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High-Frequency Limit of the Inverse Scattering Problem: Asymptotic
Convergence from Inverse Helmholtz to Inverse Liouville\ast 
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Abstract. We investigate the asymptotic relation between the inverse problems relying on the Helmholtz equa-
tion and the radiative transfer equation (RTE) as physical models in the high-frequency limit. In
particular, we evaluate the asymptotic convergence of a generalized version of the inverse scattering
problem based on the Helmholtz equation, to the inverse scattering problem of the Liouville equation
(a simplified version of RTE). The two inverse problems are connected through the Wigner transform
that translates the wave-type description on the physical space to the kinetic-type description on the
phase space, and the Husimi transform that models data localized both in location and direction.
The finding suggests that impinging tightly concentrated monochromatic beams can indeed provide
stable reconstruction of the medium, asymptotically in the high-frequency regime. This fact stands
in contrast with the unstable reconstruction for the classical inverse scattering problem when the
probing signals are plane waves.
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1. Introduction. The wave-particle duality of light has been one of the greatest enigmas
in the natural sciences, dating back to Euclid's treatise in light, Catoptrics (280 B.C.) and
spanning more than two millennia. In a nutshell, light can be either described as an electro-
magnetic (EM) wave governed by the Maxwell's equations, or as a stream of particles, called
photons, governed by the radiative transport equation (RTE).

Although the advent of quantum mechanics at the onset of the last century partially
solved the riddle, due to computational considerations, light continues to be modeled either
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112 S. CHEN, Z. DING, Q. LI, AND L. ZEPEDA-N\'U\~NEZ

as a particle or as a wave depending on the target application. Among those applications,
inverse problems are perhaps the ones that have gained the most attention in the last decades,
which in return have fueled many breakthroughs in telecommunications [53, 54], radar [17],
biomedical imaging [4, 45], and, more recently, in chip manufacturing [30]. In this context,
inverse problems can be roughly described as reconstructing unknown parameters within a
domain of interest by data comprised of observations on its boundary.

Unfortunately, the properties of the inverse problems are highly dependent on the specific
modeling of the underlying physical phenomena, even though, in principle, they share the
same microscopic description. In particular, the stability of the inverse problem, i.e., how
sensitive is the reconstruction of the unknown parameter to perturbations in the data, is
surprisingly disparate [14, 36], thus creating an important gap between the wave and particle
descriptions, which we seek to bridge in this paper. We point out that understanding this gap
is not only of theoretical importance, it would also play an important role in designing new
reconstruction algorithms with improved stability applicable to a broader set of wave-based
inverse problems, which are ubiquitous in science [39, 43, 49] and engineering [2, 19, 40].

For simplicity, we consider a time-harmonic wave-like description governed by the Helmholtz
equation, which can be derived from the time-harmonic Maxwell's equations after some sim-
plifications. Alternatively, the Helmholtz equation can also be obtained by computing the
Fourier transform of the constant-density acoustic wave equation at frequency k, which is
given by1 \bigl( 

\Delta + k2n
\bigr) 
u(x) = 0 ,(1.1)

where u is the wave field and n(x) is the refractive index of the medium. We point out that
even if this is a simplified model, it retains the core difficulty of more complex physics.

We also consider a particle-like description governed by the Liouville equation, which is a
simplified RTE, given by

v \cdot \nabla xf  - \nabla xn \cdot \nabla vf = 0,(1.2)

where f(x, v) is the distribution of photon particles and n is still the refractive index. The
Liouville equation describes the trajectories of photons via its characteristics: \.x = v and
\.v =  - \nabla xn. For simplicity we neglect the photon interactions which are usually encoded by
the collision operator.

Following the wave and photon descriptions, we define the forward problem as calculating
either the wavefield, or the photon distribution from the refractive index by solving either the
Helmholtz or the Liouville equations. The wave-particle duality, when translated to mathe-
matical language, corresponds to the fact that the solutions obtained by the Helmholtz and
Liouville equations are asymptotically close when k \rightarrow \infty ; see [3].

