = 0, so
.’IL:]. n3+1_n:1 e n_n3+1 - 4 n g = 4 nﬂoon_ >
x n?—1 R |
the series ngl(fl)" . converges by the Alternating Series Test. By Exercise 1, nX:::l B diverges, so the series
& n?—1
nz=:1<_l)n BT is conditionally convergent.
2 _ 2 . 2 _
4. nlirr;o lan| = nlirr;o (=" :7;2 n 1 ‘ = nh_)oo Tm =1 # 0, so the'series nzz:l(—l)" 5 1 diverges by the Test for
n? —
Divergence. [Note that lim (—1)" —— o does not exist.
5. lim e lim i lim < = 00, s0 lim (N = oo. Thus, the series Z i diverges by the Test for Divergence.
.I*}OO:I: _zﬂoo2x_;v~>oo 2 n—»oo?’L2 n— 1n & Y &
2n 2 2n
. T B y . n _ 1/n 0 n
6. nlln;o \/\an|—nlin;o (1+n)3”_nh—>r20(1+n)3_ﬂlivoo(1/n+1) 1 =0<1, sotheserlesz(lJrn)
converges by the Root Test.
7. Let f(z) = \/_ Then f is positive, continuous, and decreasing on [2, 00), so we can apply the Integral Test.
x
Since 1 dx u=To, | _ u71/2du:2u1/2+C:2vlnz+C,weﬁnd
vVinz du = dz/x
*  dx ) bodx . . . .
= lim = lim [2\/ } lim (2 Vint —2+vIn 2) = oo. Since the integral diverges, the
2 T 1n$ t—00 2 11’11’ t—o0 t—o0
given series diverges.
n=2mn+vInn
Dt 4» 1)* 1\* 1 1 :
6. Jim |2 = i | Ot 5| = i O = g im (141 ) = 00 = 1 < Lot i

. 4
S (=)t Z_" is absolutely convergent (and therefore convergent) by the Ratio Test.

n=1
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2n+2 | 2 oo 2n
@)t _ = 0 < 1, so the series Z (=" (W I

An+1
an

. T
= lim

™
li B N e | N—

n— 00

is absolutely
convergent (and therefore convergent) by the Ratio Test.

x(2 — 32°)
eﬂ')

Let f(z) = 22e~*". Then f is continuous and positive on [1, 00), and f'(x) = < Oforz>1,s0 fis

. oo N . _2311
decreasing on [1, c0) as well, and we can apply the Integral Test. f1 z%e™ dzr = lim [—le } L= 3 , so the integral

t—oo 3

converges, and hence, the series converges.

(1 1 e " . L N
> (ﬁ + §> Z n3 + > ( ) . The first series converges since it is a p-series with p= 3> 1 and the second

n=1 =1 n=1

series converges since it is geometric with |r| = % < 1. The sum of two convergent series is convergent.

1 1 1 & . . = |
converges by comparison with the convergent p-series > —

1
< = —, S0 —
EVEZFT  kVE2 K2 kgl kvVk? +1 k=1 k2

(p=2>1).

n+1 2 | 2 o) n,_2

lim |2 = g (BT et B0 DT D L g < 1, so the series 30 5.7
n—oo | Qnp n—oo (n =+ 1)' 3nn2 n—oo (n + l)n2 n—oo M2 ne1 n!
converges by the Ratio Test.

sin 2n 1 < 1 _(1 ' so the series io: R converges by comparison with the geometric series
T+or| 1420 ~2n  \2)° 2 [T 2n ges by comp 8

=) 1 " n

> (5) with |r| = 3 < 1. Thus, the series Z 1 o converges absolutely, implying convergence.

= n=1

gk—1gk+1  gkg—lgkgl 943\* k

ar = k:’j = kkg 3 = g(%) . By the Root Test, klingo £ (%) = kILIIolo% = 0 < 1, so the series

k 0o gk—1gk+l oo
> (E) converges. It follows from Theorem 8(i) in Section 11.2 that the given series, > k—3 Z % (—)
k=1 k=1 k=1

also converges.

. B . . vnt+1 1
Use the Limit Comparison Test with a,, = 731——1— and b, = —:
n°+n n
/n4 /4 2 /14 1/n4
fime & — g YLy vriiln li i+t =1> 0. Since Z is the divergent harmonic
n—00 bn n— oo n(n2 —+ 1) n—oo (7’L2 + 1)/712 n—oo 1+ 1/7’L2 n=1mn
00 /m4 1
series, the series ) 27+ also diverges.
n=1 N +’I’L
.~ ansa| . [1:3-5-e-- 2n—1)(2n+1) 2-5-8- - (3n—1) . 2n+1
lim |——|= li = lim
n—oo | Qn n—oo|2:-5-8--... (3n—1)(3n+2) 1-3-5- ~~-(2’I’L—1) n—oo 31 + 2

2+1/n 2
— lim 21
nHOO3+2/n 3< ’

. ox®1-3:5-----(2n—1) .
th by the Ratio Test.
so the series nzz:l 558 (3D converges by the Ratio Tes
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19.
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21

22,

23.

24,

25.

26.

27.
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1 ( )nf 1
bn = for n > 2. {b,} is a decreasing sequence of positive numbers and lim b, = 0, so § converges by
Vn — n—oo 2 Vn—

the Alternating Series Test.

2—Inx Inn
Let Then = ——— < Owhenl 2 ?,50 —= isd ing fi 2.
et f(z) = \/5 f(x) 532 < Owhenlna > 2ora > e’ so T is decreasing for n > e
, o . Inn _1ln . 2 -
By I’Hospital’s Rule, lim — = lim = lim —= =0, so the series Z (—1)"—= converges by the

R V) eV w;

Alternating Series Test.

VE-1 Vk VE kY3 1 © YEk-1
= < < = —=== , S0 the series ————— converges by comparison with the
FTRVELD) CRWVE+1) kvE R ER Z R E) B8 DY TR
convergent p-series Z k:71/6 (p = % > 1).

lim |a,| = lim |(=1)"cos(1/n®)| = lim |cos(1/n?)| = cos0 = 1, so the series. > (=1)" cos(1/n?) diverges by the
n— 00 n— oo n—1

n—oo

Test for Divergence.

, which does not exist (the terms vary between % and 1). Thus, the series

hrn lak| = hm ‘—2+smk’ klﬂoo T enk

z dlverges by the Test for Divergence.

. - . . 1 1
Using the Limit Comparison Test with a,, = tan (E) and b, = pud we have

2 (12
lim =% = lim tan(1/n) = lim tan(1/2) A gim =2 (/) (=1/7) = lim sec?(1/z) = 12 =1 > 0. Since

n—oo Op n— oo /’n, T— 00 x T — 00 —1/.’1}2 T— 00

o0 o0
>~ by is the divergent harmonic series, > an is also divergent.
n=1

n=1

1 in(1 i xR .
lim a, = lim (n sin —) = lim sin(l/n) = lim =% =1 # 0, so the series Y, nsin(1/n) diverges by the
n—oo n—oo n n—>00 /'fl z—0t T n=1
Test for Divergence.
2 2
. o lantr ] (mn+1)! e | . (n+DLnl-e” . n4+1 &, n'
Use the Ratio Test. nan;o | = nlgr;o prers e e nlggg S oTrentig HILH;O g =0<1,s0 Z

converges.
2 n 2 2
.| Gny1 . Qny1 . n° +2n+ 2 5 . 1+2/n+2/n° 1 1 > n“+1
1 =1 =1 . =1 - . ) == 1
dm | == = im n:H;o( s wrr) A\ T 3) S5 X T

converges by the Ratio Test.

*®lInzx Inz 1] . . H &,
—dr = lim |[—— — — [using integration by parts] = Z converges by the Integral Test, and since
5 t—o0 x x|, =
1 1 1 1 .
k—nks w nzk , the given series Z ﬂ converges by the Comparison Test.
(k+1) k k = (k4 1)°
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. 1 0o 1/n
28. Since {—} is a decreasing sequence, e'/" < ¢*/! = e foralln > 1, and Z — converges (p = 2 > 1), so > ‘ 5
n n? n

n=1 n=1

converges by the Comparison Test. (Or use the Integral Test.)

o0 o0 OO
29. ngl an = ; (=" coshn ngl(—l)" bn. Now b, = coslhn > 0, {b} is decreasing, and nILH;o bn, = 0, so the series
converges by the Alternating Series Test.
Or: Write L _ 2 < 2 and Z i is a convergent geometric series, so Z is convergent by the
' coshn ~ er4em e zie gent & n=1 coshny g Y

. x 1 .
Comparison Test. So > (—1)" o is absolutely convergent and therefore convergent.
coshn

n=1
30. Let f(x) = Ve . () is continuous and positive on [1, 00), and since f'(z) = > — 7 < Oforz > 5, f(x)is
T+5 2V (@ £5)°
eventually decreasing, so we can use the Alternating Series Test. nlin;o n—Jrn5 = nlln;o m = 0, so the series

i

S —1)7= converges.
3 (17 comerg

§ . 4)* , F g
3. khrrolo ar = angO 3k5+4k = [divide by 4*] lin;o % = o0 since khﬂngo (%) =0and khﬂngo <§> = oo0.
oo 5k
Thus, 21 ¥4 — diverges by the Test for Divergence.
- T L () L D ) I n n—1 n—2 n-—3 |
2 i, Vel = B Y | S = T T T Y

e J ) B 2)oo]-~

] n\n
so the series Y. (n4) diverges by the Root Test.
n n

n=1

n?/n n
n 1 1 1 n
n+1) A IO/ - Tm (i) e < s the series nzl (n+1>

converges by the Root Test.

33, lim ¥/|an| = lim(

n—oo n— oo

1 1 1 x 1
34. 0 <ncos’n <n,so T coRn > - =5 Thus, n;l T hcoRn diverges by comparison with nzl o which is

a constant multiple of the (divergent) harmonic series.

1 1 1 .. . n
35. a, = = so let b,, = — and use the Limit Comparison Test.  lim dn _ lim

s =1>0
nlti/n — g .opl/n n n—oo b, n—oonl/m =

diverges by comparison with the divergent harmonic series.

. - 1
[see Exercise 4.4.63], so the series nz=:1 i
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36.

37.

38.

In: Inl .
Note that (Inn)™ " = (e™™)"" = (™)™ ™" = p™" and Inlnn — oo as n — oo, so Inlnn > 2 for sufficiently

1 1 > 1
1 . For th have (Inn)™" > n?, 50 ——— < —. Si — =2>1],s0d
arge n. For these n we have (Inn) n*, so fnny < 72 ince nZ::Z 3 converges [p ], so does
) 1 .
Y.~ by the Comparison Test.
n=2 (Inn)

OO
lim Y/]an,| = nllrrolo(2l/" —1)=1-1=0< 1, so the series Zl (¥/2 —1)" converges by the Root Test.

n—oo

Use the Limit Comparison Test with a,, = Y2 —1andb, =1 /n. Then

1/n _ 1/z 1/x s 2
lim 2% = fim 2o gy 2o, 202 (U 01 n0) 2 1 1022 >0,

n—o00 Op n—oo 1/71, T — 00 1/.7,’ xr—00 —1/.7,’2 T — 00

o0 (o=}
Sosince Y by, diverges (harmonic series), so does ( V2 - 1).

n=1 n=1

g _ 1 A 9 1
Alternate solution:  ¥/2 —1 = S Yo Y I R S [rationalize the numerator] > o

and since % = %

n=1

% diverges (harmonic series), so does ( Y2 - 1) by the Comparison Test.

n=1 n=1

11.8 Power Series

1.

A power series is a series of the form }"°7  cpn2™ = co + caa + c2%% + c3x® + - - -, where  is a variable and the c,,’s are
constants called the coefficients of the series.
More generally, a series of the form "7 ¢ (z =a)" = co + c1(& — a) + c2(x — a)® + - - - is called a power series in

(z — a) or a power series centered at a or a power series about a, where a is a constant.

. (a) Given the power series ) . cn(z — a)", the radius of convergence is:

(1) 0 if the series converges only when z = a
(i) oo if the series converges for all «, or
(iii) a positive number R such that the series converges if |z — a| < R and diverges if |z — a| > R.
In most cases, R can be found by using the Ratio Test.
(b) The interval of convergence of a power series is the interval that consists of all values of « for which the series converges.
Corresponding to the cases in part (a), the interval of convergence is: (i) the single point {a}, (ii) all real numbers; that is,
the real number line (—o0, 00), or (iii) an interval with endpoints @ — R and a + R which can contain neither, either, or

both of the endpoints. In this case, we must test the series for convergence at each endpoint to determine the interval of

convergence.

. Ifa, = (—1)"nz", then

(_1)n+1 (TL _|_ l)l,n+1
(=)™ nan

n+1

An+1
Qan

lim

n—oo

= lim [(-1) x

n— oo

=lim‘

1 .
= lim {(1 + E) \xq = |z|. By the Ratio Test, the
o0
series > (—1)"na™ converges when |z| < 1, so the radius of convergence R = 1. Now we’ll check the endpoints, that is,
n=1
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o=} e}
x = £1. Both series > (—1)"n(£1)" = > (F1)"n diverge by the Test for Divergence since lim |(F1)"n| = oco. Thus,
n=1 n— 00

n=1

the interval of convergence is I = (—1,1).

—1)"a"
Afa, = %, then
1 n+1, n+1l 3 -1 3 1 )
lim |2 = Jim ( 3 a LV = lim (3')7%\/7_1 = lim }/——— |z| = |z|. By the Ratio Test,
n—oo | Qn n— oo vn+1 (—1)"1‘" n— oo vn+1 n— oo 1+ l/n

I .= (="
the series (bl converges when |z| < 1,s0 R = 1. When z = 1, the series (=1)
n=1

\/— > > =

converges by the Alternating

Series Test. When z = —1, the series Z dlverges since it is a p-series (p = % < 1). Thus, the interval of convergence
is (—1,1].
z" . Ant1 2"t op—1 . 2—1/n
Afan, = then 1 — = -——— | = lim —_— =|z|.B
an n—17 o an n—oo |2n 4+ 1 " e 2n+1 | | nﬂoo 2+1/n 2] || By

’rL

o0
the Ratio Test, the series Z — converges when |z] < 1,s0 R = 1. Whena = 1, the series 7 diverges by

n=1 2n n=1
comparison with i L since L > 1 and L i ! diverges since'itis a constant multiple of the harmonic series
P 2o 1~ 2n M43 2 i P :
=n" - - - -
When & = —1, the series Z D — converges by the Alternating Series Test. Thus, the interval of convergence is [—1, 1).
n=1
fa, = = )2 , then
n
n _1 n+1,_ . n+1 2 _1 2 2
TR Fem A DL (R L R T L ) R
n—oo | Up n— oo (n —+ 1)2 (—1)"ZB" n— oo (n —+ 1)2 n—oo n+1

(— )"

e —1\"™ 93” o]
By the Ratio Test, the series » % converges when || < 1, s0 R = 1. When = = 1, the series Z converges
n=1 n n=1

. . .ox 1 S . .
by the Alternating Series Test. When x = —1, the series ), — converges since it is a p-series with p = 2 > 1. Thus, the
n=1"T

interval of convergence is [—1, 1].

xn+1

—| = lim

n— oo

n
fa, = * , then  lim

n— oo

1
’: |z| lim po |z| -0 =0 < 1 for all real x.

an n-+1 n—oo N

So, by the Ratio Test, R = co and I = (—o0, 00).
. Here the Root Test is easier. If a,, = n"2", then lim {/|an| = lim n|z| = ccifz # 0,s0 R = 0and I = {0}.

n

x
Afan = —n44n,then
, 4
- |ant . gt n*4" . nt oz . n \*z| 4 2| _ |z
1 =1 =1 — = =1 — =1%.—= ="_Byth
e an el (n+1)44n+1 zn e (n+1)* 4 el n+1 4 4 4 ythe
n o0
Ratio Test, the series Z — converges when ‘4—| <1 & |z| <4,s0R=4. Whenz =4, the series >, —
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(— )"

o0
converges since it is a p-series (p = 4 > 1). When z = —4, the series Z converges by the Alternating Series Test.

Thus, the interval of convergence is [—4, 4].

2n+1 (n + 1)2mn+1
Ann2pn

An+1
Qan

= lim

n—oo

10. If an, = 2"n2z™, then lim

n—o0 n—oo

. n+1)? .
= lim 2 - |z| = 2|z|. By the Ratio Test,

o0
the series Y 2"n%z™ converges when 2|2| < 1 & |z| < %, so R = % When z = :I:%, both series

n=1

> 2"n?(£3)" = Y (£1)"n” diverge by the Test for Divergence since lim |(41)"n?| = oc. Thus, the'interval of
n—1 n— oo

n=1

convergence is (—

~—

11
2772

1\ gyn _1\n+1 yn+1 n+1
1 1fan = T2 0 then tim | S| = g [EDT AT VR T g — e,
\/ﬁ n—oo | Qn n— o0 \/m (—1)" 4n gn n— 00 n+1

(=4
T Jn

o=}
By the Ratio Test, the series Z a" converges when 4 [z <1 <« [z| <1, s0 R=1. Whenz = 1, the series

-H" . .
=D converges by the Alternating Series Test. When 2 = —1, the series Z dlverges since it is a p-series

VAT

p =% < 1). Thus, the interval of convergence is (—, 5]

18

n

—~

= (-1 awa| _ g | (=Lra g R B
12. Ifa,, = ————— 2", then 1 — =1 . =1 — ) ==1-= ==
n = 3, s @ then lim =) = lim e i | A\ 75T ) S 5 5
. - o |z] .
By the Ratio Test, the series oy "™ conyerges when 5 <1 & |z| <5,s0 R =5. When x = 5, the series
n=1
(=pm* . . =N L
z converges by the Alternating Series Test. When z = —5, the series > , — diverges since it is a constant
n=1 n

n=1

multiple of the harmonic series. Thus, the interval of convergence is (—5, 5].

n n
13. Ifan = m T ,then
. lant (n+ 1)zt 2"(n2 +1) ot n?dnt+1 |z
lim |——| = lim = lim ———— - —
n—oo | Unp n— o0 2”‘*‘1(712 + 2n + 2) nx™ n—oo N3+ 2n2 + 2n 2
= lim L+1/n4+1/n+1/n |z _ |z
T oo 14+2/n+2/n2 2 2
By the Ratio Test, the series Z ﬁ 2™ converges when %' <1 & |z|<2,50R=2. Whenz = 2, the series
n=1
Z dlverges by the Limit Comparison Test with b,, = E When x = —2, the series Z (_ ) converges by the

Alternating Series Test. Thus, the interval of convergence is [—2, 2).

x2n
14. If a,, = —, then lim
n!

n—oo

2
2n+2 TL' |$ |

= 0 < 1 for all real x. So, by the Ratio Test,

R =o0and I = (—o0,00).
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(z—=2)" . lanta (z—2)"T  n?41 . n?+1
Ifa, = ~——2%—,then 1 — | = . =|z—2| im —————— = |z —2|. By th
n = gy then lim == = MmN T oy | A G r g e 2l Bythe
. LR (z=2)"
Ratio Test, the series > TE 1 converges when |z —2| <1 [R=1] & -1<zx—-2<1 & 1<z<3 When
n=0
- 1 . . . 1
z =1, the series Y (—1)" ——— converges by the Alternating Series Test; when z = 3, the series > ———converges by
n=0 n?+1 n=on?+1
> 1
comparison with the p-series > e} [p = 2 > 1]. Thus, the interval of convergence is I = [1, 3].
n=1
(=" n
Ifan = m (.27 - 1) N then
R =) @ -1 (2n—1)2" . 2n—1 |z—1] |z—=1] .
1 — | =1 . =1 . = . By the Ratio Test, th
nooo| an | moee| (2n+1)20tt (—D)n(z—1)n| noee2n+1 @ g Y e Rato Aesh e
series Z i(x—l)"convergeswhenﬂ <l & |z-1<2[R=2] & —2<z-1<2 &
" (2n— 1) 27 2
n
—1 < z < 3. When z = 3, the series E én —7 converges by the Alternating Series Test. When x = —1, the series
> 1
> 5 T diverges by the Limit Comparison Test with b,, = —. Thus, the interval of convergence is (—1, 3].
n=1 - n
(z+2)" (x4 2)" ! 2" ln'n . Inn e +2] |z+2] .
Ifa,, = ~———, then li =1 . =
@ 27 Inn o 27+ In(n + 1) (z +2)" — In(n+1) 2 2 snee
Inn Inz u .. 1757 o 1\ . .
nh—>oo m = mILHOIO ln(:[: T 1) ml—n)o m mlLHolo - = xli»nolo (1 —+ E) =1. By the Ratio Test, the Series
oo 2 n
> %con\/ergeswhenl ;— 2| <l & [z4+2|<2 [R=2] & —-2<z+2<2 & —4<z<0
n=2
When x = —4, the series Z (ln; converges by the Alternating Series Test. When x = 0, the series Z 1— diverges by
n=2

the Limit Comparison Test with b, = — (or by comparison with the harmonic series). Thus, the interval of convergence is
n

[—4,0).

Ifa, = g (z + 6)", then

| anta . Va1 (z+6)"T! 8" . n+1 |z+6|
lim = lim . = lim .
n—oo | An n—o0 {n+1 \/ﬁ(l’ + 6)n n—oo n 8
. 1 |Jz+6] |z+6
=1 1+=- =
VLLIIOIO + n 8 8

|z + 6|

By the Ratio Test, the series > g (z 4+ 6)™ converges when <l & |z+6/<8 [R=8] &
n=1

—8<r+6<8 & —14<x <2 Whenz =2, the series > +/n diverges by the Test for Divergence since

n=1

n—oo

lim |a,| = lim y/n = oo > 0. Similarly, when x = —14, the series > (—1)"+/n diverges. Thus, the interval of
n—oo n=1

convergence is (—14, 2).
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19.

20.

21,

22.

23.

Ll CHAPTER11 INFINITE SEQUENCES AND SERIES
@-2" o2 .
Ifa, = BT then lim 3{/|an| = lim — = 0, so the series converges for all = (by the Root Test).
R=ocand I = (—o0, ).
_1\n
Ifa, = M, then
5n/n
_ n+1 n _ _ _
tm |22 ] — i 2z — 1) 5"/ - lim |22 — 1] " lim |2z — 1] I |2 1|'
n—oo | An n—oo |G+l /n + 1 (233 — l)” n— o0 5 n-+1 n—oo 5 1+ 1/n 5
. LR (2z—-1)" 20 —1
By the Ratio Test, the series % converges when [z—1] <l & |2z-1]<5 & |17 — %’ <% &
n=1 n
5 1_5 5 R : : 1
—s<z—-5<3 & —2<z<3,50R=73; Whenz =3, the series 21 T is a divergent p-series (p =5 & 1).
o= (=) . . .
When z = —2, the series Y NG converges by the Alternating Series Test. Thus, the interval of convergence
n=1 n
isI =[-2,3).
= ", where b
an = b—n(xfa) , where b > 0.
U CLTEY (n+1)|z—a"" _ b 1 1+1 |z —a|l “ |z —al
nl—{go Qn, - n1—>n;o bt n |£E — a\n - nl—>ngo n b - b ’

|z —a

By the Ratio Test, the series converges when <l & |r—a|l<b [soR=b] & -b<zr—-a<b &

a—b<z<a+b When|z—al] =0, lim |a,| = lim n = oo, so the series diverges. Thus, I = (a — b,a + b).

T—> 00

n
an = b—(m —a)", where b > 0.
Inn
n+41 _ n41
lim |2t = gy [P @) Inn — lim —B7 -blr —a| = b|z — a since
n—oo| an n—oco In(n +1) b*(x —a)?| noooln(n+1)
lim _lnn = lim _lnw L lim 1/—96 = lim Z +1 L lim 1 = 1. By the Ratio Test, the series
n—oo ln(n + 1) n— 00 ll’l(m + ]_) z-—=00 1/(x + 1) z—o0 X z—oo0 1
> b 1 1 1 1 1
nZIDZM(x—a)”convergeswhenb\x—a| <l & Jz—a|l< 7 © "pler-a<y & a—3 <x<a—|—g,
1 1 L= 1 . . . .- 1 1
so R = —.When z = @+ —, the series Y, —— diverges by comparison with the divergent p-series >, — since — > —
b b o Inn i=en Inn "~ n
1 .o (=) . . .
forn > 2. Whenx = a — > the series 1 converges by the Alternating Series Test. Thus, the interval of
n=2 nn
. 1 1
convergenceis I = |a — —,a+ — |.
b b
D! 2z —1)"*!
If an = n! (22 —1)", then lim ntll = Jim (nt D!z — 1) = lim (n+1)|2¢ — 1| - coasn — oo
n— oo An n— oo n'(2a] — 1)"7‘ n— oo

for all z # % Since the series diverges for all = # %, R=0and I = {%}
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2. a4 — n2z" o niz" . nx" ‘o
YT 24644 (2n) — 2nn!l T 2n(n— 1)1
n+1 n _ |
lim |22 = lim (n+1)lal 2 (n nl)' = lim = +1 m = 0. Thus, by the Ratio Test, the series converges for
n—oo | Ap n— o0 2n+1pl 7’L|l’| n—oo M2 2
all real x and we have R = oo and I = (—o0, 00).
25. Ifa,, = w, then
n
. Ant1 (bz — 4)"+1 n> 3 1 3
1 L= . =1 —4 =1 4
i I Bl I ot s sy R m 5 =4\ 77,

= |5z —4|-1 = |5z — 4]

By the Ratio Test, (5$ — )

n=1

converges when |5z —4| <1 & |z— 2| <2 —-i<z—-2t<i &

oo
. 1. . .
% <zx<lsoR= % When z = 1, the series ) — is a convergent p-series (p. = 3 >1). When z = %, the series

n=1T
> (_13) converges by the Alternating Series Test. Thus, the interval of convergence is I = [g, 1].
n=1 n
26. Ifa,, = L , then lim "t = lim P . . ()’ |33 | lim n (Inn)” = z?
T n(lnn)?’ n—oo | an n—oo | (n 4+ 1)[In(n + 1)]2 x2n n—oo (n+ 1)[In(n 4+ 1)]2 '
2n

o0
By the Ratio Test, the series >

n=an (Inn)?

converges whenz® < 1 < |z| < 1,s0 R = 1. When & = %1, 2> = 1, the

series Z ( SE converges by the Integral Test (see Exercise 11.3.22). Thus, the interval of convergence is I = [—1, 1].
mn
27. Ifa, = , th
a 135 - (2n_1) <%
n+1
. An+1 . x 1-3:5-----(2n—-1) . |z
1 =1 . =1 =0 < 1. Thus, b
nvoo | an | nioe|T98-5- - - (2n—1)(2n + 1) zn e o 1 S s by

n

the Ratio Test, the series Z z converges for all real x and we have R = oo and I = (—o0, 00).
24135 - -(2n—1)
nla™
28. If a,, = , th
a 135 (2n—1) "
. lanm . (n+ 1)lznt! 1-3:5.-----(2n—1) . (n+ Dz
1 D! . — im 2D
B, | T T 35 e DEr D) o A oy 2

By the Ratio Test, the series > a,, converges when 1 [z| <1 = [z| < 2,s0 R = 2. Whenz = +£2,

n=1

lan| = ni2” _ 232" 2:4:6 20 > 1, so both endpoint series
135 . (2n-1) [1-35-----(2n—1)] 1:3-5-- (2n—1) ’ P
diverge by the Test for Divergence. Thus, the interval of convergence is I = (—2, 2).

29. (a) We are given that the power series » - c,x" is convergent for z = 4. So by Theorem 4, it must converge for at least

—4 < z < 4. In particular, it converges when « = —2; that is, Y >, ¢, (—2)" is convergent.
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(b) It does not follow that >>° | ¢, (—4)" is necessarily convergent. [See the comments after Theorem 4 about convergence at

the endpoint of an interval. An example is ¢, = (—1)"/(n4").]

30. We are given that the power series ) > c,x" is convergent for z = —4 and divergent when x = 6. So by Theorem 4 it
converges for at least —4 < x < 4 and diverges for at least x > 6 and x < —6. Therefore:

(a) It converges when « = 1; thatis, D ¢, is convergent.

(b) It diverges when = = 8; that is, > ¢, 8" is divergent.
(c) It converges when x = —3; that is, Y ¢, (—3") is convergent.

(d) It diverges when z = —9; that is, > ¢, (—9)" = > (—1)"¢,9" is divergent.

| k
. Ifa, = (n—')'x”, then

(kn)!
lim |22 = lim [+ 1" (kn)! lz| = lim (n+1)" &
n—oo | Gn n—oco (nl)k[k(n+1)]' n—oo (kn—i—k)(kn—i—k- 1)(kn+2)(l€n+1)

— lim {(n+1) (n+1)  (n+1) } W

Tntoo |[(kn+1) (kn+2) (kn+k)

lim ntl lim ntl lim ntl ||
k
= (—) lz] <1 <& |z| < k" for convergence, and the radius of convergence is R = k*.

32. (a) Note that the four intervals in parts (a)—(d) have midpoint m = %(p + ¢) and radius of convergence r = %(q —p). We also

OO
know that the power series », =™ has interval.of convergence (—1, 1). To change the radius of convergence to r, we can

n=0

T\ . L y .
change z" to ( —) . To shift the midpoint of the'interval of convergence, we can replace x with  — m. Thus, a power
T

oo — n
series whose interval of convergence is (p, q) is Y (u) ,wherem = 2(p+¢q) andr = (q — p).
n=0 T

(b) Similar to Example 2, we know that Y L has interval of convergence [—1,1). By introducing the factor (—1)"

n=1

in a,, the interval of convergence changes to (—1, 1]. Now change the midpoint and radius as in part (a) to get

nl(x—m

n
) as apower series whose interval of convergence is (p, g.
n

0

€T —

o0 n
(c) Asin part(b), > % ( m) is a power series whose interval of convergence is [p, q).
n=1

(d) If we increase the exponent on n (to say, n = 2), in the power series in part (c), then when = = ¢, the power series

x 1 — L . . . . .
"zz:l = ( z - m) will converge by comparison to the p-series with p = 2 > 1, and the interval of convergence will

be [p, q].

33. No. If a power series is centered at a, its interval of convergence is symmetric about a. If a power series has an infinite radius

of convergence, then its interval of convergence must be (—oo, 00), not [0, ).
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34. The partial sums of the series Y . , =" definitely do not converge

to f(z) =1/(1 — z) for z > 1, since f is undefined at z = 1 and
negative on (1, 0o), while all the partial sums are positive on this
interval. The partial sums also fail to converge to f forx < —1,
since 0 < f(z) < 1 on this interval, while the partial sums are

either larger than 1 or less than 0. The partial sums seem to

converge to f on (—1,1). This graphical evidence is consistent

with what we know about geometric series: convergence for

|z| < 1, divergence for |z| > 1 (see Examples 2 and 7 in Section 11.2).

B (_1)n $2n+1
35. (a) Ifa, = W, then
lim ny1| z?2nt3 . nl(n 4+ 1)! 92n+l
nooo| an | nooo (n + 1)!(7), + 2)! 22n+3 p2ntl

T\2 1 B
N (5) nh—>rgo mrDn+2) 0 for all z.
So Ji(z) converges for all « and its domain is (—o0, c0).

(b), (¢) The initial terms of J1 (z) up to n = 5 are ag = f’

2 So S2 Sy
S )
x? Il z’ z° (R
Al = ——.,. 09 = —,. Q3 = ——m—m—m ., p = —m—————— \ \
PTUT60 T 384T 184327 ! 1,474,560
11 R
T \ Jy
and a5 = ——=——=——" The partial sums seem to _ /\ yd
9= T176.947.2007 C PATASY S 7
approximate .J; (z) well near the‘origin, but as |a|-increases, \
we need to take a large number of terms to get a good "\ “\
imation. _ R,
approximation - TR —
36. (a) A(z) =1+ i an, where a, = i so lim |2 — 1% lim S
' = “T2.3.5-6----- (3n —1)(3n)” " nooo| an n=oo (3n +2)(3n + 3)
for all z, so the domain is R.
(b), (c) - Se 4 8o 2 so = 1 has been omitted from the graph. The
partial sums seem to approximate A(z) well
near the origin, but as |z| increases, we need to
A
\ /\ take a large number of terms to get a good
\/ ,"'\/ approximation.
[N
. Ed J
Ss 8§38

-2

To plot A, we must first define A(x) for the CAS. Note that for n > 1, the denominator of a,, is
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(3n)! (3n)! T8k —2)

— 3n
1'4'7""'(3n—2)_szl(Sk—Q)’soa”_ 3n)! 2°" and thus

2:3:5.6-----(3n—1)-3n =

Alz) =1+ 21 —HZZEéi];_ 2

23", Both Maple and Mathematica are able to plot A if we define it this way, and Derive
is able to produce a similar graph using a suitable partial sum of A(z).

Derive, Maple and Mathematica all have two initially known Airy functions, called AT -SERIES (z, m) and
BI -SERIES (z,m) from BESSEL.MTH in Derive and AiryAi and AiryBi in Maple and Mathematica (just A1 and

Bi in older versions of Maple). However, it is very difficult to solve for A in terms of the CAS’s Airy functions, although

_ VBAairyAi(z) +AiryBi(z)
V3RAiryai(0) +AiryBi(0)

in fact A(z)

37. som1 =1+2x+22+22° + 22 +22° + - + 222 4 221
=1(1+422) + 21 +22) + 2*(1+22) + - + 2" 2(1 +22) = (1 + 22)(1 Fa® ozt + - F 2?72

_ .2n
11 T by (1123) with r = 7] — 122

2 1— 22

= (14 2x)

asn — oo by (11:2.4), when |z| < 1.

T . 142z .
since 2™ — 0 for || < 1. Therefore, 5, — * since s2,, and s2,—1 both

1
. 2n
Also s25, = s2p—1 + 27" — 1— 22 1— a2

1 + 2:5 as n — oo. Thus, the interval of convergence is (<=1,1) and f(z) = 1 + 22
—x -z

approach

38. s4n—1 = o + 12 + c22® + c3x® + cor® + c12® + c2x® Fczx” F - 4 cartT?

2 3
= (co + a1z + c22” + c32°) (142" + 2%+ 1+ + 274 — CO+Clx1+CZf ¥ CsT asm — 0o
—z

[by (11.2.4) with r = 2*] for !m“‘ <1 <& x| < 1. Also San, San+1, San+2 have the same limits (for example,

San = San—1 + cox*and z*" — 0 for |z| <1). Soif at least one of cg, ¢1, ¢2, and c3 is nonzero, then the interval of

_ Gt x4 cond + can®
1—a '

convergence is (—1,1) and f(z)
39. We use the Root Test on the series > ¢, x". Weneed lim {/|c,z™| = |z| lim %/|cn| = ¢|z| < 1 for convergence, or
|z] <1/e,s0 R=1/c.

40. Suppose ¢, # 0. Applying the Ratio Test to the series > ¢, (z — a)™, we find that

_q)nt? _ _
L= lim (@ iy @m0 ) Jrmal g emal e len /ni1| # 0), so the
n—oo | @p nooo| cp(x —a)® n—oo |Cn/Cnt1] lim |en/cng1] = n—oo
n—oo
. |z — al . Cn . Cn .

series converges when ————— <1 & |z —a| < lim . Thus, R = lim . If lim =0
lim ‘Cn/6n+1‘ n—00 | Cp+1 n—0o0 | Cn+1 n—0o0 | Cp41
n—oo

and |x — a| # 0, then (x) shows that L. = oo and so the series diverges, and hence, R = 0. Thus, in all cases,

R = lim

Cn+1

4. For2 <z < 3, cpz™ diverges and Y d,z"™ converges. By Exercise 11.2.85, > (¢, + dy,) 2™ diverges. Since both series

converge for |z| < 2, the radius of convergence of Y (¢, + dn) 2™ is 2.
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42. Since Y cna™ converges whenever |z < R, Y cnz®” =3 cn(2®)" converges whenever [2%| < R & |z| < VR, so the

second series has radius of convergence v/ R.

11.9 Representations of Functions as Power Series

1. If f(x) = 3. cna™ has radius of convergence 10, then f'(z) = 3 nc,z™ " also has radius of convergence 10 by
n=0 n=1

Theorem 2.

o=} o=} bn .
2. If f(z) = Y bna™ converges on (—2,2), then [ f(z) de =C+ ) 2™ " has the same radius of convergence
n=0

n=0
(by Theorem 2), but may not have the same interval of convergence—it may happen that the integrated series converges at an

endpoint (or both endpoints).

. . .. 1 : .
3. Our goal is to write the function in the form 1= and then use Equation (1)-to represent the function as a sum of a power
—r

1 1 e} o]
ies. f(1) = —— = ————= > (—2)" = 3 (=1)"a" with | <& < 1 1,soR=1and T = (—1,1).

series. f(z) Tz 1-(n) nz=:o( x) WZ::O( )2 with | <z <1 < |z| <1, s0 an (-1,1)

4. f(z) = 5 5L )5 i (42®)" =5 i 42" The series converges when [42”| <1 <
1 — 422 1—4x2 n=0 n=0
Iz <1 & |z|<3i,soR=1%andl=(-3,3).
2 2 1 2 " . x 1 .

5 f(x) = T3 <1 — $/3> $S nX::O (%) or, equivalently, 2 nZ::O T a™. The series converges when ‘%‘ <1,

that is, when |z| < 3,s0 R =3 and I = (=3, 3).

4 4 1 4 1 4 = 2z\" . &0 L, 2nt2
6. f(l‘) =5 3 = g (1 T 21./3) = 5 <m> = g H;O (-3) or, GQulvalently, nz::o(—l) EYEST x .

. 2 .
The series converges when —g‘ < 1, thatis, when |z| < $,so R =2 and I = (%, 3).

2 2 2 2 n n 4n+2

z x 1 x 1 = & x\4 . x (-)"x

7. = — = — — = —| — = — — | = 1 1 -_—
M@ =T~ 1 <1 ¥ m4/16> 16 (1 - [—(1/2)}4> 16 2, { (2) ] or, equivalently, 3 “—ra

(3

1 =) . ) .
8. f(z) = 2x+—i—l =z (m) =1z 3 (—22%)" or, equivalently, S~ (—1)"2"x2" "1, The series converges when

The series converges when <1l = ‘%‘ <1l = J|zr|<2,soR=2and ] = (-2,2).

n=0 n=0

|72x2|<1 = |x2|<% = |x\<%,s0R:%andI:<f%,%).
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10. f

1.

12.

13.

O CHAPTERM1 INFINITE SEQUENCES AND SERIES
z—1 z+2-3 3 3/2 3 1
- - —1— —1— 1.+
e R v+ 2 2/2+ 1 21— (—2/2)

3 X T\" 3 3 T\" 1 = (-1)"32"
R SR
2 271:1 2 2 nzz:l VAR

o0 n
The geometric series » (fg) converges when ‘fg‘ <1l & |z|<2,s0R=2and ] =(-2,2).
n=0

. . 1 . 1 .
Alternatively, you could write f(xz) =1 — 3( —— | and use the series for found in Example 2.
z+2 z+2

a 1 1 X 22\" = (-1)"z*" & .
f(z) = x2+ 5 [a>0] :;{m} == z::( ) :ngow,Thegeometrlcserles
oo 2\"
ZO (f%) converges when |——| <1 < |z|<a,so R=aand ] = (—a,a).
2r — 4 2r —4 A B
f(m)_m2—4x+3_(m—l)(x—B)_:C—1+:C—3 = 20—4=A(r—3)4 B(z—1). Letw = 1 to get

—2=-2A & A=landxz=3toget2=2B < B =1.Thus,

2¢ —4 1 1 -1 1 1 x 1 & 1
— - - | == £ A 1 — )2
2 —4z+3 x—1+m—3 1—x+—3 {1—(1’/3)} ngox 3;( ) nfO( ?,nJrl):]j
(-1

We represented f as the sum of two geometric series; the first converges for z €

18

;1).and the second converges for

€ (-3, 3). Thus, the sum converges forz € (—1,1) = I.

_ 2x+3 _ 2x+3 A B _ _ _
f(a:)_x2+3x+2 (x+1)(x+2)_x+1+m+2 = 284+3=A(x+2)+B(x+1).Lete=—1togetl=A
{ : }
—(~2/2)

andz = —2toget —1 =—-B <« B =1. Thus,
=Y (-2) +§n¥ (—5) = ; {( 1) (1—|— 2n+1)} x

We represented f as the sum of two geometric series; the first converges for z € (—1, 1) and the second converges for

2048 _ 1 1 1
2+3zx+2 z+l z+2 — (- )

l\)l»—l

€ (—2,2). Thus, the sum converges forz € (—1,1) = I.

1 d [ -1 d e, o _
(@) f(z) = m E(ler) =0 Lgo(—l) T ] [from Exercise 3]

118

(=1)" g [from Theorem 2(1)] = > (—1)"(n + 1)z" with R = 1.
n=0

n=1

In the last step, note that we decreased the initial value of the summation variable n by 1, and then increased each

occurrence of i in the term by 1 [also note that (—1)""2 = (—1)"].

1 1d 1 l1d | n n
() f(z) = RETH =34 {m] =54 Lgo(—l) (n+1)x [from part (a)]

- z( D™(n+ Dna™ 1 =1 3 (=1)"(n +2)(n + 1)2" with R = 1.

n=1 =0

3

2 o0
() f(z) = (ii) =a?. ﬁ =z’ %ngo( D™(n+2)(n+1)z” [from part (b)]
=3 2 ()" (n+ 2+ et [continued]
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To write the power series with =™ rather than 22, we will decrease each occurrence of 7 in the term by 2 and increase
L . . L 1 & .
the initial value of the summation variable by 2. This gives us 5 > (—=1)"(n)(n — 1)z™ with R = 1.
n=2

—In(1 —z) + C and

2

/ ! dx:/(1+x+x2+-~~)dx: SR T +o=3> T L Cforfal <1
11—z 2 3 =on '

So—In(l—z)= 3" x——i—C’andlettmgm—OglvesO—C Thus, f(z) =In(l —z) = =Y %withR:l.

n=1 T n=1

l,n+1

(b) f(2) =2l — ) = —z 33 =

n=1

:|H

o0
-2
n=1

n .

1 1 (12" = 17 W &
(c)Lettmgaz—2glvesln2— 7; - = Inl-In2=- Z:: . N - In2= .

n—=1 n2n

n+1

Putting z = 0, we get C' = In 5. The series converges for |z/5| <1 <o ]zf< 5,50 R=5.

5 1, 3 5 oo ( 3)2n+1 oo aj6n+3+2 oo $6n+5

16. f(z) = 2*tan"'(2®) =z nZ:: (-1 T 1 [by Example 7] = nz::()(_l) ek ;::0(—1) T 1 for

|x3|<1 < Jz|<1,soR=1
17. We know that 1 _ L = i (—4=)". Differentiating, we get

' T+dz  1- (—42) = : g weg
e = i (—4)"nan ! = f (=)™ (n +1)2™, so
(1 + 41’)2 n=1 n=0 ’
R S e S < VAR n_ n n+1
f@) = (1+42)2 4 (L+4z)> 4 ,L;O( YT nt e —,§O< )4 (n+ e

,_.
w
o
=y

I

ST

for|—-4z| <1 < |z <3,

1 1 1= oy = 1 d [/ 1 d (= 1
T sa o (5) s S e g (55 ) = (S ) -

2 e n— = +2 +1) ,
PR nz_: Forr(n =1z 2= nz::O (n 223’; )
AR 2 22 (n+2)(n+1) , & (n+2)(n+1) ,
Thus,f(x)7(2—x) 7(2—x)3*?'m77n20T an::OT +3

for’§‘<1 & x| < 2,50 R=2.
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1 o)
19. By Example 5, e = > (n+1)z". Thus,

n=0
1 t+x ! €z — o n o n+1
o) = (1-2)2 (1-ux)2 + (1—z)2 n;o(n e+ R;O(n +1)e
=> (n+1)z" + 3 na” [make the starting values equal]
n=0 n=1
—1+ S+ +nz" =1+ 3 @n+ 12" = 3 (2n + Da” with R = 1.
n=1 n=1 n=0
20. By Example 5 1 i(nJrl)x" S0
. y p bl (1 _ "D)Q n:O E)

d% (ﬁ) = d% (i(wr 1)1;") = ﬁ = ioj (n + 1)na™ "', Thus,

n=1
22+ z? T z? 2 x 2
flx)= 3 = 3 3= 5 + 3
(1-2) (1-2) 1-=) 2 (1-2) (1-2)
1’2 = n—1 T n—1 = (TL + 1) n+1 ('I’L + 1) n
= S+ + L Y 4 e = 3 + 3
2 n=1 2 n=1 n=1 2
=> n(n2 )m" + > (n J; )n;r" [make the exponents on = equal by changing an index]
n=2 n=1
oo 2 oo
=Y 3 [make the starting values equal]
n=2 =
:erZn an with R = 1.
n=2 n=1

2 1 o] S}
_ 2 .2 2\n _ n ,.2n+2 : : 2
2. f(z) = Zri- "% (m) =z n§:0(—x =03 O(—1) x . This series converges when |—2°%| <1 &

22,

2> <1 & |z| <1,s0 R = 1. The partial sums are s; = z°,

s2 =81 — 2, 53 =52 +2°% 54 =83 — 2%, 85 = s 2'°
Note that s; corresponds to the first term of the infinite sum,
regardless of the value of the.summation variable and the value of the

exponent. As n increases, s, () approximates f better on the

interval of convergence, which is (=1, 1).