For the sake of conciseness, we consider a simplified inverse problem consisting of recon-
structing an unknown environment within a domain of interest by probing it with tightly
concentrated monochromatic beams originated from the boundary of the domain, in which
the response of the unknown medium to the impinging beam is measured at its boundary.
This measurement is performed by a measurement operator that is model specific and it will
play an important role in what follows. For simplicity, we consider the full aperture regime,

1The domain of definition, source, and boundary conditions will be specified in section 2.
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INVERSE SCATTERING IN THE HIGH-FREQUENCY LIMIT 113

i.e., we can probe the medium from any direction, and we sample its impulse response in all
possible directions. When the beam is modeled as a wave, i.e., using the Helmholtz equation as
a forward model, this process can be considered as a generalized version of the inverse scatter-
ing wave problem (which we, for the sake of clarity, just refer to as the generalized Helmholtz
scattering problem. When the beam is modeled as a flux of photons, i.e., using the Liou-
ville equation as a forward model, this process is often referred to as the optical tomography
problem, but we will refer to as the Liouville scattering problem in this manuscript.

Although the two different formulations seek to solve the same underlying physical prob-
lem, our understanding of the two inverse problems seems to suggest different stability prop-
erties. The traditional inverse scattering problem, using either near-field or far-field data is
ill-posed: small perturbations in the measurements usually lead to large deviations in the
reconstructions [20, 28]. Thus, sophisticated algorithms [5, 9, 16, 22, 23, 33, 41] have been
designed to artificially stabilize the process by appropriately restricting the class of possible
unknown environments, usually in the form of band-limited environments. Conversely, the
inverse Liouville equation is well-conditioned: a small perturbation is reflected by a small
error in the reconstruction [38].

Thus the observation that the stability for both problems is different seems to be at odds
with the fact that the Liouville equation and the Helmholtz equation are asymptotically close
in the high-frequency regime. Fortunately, as what we will see, this somewhat contradictory
property stems from the inability of traditional formulations of the inverse problems to agree in
the high-frequency limit. When the measurement operators are accordingly adjusted, we show
that the new formulations, which we call the generalized inverse scattering, are equivalent in
the limit as k \rightarrow \infty , producing a stable inverse problem. The convergence from the Helmholtz
equation to the Liouville equation is conducted through the Wigner transform [3, 25, 44],
and the convergence of the measuring operators is achieved through the Husimi transform [8].
Both convergences are obtained asymptotically in the k \rightarrow \infty limit. This convergence allows
us to conclude the following:

The inverse Liouville scattering problem is asymptotically equivalent to the generalized
inverse Helmholtz scattering problem in the high-frequency regime.

The current manuscript is dedicated to formulating the statement above in a mathemati-
cally precise manner, while providing extensive numerical evidence supporting the statement.

On the mathematical level, the current paper carries the following important features:
\bullet The result connects the two seemingly distinct inverse problems, and suggests that

in the high-frequency regime, probing an unknown object with a single frequency is
already enough for its reconstruction, with properly prepared data in the generalized
inverse scattering setting. This partially answers the stability question regarding the
inverse scattering.

\bullet The result can be viewed as the counterpart of the asymptotic multiscale study
conducted in the forward setting. In particular, the semiclassical limit is a theory
that connects quantum mechanical and the classical mechanical description: the pro-
posed formulation for the inverse scattering problem can be regarded as taking the
(semi)classical limit in the inverse setting, and thus the work carries conceptual merits.

This is in line with [14, 36]. See also [32] for a different setting.
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114 S. CHEN, Z. DING, Q. LI, AND L. ZEPEDA-N\'U\~NEZ

These mathematical understandings also naturally bring numerical and practical benefits.
The new inverse wave scattering formulation coupled with PDE-constrained optimization
seems to be empirically less prone to cycle-skipping, i.e., convergence to spurious local minima
[52], than its standard counterparts [9, 51], thus potentially opening the way to more robust
algorithmic pipelines for inverse problems.

We point out that even though this current study is motivated by the wave-particle duality
of light, the current results are also applicable to other oscillatory phenomena; see [14] for a
discussion on inverse Schr\"odinger problem in the classical limit.

Organization. In section 2, we briefly review the Helmholtz equation and present the
corresponding inverse problem that fits the particular experimental setup that allows passing
the system to the k \rightarrow \infty limit. In section 3, we discuss the limiting Liouville equation and the
inverse Liouville scattering problem, by conducting the Wigner and Husimi transforms. The
connections between the two inverse problems will thus be immediate. Finally, we present our
numerical evidence that justifies the convergence in section 4 and we showcase the stability of
the inverse problem in section 5.