%) n o 4an
From Example 6, we'have In(1 +2) = > (—=1)*! % with |z| < 1, sof(z) = In(1+2*) = 3 (-1)"! IT with
n=1 n=1
|x4|<1 & |z| <1 [R=1]. The partial sums are s1 = 2%, s2 = s1 — 32°, s3 = s2 + 22'%, 54 = s3 — 22'°,
S5 =84+ % 9320 . Note that s; corresponds to the first term of 4 .
ss1

4
U
the infinite sum, regardless of the value of the summation variable l‘.
N
l‘ 3
1
\)

and the value of the exponent. Asn increases, sy, (z) approximates

1
1
1
1
1
R
I}

f better on the interval of convergence, which is [—1, 1]. (When \ /< ! .
. . . . /., gy
—-1.2

x = =1, the series is the convergent alternating harmonic series.) l ' S X 12
4

-1
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2. f(x) zln(ii

) :ln(l-l-x)—ln(l—:v):/
[[fere

+/ dx 7/ dx +/ dx
1+ 1—2 | 1—(~2) 11—z
x +Zx"}dwz/[(1—x+m2—m3+m4— N+ Q4z+2°+2° +2* +..)]de
n=0 n=0

:/(2+2$2+2x4+---)dx:/Z2x2"da¢:C+
n=0

o 2x2n+1
2

2$2n+1

n=0 2Tl+1
But f(0) =In1 =0,s0 C = 0and we have f(z) = )
n=0

2n+1
which both diverge by the Limit Comparison Test with b, = —

with R = 1. If z = £1, then f(z) = £2 )
1

1
n—=0 2n + 1,
S
53
3 N/ S
f
. T 223 22°
The partial sums are s; = —, s2 = $1 + = S3 = So + 5
-2 2
As n increases, s, () approximates f better on the interval of
convergence, which is (—1,1). =
d o0 o0
2. f(z) = tan~'(22) :2/ 1+"Zm2 :z/ngo(q)" (462" dx = 2 pE) 4" 2" dy
%) -1 n4n 2n+1 oo 1 n22n+1 2n+1
n=0 2n+1 n=0 2n+1

[f(0) =tan"' 0 =0,s0 C = 0]
The series converges when |42°| <1 < |z < 3,50 R = 5. If z = +1, then f(z) =

f@) = 3 (1)t

n=0

1
2n +1
2x

2343
S1 = T, §2 = 81

18

1

_1 n d

LD g an

, respectively< Both series converge by the Alternating Series Test. The partial sums are

2545
3 S3 = S2 +

5 ) 55
2 2 \ /Vl
'd |‘ N\
\ f
\}
\ -~
\‘ \‘
_2 \‘ \‘ 2
\‘~ \
\}
\
)
\}
. \ J
-2
As n increases, s, () approximates f better on the interval of convergence, which is [—%, %}
t 1
25 —— =t —— =
1—1t8 1—18

when |t8| <1

/

54
t

T dt also has R = 1.

OO0

oo [e%s) t t8n+2
t (@)= ettt = /—1 Sdt=C+ 3
n=0 n=0 -

Pt The series for

1
1
[t| < 1,s0 R = 1 for that series and also the series for ¢/(1 — ¢®). By Theorem 2, the series for

converges
18
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% —— —¢. L =t i (=t*)" = i (-t = b g = C+ Z( 1) e . The series for
1T 1= (=3 = B 1413 n+2
1 +1 43 converges when ‘—t3‘ <1 & |t < 1,50 R =1 for that series and also for the series 1 ¢ 5 By Theorem 2, the
series for t =1
1+¢3 -
o] .Zl?n oo xn+2
27. From Example 6, In(1 + ) = > (—1)”_17 for |z| < L,so 2’ In(1+z) = > (-1)"* — and
n=1 n=1

xn+3

/372 In(l+z)de=C+ 3 (71)"71m. R =1 for the series for In(1 + z), so R = 1 for the series representing
o n(n

22 In(1 + ) as well. By Theorem 2, the series for / 2 In(1 4 z) dx also has R = 1.

oo 2n+1 tan —1 0o mZn
28. From Example 7, tan™ for |z| < 1, so = —-1)" and
p o= S0 fora P

tan™' s x?n
/ de =C+ > (=1)"————5. R =1 for the series for tan™"z;s0'R = 1 for the series representing
x n=0 (27’L + 1)2

-1 -1

tan z dx alsohas R = 1.

. t
L as well. By Theorem 2, the series for / an

1423 n=0 n=0

29, — 2 — :rL — (1_$3)} =z i (—2®)" = i (—Dra® . =

L dr = i (-1)"z®" " de = C i (— ) i Thus
1 + 1173 B n=0 N n=0 ’ ’
0.3)%  (0.3)'
@2 (0.3° _ (03)

x
2 5 8 11 o 2 5 8 o

+
I
I
+

0.3 2 5 8 11 0.3 2 5
I / L R e 4 (0.3) (0.3)
o l+a3

The series is alternating, so if we use the first three terms, the error is at most (0.3)**/11 ~ 1.6 x 10~". So

T = (0.3)%/2 — (0.3)%/5 £(0:3)%/8 ~ 0.044 522 to six decimal places.

30. We substitute /2 for x in Example 7, and find that
x2n+1

$/2)2n+1
( " 220+ (2 + 1) dzx

/arctan(:r/2) dx = ni::g(_l)n k) o+ 1

&
8
Il
||M8

=C+ H;O(—l)" 22n+1(2n + 1) (2n + 2)

Thus,
1/2 22 2 26 28 210 1/2
= mm”m“:me‘%&m*%@@‘wm®+w®mf”'0
1 1 1 1 1
TTEME) TE)@  E)6)  2EME) | 2PE)0)
[continued]
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31.

32,

33.

34.

SECTION 11.9  REPRESENTATIONS OF FUNCTIONS AS POWER SERIES  UJ

The series is alternating, so if we use four terms, the error is at most 1/(2'% - 90) ~ 2.1 x 1075, So

NS S S S |
T 16 1536 ' 61,440 1,835,008

~ 0.061 865 to six decimal places.

Remark: The sum of the first three terms gives us the same answer to six decimal places, but the error is at most

1/1,835,008 ~ 5.5 x 1077, slightly too large to guarantee the desired accuracy.

We substitute -2 for - in Example 6, and find that

5 o et (:BQ)n %) o1 x2n+1 oo . I2n+2
/xln(l—i—az ) dz = /a;n;(—l) RAp /n;(_l) —dr=CHE s
Thus,
0.2 4 6 8 10 0.2 4 6 8 10
N 2 I A A A _ (0.2 (0.2) (0.2)° (0.2)
d ”/0 zin(l+2%) dv = {1(4) 26) T3® 40) T L Y P 40

The series is alternating, so if we use two terms, the error is at most (0.2)%/24 ~ 1.1 x 10™". So

(0.2)*  (0.2)°

I~ YRR = 0.000 395 to six decimal places.
0.3 2 0.3 nj4n+370.3 n 94n+3
£ 2 X n,_4n = (_1) x = (_1) 3
/0 T+at ™ /0 © e ngo[ an+3 ]0 = (dn + 3)107+3
33 37 311
_l’_

T 3x10° 7x107 11 x 10T

11

The series is alternating, so if we use only two termsythe error is at most ~ 0.000000 16. So, to six decimal

11 x 1011
03 .2 33 37
1 = — ~ 0. .
paces,/(; 1ot dx TX1° TR0 0.008 969
3 5 7 2 3 2 5 2 7
By Example 7; arctanaz = x — % + % - % +.--,s0arctan0.2 = 0.2 — (03) + (05) . (07) n

7
The series is alternating; so if we use three terms, the error is at most % ~ 0.000 002.

(0.2)*  (0.2)°
3 5

Thus, to five decimal places, arctan 0.2 ~ 0.2 — ~ 0.197 40.

f(z) = nijo % = fl(z)= 721 % [the first term disappears], so
. © (=1)*(2n)(2n — 12?2 = (=1)"z2D o (—1)nHig?n _
f(z) = nX::I = n)((Q:)' o = ngl ( [2()nli 1! = nz::o ( ()QN)!I [substituting n + 1 for n]
SO e s @)+ @) =0
= (2n)! :
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35. (a) Jo(z) = ni%,%m :T§1%’aﬂd T () :21 (=" 2;2(3(7;621)36 " s
oo (_1\" n(2n — m2n 0o (_ N 0o (_ nm2n+2
) )+t = 5 EREEE 8 R 8
& (=1D)"2n(2n - 1)2? o (=1)" 2z = (1)l
R Tt E R P D Y ) ER P Dy 12
& (=D"2n2n— 12" | & (=1)"2n2® | & (—1)"(=1)"'2%n%*"
,ngl 227 ()2 ngl 221 (nl)2 nzzzl 22 ()2

= 5y [P R T e

x o [4n? —2n 4 2n —4n?7 ,,
- S [P =

n=1
1 1 n 2n 1 2 4 6
_ [ et _/ _rLr =
(b)/0 Jo(x)dx—/o LZ::O 520 ()2 dr = | 1 1 +64 2304—1— dz
I PO S SN RPN SN (L S
- 3-4  5-64 7-2304 o 12 320 16,128

Since m,lTs = 0.000062, it follows from The Alternating Series Estimation Theorem that, correct to three decimal places,

[y Jo(z)de ~ 1 — & + 555 ~ 0.920.

(—1)mg?n Tt Loy & (=" (2n+1) 2™ vy & (=D)"(@2n+1)(2n)2*" !
Tt iz 1 (@) = X e yme eI @) = 5 e e e

36. (2) Ji(z) = i:;

2 J{ (x) + aJi(z) + (2° — 1) J1(2)
(=)™ 2n+ 1D (2n)z?n = (=1)"(2n + 1)z* !
a Z n! (n +1)! 22n+1 + ngo n!(n 4 1)!22n+1

+ i (71)71 x2n+3 3 i (71)n x2n+1
n=on!(n+1)1222+1  =inl(n+1)22n+1

B f (—1)" 2n+1)(2n)2> ! N f (=)™ (2n + 12"+t
R D = T (s P2
_ i (_1)n g2ntl i ( l)n 2ntl Replace n withn — 1
= (n—1)Inl22n-1 = nl(n+41)122n+1 in the third term
r oz X J@rn+1)2n) +2n+1) — (n)(n+1)22 — 1] 5,4
B - = —1 n = O
2 2 * nz::I (=1) n!(n+1)!22n+1 v
%) ( 1)n xQn
b) Jo(x) = =
() 0( ) ngO 22n (’I’L')Q
= (=D)"(2n)a™ ' & (=)™ 2(n+ 12!
T = 53 L = Repl. ithn + 1
o) = o D N C RS E [Replace it 1]
oo ( 1)n 2n+1
— Z m [cancel 2 and n + 1; take —1 outside sum] = —.J1 ()
nTHn
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@S0 =S f@)= X = S = 3 e ()

(b) By Theorem 9.4.2, the only solution to the differential equation d f (z)/dz = f(z) is f(z) = Ke®, but f(0) =1,
so K =1and f(x) = e”.

Or: We could solve the equation d f(x) /dx = f(x) as a separable differential equation.

. 1 o . d /s
38. % < 580 ngl sn:L;w: converges by the Comparison Test. - (Slr:;m) = Cosnmj, so when z = 2k
. X, = cos(2knm) 1 L . . . .
[k an integer], > f)(z) = Y. ————= = > —, which diverges [harmonic series].  f, (&) = — sin nz, so
n=1 n=1 n n=1"T
> fi(x) = — > sinnz, which converges only if sinnx = 0, or z = kr [k an integer]:
n=1 n=1
xn Gnt1 n+1 nZ n 2
39. If a, = =, then by the Ratio Test, lim |——| = lim |———— - —| = |z| lim ( —— ) = |z| < 1 for
n2 n—oo | an n—oo (n + 1)2 xn n—oo\n + 1
x|z > 1 L . .
convergence, so R = 1. Whenz = +1, > —|= > — which is a convergent p-series (p = 2 > 1), so the interval of
n=1 n=1T

convergence for f is [—1, 1]. By Theorem 2, the radii of ¢onvergence of f' and f” are both 1, so we need only check the

0o 4T oo Tll‘n71 oo "
endpoints. f(z) = > — = f'(z)= > =2 , and this series diverges for x = 1 (harmonic series)
n=1T n=1 M n=on+1
oo ’I’L.Z’nil
and converges for x = —1 (Alternating Series Test), so the interval of convergence is [—1,1). f"(z) = > ] diverges
n=1

at both 1 and —1 (Test for Divergence) since lim % =1 # 0, so its interval of convergence is (—1,1).
n—oo M

Sl nfl_ooi n_i & n_i 1 _ 1 _ — 1
40. (a) nglnx 7n2::0dmw = Lgox ] = L_x} = (1—x)2( )= (1—90)2":]:' <1
(®) @) ni::l nz" = xnijl ne" 1= {ﬁ} [from part (a)] = ﬁ for |z| < 1.
.. R R S L 1/2 _
(ii) Pute = $iin(i): 2 o _nz::1n(2) = A _1/27 - 2.
(©) @) i n(n — a™ = 2* i n(n —1)z""2 = 22 a i ne" | = 22 4 _1
n=2 - n=2 B dz |,=1 B dx (1—$)2
o, 227
=z =27  (—2p for |z| < 1.
3 R & n o 2(1/2)?
(i) Putx = % in (i): nX::2 L on n_ ngzn(n — 1)(%) = 7(1 (_/1/)2)3 =4.
0o 2 oo 2 oo
(iii) From (b)(ii) and (c)(ii), wehave 3" o= = S 224 s~ L _yy 0.
n=1 2n n=1 2n n=1 2n
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2n+1

#1. By Example 7, tan™' 2 = ngo(—l)" 1 for |z| < 1. In particular, for x = %, we
2n+1
L3t 1" 1 1

have %—“’““1(%) = L) = R (g)nﬁznﬂ’“
6

(=n"
0 (2n+1)3""

18

& (="
7; 2n+1)3”_2\/§n

42 1/2 dl‘ 1/2 d.T
' (a)/o 22—z t1 _/0 (x—1/2)2 + 3/4

1
T — =
2

P u= 2 (oo 1) =Pl

—

0 3/2) d 0
:/ M:%[mﬂu] S 2o (-5 - £
_1v3 (3/4)(u? +1) 3 ~1/V3 V3 6 33
1 1
(b)x3+1_(x+1)(x27x+1) =
) ) =t ) = @+ 1) 3 (1)
a2 —z4+1 1+a3) 1—(—a3) =
=Y (D)2 S (1) for|z| <1 =
n=0 n=0
do oo $3n+2 oo 3n+1

_ = " —1)" ——— fi 1
/932—$+1 O+ L (Vg t p ) g ferlel <1 =

1/2 dz oo 1 1 1 (_ )n ) 1

—— = > (-1)" —— ,
/0 22 —x+1 ngo( ) 4~8"(3n+2)+2~8”(3n+1)] 4n§0 8n (3n+1+3n+2)
. 7 3v3 = (—1)" 2 1

B h Is — = — .

y part (), t 1sequa53\/§,so7r 1 nzzjo 2 <3n+l+3n+2>

1110 Taylor and Maclaurin Series
oo (n) (8)
1. Using Theorem 5 with Y b, (z'= 5)", b, = fT'(a)’ so bg = ! 8'(5)'

n=0
2. (a) Using Equation 6, a‘/power series expansion of f at 1 must have the form f(1) + f'(1)(z — 1) + - - - . Comparing to the
given series, 1.6 — 0.8(z — 1) + - - -, we must have f'(1) = —0.8. But from the graph, f’(1) is positive. Hence, the given
series is not the Taylor series of f centered at 1.
(b) A power series expansion of f at 2 must have the form f(2) + f'(2)(z — 2) + 3 " (2)(z — 2)® + - - . Comparing to the
given series, 2.8 4 0.5(z — 2) + 1.5(z — 2)> — 0.1(z — 2)® + - - -, we must have 1 f”(2) = 1.5; that is, f”(2) is positive.
But from the graph, f is concave downward near z = 2, so f’'(2) must be negative. Hence, the given series is not the

Taylor series of f centered at 2.

3. Since £ (0) = (n 4 1)!, Equation 7 gives the Maclaurin series

oo (n) =) !
> 700 " =3 (n+ 1) Z (n+ 1)z™. Applying the Ratio Test with a,, = (n + 1)z™ gives us

n=0 n! n=0 n! n=0
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(n 4 2)z" !
(n+1)zn |

An+1
an

lim

n— 00

= |z| - 1 = |z|. For convergence, we must have |z| < 1, so the

n—oo

radius of convergence R = 1.

—1)*n!
. Since f™(4) = M, Equation 6 gives the Taylor series

3n(n+1)
0 (n) [e%e) 1\ ! oo _ 1\
nz::O ! n!(4) (z—4)" = WLZ::O %(1’ —4)" = VHZ::O ?)"(lerl)(x — 4)™, which is the Taylor series for f

centered at 4. Apply the Ratio Test to find the radius of convergence R.

n+1 n+1 n _ _
N e N G i Ct Y WO /e O N DR L1 P )
n— oo An n— oo 3"7‘+1( + ) (—1)”(()} — 4)” n—oo 3(’[’L —+ 2)
n+1 1
— 4| lim =Z|z—4
Ho—af tm 2XL 1y

For convergence, & [t —4| <1 & |z —4| <3,s0 R=3.

Using Equation 6 withn = 0to 4 and a = 0, we get

n
- 4 f(") 0 . 0 3
0 xe 0 nZ::OT!()(x—O) o 0 —l——x +—m —&-ax —i—Ix
1| (z+1)e” 1
2| (+2)e” | 2 =atat+ge’ + gt
3| (z+3)e” 3
4 | (z+4)e” 4
3. r(n)(9 1 1
DR O R [ O L N C Y
n £ (2) ™ (2) n=0 N 0 1
1 1 5 s 3
o = | 2 F (g H(p )
1
S T e =332+ FE@ -2~ -2y
2 2
2 (L4 z) 27
6 6
3| x|
3. fln)(g 2 L
> LB -gr =2 -8+ B sy
n f(n)(m) f(n)(8) n—~0 n: 0! 1!
2 _10_
o|* s | o B ey B gy
1 1
U 32m I =2+ 5 (z—8) — 5i5(z — 8)? + gpiag (v — 8)°
2 2
2 T 9y5/3 T 288
3| 19 | o
278/3 6912
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) n | fM) | (1) nzizo %(m_l)n: %(m—1)0+%(:€_1)1 —%(1’—1)2
0 Inx 0 +%(x—1)3_%(x_1)4
; ‘11//2 —11 =@-1)-3@-1"+56-1" - f@@-1*
3| 2/a° 2
4| —6/2" | -6

Y @ 7w
0 sin x 1/2
1 cos T V3/2
2 | —sinx -1/2
3| —cosx —\/§/2
3 f(n) n 0 1 2 3
S R e SR ) e P D)
_ 1, V3 (x_ﬁ)_l(x_l)Q_ﬁ(x_Ef
2 2 6 4 6 12 6
10. 26: f(")'(O) (x—0)" = L 2 — 2 ? + 3 z* — 32 z8
n f(n)(x) f(n)(o) o n! 0! 2! 4! 6!
0 cos? 1 :1_;32_1_%3;4_415366
1 | —2coszx sinz = —sin2x 0
2 —2cos 2z —2
3 4sin 2z
4 8cos2x
5 —16sin 22
6 —32cos2x =32
1. (1 =2)72=f(0) + f'(0)z + 1) 2 1700 SO 0y
n f(n)(l,) f(n)(o) 2! 3! 4!
0| (1222 1 =1+2z+ 52" + o’ + Fa' + -
L 201-2)° :1+2r+3$2+4r3+5x4+---=i(n—i—l)m"
2| 6(1—x)* 6 n=0
—_2)° n+1
i 12;(5(11 —9;))6 12;) i az_:l = % =[] lim Zii = lel (1) =laf <1
for convergence, so R = 1.
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(1 +2) = £(0) + /O + L Va2

0 5, SN 4, S0
L T TR TR
=0+x— g2 + 22° — Frat + Fa® -
2 3 4 5 n—1
U O RS
I R S =X,
n+1
lim —GZH = lim Txl-‘r 1 ;n = 1 —||—x1|/n = |z| < 1 for convergence,
soR=1.

Notice that the answer agrees with the entry for In(1 + z) in Table 1, but we obtained it by a different method. (Compare with

12,
n () F™(0)
0| In(l+zx) 0
1] Q42" 1
2| —(1+2)? —1
31 2042)78 2
4| —6(1+2)"* -6
5| 24(1+x)7° 24
Example 11.9.6.)
13.
n | f™ (@) | F*(0)
0 cosx 1
1| —sinz 0
2 | —cosx —1
3 sinx 0
4 cosx 1
14,
n | S | 70
0 e 2 1
1| -2 2 =
2| 4e%® 4
3| -8 —8
4 | 16e %" 16
15.
n o) | ()
0 27 1
1| 2%(In2) In2
2 | 2°(In2)? | (In2)?
3| 2%(n2)* | (In2)3
4 | 2*(In2)* | (In2)*

" ", (4)
cosz = f(0) + f(0)z + f2('0) z? 4 ! 3$0) 3+ / 4'(0) zt4 ...
_ L o, 174
oo xQn
= Z_:O(—l)” @ [Equal to (16).]
2n+2 2
. lant . x (2n)! . x
1 =1 =1 - - = 1
i Qn, o 2n+2)! a2 o 2n+2)(2n+1) 0<

for all z, so R = oo.

=] (n) [e%s) _9\n

n=0 n' n=0 n'
__o\n+1,_.n+1 |
lim |22+ = Lim (2" = . v = lim 2|z
n—oo | An n—oo (n + 1)' (—2)"1:" n—oo n 4+ 1
=0<1 forallz,so R = cc.
o 2 M0 & (2"
2 _n*O n! ‘ ng() n! v
n+1l_n+1 |
m 1222 ] i (In2)" 'z ' n!
n—oo | QAn n— oo (n + 1)! (ln 2)”1’”
= limM:0<l for all z, so R = oo.
n—oo n+1
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" 1" (4)
n () F(0) ' ' '
0 T cosT 0 :O—l—lx—l—O—%xS—i—O—l—%xs—&—O—%1’7—1—---
1 —xsinx + cosx 1 . . '
—xflx3+lx57—x7+
2 | —xcosx —2sinx 0 - 21 4! 6!
3 rsinx — 3cosx -3 o
— Z ( l)n 2n+1
4 rcosx +4sinx 0 n=0 (2n)!
5 | —xsi 5 n n
TSINT + dCOST - s | _ - (_1) +1,,2n+3 . (2n)!
6 | —xcosx —6sinz 0 n—co | an n—oo| (2n+2)! (=1)ra2ntt
7 rsinx — 7Tcosx -7 22
:nh—>n;10m =0<1 forallz,soR = oco.
7 £ (0) 0 ifniseven b i p2ntl
. y = so sinhx = —_—
n | f™@) | f™0) 1 ifnisodd n=o (2n+1)!
0 sinh 0 2t
Use the Ratio Test to find R. If a,, = ——— then
1 | coshz 1 @n+1)!
2 | sinhzx 0 fo || 223 . (2n +1)! — 22 lim I
3 | coshz 1 n—oo | Gn n—oo |(2n+3)!  x2ntl n—oo (2n + 3)(2n + 2)
4 | sinhz 0 =0<1. forallzysoR = co.
1 ifn is even oo 21
18. ™) = o so coshz = Y T
n f(n) (z) f(”)(O) 0 if nis odd n=o (2n)!
0 | coshzx 1 22"
. Use the Ratio Test to find R. If a,, = ——, then
1| sinhz 0 (2n)!
2 | coshzx 1 TSy . 220 +2 . (2n)! 2 g 1
3 sinh = 0 n—oo | Qn n— oo (2n —+ 2)‘ x2n n— oo (2n —+ 2)(2n —+ 1)
=0<1 forallz,soR = oo.
19. f@™(x) = 0forn > 6, so f has a finite expansion about a = 2.
n f(n)(m) f(n)(?) ; f(”)(Q)
0| z°+2234a 50 f(m)=$5+2$3+m:’20T(:5—2)"
1| 5z* +62>+1| 105 50 105 184 050
2 | 20a® + 122 184 =5 @=2 g @=2) ' + o (z -2+ S (@ - 2)°
3 602 + 12 252 240 gy 120 .
4 120z 240 T @ @2
5 120 120 =50+ 105(z — 2) + 92(x — 2)% 4 42(x — 2)3
6 0 0 +10(z — 2)* + (z — 2)°
7 0 0 A finite series converges for all , so R = oo.

(© 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



SECTION 11.10  TAYI

LOR AND MACLAURIN SERIES U

20.
R IEARC)) F™M(=2)
0| 2°—a2*+2 50
1| 62°—4a® —160
2 | 30z* — 1227 432
3| 1202° — 24z | —912
4| 3602° —24 1416
5 720x —1440
6 720 720
7 0 0
8 0 0
F (x) = 0 forn > 7, so f has a finite expansion about @ = —2.
6 f(n)(_o
flay=a® —atp2= 3 LD (o gy
n=0 .
50 160 432 912
=57 (@2 -5 @+2) + o (@4 2)° - @+ 2)
1416 1440 720
+ T($+2)4—T($+2)5+F(33+2)6
=50 — 160(z + 2) + 216(z + 2)*— 152(x + 2)® + 59(z + 2)* — 12(z + 2)° + (z + 2)°
A finite series converges for all , so R = 0.
o] (n)
2. flr) =mz= 3 L@ g
n [ M@ [ 1Y@ =oon
0 1 In2 _In2 0 1 1 -1 2 2 3
o 5 o @ A @D g (027 g (02
1| 1/= 1/2 )
—6 4, 2 5
2 | —1/a® |=1/22 F g (@ =2 g @ =20+
3| 2/a® 2/23
_ & n+1 (n — 1)' n
5 | 24/x5 [ 24/2° 1
— n+1 n
_1n2+n:1( 1) —on (z—2)
_1\n+2 _ n+1 n _ _ —
19| (=) (z—2) . n2 ~ lim (=1)(z —2)n ~ lim n |z — 2|
n—oo | Gn n—oo (n + 1) 2n+1 (—l)n‘H(l‘ — 2)" n—oo (TL + 1)2 n—oo \ 1+ 1 2
|z — 2|
=— < 1 for convergence, so |z — 2| < 2and R = 2.
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2 fay=2 =5 L gy
T n!
n | ™M) | f(-3) n=0 '
2 3
0| 1/z -1/3 _ / (x+3)° + -1/3 (w+3) + 2/3 (& +3)°
1| —1/2? —1/32 1! 21
2| 2/a2° —2/33 6/3* 3 24/3° 4
3| —6/2* | —6/3" g @A @)
4| 24/2° | —24/3° _ = —nl/3mt n_ R (@43
B e P T
Nangr| o @3 3t 43 |z + 3
nler;O ol nlirr;o 312 1|~ nlggQ 3 = 3 < 1 for convergence
so|z+3| <3and R =3.
A
2. fla) =€ =3 I —-3)"
n| fM) | F70) n=o M
2z 6 6 6 6
0 € € ze—'(x—3)0+2i'(z—3) +4i'(x—3)2
1 902® 968 0! 1! 2!
; 6
2 92,2z 4€8 +8i'($—3)3+¥($—3)4+"'
3| 2% 8eb 3 4
0o 9n 6
4| 2% 16¢° =Y —F(=z-39)°"
n=0 T
. lang . |2ntteS(p —3)m Tt n! o 2]z —3
1 =1 ~ =1lim ==l =0<1 forall = 0.
am @, m CES) et (2 3) Jm ——— 0< orall z,so R = oo

&S] (n) n
24, flz) =cosz =3 L:rﬂ) (ac—%)
n [ £ [ £/ =
0| cosz 0 -1 m\! 1 m\3 -1 m\> 1 m\7
Ul sins 1 T (w 2) t (m 2) o (x 2) T (x 2) +
2 | —cosz 0 _ i": (—1)"+1 ( B E)2n+1
3 sinx n=o (2n +1)! 2
4 cos ¥ 0 o A2n43
5| —sinz -1 m 19— i =1 (I B 5) ‘ (2n+1)!
6 —COST 0 n—oo | Apn n— oo (2n + 3) (_1)n+1 (m _ g)2n+1
7 sin x 1
T\2
(=-3)
= lim 2 =0<1 forallz,so R= cc.

n— oo m
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25. f(z) =sinz = 3 ! '(W) (z—m)"
o [ @ [ S
0 sinz 0 __1(96,701+l(x,ﬂ)3+__1(x,ﬁ)5+l(xfﬂ)7+
1! 3! 5! 7!
1 coszx -1
2 | —sinzx 0 = i (Gl (z —m)2" Tt
n=0 (27’L + 1)'
3 | —cosz
4 sinx 0 lim nt1| lim (_1)n+2 (xz— ”)27l+3 . (2n+1)!
n— oo n—oo | —_1\n+1 _ 2n+1
51 cosa _1 an (2n+3)! (=)t (x —m)
6 | —sinx 0 : (z — 77)2
=1 —_— = 1 < for all = 0.
n;n;o(2n+3)(2n+2) 0< orall ,s0 R = oo
7| —cosz
[} (n)
%. f@)=vi= 35 L2U8 gy
] @ | s =
0 NG 4 A e AL el L L 62
1 1..-1/2 11 ol (z —16)° + & 1!(90 16) 1B 2'(55 16)
iz .z
2 4 31 1 3 15 1 1 4
T F s mealt O g0
2| —zx” ——
4 4 43 o 3.5 ... _
ST P 1 SYR s AL MAARA C. ik ) YT
3 1 n—2 2n42n—1 pl
3 %1‘75/2 g . E
41-3-5----- (2n —3)
- - A n—1 _ n
15 .—7/2 15 1 = HRgERe + 'n:2( 2 25n=2n) (x—16)
4 T - -
16 16 47
~1)*1-3. o _ _ n+l 5n—2p1
i 194 i (-1)"1-3-5 (2n —1)(z — 16) . 2 n!
n—oo an n—oo 25"+3(n + 1)' (-1)"71 1-3:-5----- (271 — 3)(I - 16)”

= lim

n—oo

|z

. (2n—1)|x716\:\x716| lim 2—1/n _ |z —16|

16|
16

25(n+1)

= 2
32 n—ooo 1+1/n 32

<1 for convergence, so |z — 16| < 16 and R = 16.

27. If f(z) = cos z, then "+ (z) = 4 sinx or + cos z. In each case, ’f("“)(x)’ <1, so by Formula 9 with ¢ = 0 and

M =1, |Rn(x)| < (n+ 1)

n—00

8, the series in Exercise 13 represents cos z for all x.

28. If f(z) = sinz, then "+ (x) = £ sinx or + cos z. In each case, ‘f("“)(m)’ < 1, so by Formula 9 with a = 0 and

M =1, |Ry(z)| <

_
(n+1)!

& — """ Thus, |Ry(z)| — 0as n — oo by Equation 10. So lim R, (z) — 0 and, by

n—o0

Theorem 8, the series in Exercise 25 represents sin x for all x.
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|z|"**. Thus, |R, ()| — 0 asn — oo by Equation 10. So lim R, (z) = 0 and, by Theorem
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29. If f(x) = sinh z, then for all n, f("*") () = coshz or sinh . Since |sinh z| < |cosh z| = cosh z for all z, we have

‘f(”"'l)(:):)‘ < cosh z for all n. If d is any positive number and |z| < d, then ‘f(""'l)(x)’ < coshz < coshd, so by

Formula 9 with a = 0 and M = cosh d, we have | R, (x)| < (Coj_hfd)' |z|" . It follows that | R,, ()| — 0 asn — oo for
n !

|z| < d (by Equation 10). But d was an arbitrary positive number. So by Theorem 8, the series represents sinh x for all x.

30. If f(x) = cosh x, then for all n, f"*Y) () = cosh z or sinh z. Since |sinh x| < |cosh z| = cosh  for all z, we have
‘f("ﬂ) (m)‘ < cosh x for all n. If d is any positive number and |z| < d, then ‘f("“)(r)’ < cosh < coshd, so by

coshd
(n+1)!

Formula 9 with @ = 0 and M = cosh d, we have |R,, (z)| < ||, Tt follows that | Ry, ()| — 0 as m— o6 for

|z| < d (by Equation 10). But d was an arbitrary positive number. So by Theorem 8, the series represents cosh for all z.

= 1.3 1(_ 3\ ( 1
#VT-e=[+ () = 52 <1v/z4> (—2)" =1+ 4(-2)+ 2 (214>(—x)2 " %(—@n...
=1 Z_ix + ;:32 (71)"— (71)71 47[Lgn7' ..... (4n _ 5)] -
_ 1 X 3T (4n—5) ,
T Zx_n;Q 4n . nl

and |—z| <1 <& [|z|<1l,soR=1

21 \3 3!
_ o (AN s ()],
_2{1—1-24:54-7;2 TR
P & (=) 25 (Bn-4)] ,
=2+ pri2 24n - )

1 1 1 x\—3 1 X [=3)\/z\"
33. = ==(1+= == — ] . The binomial coefficient is
2+z)° [2042z/2)] 8( ) 8?( >(2)

n! n!

<—3) (BB (B-nt D) _ (B)(D(5) - [~(n+2)]

(-n"-2-3-4-5----- (n+)(n+2) (-1)"(n+1)(n+2)

- 2-nl 2
1 1l (-D)*"n+1)n+2)2" & (—1)"(n+1)(n+2)z" ‘m‘ _
Thus, @io° 8 n;g 3 5 = ngo T for 5| < 1 & |z[/<2,s0R=2
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35.

36.

37.

38.

39.

40.

41.
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= (¢ ) e 2D
A4zt =S [*]an=14+Za+ 2 2Lp2 4 40 4L 4) .3 4
n=0 \ N 2! 3!
o (=)™ 1.3-1-5-9- - - (4n—T7)]
=1 — n
- m+n2::2 4n . nl
for|z| < 1,s0 R = 1.
=] p2ntl ) oo ($2)2n+1 - 1
= —1 n = = —1 noa_Z - —1 "
arctan x nz=:o( ) i1 so f(z) = arctan(z?) nzzjo( ) T T nZ::O( ) 5T
> g2t (% )2”+1 0o m2n

sine = 3 (1" gy s (@) = sin (%x) =2V oy T 2 Y ey

oo n 1,271 oo " (2@‘)2" o n 22n$2n
cosx = RZ::O(—I) @n)] = cos2r = nZ::O(_l) —(Qn)! = RZ::O(—I) @l , SO
f(x) = xcos2z = i(—l)”f—nﬁ”*l R=c
n=0 (277,)'
ez _ i ﬁ ‘o f(m) 2631 _€2z _ i (3.’E)" B i (Z.T)n _ i 3”@‘” B i an'll _ i 3n _2n
n=0 n! ’ n=0 n! n=0 nl n=0 n! n=0 n! n=0 n!
oo 1.271 o) (lmz)zn oo IE4n
— 1 n 1.2 [ 1 n \2 — -1 n__ %
cose= 2 (W am = 6m) & X0 = Y oy ©
x 1
_ 1,.2\ __ n 4n+1 _
f(.T) = J)COS(E.Z’ ) = ngo(—l) W €T ) R = .

oo n oo 3n oo
In(1 + ) = z(—m—l% = In(l+a®) = Z(—l)nfl%,so fz)=2In(1+2%) = 3 (-1)" I —
n=1 n=1 n=1
R=1
We must write the binomial in the form (1+ expression), so we’ll factor out a 4.
2\ —1/2 o [_1 2\ "
x _ T _ x :£<1+I_> :fz 2 (x_)
VA+ 22 A1 +22/4)  2\/1+22/4 2 4 2,20\ n 4
2 3
S PO i G- o2 0 Y - 1 k- 50 O
2 274 2! 4 3! 4
z T X 1-3-5-----(2n—1) ,
_Z el —1)" n
2+2nz::1( ) 27 . 4m . nl
Lz X nl:3:5-..0. 2n—1) 9n41 x? || _
_2+n;l( 1) DY x and4 <l & 3 <l & |z|<2, soR=2.
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n

ontl p_
" R = oo.
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2 ZL‘2 2

x x x\ —1/2 r‘ X —% T\ "
2 \/2+x:\/2(1+x/2)zﬁ(1+5) _ERX_:()(n)(E)

2’ 2y, (53)(E5) ey (23)(23)(28) 2y
=5 EDE) =6 e (5
_a? =, 135 (2n-1) ,
V2 - \/5712::1( Y n!22n
3_25 ij( )132,2%“(/2 ) "2 and‘ ’<1 & |zl <2, soR=2.
.o 1 1 ) (_1)”(2$)2"l 1 oo (_1)n(2$)2n o= (_1)'n+122n~1w2n
43, sin*z = 5(1—(:052&6) = 5[1—;;() eI ] 5{1—1—;::1 e } —nzzjl e

R =00

z—sinz 1 o (—1)"z? 1 o (—1)"z? 1 R S D
4. 7:—3[1‘—27 =3 T—x— Y e [ F o - Y

3 T

= (@Cn+1)! =1 (2n+1)! i=o (2n+3)!
B 1 = (_l)nx2n+3 B oo ( 1)71, 2n
- FEO (2n +3)! 2 (2n + 3)!

and this series also gives the required value at z = 0 (namely 1/6); R =.co.

e o e L5

: T,=T,=T,=T,
2 (@) nzo X sl )

_1,_1- Jr—x f%l' 14 ';' |\“ \T;:Teleo:Tu
The series for cos z converges forall «, so the same is true of the series for : }
C J
f(z), that is, R = oco. Notice that, as n increases, T}, (z) becomes a better —15 T,=Ts=Ts=T,

approximation to f(x).

46. In(1+2) = > (~1)" % B

3
—

FTo =T

L T,=T,
The series forIn(1+z) has R =1and [2*| <1 & |z <1,

so the series for f(x) also has R = 1. From the graphs of f and

the first few Taylor polynomials, we see that T}, (x) provides a

closer fit to f(x) near O as n increases.
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49.

50.

51.

SECTION 11.10  TAYLOR AND MACLAURIN SERIES U
0 n o] —r\n o] n
I(E)Z%,S067122(ﬁ) :Z(—l)"x—',so 6
n=0 T n=0 n. n=0 n: T3 T5
& 1
f@)=ze ™ = 3 (-1 ot "
n=0 n! f
71:_3024_;303_%1,4_’_2_14365_1_;01:6_’_ -3
T,
— i (_1)”*1x7 T  \Tu\Ts
n=1 (n - 1)' T, f
The series for e” converges for all x, so the same is true of the series T, i
for f(x); that is, R = oo. From the graphs of f and the first few Taylor T, Ts T,

polynomials, we see that T}, (x) provides a closer fit to f(x) near 0 as n increases.

1051

%) 2n+1
From Table 1, tan™ !z = nzzzo(—l)" ;n 700 Tis=Tie= T”; T=Tw=Tx
3\2n+1 6n+3 -
=t -1 3200_1n(x) :Oo_lnl‘
f@) = tan! (@) = 3 (1) = 3 (-1
R VNI Ve p R
-2 / 2
The series for tan™ "z has R = land [2%| <1 & |2 <1, To=T) =T+
so the series for f(z) also has R = 1. From the graphs of f and f
the first few Taylor polynomials, we see that T}, (x) provides a
. 2 Ty=Tw=Tu=Tuo=Tis=Tyu
closer fit to f(z) near 0 as n increases. T=Ti=Ts=Ts=T;=T;
o 2n 2 4 6
o __ go ™ _ 1 : - —1\" L — — '7:_ 33_ — 33_ e
5° =5 (1800) = 36 radians and cos x = nZ::O( 1) @yl 1 o + TG +---,80
2 4 6 2 4
cos &= =1 - /37 (@367 (@f36)” w1 — /39 (99619 and adding TL30) ~ 9.4 % 1076

36 2! 4! 6! 2!
does not affect the fifth decimal place, so cos 5° = 0.99619 by the Alternating Series Estimation Theorem.

4!

n 2 3

__ _—1/10 T T _ . =
1/Ne=e and e —nszOn! =ltaz+g+5+,s0

co L1 (R0 (10, (/10" (1/10)°

10 2! 3! 41 5!
1. (1/10)2 _(1/10)®*  (1/10)*
AR CTRE

+ . Now

- (1/10)° 8
= 0.90484 and subtracting o = 8.3 x 10™° does not affect the fifth

decimal place, so e /1% & 0.90484 by the Alternating Series Estimation Theorem.

_1y_3 Ly (3) (=3
@ VI = [+ ()] 7 =1+ ((-et) + B o LREED e
B © 1.3.5..... (2n—1) n
_1+n2:)1 ol ’
PR 1 % 1-3-5.--.. (2n—1) 51
(b) sin 1x_/—mdm—o+$+n§1 (2n+1)2" - n! ¢
=xz+ f L35 (2n—1)x2n+1 since 0 = sin™!0 = C.

= (2n+1)2" - n!
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i _ e & (i L EDED) o ED)ED)(ED) s
52. @) 1/V1+z=(1+x) => L =1 4x+ 5 x° + 3 z° +
n=0 . .
B o 1.5.9-.---(4n—3)
=1 m+n§2( 1) ol
O 1/ VT+z=1—3z+ 52" — $22° + g222* — ... 1/v/1.1=1/Y/T+ 0.1, s0 let z = 0.1. The sum of the first four

terms is then 1 — 2(0.1) + 2(0.1)*> — £2(0.1)® ~ 0.976. The fifth term is 5oux (0.1)* &~ 0.000 009 5, which does not

affect the third decimal place of the sum, so we have 1/v/1.1 ~ 0.976. (Note that the third decimal place of the sum of the

first three terms is affected by the fourth term, so we need to use more than three terms for the sum.)

o 1 o 1 o 1 3n+1
8. VIT=(1+2)2=3 (2] @)= (2)s" = /\/1+x3dm:C+Z 2) T\
n=0 \ N n=0 \ N n=0 \ 3n+1
with R = 1.
. o " m277,«&»1 . 9 o ” ($2)2n+1 oo " m477,«&»2
54. sinz = H;O(—l) Gnr i = sin(z?) = ngo(—l) Gnr 1l ngo(—l) Gnr it =
5 . 5 o) " x4n+4 o) " x4n+5 )
X sm(x ) = ngo(—l) (QTLT = I 51n )dil? C + ngo(—l) m, Wlth R = Q.
2n 2n 2n—1
(1) & \n T L _ &, .z cosz—1 X .,z
55. cosx = ngo( 1) ! = cosz—1 —ngl( 1) )] v & —ngl( 1) @ =
/de—m f(-l)”i with R & 0o
x B =1 2n - (2n)° ¥
fo%s) x2n+1 4 fo%s) (x2)2n+1 oo 4n+2
56. arctanz = H;O(—l) 1 = arctan(z®) = ngo(—l) Tl ngo( 1" 1
, oo pAnt3
/arctan(;r )dr =C + nz=:o( ) G T D+ 3)’ with R
oo 271+1 3 o 2n+4
57. arctanz = ngo( 1) 1 for |z| < 1,0 2° arctanz = ngo(—l) 1 for |z] < 1 and
3 %) I2n+5
/x arctanz dz = C'+ ngo(—l)nm. Since 3 < 1, we have
vz /2 /2 @2t 1/2°  1/2"
— - — ....N
/0 @ arCREE Z( V' ans@mss ~ 15 37 59 7oar T o

1/2)"
7-11

5 7 9
(1/2) - (1/2) + (1/2) ~ 0.0059 and subtracting

~ -6 i
15 3.7 5.9 ~ 6.3 x 107" does not affect the fourth decimal place,

) 01/ ? % arctan x dz ~ 0.0059 by the Alternating Series Estimation Theorem.

o x2n+1 o x8n+4
58. sinxz = H;O(—l)nm for all x, SO sin(:v4) = ngo(—l)nm for all = and
/sin(m4) = i( )" L. Thus
=0 (2n 4+ 1)! (8n +5) ’
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L _ ! - L + L - L + Now
@2n+1!(8n+5) 1.5 3!.13  5!-21 7'-29 ’

/0 sin(a®) de — 20(_1)"

LIRS S
115 31.13 ' 5l.21

~ 0.1876 and subtracting

1 .
.29 ~ 6.84 x 107° does not affect the fourth decimal place, so

fol sin(z*) dz ~ 0.1876 by the Alternating Series Estimation Theorem.

oo (1 oo (1) gAnt1
Vitai=(1+2H2 = ?L so/\/1+a:4dxfC+Z 72L Jrlandhence,sincc:0.4<1,
n=0
we have
oo 1 (0 4)4n+1
— \/ 4 g — 2
I ; 1+ 24dx sz <n) 1
@0 30 3D 040 | 3EHED 000 3EHED D007
0! 1 5 2! 9 3! 13 4! 17
(0.4)°  (0.4)°  (0.4)"  5(0.4)"
— 4 — “e
=04+ 10 72 + 208 2176 +
(0.4)° 6 6 . . V. (0.4)°
Now ™ /2 3.6 x 107 < 5 x 107", so by the Alternating Series Estimation Theorem, [ ~ 0.4 + 0 ~ 0.40102

(correct to five decimal places).

(_1)”

0.5 0.5 n_2n+2 n 2 2n4371/2
2 —a? & (D" SN o :
dr = 7 dr= — = —————— and the t
/0 e T | nz::O p T nZ::O W2 T 3) HZ::O IOn T 3y02773 and since the term
withn =2 is < 0.001, weusez(;m—i—i~00354
T U792 on!@n +3)227F3 — 24 160
120,13 1.4 1.5 1.2 1.3, 1. 4_ 1.5
hmm—ln(1+x):hmaz—(:c—§x +52° — 35" + 3z —~~~)_hm§a:—§m + 32—z’ 4
0 T2 0 T2 z—0 T2
. 2 3
— (3~ do AR et ) = )
since power series are continuous functions.
1—cosz . 1-(1—ga® 4 ga’ —ga®+---)

lim ——— = lim
a0 1+ —e* I**01—|-.7}—(1+J3+2,$2+3,.1’3+4,.1’4+5,.1’5+6,.1’6+ )

2 6
. |I - |I + |I -
lim 2! 4! 6!
- 1,.2 1 1,.4 1 1
z—0 —51' — 51‘3 — El‘ — 51’5 — al’ﬁ —
. b o+ ot i-0
_;li% L i, 1.2 1,35 1.1 ~TI_ ) =-1
o T gl Tt gl e T T
since power series are continuous functions.
sinz — 2+ a3 (r—i,a:3+l,a:5—l,x7+~~)—x—&—lxs
lim 6 — lim 3! 51 71 6
z—0 5 z—0 x5
1,5 1.7
= |lim = lm( — — — —_ .. _—_ = —
z—0 5 z—0\ 5! 7! 9! 5! 120

since power series are continuous functions.
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64.

65.

66.

67.

68.

69.