2. Experimental setup and inverse problem formulation. Suppose we use tightly con-
centrated monochromatic beams, or laser beams, to probe the medium. Each beam impinges
in the area of interest, thus producing a scattered field which is then measured by directional
receivers2 placed on a manifold around the domain of interest. The data, which are used to
reconstruct the optical properties of the medium, is the intensity captured by each receiver
for each incoming beam. Thus, the data are indexed by the position and direction of the
impinging beam, and the location and direction of the receivers.

In this section, we set up the experiment and provide the mathematical formulation, using
both the wave and the particle forms for the forward model. This prepares us to link the two
problems in section 3.

2.1. Helmholtz equation and inverse wave scattering problem. The Helmholtz equation
is a model equation for time-harmonic wave propagation. After some approximations, both
the constant-density acoustic wave equation and the Maxwell equations for the EM waves can
be recast through the Fourier transform in t, into the Helmholtz equation. It writes as

\Delta uk + k2n(x)uk = Sk(x).(2.1)

In the equation, uk is the wavefield, with the superscript, k > 0 represents the wave number
(that carries the frequency information, and thus in the paper we use the two words inter-
changeably). n(x) is a complex-valued refractive index having nonnegative imaginary part,
Im(n(x)) \geq 0, reflecting the heterogeneity of the medium. We assume n(x) is the constant
one in all \BbbR d except in a convex bounded open set \Omega \subset \BbbR d, meaning supp(n  - 1) \subset \Omega . In
order to streamline the notation, we let \Omega = B1, the ball with radius 1 centered around the
origin. The right-hand side Sk(x) is the source term, which is wavenumber dependent.

The classical setup for the scattering problem is to probe the medium with an incident
wavefield ui,k that triggers the response from the medium. Noting that the total field, which
satisfies (2.1), is the sum of the incident and the scattered wavefields, we can write

2Experimentally, this is often achieved by placing a collimator before the receiver, and changing the orien-
tation of the collimator.
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INVERSE SCATTERING IN THE HIGH-FREQUENCY LIMIT 115

uk = ui,k + us,k,

and derive the equation for the scattered wavefield us,k. Suppose the incident wave is designed
so that it absorbs all the external source information,

\Delta u\mathrm{i},k + k2u\mathrm{i},k = Sk(x),(2.2)

then by simply subtracting it from (2.1), we have the equation for us,k:

\Delta u\mathrm{s},k + k2n(x)u\mathrm{s},k = k2(1 - n(x))u\mathrm{i},k, x \in \BbbR d,

\partial u\mathrm{s},k

\partial r
 - iku\mathrm{s},k = \scrO (r - (d+1)/2) as r = | x| \rightarrow \infty .

(2.3)

In this equation, we can view the incident wave u\mathrm{i},k impinging in the perturbation n - 1 as the
source term for u\mathrm{s},k. Clearly, this source term k2(1 - n(x))u\mathrm{i},k is zero outside B1, the support
of n - 1. The Sommerfeld radiation condition is imposed at infinity to ensure the uniqueness
for u\mathrm{s},k.

When d = 3, a typical approach is to set S(x) = \delta y, a point Dirac delta, then the solution
u\mathrm{i},k to (2.2) becomes the fundamental solution to the homogeneous Helmholtz equation in \BbbR 3,

\Phi (x; y) =  - 1

4\pi 

exp(ik| x - y| )
| x - y| 

, x, y \in \BbbR 3, x \not = y,

for any given y. We can clearly observe that the function is radially symmetric centered in y
thus it is often termed a spherical wave. If | y| \gg | x| , i.e., y is far away from the origin, we
have the far-field regime, in which the fundamental solution is approximately a plain wave:
\Phi (x; y) \approx  - eik| y| 

4\pi | y| exp( - ik\^y \cdot x).
In this case, however, instead of using the Dirac delta, we handcraft a specially designed

source term, which will be crucial for the rescaling proposed in this article. In particular, we
choose Sk

\mathrm{H}(x) to be the following:

Sk
\mathrm{H}(x;xs, vs) =  - k

3+d

2 Svs
(k(x - xs)), x \in \BbbR d,(2.4)

where the subscript H stands for Helmholtz, and

Svs
(x) = C(\sigma , d) exp

\biggl( 
 - \sigma 2 | x| 

2

2
+ ivs \cdot x

\biggr) 
.(2.5)

Here C(\sigma , d) is the normalization constant C(\sigma , d) =
\surd 
2
\Bigl( 

\sigma \surd 
\pi 

\Bigr) 
d+1

2 .