. \/1+x717%$ . (1+%m—%x2+%ﬁr3—~~)—l—%r . f§x2+1—16x37---
lim = lim = lim
z—0 2 z—0 T2 x—0 2
. . 1 1 _ 1 . . . .
= lim (—g 6T — - ) = —5 since power series are continuous functions.
x—0
_ 3 1,3 1,5 1.7
. x> —3r+3tan lx . T —3x+3(m—§x + g2’ — T +)
lim = lim
z—0 Al z—0 5
. x373x+3x7x3+%x57%x7+-~ . %x5f%x7+
= lim = lim
z—0 5 z—0 i
— lim (2 — 3,2 _3 g - : functi
= lim (¢ — 22" +---) = £ since power series are continuous functions.
x—0
1,3, 2,5 1,3, 2.5
. tanz —=x . (l""gx + 5z +"')—$ . 3T et . /1, 2 9 p
lim ———— = lim :hm—:hm(E—i—Em +--~)=§
x—0 3 x—0 3 x—0 3 z—0
since power series are continuous functions.
2 4 6 2 4
. .2 x x x x x
From Equation 11, we have e™* =1 — Tl + o7~ ar + --- and we know that cosx = 1 — o + VIR from
. _z? » .
Equation 16. Therefore, e* cosz = (1 —2® + 2a* — -+ ) (1 — $2° + & a* =+-¥). Writing only the terms with
2
— — 1= Llp2 4 L4 2 14 14, 3,24 26,4,
degree < 4, we get e cosx=1—35a"+ 2" -2+ 52" + 52" +--=1L=52" 570" +---.
1 (e 1
secx = =
cos 1— 2224 ot —
It 14 2ot +
2 24
1,2 1.4
1—352" + 552 1

5 .4
241; + -

5.4
2%t

From the long division above, séex = 1+ ga” + Za* +---.

T (15) T

i _lps L5 L°
sinx T — T3+ 55 .
3e0L o

—
+
ol=
8

»
+

8
I
ol
8
w
+

w

1.5
5’ 4

1.5
36x + .-

8
|

= o=
w

8
[

7 .5
3600 T

7.5
se5 4

From the long division above, —— =1+ %x2 + 3—20304 4+
sinx
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74.

75.

76.

7.
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79.

80.

81.

82.
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2 3 2 3 4

From Table 1, we have e =14+ 4+ 4 4 andthatln(l—l—m):x—m——l—m——m——l—---.Therefore,

1! 2! 3! 2 3 4

2 3 2 3 4
y:exln(l—l—x):( —1—;3'—&—%—&—%4— ) <x—%+%—%+ ) Writing only terms with degree < 3,
wegete’In(l+z) =2 — 32’ + 12+ -2 + 2%+ =z 4+ 22”2+ 32% + -
y = (arctanz)® = (z — 22° 4+ £2° — 1 o) (z— 2% 4 $2° — 227 + .-+ ). Writing only the terms with
degree < 6, we get (arctanz)® = 2° — 3 +§ 2ot + 32+ 124 =2 — 22t + 220 .

y=e"sin®x = (e“sinx)sine = (m + 2?2 + %x3 + - ) (:E - éx‘g + - ) [from Example 13]. Writing only the terms

with degree < 4, we get e”sin® x = 2% — %x4+x3+ %x4+... =224+ %x4+---
oo 4an [e39) 7:”4 " 4
ngo(il)nﬁ B nZ::O ( nl) =e ", by (1.
2n
o~ (_1)71 o S n (1) s 3
3 e = oD g = e = by (16)
21( )"*1§5n = ;(—1)” ! (3/:) In (1 + ) [from Table 1] = In =
> 2= 5 B o yan,
n=0 5m nl n=0

oo (—1)" p2ntl oo (— 1) ( )2”+1
n;O 42n+1(2n + 1)' n=0 (2TL + 1)'

M

=sin 7 = %,by (15).

3
12+(ln2) In2)7 | - SAMBET o 2yt g1 -1y,
3' n=0 TL'
9 27 81 3t 32 g &3 x 3
Sttt tas —+—+§+_+ ST e T hbvdn,
1 1 1 1 &, 1 RN V0 S g
1.2 3.3 5.08 707+ _n;o( b (2n—|—1)22"+1_n§o( 2 1 \2 [from Table 1}

. n (4) X
If p is an mth-degree polynomial, then p(*) () = 0 for i > n, so its Taylor series at a is p(z) = . P .(a) (x —a)".

1=0 7"
n p(a)
Putz—a =1,sothatz =a+ 1. Thenp(a+1) = > a
i=0 U
- o pt ()
This is true for any a, so replace a by z: p(z +1) = > a
i=0 U
(58) (O)
The coefficient of % in the Maclaurin series of f(z) = (1 + %) T But the binomial series for f(z) is

n=0

1+2*)%0 = (%ﬂ?) 23", so it involves only powers of x that are multiples of 3 and therefore the coefficient of z°® is 0.
So £ (0) = 0.
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83. Assume that | f"(z)| < M,so f"(z) < M fora <z < a+d. Now [* f"(t)dt < [*Mdt =
f'(@) = f"(a) < M(z—a) = f"(z) < f'(a) +M(x—a). Thus, [ f'(t)dt < [7[f"(a) + M(t—a)]dt =
f'(@) = f(a) < f'(a)(w —a) + 5M(z —a)* = f(z) < f'(a)+f"(a)(z—a)+5M(x—a)? =
[Zf@)ydt < [T[f'(a)+ f"(a)(t —a) + $M(t —a)’] dt =
f(z) = f(a) < f(@)(z —a) + 3f"(a)(z — a)* + §M(z — a)’. So
f(@) = fla) = f'(a)(z — a) = 5f"(a)(z — a)* < §M(z — a)°. But
Ra(x) = f(z) — Ta(z) = f(2) = f(a) = f'(a)(z — a) — 3" (a)(z — a)?, s0 Rz(x) < gM(x — a)’.
A similar argument using f”(z) > —M shows that Ra(z) > —2 M (2 — a)®. So |Ra(z2)| < 2 M |z — af®.
Although we have assumed that & > a, a similar calculation shows that this inequality is also tru¢if & < a.

= lim =lim 5 =lim —— =0
z—0 I 20 el/®? z-50 2¢el/x?

—1/z%
if 2 #0 so f'(0) = lim @) =

£(0) e/’ oz . a
if =0 ==0 -0

84. (a) f(x) = {S

(using 1’Hospital’s Rule and simplifying in the penultimate step). Similarly, we can use the definition of the derivative and
1’Hospital’s Rule to show that f”/(0) = 0, f®(0) =0, ..., £ (0) = 0, so that the Maclaurin series for f consists

entirely of zero terms. But since f(z) # 0 except for z = 0, we see that f cannot equal its Maclaurin series except

atz = 0.

(b) 0.002 From the graph, it seems that the function is extremely flat at the origin.
In fact, it'could be said to be “infinitely flat” at x = 0, since all of its
derivatives are O there.

-04 0.4

8. () g(z) = i (fL)xn = g(z)= 21 (S)nx"l,so

(1+2)g (@) = (1+a) 2 (:) R — 21 <i) na™! 4 21 <i) na”
- et e (e ]
A :o(" RS 2)(;{}(1;)!_ ntDk=n) . 20 [(n) Kk — 1)(k — 27)“- c(k—n+D)]
D T e (SRS
YL BHUELES P i(k) e
Thus, ¢ (z) = ’;gfx)
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®) h(z)=(1+z) " g(x) =

B (z) = —k(1+a2) " gx)+ (1 +z)" g () [Product Rule]
=—k(1+z)*g) + 1+ x)fk I;QT(? [from part (a)]

= —k(1+2) " g(z) + k(1 +2) " g(z) =0
(c) From part (b) we see that h(x) must be constant for z € (—1,1), so h(z) = h(0) =1 forz € (—1,1).
Thus, h(z) =1=(1+2z) "gx) < g)=1+z)" forze (-1,1).

86. Using the binomial series to expand 1/1 + x as a power series as in Example 9, we get

o (—1)"11.3.5..... 9 — )"
\/1+m:(1+z)1/2:1+£+z( ) 3-5 (2n 3)x’so
2 n=2 27 . nl
_o2\1/2 712700135 ..... (2n —3) .,
(-2 =1-32°~ 3 — and
\/m =1— 162 Sin2 0 _ Z 1-3-5----- (2n _ 3) 6271 Sin2n > Thuy
2 n=2 2n . nl

/2 /2 0 1.3-5.4.. -
L=4a / V1—e2sin®0df = 4a / (l — %62 sin’ 0 — > L35 (2n — 3) " sin®" 9) do
0 0

n=2 2" . n!
T € © 1:-3-5.-.-- (2n —3) ("
:4 —_— e — _ — n

a{z TR nl (2) S]

where S, = /07r/2 sin®" 0 df = ! 226 ."(‘2.712; L g by Exercise 7.1.50.
R - T
:27“{1* % 7::2622_: . 12.32.52. n' .2(3,17;3)2(2”_ 1)]
:27ra{1—§—?%—z4—2—§2—---] :%(256—64@2—12@4—566—---)

1 o) = n(x) _ sin(tan z) — tan(sin )
' d(xz)  arcsin(arctanx) — arctan(arcsin x) - ()
. . . . . 1 1.1838
The table of function values were obtained using Maple with 10 digits of 01 0.9891
precision. The results of this project will vary depending on the CAS and 0.01 2.0000
precision level. It appears that as z — 07, f(z) — 1—??. Since f is an even 0.001 3.3333

0.0001 | 3.3333

function, we have f(z) — 42 as z — 0.
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. The limit has the indeterminate form %, Applying I’Hospital’s Rule, we obtain the form

n("(x)

application we obtain lim d0(z) 168

x—0

n(zx) cas 1. — sz’

INFINITE SEQUENCES AND SERIES

2. The graph is inconclusive about the limit of f as x — 0.

—168

29 .9
-2+

L7y 13 .9, .,
#=0 —552" + 75T +

3

—0.01

-2

9
0

six times. Finally, on the seventh

L7 29,9, 7 L 29 _ L
(—gr” —Zpa’ +---)/a — lim —30 756 ~ 230 _q
; _ L7y 1309 4 7 50 —L 1 132y T L T
a0 (—gpaT + 52+ ) /@ 270 =55 + 5% + 30
—5330 — —168, which agrees with the result in Problem 3.

Note that n(7 () = d7 (z) = 3 =

. The limit command gives the result that 1ir% flx)=1.

. The strange results (with only 10 digits of precision) must be due to the fact that the terms being subtracted in the numerator

and denominator are very close in value when |z| is small. Thus, the differences are imprecise (have few correct digits).

11.11  Applications of Taylor Polynomials
1. (a)
n | ™) | F7(0) T ()
T,=T _
0 sinz 010 y L=T
1 cosx 1 T T,
. _ pd
2 | —sinx 0 T 2m 2m
3| —cosz -1 z— 2’ f
4 sinx 0 T — %$3 -
5 COS.T. 1 T — %xs—l—l—éoxs C
=5
n  f(k)
Note: T (z) = > 200 zF
—o k!
(b)

z f To(x) Ty (z) = Ta(x) Ts(x) = Tu() T5(x)

I 0.7071 0 0.7854 0.7047 0.7071

5 1 0 1.5708 0.9248 1.0045

T 0 0 3.1416 —2.0261 0.5240

(c) As n increases, T}, () is a good approximation to f(z) on a larger and larger interval.
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2. (a)
n F7 (@) F0) | Tu(x)
0 tanx 0 0
1 sec? x 1 T
2 2sec? x tanw 0 T
3 | 4sec’z tan® z + 2sec’ x 2 T+ %m:)’
(b)
z f To(z) | Ti(x) =Th(x) Ts(x)
5 0.5774 0 0.5236 0.5714
I 1 0 0.7854 0.9469
3 1.7321 0 1.0472 1.4300

1059

(c) As n increases, T, () is a good approximation to f(z) on a largerand larger interval. Because the Taylor polynomials

are continuous, they cannot approximate the infinite discontinuities.at @ = /2. They can only approximate tan

on (—m/2,7/2).

N P BN R
0 e’ e
1 e’ e
2 e’ e
3 e’ e
Ty(z) = :O f(rj!“) ( —1)"
= G- G- S @) g
=e+elz— 1)+ se(xz =1)° + 2e(z — 1)°
4,
n " w) | S w/6)
0 sin 1/2
1 cosx V3/2
2 | —sinzx -1/2
3| —cosz —/3/2

T3(x)

- R - -

1! 6 2!

E ) R T R ()

T;

—0.8 1.8
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F™ (@) | ™ (r/2)

cosx 0

—sinz —1

—cosx 0

w o o= O3

sin 1

3. f(M)(n n
T3($): Z M (I_z)

n=0 n!

=—(@-5)+il-3)

(@) F(0)

e “sinx
e "(cosx — sinx)

—2e % cosx

w N = O3

2e~"(cosx + sinx)

(n)
1) = 52 L0

n=0 n!

FP() | )
Inx 0
1/x 1

—1/a? -1
2/x® 2

w N = O3

3 fr(n)
nw) = 3 LWy

n—=0 n!

" =x— 2%+

1.3
3T

1 -1 2

1

=(@-1D=3z—1>+3(z—-1)°

Y e [0
0 TCos T 0
1 —xsinz 4 cosz 1
2 | —xcosz —2sinx 0
3 rsinx — 3cosx -3

T,
0
a
2
—1.1
2
T,
2 7
f
-2
4 N\
Ts
f
-1
AN J
2
N
T;
) »
f
-2
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10.

1.

12.

SECTION 11.11  APPLICATIONS OF TAYLOR POLYNOMIALS U
3
n| M@ 10 ( )
0 e 2* 0
1| (1-2x)e?* 1 - L5
2 | 4(z—1)e™? —4
3| 43— 2z)e™? 12
S
s f0) iy 12,0 g
T5(z) = >, o x" A4t Fa?+ 2% =2 — 227 + 22
n=0 .
2
n n N
n [ @ [ .
0 tan™' T !
1
1 e 1
1+ 22 2 -1 ‘ ‘ 3
2 __ 2 _1
(1 + 22)2 2 f
3 62 — 2 1
X T — J
3. fM(1) T 1/2 -1/2 1/2
T — J N\ NN == -r“ -1 1 _ e -1 2 -1
s = Y i @ = L) e ) R @ )
=Z4+iz-1)—-31(@=-1)°+5@-1)°
You may be able to simply find the Taylor polynomials for Ti /Ts
5
f(z) = cot = using your CAS. We will list the values of f™ (7/4) T, P
forn =0ton =5. T
T,
n 0 1 2 3 4 5 .
F ) | 1] 200 4| —16.] 80 | —512 o
0 ps ] ?
4
5 f(n (71-/4) w \" T. T,
Tl@) =3 (—%) C
n=0 -2
s 7 \2 7\3 7 \4 \2
=1=2(@-5)42@-5) -30@-§) +50-5) -HB@E-3)
For n = 2to n =5, T () is the polynomial consisting of all the terms up to and including the (x - %)n term.
You may be-able to simply find the Taylor polynomials for 3
f(z) = /1 + x2 using your CAS. We will list the values of £ (0) =T,
forn=0ton =5.
n 0 1 2 3 4 5
FO lrjo 3o =50
5. 1M 2 4 -3 3
Ts(m)ZHZ::OTx =1+32° -3z

Forn = 2ton = 5, T,,(z) is the polynomial consisting of all the terms up to and including the 2™ term.
Note that 75 = T3 and Ty = T5.
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3. (@) f(@) =1/z~ Ti(z)
n | fM() | F7(1) ) . )
0 1/ 1 :a(xfl)ofﬁ(wfl)lJrﬁ(xfl)z
1| —1/2? -1 o)t (e 1)
2 2/x® 2
3| —6/z*

M
() |Ra(2)] < 3y o — 1)%, where | f/(z)] < M.Now 0.7 <2 <13 = |¢—-1/<03 = |z—1° <0.027.

Since | f"”'(x)| is decreasing on [0.7, 1.3], we can take M = | f"/(0.7)| = 6/(0.7)*, so

4
|Ro(z)| < @(0.027) =0.112453 1.
(©) From the graph of | Rz (z)| = ‘% — Ty (z)|, it seems that the error is less than
0.038571 on [0.7, 1.3].
13
14. (a) f(z) = 272 =Ty (x)
n| fM@ |0 1/2 1/16 3/128
A S L - Ly B a2
L =37 | =5 1 U 4) 4 3 (1 4)2
5 5,-5/2 3 =37 16T —4)+ 555(x—4)
4 128

3 7%9677/2

(b) |R2(z)] < % |z — 4%, where | f(z)| < M. Now3.5 <z <45 = |r—4/<05 = |z—4]° <0.125.

Since | "/ ()| is decreasing on [3.5,4.5], we can take M = | f"'(3.5)| = ﬁ, $0

|Ra(2)] < ———2 _(07125) ~ 0.000 487,

= 6-8(3.5)7/

From the graph of | Rz(z)| = |#~1/2 — Ty (x)|, it seems that the error is less

than 0.000 343 on [3.5,4.5].

4.5
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SECTION 11.11  APPLICATIONS OF TAYLOR POLYNOMIALS U
2/3 2 2/9 2, 8/27 3
15. @ fl))=2*=T3z)=14+2(xz—-1)— L-(z—1)°+L—(z—1)
(n) () 3 2! 3!
n| Pw [0 2 2o A
1] 273 2 (b) |Rs(z)] < % |z — 1|*, where ’ f(4)(x)' <M.Now08<z<12 =
) _2,-4/3 _2 . 4
9 9 |x —1 <02 = |z —1|" <0.0016. Since ‘f(‘l)(m)‘ is decreasing
3| &£,-7/3 8
27 27
4 | _56,-10/3 on [0.8,1.2], we can take M = ‘ @ (0.8)’ = %(0.8)’10/3, S0
81
£5(0.8)710/3
|Rs(z)| < fﬂT(o.oow) ~ 0.000 09697.
(c) 000006
From the graph of | R3(z)| = |2?/3 — T3(x)|, it seems that the
¥ =Ry
error is less than 0.000 053 3 on{0.8;1.2].
0.8 1.2
0 1
16. (@) f(z)=sinz =~ Ty(z)
(n) (n)
no| f(x) | f(r/6) ) 5 s
. =320 -%) 2l ) - B8 k0@
sinz 1/2
1 cosw V3/2
2 | —sinz -1/2
3 | —coszx —/3/2
4 sinx 1/2
5 cosx
b) |R <M |5 h (5) < M.N 0< <z T T T« m
() [Ra(2)| < 57 o — [ where | fO(2)| <M. Now0 <o <§ = —f<a-3<§ = [p—F|<F =
|z — %|5 < (%)5. Since ‘f(5)(x)’ is decreasing on [0, %], we can take M = ’f(s)(O)‘ =cos0=1,so0
5
|Ra(z)| < é ) ~ 0.000.328.
(c) 0.0004
From the graph of | R4(x)| = |sinz — T4(z)], it seems that the
¥ =Ry .
error is less than 0.000 297 on [0, %} .
am
0 e 3
6
17. (a) f(z) =secx ~ Ta(z) = 1+ 3a°
n (@) F(0)
0 secx 1
1 secx tanx 0
2 secx (2sec’ z — 1) 1
3 | secx tanx (6sec’ z — 1)
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(b) |R2(z)] < % ||, where ’ f<3)(a;)’ <M. Now—02<x<02 = |2/<02 = |z]°<(0.2)>.

f® (x) is an odd function and it is increasing on [0, 0.2] since sec z and tan z are increasing on [0, 0.2],

s ’ f(3)(x)’ < F®(0.2) ~ 1.085 158 892. Thus, |Rz(z)| <

f¥(0.2)

a0 (0.2)® ~ 0.001 447.

(©) 0.0004
=|R
7= R From the graph of | Rz(x)| = |secx — T2(x)|, it seems that the
error is less than 0.000 339 on [—0.2, 0.2].
-0.2 0.2
0
18. = o (@) f(z) =In(1 +2z) =~ T3(x)
n () )
4/9 16/27
=In34+2(x—1) - L (x — 17>+ L (z—1)*
0| In(1+20) n3 n34gl ) —SpE =+ 5@ -1
2
1 2/(+22) 3 (®) |Rs(z)| < % | — 1|*, whete ’f(‘l)(x)‘ < M. Now0.5<z<15 =
2 | —4/(1+2z)2 -3 ’
s 1 —05<2-1<05 = |z—14<05 = |z—1* <L and
3| 16/(1+22) 1o
4 | —96/(1+2z)* letting z = 0.5/gives M = 6, so |Ra(x)| < % . 1i6 = 6_14 = 0.015625.
(c) 0.005
From the graph of | R3(x)| = |In(1 + 22) — T3(x)|, it seems that the
error is less than 0.005 on [0.5, 1.5].
¥ = |Ry()]
0.5 1.5
0
19, (@) f(z) = ¢ ~ Ty(x) = 1 + 2a® = 1 + 22
(n) () 2!
n () fN0)
2 M 4 (4)
e 1 (b) |Ra(2)] < 7 || ,where(f (a:)’ <M.Now0<z<01 =
1] e (22) 0 A
2 x* <(0.1)%, and letting = = 0.1 gives
T 2
2 | e (2+4z%) 2
0.01
3 | e™ (122 18 0 Ry ()] < =12+ 02'2‘8 +0.0016) (1% ~ 0.00006.
4| e’ (124 482 + 162%)
(©)  0.00008

e — T3($)‘, it appears that the

From the graph of |Rs(x)| =

error is less than 0.000 051 on [0, 0.1].
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20.

21.

22

(©

(©)

n | F@) | Fa)
zlnz 0
1| Inz+1 1
2 1/x 1
3| —1/2? -1
4| 2/a®
0.008
0.5
0 1
n FARIE)) £(0)
0 rsinx 0
1 sinx + x cosx 0
2 2cosx —xsinx 2
3 | —3sinx —xcosx 0
4 | —4cosx+ zsinx —4
5 5sinx + x cosx
0.009
y= |R4(x)|
-1 1
0
n | @ F(0)
0 sinh 2z 0
1 2 cosh 2z 2
2 4 sinh 2x 0
3 8 cosh 2z 8
4 | 16sinh 2x 0
5 | 32cosh2z 32
6 | 64sinh2x

SECTION 11.11  APPLICATIONS OF TAYLOR POLYNOMIALS LI 1065
@ f(z)=clhzrxTs(z)=(r—1)+ 3(x—-1)> - 3(z—1)
M 4 ()
(b) |Ra(2)| < 7 lo — 1]*, where ‘ f (m)‘ <M.Now05<z<15 =
z-1<% = |Jz-1/"< . Since ‘ f(4)(;r)‘ is decreasing on

[0.5,1.5], we can take M = ‘ @ (0.5)' =2/(0.5)° = 16, s0

|R3(z)| < 35(1/16) = 5 = 0.0416.

From the graph of |Rs3(z)| = |z Inx — T3(x)|, it seems that the error

is less than 0.0076 on [0.5, 1.5].

(@) f(z) =xsinz ~ Ty(z) = %(x ~0)% + ;—'4(35 —0)*=2% - %x4

(b) |Ra(x)]|.< % ||°, where ‘ f(5)(x)’ <M. Now-1<z<1 =
|z| ‘<1, and a graph of £ (z) shows that ’ f(‘r’)(m)’ <5for-1<z<1.

1 _
Thus, we cantake M = 5 and get |Ra(z)| < % 17 = i 0.0416.

From the graph of | R4(x)| = |z sinx — T4(x)|, it seems that the

error is less than 0.0082 on [—1, 1].

(a) f(z) =sinh2z ~ Ts(z) = 20 + 52° + La° =20+ 32° + £2°

(0) |Rs(z)| < A |a|°, where ' f(S)(x)‘ < M. For z in [~1, 1], we have
|| < 1. Since f(® (z) is an increasing odd function on [—1, 1], we see
that ’ f(ﬁ)(x)’ < FO(1) = 64sinh 2 = 32(e? — e~2) & 232.119,

so we can take M = 232.12 and get | R (z)| < 22242 .1° ~ 0.3224.
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23.

24,

25.

26.

27.
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(C) 0.03
=Ry From the graph of | Rs(x)| = |sinh 22 — T5(x)|, it seems that the
error is less than 0.027 on [—1, 1].
-1 1

0

From Exercise 5 = N4 iz-—zP+R here |R M = |* with
rom Exercise 5, cosz = — (z — ) + (2 — §)” + Rs(z), where | R3(z)| < il |z — Z|" wi

‘f(‘l)(m)’ = |cosz| < M =1. Now z = 80° = (90° — 10°) = (5 — &) = “ radians, so the error is
‘R3 ?’T ’ < i (177—8)4 ~ 0.000 039, which means our estimate would not be accurate to five decimal places. However,
T3 = Ty, so we can use ’R4 ) ’ < o5 18) ~ 0.000001. Therefore, to five decimal places,

cos80° ~ — (— &) + 2 (- %)’ ~ 0.17365.

From Exercise 16, sinz = 1 + @(m - —i(=z- %)2 - 1—‘/25(:1: — %)3 + = (2= %)4 + Ru(x), where

Ra(@)| < 55 M |z — =[° with ‘f(s)(x)‘ = |cosa| < M = 1. Now z = 38° = (80°48°) = (Z + 2) radians,

so the error is | R4 (335) | < 135 (2—’57)5 ~ 0.000 000 44, which means our estimate will be accurate to five decimal places.

Therefore, to five decimal places, sin 38° = & + 3 (22) — 1 (28)" — ¥3(2z)* 1 L (21)" 5 0.61566.

2|+, where 0 < & < 0.1. Letting z = 0.1,

All derivatives of e” are e”, 50 | Ry (z)| < " 1)

60‘1

(n+1)!
R3(0.1) < 0.0000046. Thus, by adding the four terms of the Maclaurin series for e” corresponding ton = 0, 1, 2, and 3,

R,(0.1) < (0.1)™*! < 0.00001, and by trial and error we find that n = 3 satisfies this inequality since

we can estimate ¢! to within 0.00001: (In fact, this:sum is 1.10516 and ' ~ 1.10517.)

1(_1)n71 (O:)n

18

(—1)”*1% for || < 1. Thus, In 1.4 = In(1 + 0.4) =

1 n

18

From Table 1 in Section 11.10, In(1 + &) =

n

Since this is an alternating series, the error is less than the first neglected term by the Alternating Series Estimation Theorem,
and we find that [as| = (0.4)%/6 ~/0.0007 < 0.001. So we need the first five (nonzero) terms of the Maclaurin series for the

desired accuracy. (In fact, this'sum is approximately 0.33698 and In 1.4 ~ 0.33647.)

1 1, . .
=z 2 = . 0.9

sinx =z 3'90 + TR By the Alternating Series A N

Estimation Theorem, the error in the approximation y=sinx+0.01 | 4
y=x— X

. 1 1

sinx =z — 3'30 is less than 5—x <001 &

|2°| < 120(0.01) <+ |z| < (1.2)"/® ~ 1.037. The curves

y =1z — 1z% and y = sinz — 0.01 intersect at = ~ 1.043, so y = sinx—0.01

6 0.90; : 712

the graph confirms our estimate. Since both the sine function
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29.

30.

3.
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and the given approximation are odd functions, we need to check the estimate only for > 0. Thus, the desired range of

values for z is —1.037 < x < 1.037.

cosz =1— %12 + Zm“ — émﬁ + - - -. By the Alternating Series 0‘3(4

y = cosx + 0.005

—5i 61 <0.005 <

Estimation Theorem, the error is less than

2% < 720(0.005) <« |z| < (3.6)"/° ~ 1.238. The curves

y=1-— %xQ + 2—14934 and y = cosx + 0.005 intersect at x ~ 1.244,

so the graph confirms our estimate. Since both the cosine function ’ g = cosx — 0.005
1 . L

and the given approximation are even functions, we need to check 032

/126

the estimate only for x > 0. Thus, the desired range of values for x is —1.238 <. < 1.238.

z®  2®

arctanz = — 5 + 5 % + - --. By the Alternating Series

=1

Estimation Theorem, the error is less than ’—%:f’ <0.05 & y = arctan x + 0.05 N~

|27] <0.35 < |z| < (0.35)"/7 ~ 0.8607. The curves

y=x— %x?’ + %x5 and y = arctan x + 0.05 intersect at

2 ~ 0.9245, so the graph confirms our estimate. Since both the y = arctan x — 0.05

arctangent function and the given approximation are odd functions, e

we need to check the estimate only for 2 > 0. Thus, the desired y=x— Loglys

3 5
range of values for z is —0.86 < x'< 0.86.

N A CO PR R G ) PR G D S
flz) = HZ::O ] (z=4)" = ngo S D)l (z—4)" = nX::O S 1) (z — 4)". Now
fB) = i (1) = i (=1)"b, is the sum of an alternating series that satisfies (i) bn4+1 < b, and

n=0 3n(n + 1) n=0

(ii) lim b,, = 0, so by the Alternating Series Estimation Theorem, |R5(5)| = |f(5) — T5(5)| < bs, and

be. = 3%@ = ﬁ ~ 0.000196 < 0.0002; that is, the fifth-degree Taylor polynomial approximates f(5) with error less
than 0.0002.

Let s(t) be the position function of the car, and for convenience set s(0) = 0. The velocity of the car is v(¢) = s’(¢) and the
acceleration is a(t) = s”(¢), so the second degree Taylor polynomial is T»(t) = s(0) + v(0)t + @tQ = 20t + t>. We

estimate the distance traveled during the next second to be s(1) & T2(1) = 20 + 1 = 21 m. The function 75(¢) would not be

accurate over a full minute, since the car could not possibly maintain an acceleration of 2 m/s? for that long (if it did, its final

speed would be 140 m/s ~ 313 mi/h!).
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32. (a) The linear approximation is
n () ) (20) ,
; o= Ty(t) = p(20) + p/ 0)(t — 20) = pyo[1 + (¢ — 20)]
P20€ P20
1 apye® =29 apag The quadratic approximation is
9 2 a(t—20) 2 "o
< Paoc @ P2 Ta(t) = p(20) + p(20)(t — 20) + 2 (2 0) (¢ — 202

= pao[1 + a(t — 20) + o’ (t — 20)°]

(b) 8x 1077 (c) 225% 107
P f ~N
T,
1.01p
I, 0.99p
. /
—250 /1000 ~30° - 80
0 1.25x 1078

From the graph, it seems that T4 (¢) is within 1% of p(t), that

is, 0.990(t) < T1(t) < L01p(t), for —14°C < t < 58°C.

—2
q q q q q d
BE= " brar - D DA+ d/Dp Dz{ ( +D> }
We use the Binomial Series to expand (1 + d/D)™%:
_a (1o 284 284 dY A YA YA Y A
E_D2[1 (1 2(D)—~_2! (D 3! D g _D22D 3D +4D
~1 o4
~ D3 Q(D)f2qd HE
when D is much larger than d; that is, when P is far away from the dipole.

ni  n2 1 /nesict mase :
34. (a) 7 + A R( 7 3 ) [Equation 1] where

lo =4/R2+ (so + R)2 —2R(so + R)cos¢ and £; = /R2+ (si — R)2+2R(si — R)cos¢ (2)

Using cos.¢ ~ 1 gives

2, _\/R2 (50 + R)2 —2R(so + R) = \/R? + s2 4+ 2Rs, + R* — 2Rs, — 2R? = \/s2 = s,

and similarly, ¢; = s;. Thus, Equation 1 becomes —+ 4+ =2 = = o B —t—

no 1 (n2s; mMiso ni n2 N2 — N1
— = = —.
So Si R So Si R

(b) Using cos ¢ ~ 1 — 16 in (2) gives us

lo= /B2 + (50 + R)? — 2R(s0 + B)(1 — 16°)

= /R2 + 52+ 2Rs, + R2 — 2Rs, + Rs,¢® — 2R2 + R2¢* = \/s2 + Rs.¢> + R2$>
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Anticipating that we will use the binomial series expansion (1 + z)* ~ 1 + kx, we can write the last expression for £, as

2 2
\/ + ¢? ( + R—) and similarly, ¢; = sq;\/l —¢? <E — R—) Thus, from Equation 1,
52 s

Si i

) = nlﬁgl—&—nzﬁ;l:n—-—:——-— =
R Rz —1/2 R R2 —1/2

so(E e ah o)

So So S5 S;i Si S5

ng (R R\ ? R R\ ?
—E[l‘ﬁﬁ(s—f@ﬂ ‘ﬂl+¢(o sz)]

Approximating the expressions for £, ! and £ ! by the first two terms in their binomial series, we get
n R R2 R R
o ) A e
_n2 1+l¢2 E_R_Z _m _ld)z E_A'_R_z PN
- R 2 Si S2 R 2 So 8(2)

ni m¢* (R R ne¢® (R R*\ _ny  mad® (R R’
(+>sz+ > ==+ >

So 25, \ So s2 2s; \ S; 52

2
7 so | 82

R >
2 R R2 2 R R2 2 R 2 R R2
Moz _ne o mé (RO R @ (ROCR) L et (ROR _me’ (R 7
So 52 2 S; s 2s; \ s; s

So Si R R 250, \ So 52

R
_ne—m1 |, m¢’ (R R® 1 1 n2¢® (R R?
-t TR G R) :

So 52

Cne—m | m¢’RA[(1 1 1 1 neg’R2 (1 1 1 1
o R + 250 <R+so><R+sc>+ 28; R s; R s;

ni 1 1 2 n2 1 1 2
250 \ R s, 2s; \ R s

From Figure 8, we see that sin ¢ = h/R. So if we approximate sin ¢ with ¢, we get h = R¢ and h* = ¢*R? and hence,

_n2—m 2 2
W 4. +¢°R

Equation 4, as desired.

35. (a) If the:water is deep, then 27rd/ L is large, and we know that tanh x — 1 as z — co. So we can approximate

tanh(27d/L) =~ 1,and so v ~ gL/(2m) < v =~ ./gL/(27).

(b) From the table, the first term in the Maclaurin series of

. : . . n F (@) F(0)
tanh x is x, so if the water is shallow, we can approximate
0 tanh x 0
h2ﬂl QLd and so v2 gL  2md o va4/gd 1 sech? x 1
L L Tor L
2 —2sech® ztanh x 0
3 | 2sech?z (3tanh?2 — 1) -2
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(c) Since tanh x is an odd function, its Maclaurin series is alternating, so the error in the approximation

ond _ 2nd . 0] 27d 1 (27d?
tanh T ¥ less than the first neglected term, which is 3 17 =3\ )
3 3 3
If L > 10d, then % (?) < % (27r . 1—10> = 371-75, so the error in the approximation v? = gd is less
than 25 . T~ 0.013291
or 375 9T

36. First note that

[ 2
2(V + R2 —d) =2|Vd? 1-1—%—(1
I R* 1 L . 1
~2|d 1+ﬁ'§+'” —d [usethebmomlalserles1+§x+~--for\/1+at]
[ R? R?
—2_(d+%+> —d:| R
. . ke R%c .
since for large d the other terms are comparatively small. Now V' = 2771@60(\/ >+ R?— d) ~ by the preceding

d

approximation.

37. (a) L is the length of the arc subtended by the angle 6, so L = Rf =
0=L/R. Nowsecld =(R+C)/R = Rsec0=R+C =

C = Rsec — R= Rsec(L/R) — R.

(b) First we’ll find a Taylor polynomial T4 (x) for f(«) = secx at z = 0.

(@) £ (0)

sec T

secxtanx
secz(2tan’z + 1)
sec  tan (6 tan®z + 5)

sec z(24 tan*z + 28 tan’x 4 5)

N N =] I
132 B e TS e N

Thus, f(z) =seca & Ty(z) =1+ £ (z — 0)° + S (z — 0)* = 1+ 12® + S 2", By part (a),

Y SANNENEAY
2\ R 24\ R

(c) Taking L = 100 km and R = 6370 km, the formula in part (a) says that

1. L?* 5 * L? 5L*

C~R

C = Rsec(L/R) — R = 6370 sec(100/6370) — 6370 ~ 0.785 009 965 44 km.

I? 5L 100? 5-100*
The f lai t that C ~ — = ~ 0. .
e formula in part (b) says that C o + AR5 — 2.6370 + 9463708 0.785009 957 36 km

The difference between these two results is only 0.000 000 008 08 km, or 0.000 008 08 m!
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38. (a)41/£/ — =4/ = / 1+ % sin x)} Y2
9 Jo 1 —k2sin?x

=4 l kQSiHQI)-i— %.%(—kzsin2x)2—%'%'%(—k2sin2x)3+--~ dx
N 2 2! 3!

N =

/L 1-3\,4 . 4 1-3-5\,6 . 6
=4 / { ( )k sin x+(2 4)k sin x+(2.4.6)k sin’ x + ]dm
T, 1 2 1-3\(1-3 7w\ 4 1-3-5 1357r6
=55+ (3) (@8 (E) (- () Eae 1)+
[split up the integral and use the result from Exercise 7.1.50]
/L z, ﬁ324 12.32.5%
=2m g [1+_k + 42]C +22.42‘62k +}

(b) The first of the two inequalities is true because all of the terms in the series are positive. For the second,

L 12, 1%2.3%2 , 12.32.52 ¢ 12§52#8
T:Qﬂ' E|:1+2—2]€ +2242]€ +224262k+ *42-62 k‘

< 2m (14 3k% 4+ 2k* + 2K° + 2K° + et ]

oS

The terms in brackets (after the first) form a geometric series with a = +k? and r = k? = sin? (%90) <1

4
[L k%/4 [T 4 —3k?
< — .
SoT <27 7 [1—}— k:?] 2 g A=Ak’

(c) We substitute L = 1, g = 9.8, and k = sin(10°/2) ~ 0.08716, and the inequality from part (b) becomes

2.01090 < T' < 2.01093, so T'A 2.0109. Theestimate 7' ~ 27w+/L/g ~ 2.0071 differs by about 0.2%.
If 6o = 42°, then k ~ 0.35837 and the inequality becomes 2.07153 < T' < 2.08103, s0 T' ~ 2.0763.

The one-term estimate is the same, and the discrepancy between the two estimates increases to about 3.4%.

39. Using f(z) = Tn(z) + R, (z)withn = 1 and z = r, we have f(r) = T1(r) + Ri(r), where T; is the first-degree Taylor
polynomial of f at a. Because a = x,, f(r) = f(zn) + f'(zn)(r — z,) + Ra1(r). Butr is aroot of f, so f(r) =
and wehave 0= f(zn) 4 f'(xn)(r — xn) + Ra(r). Taking the first two terms to the left side gives us

f(en) _ Rar)
Pl Flon)

f(@w)(xn — 1) — f(xn) = Ri(r). Dividing by f'(z,), we get z, — 1 — By the formula for Newton’s

method, the left side of the preceding equation is 41 — 7, S0 [Tny1 — 1| = ?Eir)) . Taylor’s Inequality gives us
()] U ) , ,
|R1(r)| < 51 |r — 2 |°. Combining this inequality with the facts | f"(x)| < M and | f'(z)| > K gives us
et =] < o [ — 1l
n+1 2K n .
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APPLIED PROJECT Radiation from the Stars

8rheA™®  a\7®
ehe/(AKT) _ 1 = eb/(AT) _

1. If we write f(\) = 1,then as A — 07, it is of the form co/o0, and as A — oo it is of the form

0/0, so in either case we can use I’Hospital’s Rule. First of all,

. "o a(=5A"% _aT . XNA®  _aT . ATt
m f) = lim Ay b, oy = 0 i, G =
T 2
4 -5 2 —3
Also, : ngall o A" wpal o AN jgalT o AT
Ali%h F) =5 b abor V/OT) 5 b Alin& T b/ (AT) =20 b2 )\Erng eb/(A\T)
(AT)?

This is still indeterminate, but note that each time we use 1’Hospital’s Rule, we gain a factor.of A in the numerator, as well as a
constant factor, and the denominator is unchanged. So if we use 1’Hospital’s Rule three more times, the exponent of A in the

numerator will become 0. That is, for some {k; }, all constant,

. H . A2 n . A2 g . P . 1
Jim, JO) = lim, Zorey = ke lim, Zorey = ha lim, Soroay S lim, Sres =
. . . . z? 3 . he
2. We expand the denominator of Planck’s Law using the Taylor series. e” = 1+ &+ o + 37 + .- withx = T and use

the fact that if )\ is large, then all subsequent terms in the Taylor expansion are very small compared to the first one, so we can

approximate using the Taylor polynomial 77:

8wheA™? 8mheA™® N 8mheA™® _ 8nkT

f()‘):ehc/(AkT)_l = he 17 he N2 1/ he \° ~
1+AkT+5<,\kT) +§(AkT> e

hc Y
-1 (1+)\I€T)71

which is the Rayleigh-Jeans Law.

3. To convert to um, we substitute A/10° for X in both laws. The first figure shows that the two laws are similar for large \. The
second figure shows that the two laws are very different for short wavelengths (Planck’s Law gives a maximum at

A = 0.51 pum; the Rayleigh-Jeans Law gives no minimum or maximum.).

500 2% 10°
e N e N

Rayleigh-Jeans

Rayleigh-Jeans

Planck

4. From the graph in Problem 3, f(\) has a maximum under Planck’s Law at A & 0.51 um.
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1.25 X 10° 1.25 X 10’

Betelgeuse

0 2 0 1 : 2
Sun

As T gets larger, the total area under the curve increases, as we would expect: the hotter the star, the more energy it emits.

1073

Also, as T increases, the A-value of the maximum decreases, so the higher the temperature, the shorter the peak wavelength

(and consequently the average wavelength) of light emitted. This is why Sirius is a blue star and Betelgeuse is a red star: most

of Sirius’s light is of a fairly short wavelength; that is, a higher frequency, toward the blue end of the spectrum, whereas most

of Betelgeuse’s light is of a lower frequency, toward the red end of the spectrum.

Review
TRUE-FALSE QuUIZ

10.

1.

12.

13.

55} .
. False.  Theseries > n~ %"t = Y
n=1 1

. False, since lim

. True, since lim

. False. See Note 2 after Theorem 11.2.6.

o]

— is a p-series withp = sin 1 ~ 0.84 < 1, so the series diverges.
n=1M

. True. If lim a, = L,thenasn — oo, 2n4+ 1 —.00,80.a2n+1 — L.

n—00

. True by Theorem 11.8.4.

Or: Use the Comparison Test to shew that 3 ¢, (=2)" converges absolutely.

. False.  For example, take ¢, = (—1)"/(n6"™).

. True by Theorem 11.8.4.

1 3

_1 1
(n+1)? 1

= lim 5 =

An+1
an,

n® 1/n®
(n+1)3 1/n3

m
n=—00 n—oo

=0<1

n—o0

= I
an n—oo 1+ 1

. False.  See the note after Example 11.4.2.

s S A SR G O
True, since — = e ande” = 3 —,s0e " = 3/ —.
€ n=0 T n=0 TV

True. See (9) in Section 11.1.
True, because if Y |a,| is convergent, then so is Y a,, by Theorem 11.6.3.

True. By Theorem 11.10.5 the coefficient of 2% is fB—EO) = % = f"0)=2.

Or: Use Theorem 11.9.2 to differentiate f three times.
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14.

15.

16.

17.

18.

19.

20.

21.

False.  Leta, = nandb, = —n. Then {a,} and {b, } are divergent, but a,, + b, = 0, so {a + b, } is convergent.
False.  For example, let a, = b, = (—1)". Then {a, } and {b,,} are divergent, but anb, = 1, so {anb, } is convergent.
True by the Monotonic Sequence Theorem, since {a, } is decreasing and 0 < a, < a; foralln = {a,} is bounded.

True by Theorem 11.6.3. [Y" (—1)" a,, is absolutely convergent and hence convergent. |

True. lim QZH <1 = > a,converges (Ratio Test) = lim a, =0 [Theorem 11.2.6].

True.  0.99999...=0.9+0.9(0.1)* +0.9(0.1)2 4+ 0.9(0.1)% + - - Z (0.9)(0.1)" ! = : E‘% T = Lby the formula
for the sum of a geometric series [S = a1/(1 — r)] with ratio r satisfying |r| < 1.

True. Since lim a, = 2, we know that hm an+3 = 2. Thus, 11m (an+3 —an) = hm An3 — hm an=2-2=0.

n—oo n—
True. A finite number of terms doesn’t affect convergence or divergence of a series.

0.1

22. False. Leta, = (0.1)" and b, = (0.2)". Then > an, = > (0.1)" = Yy A,
= = 1-01_9
e ) 0.2 1 ) o 0.02 1
b 0.2)" = =-=D0B,and nbn = 0.02)" = ———— = —, but
z 202" =55 =7=DBand 3 a 2 (0.02)" = =555 = 35- b
AB=}i=4
EXERCISES
1 M converges since lim +—7L?> = lim M 1
‘\1+2n? & nae Tt 207 nbeed/md 12 2
2 —9n+1—9 2)", soli =9 lim ()" =9-0=0by(11.1.9
an = o =9 (35) psonlimy on =9fim (55)" =9-0=0by (1119,
3. lim a, = lim n—s — lim ——— = o0, 50 the sequence diverges
o e s DL L e d ges:
4. a, = cos(nm/2),s0 an =0 ifnis odd and a,, = £1 if n is even. As n increases, a,, keeps cycling through the values

0, 1, 0, —1, so the sequence {ay } is divergent.

i 1
- an| = ZQSI—T; < nQZ— 1 < —, 80 |an| — 0asn — oo. Thus, nlLrI;o an = 0. The sequence {a,, } is convergent.
Inn o, 1l/z . 2
.a:—Ltf():—forac>OThenhmf()_hm— im = lim —= =0.
vn N z—00 e—oo (/g w—oo 1/( 2\/_ w00 /g

Thus, by Theorem 11.1.3, {a,, } converges and lim a, = 0.
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3 4n 3 4x
{ (1 + —) } is convergent. Let y = (1 + —) . Then
n x

1 3
. . . In(1+3/z) u .. 1+Wx<7?> . 12
g oy = Jim drin( 4300 = o TGy T AT e A T
3 4n
lim y = lim (1 + —) =el2
T—00 n—oo n
(—10)" . 10" 10-10-10----- 10 10-10+---- 10 0/ 10\" "
. D e— _— = . < —
{ o converges, since o T 2.3 ... M T 12 ... - <10 11 — 0asn — oo, so
. (=10)"
lim = 0 [Squeeze Theorem]. Or: Use (11.10.10).
. We use induction, hypothesizing that a,,—1 < a, < 2. Note first that 1 < az = % (1+4)= % <2, so the hypothesis holds

for n = 2. Now assume that ap_1 < ax < 2. Then ap = %(ak—l +4) < %(ak +4) < %(2 +4)=2.Soar < art1 < 2,

and the induction is complete. To find the limit of the sequence, we note that L = lim a,, = lim an+1 =

n—00 n—oo

L=3(L+4) = L=2

oty 4w 122w 24z
lim — = lim = lim = lim

r—oo eT r—oo et r—oo e~ r—oo eT x—o00 %

=
N
=

n

Then we conclude from Theorem 11.1.3 that lim ™ nte " =0.

n—0o0
From the graph, it seems that 12%¢712 > 0.1, but nte "< 0.1

whenever n > 12. So the smallest value of [V corresponding to

e = 0.1 in the definition of the limitis N = 12. . y=0.1

. . o1
< — =—,50 % converges by the Comparison Test with the convergent p-series >, — [p =2 > 1].
n=1"

2 s ’
n? 1 Lo @ nP4m L 141/n
Leta, = ] and b, = ;’SOnILH;OT :nler;O B+l nanOlO 1+1/nd

=1>0.

o0 OO
Since ). b, is the divergent harmonic series, Y a, also diverges by the Limit Comparison Test.

n=1 n=1
, . 1) 5" , 111 = n’ .
HILH;O aZ_:l = nlggo {(715"%1) . F] = nlLH;o (1 + E) ==z < 1,s0 ngl g—n converges by the Ratio Test.
1
Letb, = . Then b, is positive for n > 1, the sequence {b,, } is decreasing, and lim b, = 0, so the series
eS| p > quence {bn } g and lim

converges by the Alternating Series Test.
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15.