Physically this source term can be understood as the source generating a tight beam being
shone onto the medium from the location xs in the direction of vs. The profile of this tight
beam, or ``laser beam,"" is a Gaussian centered around the lightup location xs and the width
of the Gaussian is characterized by (k\sigma ) - 1. With \sigma fixed, as k \rightarrow \infty , the beam is more and
more concentrated.

Following the explanation above we incorporate the source term in (2.4) into (2.1)--(2.2), to
probe the medium from the positions, xs, in the direction of vs, that are physically pertinent.
In particular, we let (xs, vs) \in \Gamma  - where

\Gamma \pm = \{ (x, v) \in \partial B1 \times \BbbS d - 1 : \pm v \cdot \nu (x) > 0\} ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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116 S. CHEN, Z. DING, Q. LI, AND L. ZEPEDA-N\'U\~NEZ

in which \nu (x) denotes the outer-normal direction at x \in \partial B1. This means the laser beams
shine from the boundary of B1 in the direction v pointing inward the interior of the domain.

From (2.4) we can observe that as k \rightarrow \infty , the laser beam becomes increasingly concen-
trated. In particular, in the k \rightarrow \infty limit, the incident wave u\mathrm{i},k becomes a ray, propagating
through a straight line.3

As usual in inverse problems (in particular, in nonintrusive experimental setups), we take
measurements of uk near the boundary \partial B1. To take such a measurement we design a family
of test functions of the form

\phi kv(x) = kd/4\chi 
\Bigl( \surd 

kx
\Bigr) 
e - \mathrm{i}kv\cdot x,(2.6)

where \chi : \BbbR d \rightarrow \BbbR is a smooth radially symmetric function that vanishes as | x| \rightarrow \infty .
We define the measurement of uk as its Husimi transform

Hkuk(x, v) =

\biggl( 
k

2\pi 

\biggr) 
d
\bigm| \bigm| \bigm| uk \ast \phi kv\bigm| \bigm| \bigm| 2 for (x, v) \in \Gamma +.(2.7)

The measurement then consists of the intensity of the field that convolves with the test
function. This measurement is conducted only on the boundary, and only in the directions
pointing outside the domain.

This measurement has a clear physical interpretation: it measures the intensity of the
wavefield at location x propagating in direction v, using \chi as the impulse response of the
receiver, or test function.

One typical choice for the family of test functions is to set \chi as a Gaussian (normalized
in the L2 norm)

\chi (x) =

\biggl( 
1

\pi 

\biggr) 
d/4 exp

\biggl( 
 - | x| 2

2

\biggr) 
.(2.8)

It is straightforward to see that as k \rightarrow \infty , the test function \phi kv concentrates around zero due
to the

\surd 
k scaling. As such, the measurement uk \ast \phi kv at a location xs only takes the value of

uk in a very small neighborhood around xs.

Remark 2.1. We note that the choice of \chi in (2.8) is not essential. We use this specific
form to make the calculation explicit, as it will be shown in Proposition 3.4. Other forms of
\chi would also work well as long as the corresponding Gk =W k[\phi k0] converges to a Dirac delta
when k \rightarrow \infty , as it will be explained in Remark 3.5.

Forward Map: now we have all the elements to define the forward map. For any (xs, vs) \in 
\Gamma  - , we shine a laser beam onto B1 according to the format in (2.4), then the solution to the
Helmholtz equation (2.1), uk, is tested by \phi kv(x) and evaluated on \Gamma +:

\Lambda k
n : Sk

\mathrm{H}(x;xs, vs) \rightarrow Hkuk(xr, vr)| \Gamma +
.(2.9)

As a consequence, the dataset generated by this forward map is the collection of:

\scrD k[n] =
\Bigl\{ \Bigl( 
Sk
\mathrm{H}(x;xs, vs),\Lambda 

k
n[S

k
\mathrm{H}](xr, vr)

\Bigr) 
: (xs, vs) \in \Gamma  - , (xr, vr) \in \Gamma +

\Bigr\} 
.(2.10)

3The incoming ray propagates in a straight line due to the assumption that the background is constant.
Otherwise, the ray would bend if a smooth nonconstant background is considered.
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INVERSE SCATTERING IN THE HIGH-FREQUENCY LIMIT 117

We now formulate the generalized inverse scattering problem as

to reconstruct n using the information in \scrD k[n].(2.11)

2.1.1. Traditional inverse scattering problem. Given that we use a nonstandard formu-
lation of the inverse scattering problem, we will stress a couple of similarities and differences
between the generalized and classical inverse scattering problems.