16.

17.

18.

19.

20.

21,

22,

23.
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Let f(z) = \/_ Then f is continuous, positive, and decreasing on [2, 00), so the Integral Test applies.
x
¢ 1 1 Int 1/92 Int
f(m )dx = hm dx [u:lnx,du:—dw} = lim w % du = lim [2\/1:]
t—oo Jo x+/Inx T t—oo Ji,0 t—oo In2
thm (2 vVint —2+In2 )
L 1 .
so the series Y, —— diverges.
n=2n+vVInn
lim — - = 1 so lim In r =In1 # 0. Thus, the series i In n diverges by the Test for
noso3n 1 30t M\ Bnr) T T S 2= M3t £es by
Divergence.
lan| = cos 3n < L_ (2 so io: |an| converges by comparison with the conyergent geometric
S I ) N I B G ) N G0 I W R = i ges by comp sente

series > (2)" [r =2 < 1]. It follows that > a, converges (by Theorem 11.6.3):

n=1 n=1

. n2n . 7’L2 . 1 2n
hm Ylan| = hm ’(1 o) = nlggo Toome = nlingo m 3 < 1, so Z m converges by the
Root Test.
. Gn+1 . 135 (2n—-1)(2n+1) 5%n! . 2n+1 2 .
nvoo | an | neo 5 (0 1) -3 50 @n—1) nosb(ntl) 5 - 50 nesenes

converges by the Ratio Test.

(o=} o0
(—=5)*" 1 /25" . dan ) 2571 n?. 9" 25n° 25
= — (=] . Now 1 — (=1 . =lm —=—>1
n; n29gn n; n2 \ 9 oW L% an i (n+1)*.9nt1 257 i 9(n +1)2 9 =%
so the series diverges by the Ratio Test.
\/ﬁ . . . . &, n—1 n .
bn = —— > 0, {bn } is decreasing, and lim b, = 0, so the series Y (—1) converges by the Alternating
n+1 n—00 ne1 1
Series Test.
Use the Limit Comparison Test with a,, = ntl-vn- 2 (rationalizing the numerator) and
n (\/n—i—l—i—\/n—l)
1 n 2 &
bn, = 5 nlian;o Z—n Jim \/TT\-{_ N =1,s0 s1ncenzl by, converges [p = % > 1], ngl an converges also.
Consider the series of absolute values: Z n~1/3 is a p-series with p = % < 1 and is therefore divergent. But if we apply the

n-1,-1/3

Alternating Series Test, we see that b, = > 0, {byn} is decreasing, and lim b, = 0, so the series Y (—1)
n—00 ’Vl:l

L
Tn
o0

converges. Thus, 3 (—1)"~* n~'/2 is conditionally convergent.

n=1
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CHAPTER11 REVIEEW O 1077

e} e} o=}
> |(71)"_1 n’3| = 3 n~?is a convergent p-series [p = 3 > 1]. Therefore, > (—1)" " n~? is absolutely convergent.
n=1 n=1

n=1

Ant1 (=) (n +2)3"H 22n+l n+2 3 14+(2/n) 3 3 .
— . = L2 = S5« by the Rat
an ’ 22013 (D"(nt1)3"| ntl 4 11(l/n) 2 1= 8n— oo sobyiheRato
> (=" 1)3™ .
Test, > ()22# is absolutely convergent.
n=1
lim % L lim #\3{;) = lim g = oo. Therefore, lim % # 0, so the given series is divergent by the

Test for Divergence.

O e N ) L ) S B ) L RN A A 1
T T I 2 (_§> _§(1—(—3/8)>

7 n=1 n=1 =1 n=1
_1.8_1
8 11 1
i ! = i ot [partial fractions]
asin(n+3) = [3n 3(n+3) P .
s Y ! —l—i-l—l—l— ! — ! — 1 (telescoping sum), so
"T 403 36+3)] 37679 3+l 3mr2 3(n+3) PINg s,
& 1 1 1 1 11
= l n == —_ _ = —
Py o B B BT
S [tan"t(n 4 1) —tan"'n] = lim _sn

=(lim [(tan~*2 —tan"' 1)+ (tan"'3 —tan™'2) +--- + (tan"*(n + 1) — tan" ' n)]

n— 00

— 1i -1 _ 1oz _ @ _ =
7nhﬂr1;o[tan (n+1)—tan™' 1] =5 -2 =1

o (=)' anl " e n 1 V" NN & n 2"
Ay LN e T _)e— L (M) = vl = -1
2o @ s D 3 - 2 @ s cos| 73 ) sincecosw = 3 (="
for all z.
e? e et x ne" x (—e)” e . =
l—e—l—a—g—l—z—-“—ngo(—l) m_nz::() — = ¢ “sincee —nZ::OHforalla:.
. - 326 326 326/105 417 326 416,909
41736 = 417 + 222 4 220 gy 2220 2L =2
R T+ 10° + 108 * T+ 1-1/108 100 99,900 99,900
Ll e (& & (=)
coshz = 2(6 +e )= 2(712::0 ] +n2::0 ] )
e T2 s Y (e T
2 2l 3l 4l 2l 3 4l
1 z? z? 1 o gn 1
=_(242- =4+2.- - 4+... | =1+ =2 >1+4+ =22 forall
2( tagr e gt ) 3t L G2t forallz
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1078 U CHAPTER11 INFINITE SEQUENCES AND SERIES

34. > (Inz)™ is a geometric series which converges whenever [Inz| <1 = —-l1<hz<1 = el'<z<e
n=1
o (—1)"t 1 1 1 1 1 1 1
35. e =1—- =4 ——= - — —
ngl nd 32 + 243 1024 + 3125 7776 * 16,807 32,768 +
) 1 oo (_1)n+1 7 ( 1)n+1
S bg = — 0.000031, ~ 0.9721.
neebs = &5 < 35768 © D R Vi
36 - L L !~ h 3 h 1 h
. (a) s5 = Z:: — =1+ 56 44 w5~ 1.017305. The series 2:: converges by the Integral Test, so we'estimate the
. . > dx x7? 575 .
remainder Rs with (11.3.2): Rs < == | 5| =5 = 0.000064. So the error is at most 0:000064.
5 5
> dx 1 1 _6
(b) In general, R, < — = —. Ifwetaken = 9, then s9 ~ 1.01734 and Ry < —— ~ 3.4 x 107",
n X% bnd 5495
0 9 1
So to five decimal places, Z — E n_ ~ 1.01734.
Another method: Use (11.3.3) instead of (11.3.2).
37 i LI i LIPS 0.18976224. To estimate the error, note that ! < T so the remainder term is
2450 2450 : ’ 2457 5’

&, | 1/5° h g
Rs = nz=:9 75 < nzz:g i _/51/5 =6.4x10""7 [geometrlc series with a = 5% andr =

=

].

(n+1)""! 2! &
2n+1) nn

2 e (D + 1)

. . n+1 1
38. (a) lim |2+t —1
(@) lim, oo 201 2)(2n + Dnn ninio( n ) 202n + 1)

= lim

n— oo

. 1 n 1
_711220<1+E) m—6'0—0<1

so the series converges by the Ratio Test.

n

(b) The series in part (a) is.convergent, SO hm an = lim (;Ln)' = 0 by Theorem 11.2.6.
2tl)a, 1 1
39. Use the Limit Comparison Test. lim ( "a ) = lim n: = lim (1 + E) =1>0.

. : . 1 o .
Since > |an| s convergent, so is > ‘ (n + )an , by the Limit Comparison Test.
n

n+1 2En 1 n
40. lim |2 = lim e 5 R lim —2m = e , s0 by the Ratio Test, z (=" 2—
n—oo | an n—oo|(n+41)° 57+t " n—oo (14 1/n)" 5 5’ n=1 n? 5"
converges when ‘?—l <1 <& |z| <5,s0 R=>5. Whenx = —5, the series becomes the convergent p-series Z 5 with

= 2 > 1. When x = 5, the series becomes Z ( n2) which converges by the Alternating Series Test. Thus, I = [—5, 5].
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CHAPTER11 REVIEEW O 1079

An+1
an

<l & |z+2/<4,s0R=4.

= lim

n—oo

41. lim

n— 00

|z 4 2|t R A i n Jz+2[]  |z+2]
(n+1)4rt1 |z 42" n—oo n+1 4 T4

becomes

(z+2)"
n4n

(o=}
lz+2/ <4 & —-4<zr+2<4 & —6<uz <2 Ifz = —6, then theseries )
n=1

> (—=4)" > (=1)" . . . . . .

> (n 43 = > ( n) , the alternating harmonic series, which converges by the Alternating Series Test. When x = 2, the

n=1 n=1

. . .o x1 L
series becomes the harmonic series » . —, which diverges. Thus, I = [—6, 2).
n=1
o ana] L |2 @ -2 (e 2) | 2 B 2" (x —2)"

42, nlgr;o o | = nlingo R w27 | nlLrI;O 13 |z — 2| = 0 < 1, so the series nzl i

converges forall z. R = oo and I = (—o00, 00).

n+1 _ g\n+1
g3, fim |2t g 2@ VRS o g im P e <1 e a3 <l
n—oo | Qn n— oo vn+4 2"7‘(1‘ — 3) n— oo 4

o) 2”(@'—3)’”
soR=31.|z-3|<i & —-1<z-3<i & 3<az<I Fora=Z theseries) ————

n=1 v’fl+3

becomes

z_: \/m 2—33 —75 which diverges [p = 3 < 1],/butfor z = 2, we get Z_:O (n l = which is a convergent
alternating series, so I = [3, ).
[Pt 1\2
4. lim |22 = lim (2”+2)':‘2 @) |y, Grt2)0Cnt D) |z = 4 |2|.

To converge, we must have 4 |z| <1 < [z| < 3,50 R =

45.
n | f@) | FAE)
0 sinx %
1 CcoS T @
2 | —sinz —%
3| —cosx — @
4 sin x %

Il
N =
| —
—
N =
—
8

I
o3
~—

[ V]
+
&)
oy
e
N——
[
I
I;l
+
)
S
| —
Yoy
8]

I
Sl
N——

I
I
N
e
N——

w
+
_
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1080 [ CHAPTER11 INFINITE SEQUENCES AND SERIES

46.
n [ @) [1(3)
0 cosT %
1| —sinzx —@
2 | —cosx —%
3 sinz ?
4 cosT %

1 1 o) s} 0o
4, — =—— =3 (—a)"= > (-)"a"f 1 % "2 with R = 1
1tz 1-(=) nZ::O( ) nZ::O( )'a” for|z] <1 = T nZ::O( )" 2" with R
oo x2n+1
48. tan "tz = > (—1)" v with interval of convergence [—1, 1], so
n=0
) (m2)2"+1 oo pAnt2
tan~!(2?) = ngo(—l)” Treenke n;g(fl)" T 1,which converges when z° € [-1,1] & € [-1,1].

Therefore, R = 1.

1
49. /47xdm——ln(4—m)+0and

1 1 1 1 [ = /z\» 1 (=« 1= gt
/4_xdx*1/71_1-/4d$*1/,&(1) d"”*z/nzozdx Oy RO

1 oo x"+1 oo l’n+1 oo xn
1 4 —_ = —— —_— U — —_— = —
n( z) 4 EO 47(n +1) +C ngo 4ntl(n 4 1) +C = n4n

n

OO
Thus, f(z) =In(4 —z) =1In4d — > % The series converges for |x/4| <1 <& |z| <4,s0 R =4.
n=1

+ C. Putting x = 0, we get C' = In 4.

Another solution:
In(4 —z) =In[4(1 —z/4)] =In4 +In(1 — z/4) =In4 + In[1 + (—z/4)]

n

=Ind + z(—1)”+1% [from Table 1] =Ind+ > (-1) 2 —n4- S =

n=1 n=1 n4r n=1 n4n
50. e = nijo Z—:L = ¥ = nijo (25!)n = e = mnijo 27;;?" = nijo 2 :::H, R =00
51. sinz = '20 % = sin(z?) = 20 % = nij:o % for all z, so the radius of
convergence is co.
52. ¢ = niéoxn_:l = 10" =107 = Z [(1n13) 2l i:) M R=o0
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1 1 1 —1/4
f(x): 7 = = n :l(l—im)
— 74 T 2 16
VIb—z  /16(1 —x/16) /16 (1 — &)
1 1 1 _5 2 _1 _5 _9 3
(L (_3)+( 1)( 4)(_1) L Ea) ED 4)(_£) N
2 4 16 2! 16 3! 16
1, 2159 (4n—3) , 1 X 1:5:9---- (4n—3) ,
) +nZ=31 2.4n.pn!.16m 2 +nZ=)1 26n+1 p)
for’——’<1 & || < 16,50 R = 16.
_ > (=5 n —5)(—6 —5)(—6)(—7
1o = 5 (1) o =1 s + EED g LD
=1+ 5:6-7---- (nt4)-3"c for|-3z| <1 & |z|]< i soR=21.
n=1 n! 3 8
0o T e 1 & " o l‘n71 . oo J:'rLfl 1 o n—1
T _ z == - = = == d
¢ n;O n' 50 X X ngo ! n;O ’fl' ¢ + nzl ’I'L' T + 71,2::1 ! an
e® e x"
/?dx:C+ln|x|+n;ln.n!.

=
~—
—~
=
SN—
—
e
S—
—

4\1/2 = (3 4 4 (l)(*l) 442 ( 2 4
A+aH)2 =% 2 r=1+4(3)z +%(w) A Th— z*)® +
n=0 . .

:1+%z4—%x8+%x12—-~
50 fy (L 2*) 2 do = [+ f52° — 250 Hioge™ Y= 1415 — 75 + o0 —

This is an alternating series, so by the Alternating Series Test, the error in the approximation

fol (1+2*)?de ~ 1+ & — & a41.086 is less than 7, sufficient for the desired accuracy.

Thus, correct to two decimal places, fol(l + 22 da ~ 1.09.

(@) VarTya) =1+ L2 1y = M 1)z 38 ()

11 91 31

n| M@ ) : ' '

0 21/2 1 =1+iz-1)—2(z-1)°+%(@-1)°

1 1,.-1/2 1

21 —3/2 21 (b)
3| weond| 2
4 —}—2x77/2 —}—2

\. J

0 2

© |Rs (z)] < %\m —1[*, where ’f(“) (x)‘ < M with @ () = ~2272 Now09 <z < 1.1 =

15

-01<z-1<01 = (z- 1)4 < (0.1)4, and letting x = 0.9 gives M = W, S0

15

L
e e R

(0.1)* ~ 0.000 005 648 ~ 0.000 006 = 6 x 10~°.
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1082 U CHAPTER11 INFINITE SEQUENCES AND SERIES

(d) 5x10°°

From the graph of | R3(x)| = [v/x — T5(z)|, it appears that

the error is less than 5 x 107 on [0.9, 1.1].

y=|Rs(x)|
0.9 1.1
0
58. (a) secx &~ Th(z) =1+ 127
n FARIE) £(0)
0 secx 1
1 secx tan 0
2 secz tan® z + sec® z 1
3 secztan® z + 5sec® rtanx 0
(b) 12
TZ
f
0 m
0.9 6

©) |R2 (2)] < % ||, where ’f(?’)(m)’ < M with f®) (2) = secz tan® & + 5sec® z tan .

3
Now0<z<Z = 2°< (%)% andletting@= I gives M = 2,50 |Rs (z)| < % (%) ~ 0.111648.
d) 002
From the graph of | Rz2(x)| = |secx — T2(x)|, it appears that
y=|Ry(x)]| the error is less than 0.02 on [O,%].
0 3
o 2n+1 3 5 7 3 5 7
i n_ T — r.r _r . . ne—p—_*X % T .
59. smx:ngo(fl) @nr ) =r- 3 + T +---,s0sinz —x = 3l + 5T +--- and
sinz—z 1 @ 2t S e 1w et Y ]
@ 35T T em0 23 T e—0\ 6 120 5040 -6

- mgR2 B mg B x (=2\(h "o . .
60. (a) F = Rt mE  OTh/RE mg ngo ( n ) (R [binomial series]
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CHAPTER11 REVIEEW O 1083

(b) We expand F = mg [1 — 2 (h/R) + 3 (h/R)* —---]. 0015

This is an alternating series, so by the Alternating Series

Estimation Theorem, the error in the approximation F' = mg y=0.01

is less than 2mgh/ R, so for accuracy within 1% we want

2mgh/R 2h(R + h)*
_— .01 _— .01.
mer R+ P | <0 T T <00 0 7 50

This inequality would be difficult to solve for h, so we substitute R = 6,400 km and plot both sides of the inequality.

It appears that the approximation is accurate to within 1% for & < 31 km.

en(—z)" = i (=D)"cp 2™

0 n=0

18

61. f(z) = ioj cnx” = f(-z)=

n=0 n

(a) If f is an odd function, then f(—z) = —f(z) = > (—=1)"chz" = > —cnz" The coefficients of any power series
n=0 n=0
are uniquely determined (by Theorem 11.10.5), so (—1)" ¢;, = —¢hn.
If nis even, then (—1)" = 1,50 ¢, = —¢n, = 2¢, =0 = ¢, = 0. Thus, all even coefficients are 0, that is,
602622642"'20,

(b) If f is even, then f(—x) = f(z) = f (=) "ep "= i e = (=1)"cn =cn.
n=0 n=0

If nis odd, then (—1)" = —1,80 —¢, =¢,, = 2¢, =0 = ¢, = 0. Thus, all odd coefficients are 0,

thatis,01263:C5:...:0.
0o n oo 2\n co 2n o 1 ‘
62. ez — 1’— = f(l‘) = 612 - Z ((IT ) — :E_ — Z — 1,271,. By Theorem 11.10.6 Wlth o= 0, we also have
n=o ! n=o_ ! n=o ! ;=on!
flz) = kX::O f k!(O) 25 Comparing coefficients for k = 2n, we have (QT)(?) — o = f(Zn)(O) _ ( 7:2) '
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[J PROBLEMS PLUS

1. It would be far too much work to compute 15 derivatives of f. The key idea is to remember that (™) (0) occurs in the

3 5
coefficient of ™ in the Maclaurin series of f. We start with the Maclaurin series for sin: sinx = x — z—' + % -
9 15 a15) (g
Then sin(z®) = 2® — $3_' + $5—' — .-+, and so the coefficient of z:*® f 15!( ) _ % Therefore,
1
F9(0) = 55' =6-7-8-9-10-11-12-13-14-15 = 10,897,286,400.
2. We use the problem-solving strategy of taking cases:
Case (i): If|z| < 1,then0 < 2z < 1,s0 lim 2" =0 [see Example 11.1.11]
2n
-1 0—-1
and f(z) = nan’olo e Rl o -1
e 1-1
Case (ii):  If |z| = 1, thatis, 2 = +1, then 2> = 1, so f(x) = nLn;O o nlﬁoo T =0.
2n 2n
-1 1—-(1 1-—
Case (iii):  If || > 1, then 2 > 1, s0 nlLH;oI% = oo andf(z) = nlin;o ;" 1 nan-)lo T El;i%; =1 +8 =1
1 ife < -1 y
O lfl’ =-—1 — o 1+ o—_
Thus, f(z) = -1 if-l1<z<1 . .
0 ifz=1 - s
1 ife>1 © °
The graph shows that f is continuous everywhere except at z = £1.
a2
3. (a) From Formula 14a in Appendix D, with z = y = 6, we get tan 20 = %, so cot 26 = %
2cot 20 = —tan’ T cot @ — tan . Replacing § by £z, we get 2cot & = cot 2 — tan 2z, or
- tan9 B : p g y 2% g - 2 2
tan %m = cot %x — 2cotx.
(b) From part (a) w1th in place of x, tan 236 = cot 2— —2cot —— 2 , S0 the nth partial sum of Z 2— tan 2% is
n=1
. — tan(x/2) n tan(x/4) " tan(z/8) 4ot tan(x/2”)
2 4 8
_ cot(z/2) cot 2| + cot(x/4)  cot( ac/2 cot( m/S) _ cot(z/4)
2 4 4
t(x/2" t(x/2"71) t(z/2 .
+ cot(z/2") _ L (z/ = —cotzx + %/) [telescoping sum]
2n 2n—1 2n
Now cot(w/2") = co§(x/2 ) = cos(@/2")  __ /2 L 1= 1 as n — oo since /2" — 0
2n 27 sin(z/2™) x sin(z/2") x
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1086 L[ CHAPTER11 PROBLEMS PLUS
for x # 0. Therefore, if x # 0 and x # k7 where k is any integer, then

x> 1 T . . 1 T 1
> —tan— = lim s, = lim —cotx+2—cot— = —cotx + =
n n x

n—1 2" 2 n—oo n—oo 2"‘
If x = 0, then all terms in the series are 0, so the sum is 0.
4 AP =2, |APs)? =2+ 2% |AP* =2+ 22 + (22)°, |APs P =2+ 2% + (22) + (2°)%, ...,

AP =2422+ (2)° + -+ (2" [forn>3] =2+ (4+42+4% .- +4"2)

n—2 _ n—1 _ n—1
=2+ % [finite geometric sum witha =4, r =4] = g + 4374 = % + 43
n—1 n—1
Sotan /P, AP i1 = [P Poia| _ 2 = 4 = ! — v/3asn — oo.

[AP,| \/2 41 \/2 47 \/ 2 1
3773 3773 3-4n-1 " 3
Thus, /P, APp11 — % asn — oo.

5. (a) At each stage, each side is replaced by four shorter sides, each of length

Sp.=— 3 eo =1
L of the side length at the preceding stage. Writin and ¢, for the
3 g p g stag g S0 0 si=3.4 | 6=1/3
number of sides and the length of the side of the initial triangle, we s5=3.42 | £o =1/3
generate the table at right. In general, we have s,, = 3 - 4" and s3=3-43[¥3=1 / 33
by = (%)n, so the length of the perimeter at the nth stage of construction

ispn = snln =3-4"-(3)"=3-(3)"

n n—1
(‘b)pn_34_1 :4(%) . Since%>l,pn—>ooasn—>oo,

(c) The area of each of the small triangles added ata given stage is one-ninth of the area of the triangle added at the preceding

stage. Let a be the area of the original triangle. Then the area a,, of each of the small triangles added at stage n is

1 . . . . .
an =a- o0 = %. Since a small triangle is added to each side at every stage, it follows that the total area A,, added to the

g qn— 1
figure at the nth stage is A, = 8p_1 -a, =3-4"" 1. S;L" =ar o5 Then the total area enclosed by the snowflake
2 3

. 1 4 4 4 ..
curveis A = a + A, +A2+A3+~--:a+a-g+a~ﬁ—i—a-?+a~?+~~~.Aftertheﬁrstterm,thlslsa

. . . .4 8a - .
geometric series with common ratio 9 soA=a+ ———~ = —. But the area of the original equilateral

x_ V3 8 VB2V

triangle with side 1 is a = % -1-sin 3= 1 So the area enclosed by the snowflake curve is =

6. LettheseriesS:l—l—%—l—%—l—i—&—%—l—é—l—é—&—l—g—l— TheneverytermlnSlsoftheformﬁ m,n > 0, and

furthermore each term occurs only once. So we can write

1

am3n

oo 1
2 om

0 n:O

S =

08
Mg
°§|H
Mg

<)
3
Il
o

ﬁmg
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CHAPTER 11 PROBLEMSPLUS U

7. (a) Let a = arctan z and b = arctany. Then, from Formula 14b in Appendix D,

tan(a — b) = tana —tanb _ tan(arctanz) —tan(arctany) = x —y
" 1+tanatanb 1+ tan(arctanz)tan(arctany) 1+ zy

—Y

x .
Now arctan x — arctany = a — b = arctan(tan(a — b)) = arctan T since —5 <a—b< 3.
Yy

(b) From part (a) we have

120 1 28,561

120 1 119 239  __ 28,441 __ _x

arctan Tig — arctan 335 — arctan —1 0. 1 = arctan 38561 — arctanl = T
119 © 239 28,441

er.So
Ty

1,1
= Jr =
1 _ 1 1y _ 55 _ \: - 5 5
4arctan £ = 2(arctan = + arctan 5) = 2arctan T I.1- 2arctan 73 = arctan'y5 + arctan 13
55
5 5
== Jr =
= arctan —2 3 125 = arctan %8
1—35.5
12 12

1 1 120 _ 1 _=
Thus, from part (b), we have 4 arctan ¢ — arctan 535 = arctan/fg —arctan ;o5 = 7.

3 5 7 9 11311

(d) From Example 7 in Section 11.9 we have arctanx = zz'— % + % — % + % BETE +---, 80

1 1 1 1 1 1

1
tan - = — — _ _
arctan o = o = 5 s T 757 1 959 1151

1087

This is an alternating series and the size of the terms decreases to 0, so by the Alternating Series Estimation Theorem,

the sum lies between s5 and sg, that is, 0.197395560 < arctan % < 0.197395562.

_ L 1 1 — +++. The third term is less than

1
From the series in part (d tarctan — = —— —
(e) From the series in part (d) we get arctan 530 — 239 _ 3.2398 + 5. 2395

2.6 x 10713, so by-the Alternating Series Estimation Theorem, we have, to nine decimal places,

arctan 5is ~ so ~ 0.004184076. Thus, 0.004184075 < arctan 2—;9 < 0.004184077.

239
(f) From part (c) we have m = 16 arctan + — 4 arctan 35, so from parts (d) and () we have
16(0.197395560) — 4(0.004184077) < m < 16(0.197395562) — 4(0.004184075) =

3:1415926562 < 7 < 3.141592692. So, to 7 decimal places, ™ ~ 3.1415927.

8. (a) Leta = arccot x and b = arccot y where 0 < a — b < m. Then

1 1
cot(a —b) = 1 _ lttanatanb Cota.cotb—'_l.COtaCOtb
~ tan(a—b)  tana—tanb 1 1 cota cotb

cota cotbh

__l+4cotacoth 14 cot(arccotz)cot(arccoty) 14 zy

cotb — cota cot(arccot y) — cot(arccot ) y—

142y

since0 <a—b<m.

Now arccot & — arccot y = a — b = arccot(cot(a — b)) = arccot

(© 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
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1
(b) From part (a), we want arccot(n? 4 n 4 1) to equal arccot +

_iy.Notethat1+xy=n2+n+1 &

xy =n?+n=(n+1)n,soifweletz =n + 1and y = n, then y — x = 1. Therefore,

1+n(n+1)

arccot(n® +n + 1) = arccot(1 + n(n + 1)) = arccot (n+1)—

= arccotn — arccot(n + 1)

Thus, we have a telescoping series with nth partial sum

$n = [arccot 0 — arccot 1] 4 [arccot 1 — arccot 2] + - - - + [arccot n — arccot(n + 1)] = arccot 0 — arccot(n + 1).

Thus, ) arccot(n® +n+1) = lim s, = lim [arccot 0 — arccot(n + 1)) = Z — 0 =

n=0 n—o0 n— 00

wld

2 - ;
9. We want arctan( ) to equal arctan lx—l— Y. Note that 1 + zy=n? & zy=n>—1=(n+1)(n—1),s0if we
n? xy

letx =n+1landy =n — 1, then x — y = 2 and xy # —1. Thus, from Problem 7(a),

2 T—y
arctan| — | = arctan
n? 1+x

k 2
t Z )=
ngl arctan <n2 )

= arctanx — arctany = arctan(n + 1) — arctan(n —1). Therefore,

M=

[arctan(n + 1) — arctan(n — 1)]

n=1

Il
M=

[arctan(n + 1) — arctann + arctann — arctan(n — 1)]
1

3
Il

Il
M=

k
[arctan(n + 1) — arctann] + Y [arctann — arctan(n — 1)]
n=1

Il
-

n

= [arctan(k + 1) — arctan’1] + [arctank — arctan 0] [since both sums are telescoping]

= arctan(k + 1) — L4 arctank — 0

k
Now > arctan(%) = hm Z arctan(T?Q) d hm [arctan(k +1)— T 4 arctan kj} =

n=1 =1 k—oo 4

IS
I

il
4
Note: Foralln > 1,0 < arctan(n~ 1) < arctan(n+ 1) < Z,so —% < arctan(n + 1) — arctan(n — 1) < %, and the

identity in Problem 7(a) holds.

10. Let’s firsttry thecase k =1: ap+a1 =0 = a1 =—ap =

Jim (ag/isk o) = lim (aov/— a0/ T) = ao lim (= v 1) YV

= ao lim

n—oo \/_+1/n+

In general we haveap +a1 +---+axr =0 = ar=—-ap—a1 —--+—ax_1 =

lim (ao\/ﬁJr aivn+1+aswv/n+24+---+agv/n+ k)

:nlin;o(aoﬁ+a1\/n+1+~~-—|—ak,1\/n—|—k—1—a0\/n—|—k—a1\/n+k:—---—ak,n/n—l—k)
= ao lim (\/_ vn+k )Jral hm (\/nJr —Vn+k ) -4 ap_1 lim (\/n+k717\/n+k)

Each of these limits is 0 by the same type of simplification as in the case K = 1. So we have

nlirgo (aovn+avn+1+axv/n+2+-+arvn+k) =ao(0) +a(0)+ -+ ax-1(0) =0
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x 1
We start with the geometric series >, 2" = 1 |z| < 1, and differentiate:
n=0 -

o d (& d 1 1 < o x
n—1 _ % n - = — no_ n—1 —
ngl nr =0 (ngox ) e (1 — x) (e for|z| <1 = ngl nT a:ngl nr 7(1 — )2
for || < 1. Differentiate again:
, e d x (1—x)? —x-2(1 —2x)(—1) z+1 oS , 2?4
2, n—1_ % — — 2, .n —
R T -2 G & T T

301 d 247 (1-2)%Q2z+1) — (2®+2)3(1 —2)*(-1)  2°+4ox+1

18

R Y e (1 —a) BTEDR

© ., a4t . . . .

>onia" = W, |z| < 1. The radius of convergence is 1 because that is the radius of convergence for the
n=1 -

geometric series we started with. If 2 = +1, the series is 3 n>(£1)™, which diverges by the TestFor Divergence, so the

interval of convergence is (—1,1).

Place the y-axis as shown and let the length of each book be L. We want to Y .
show that the center of mass of the system of n books lies above the table, 2(,,L, D 2(/" -2
that is, T < L. The x-coordinates of the centers of mass of the books are = <
L L L L L L L I
xl:i’m:Q(n—l)+§’x3:2(n—1)+2(n—2)+5’andsoon' 2 H

Each book has the same mass m, so if there are m books, then

Timx1+mr2+~~-+mfcn _Tit T+ +Tn
mn n

:%%*(m—{l)*%)*(z(;—n+2<nL—2>+§>+"'

+(2(nL—1)+2(nL—2)+""+§+§+§)]

L<L

Li_n—W n—2 +...+2+l+2 _L (n—l)l—‘rﬁ _2n—-1
2 2 2| n 2 2| 2n

n2(n—1)" 2(n—2) 4

This shows that, no matter how many books are added according to the given scheme, the center of mass lies above the table.

It remains to observe that the series £ + 1 + ¢ + & +--- = 3 >_ (1/n) is divergent (harmonic series), so we can make the top

book extend as far as we like beyond the edge of the table if we add enough books.

1n(1— %) :1n(”2n; 1) =In (”HT)L(Q"_ Y i+ 1)(n —1)] - nn?

=In(n+1)4+In(n—1)—2lnn=In(n—1) —Inn —Inn+In(n+1)

n—1 n—1 n
— 1 —1 1] =1 —1 .
Inn —In(n + 1)] n nn+l

=In

k 1 n—1 n
Let sy, 2ln (1 n2) > <ln lnn+1) for k > 2. Then

n= n
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1 2 2 3 k—1 k 1 k
Sk = (1n5_1n§)+(1n§_1n1>+...+(ln 3 _lnk—+1) _lni—lnk+1,so

2 In (17%) :klingosk:klirglo (ln%flnkil) :ln%71n1:1n171n271n1:71n2(0r1n%).

14. First notice that both series are absolutely convergent (p-series with p > 1.) Let the given expression be called z. Then

1 1 1 1 1 1 1 1
—_ L — = ... 1 2. — — — — 2. — _ =
_1+2P+3P+4P+ _ +( 2p 2p)+3p+ 4 4p +
S S N = R RN
BETETER TR T TR T
1 1 1
_(1—2—p+3—p—4—p+ )+<2 Sttt )
N oL T
Ty Ty w
1 1 1 1 1 1
» e e T T TR AR .
L T T S U
20 ' 3p 4p o 3 1w
1

Therefore,z =1+2'"7Pz & z-2'"Pz=1 & z(1-2'"7)=1 & rYET i

15. If L is the length of a side of the equilateral triangle, then the areais A = %L . @L = @LZ andso L? = %A,

Let r be the radius of one of the circles. When there are rows of circles, the figure shows that

L
L:\/§r+r+(n—2)(2r)+r+\/§r:r(2n—2+2\/§),sor:m.

The number of circlesis 1 +2+---+n = w, and so the total area of the circles is
2
A, :71(71—&—1)71_142:n(n—i—l)7T L _
2 2 4(n+\/§— 1)
_ n(n+1) - 4A//3 _ n(n+1) 7A
2 4@p+v3-1)" (n+v3-1)72V3
An _ n(n+1) ™
A (nbv3-1)%2V3

1+1/n ™

T (A=) 2

asn — oo

(n—1)(n—2)an-1 — (n—3)an—_2

, we calculate the next few terms of the sequence:
n(n — 1)

16. Givenagp = a1 = land a,, =

o 1'0'&1—(—1)CLO

2-1-a2—0-a1
az = e

3-2

= %,M = 3:2-03-1a = i It seems that a,, = —

4-3 24 n!’

1,
2.1 T

. . . . 1 1
so we try to prove this by induction. The first step is done, so assume a, = il and ax—1 = Tk Then
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k(k—1) k-2

Ck(k—Dar —(k—2ar—r kK (k=1  (k=1)—-(k-2) 1 o
Ak+1 = k+ Dk = 1)k R OCE TS and the induction is
complete. Therefore, > an = Y i' =e.
n=0 n=0 T
17. (a) 1 The x-intercepts of the curve occur where sinz =0 < z =nm,

n an integer. So using the formula for disks (and either a CAS or
0 40 sin® z = 1(1 — cos 2x) and Formula 99 to evaluate the integral),

the volume of the nth bead is

-1 Va=m (:Lll),r (e=®/Vsing)?de = f(r:ll),r e /5 sin? zdr
— 215(?17r (6—(n—1)7'r/5 o e—nﬂ'/5)
(b) The total volume is
OO
m [ e Psin® wdr = Z V, = 2% Zl[e’(”’l)”/5 — e "T/B)=250m T telescoping sum].
Another method: If the volume in part (a) has been written as V,, = %e’"”/ ®(e™/® — 1), then we recognize > V;,

n=1

as a geometric series with a = 2227 (1 — /%) and'r = e /.

18. (a) Since P, is defined as the midpoint of P,—4P,—3, Tr, = %(xn,4 + xn—3) for n > 5. So we prove by induction that
%xn + Tn41 + Tny2 + Tnys = 2. The case n = 1'is immediate, since % -0+ 1414 0= 2. Assume that the result

holds for n = k — 1, that is, 3254 + &% + k11 +@rt2 = 2. Then forn = k,

1 1 1
5Tk + Thy1 + Tho2 + This = 5Tk + Thi1 + Tha2 + 5 (Tets—a + Try3—3)  [by above]

= 2Tk—1 + Tk + Ths1 + Try2 =2 [by the induction hypothesis]

Similarly, for n =5, yn, = %(yn—4 + yn—3), so the same argument as above holds for y, with 2 replaced by
Tyr+ Yy FYsFya =3 1414+0+0=2.50 2yn + Ynt1 + Ynt2 + Ynts = 2 forall n.

(b) lim (%xn + Tny1 + Tnto + xn+3) = % lim z, + lim z,+1 + lim 2,42+ lim 2,43 = 2. Since all
n—00 n—00 n—oo n—o00 n—o0

the limits on the left hand side are the same, we get % lm z, =2 = lim z, = é, In the same way,

n— oo n— oo

fm g = = Jim g = so P (4,9).

n— oo n— oo

7
2

0o p2ntl 1
19. By Table 1 in Section 11.10, tan™ ' z = —1)"———— for |z| < 1. In particular, for z = —, we
y ngo( ) 5 ) |z| p 7

2n+1 n
E o —1 L _ s _ HM _ _1\n l i#
have £ = tan ( ) —L VTS = 2V 5) B

V3
(+55E0) & gL o,

o6& (-1 (=" _
3 n:O 2 + 1)3n 2\/_ Z ( )'?’n =2 n=1 (QTL + 1)3n n=1 (27’L + 1)3n 2 \/3

18

P
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20. (a) Using s, =a+ar+ar’+- - +ar" ! = a(%r),
-7
1[17(71)2”} 1 — g2n
1— 2 3., .. 2n—2 _ 2n—1 _ _ r
T+ x x° + +x x 1_(_@ 112

2n
dr =

' 2 3 2n—2 2n—1 '1-uw
b 17 _ . n—i n— d
()/0( z4+a" -z 4+ x )mf/o T

2 +x3 2 N N 221 22" 1_ L g Lop2n g N
R -1 2n|, Jo 1tz Jo 1+a

1,14,1,14, +#,i_/l dx ,/1 an dx
2 3 4 2n—1 2n o 1+ o 1+
11 1 1 1 1 1
Sincel - 2 = ——\ = — D= from part (b) that
(¢) Since T2°3 1 3.4 =1 2 @no1)an) Ve see fompart (b) tha

L—&-L—&—..A—;—/ld—x*—/l call dx. Thus

1-2 3.4 @2n-1)2n) Jo 1+ Jo 1+x ’

1 1 1 1 dr 1 1,271 1 5
— ey & d "d
‘1-2+3-4Jr RCERCD /0 T+z /0 T+o m</0 wr

x2n
[since <z for0 <z < 1}.
1+2x

. 1 L 22+ 1
(d) Note that/ Tr2 = [ln(l + x)} =In2 and/ " dr = [ } =t So part (c) becomes
0 0

0 2n+1],
1 + 1 + -+ 1 In2| < ! In other words, the nth partial sum s,, of the given series
1.2 3.4 2n—1)(2n) e 1 ’ P " £
satisfies |s, —In2| < Thus, lim.s, =1n2, thatis LJrLJrLJrLJr =1In2
" 2n+1" " Tasee T "1-2 3.4 5.6 7-8 T
.
21. Let f(x) denote the left-hand side.of the equation 1 + —|— — + o + g +---=0.Ifz > 0, then f(x) > 1 and there are
. . z? 2zt 2% a8 .
no solutions of the equation:-Note that f(—a?) =1 — o1 + 6 + g = cos. The solutions of cos z = 0 for
2
x < 0 are given by x = g — 7k, where k is a positive integer. Thus, the solutions of f(z) =0 are x = — (E — wk) , Where

k is a positive integer.

22. Suppose the base of the first right triangle has length a. Then by repeated use of the Pythagorean theorem, we find that the base
of the second right triangle has length 1/1 4 a2, the base of the third right triangle has length /2 + a2, and in general, the nth
right triangle has base of length v/n — 1 + a2 and hypotenuse of length /n + a2. Thus, 6,, = tan™* (1/\/n —1+a? ) and

1 & 1
0, = tan”™ | ——/— | = tan~!( ———= ]. We wish to show that this series diverges.
'nzl Z (\/n—l+a2> nZ::o <\/n+a2> &

. - . . . o= 1
First notice that the series Z \/_ diverges by the Limit Comparison Test with the divergent p-series >, —

n=1 n

. . 1/v/n+a? . / L
[p:%§1]51ncenlinoloW—l \/m n 1’L+a2 1+ 2/ =1> 0. Thus,
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OO OO o0
also diverges. Now 3 tan™* diverges by the Limit Comparison Test with >

1 1 1
’VL;O \/’I’L-’-(lz n=0 (\/n+a2) n=0 \/n+a2

tan~'(1/4/ 2 tan™'(1/+/ 2 -1
g 20 (VR Fa?) ot (Ve ) | tan N (1/y) [y = vz +a?]
n— oo 1/~/n—|—a2 z—00 ]_/1/3;_’_&2 y—00 1/y

—1 2
tan " z [t=14] 2 lim 1/a+2%)
z—0+ 1

since

= lim =1>0

z—0Tt z

oo
Thus, Y 0, is a divergent series.
n=1

23. Call the series S. We group the terms according to the number of digits in their denominators:

S= (rdi b b d) b (bt ) ¢ (o)

91 g2 g3

Now in the group g», since we have 9 choices for each of the n digits in the denominator, there are'9™ terms.
. . . -1
Furthermore, each term in g,, is less than = [except for the first term in g1]. S0 g, < 9" i = 9(55)" .

Now > 9(1—90)7171 is a geometric series witha = 9 and r = % < 1. Therefore, by the Comparison Test,

n=1

OO o0 n—1
S:Zlgn< ;9(1—90) = 79710 = 90.
24, (a) Let f(x) = Wxﬁ = 3 cpx™ =co+ 1z +ega® + czrd £ - Then
-4 n=0

a’z(1—x—x2)(00+clx+czx2+03x3+-~~)

:L':co+01:c+02x2+03x3+64x4+05x5+---

— Co — 011’2 — 021'3 — 031'4 — 041‘5 — .

— 60332 — 61333 — 62.7,’4 — C3.7,’5 —

x=co+(c1—co)x+ (ca —c1 —co)x® + (c3 —ca — 1)z + -
Comparing coefficients of powers of  gives us ¢o = 0 and
c1—co=1 = ca=c+1=1
co—c1—c=0 = cc=ci+cp=14+0=1
cg—c2—c1=0 = cc3=cct+caa=14+1=2

In general, we have ¢,, = ¢,,—1 + ¢n—2 for n > 3. Each ¢, is equal to the nth Fibonacci number, that is,

(b) Completing the square on 22 4+ x — 1 gives us
pleting q g

(xuﬁi)_l_i_(ﬁg)ig_ (ﬁ;)l(@f

e ) o) (152 150)

2 2
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x —x —x . . .
So = = The factors in the denominator are linear,

l—z—22 2242-—1 (m+1+2\/5)(m+1—2\/3)'

so the partial fraction decomposition is

(o ISEIJF ey :x+?+2¢5 +x+?2¢5 o= A(a+ 255) 1 B(r 1 155)

— =145 71+\/‘ 1-v5
If z = =5 then — =Bvb = B=i7xX.

_-1-v6 —1-VE _ — LtV
Ifz = =155 then — =155 = A(—V5) = A—ljg\/gg)'ThuS’

1+ 5 1—-+5 14+ +5 2 1-—+/5 2
© __=xnh b b 146 2B 1-V6
Low—a? 14 VE S 1-VE 14 VE 2 1-6 2
2 2 1+v5 1 1 -~/5

2
- _4@6 +1+Z§1w“§ii<lfﬂfy+ja261way
TV 1-+5
E() -(Fa) -
{ "1+VE)" - (-2 VQTW
(1-v5)"(1++5)"

~2"((1+VB)[ - (1-V5)")

[y
Jr

MH
M8

0

[the n = 0 term is 0]

MH
ﬁMg

1

1 & "
= = n T
\/5 ngl (1 - 5)
L [0t VY- V)
v > [(—4)" = (=2)" - 2"]
oo 1+v5)" = (1-+5)"
From part (a), this series must equal > fnz™,so fr = ( \/_)2n \/é \/_) , which is an explicit formula for
the nth Fibonacci number.
CURRE R N NI T
3l 69! 7 10! 51 8!

Use the Ratio Test to show that the series for u, v, and w have positive radii of convergence (co in each case), so

Theorem 11.9.2 applies, and hence, we may differentiate each of these series:

du _ 32  62°  92° _£+£+£+ o
dr 3 6! 9! 51 T8l
Similarl dv 1—|——3+I—6+I—9+ uandd_ x+_4+$_7+$_10+
Y T T3 T T - - 71 T 100

Sou =w, v = u,and w’ = v. Now differentiate the left-hand side of the desired equation:
C%(u?’ + 0% +w? — 3uvw) = 3uu’ 4 303 + 3w W’ — 3(u'vw + w'w + uvw')
= 3ulw + 3v?u + 3w — 3(vw? +vPw +w?) =0 =
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u® + 03 + w? — 3uvw = C. To find the value of the constant C, we put z = 0 in the last equation and get
PB+0°+0°-31-0-00=C = C=1,5su*+0>+w® - 3uvw = 1.
n
To prove: If n > 1, then the nth partial sum s,, = > % of the harmonic series is not an integer.
i=1
Proof: Let 2* be the largest power of 2 that is less than or equal to n and let M be the product of all the odd positive integers
that are less than or equal to n. Suppose that s,, = m, an integer. Then M2*s,, = M2*m. Since n > 2, we have k > 1, and

hence, M2%m is an even integer. We will show that M2"s,, is an odd integer, contradicting the equality M2*s,, = M2*m

and showing that the supposition that s, is an integer must have been wrong.

n k
M2¥Fs, = M2 3 1 M2

n
i=11 =1

.If1 <@ < nandiis odd, then — is an odd integer since 7 is one of the odd integers
i

k

that were multiplied together to form M. Thus, is an even integer in this case. If 1 <¢. <'n and ¢ is even, then we can

k k
M2 _2. M = 2’“_T%,which is
i 2r l

write ¢ = 2", where 2" is the largest power of 2 dividing ¢ and [ is odd. If r_< k; then

an even integer, the product of the even integer 2"~ and the odd integer % Ifr =k, thenl=1,sincel >1=101>2 =

i=2%1 > 2% .2 =21 contrary to the choice of 2%/as the largest power of 2 that is less than or equal to n. This shows that

k k

= M, an odd integer. Since is an even integer for every ¢ except 2* and

r = k only when ¢ = 2*. In that case,

k
is an odd integer when i = 2", we see that M 2" s, is an odd integer. This concludes the proof.
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