In particular, the form of the forward map introduced in our setting differs from the classi-
cal one, where the incident wave is typically a plane wave, meaning ui,k(x; vs)= exp(ikvs \cdot x),
where vs \in \scrS d - 1: see [31].

So the forward map is given by the far-field map, \widetilde \Lambda k
n,

\widetilde \Lambda k
n : ui,k(x; vs) \rightarrow u\infty ,k(\^x; vs),

where u\infty ,k : \scrS d - 1 \rightarrow \BbbC is defined as

u\infty ,k(\^x; vs) = lim
r\rightarrow \infty 

rus,k(r\^x; vs) exp( - ikr)| \^x\in \scrS k - 1 \forall \^x \in \scrS d - 1

with us,k being the solution of (2.3), where we leverage that ui,k(x; vs) satisfies (2.2) with
S = 0. Therefore, in this setting, the data set induced by the forward map is defined as

\widetilde \scrD k[n] =
\Bigl\{ \Bigl( 
ui,k(x; vs), \widetilde \Lambda k

n

\Bigl[ 
ui,k

\Bigr] 
(\^x)

\Bigr) 
: vs \in \scrS d - 1, \^x \in \scrS d - 1

\Bigr\} 
.

The well-posedness and stability of the inverse scattering problem in this context has been
studied in [28, Theorem 1.2].

The differences from the classical inverse scattering formulation is twofold: (i) we use a
richer set of probing functions, instead of using incident waves that are directionally localized
(as plane waves) or whose sources are localized (as Green's functions), we use tight beams
that combine these two properties, and (ii) instead of measuring the scattered wavefield on
a manifold around the domain of interest, we multiply it with a set of directional filters
localized on the same manifold, and we compute its intensity. We should emphasize that
this difference is significant. Taking the plane wave as the probing wave, as an example, it is
only the direction of the incoming wave that can be tuned, and this composes 2 dimensions
of degrees of freedom in 3 dimensions with vs \in \scrS d - 1. The way our source term is designed
automatically carries 4 dimensions of degrees of freedom with (xs, vs) \in \Gamma  - . Similarly, the
way data get taken also expands the degrees of freedom the measuring operator can access.
It is a widely accepted fact that more data lead to more stable reconstruction. This will be
indeed demonstrated in the later sections.

Remark 2.2. We note that even though the conventional inverse scattering problem has
been shown to be ill-conditioned, a couple of strategies have been introduced in the litera-
ture to stabilize the problem. The most prominent strategy is to add the phase information
(microlocally) [7, 18, 46]. At the first look, the Husimi data (2.7) also extracts the phase
information, by integrating the scattered wave with an oscillatory test function (2.6) that is
localized in position and direction. In very simple cases, we can even show that the two sets

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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118 S. CHEN, Z. DING, Q. LI, AND L. ZEPEDA-N\'U\~NEZ

of information are equivalent. For example, suppose the wavefield is of the simple form of
uk(x) = A(x)e\mathrm{i}kp\cdot v with p \in \BbbS d - 1 and A(x) \geq 0 for all x \in \BbbR d. Then in the limit k \rightarrow \infty , we
can fully recover uk(x), both the amplitude and the phase, on the boundary \partial B1 using the
Husimi data (2.7)

lim
k\rightarrow \infty 

Hkuk(x, v) = | A(x)| 2\delta (v  - p) \forall (x, v) \in \partial B1 \times \BbbS d - 1.

However, in general cases, we are not aware of results that translate Husimi data to the phase
data. Indeed, according to [1, 26, 27], this might be a very complicated phase retrieval problem
that is beyond the scope of the current paper.

Remark 2.3. Another strategy to stabilize the inverse scattering problem is to transform
the Helmholtz equation back to the time domain, and solve the inverse acoustic wave problem,
with either full or partial data available for all time T \geq 0. In various settings [6, 29, 47, 55],
it is proved that the time-domain data are sufficient to reconstruct the medium. The wave
equation and Helmholtz equation are Fourier transforms of each other in time. Roughly speak-
ing, the temporal data collected on the boundary translate to the boundary information for
all frequencies k. As such, the temporal data have wideband information instead of being
monochromatic, and thus are expected to be more stable. In our setting, though we require
k \gg 1, we still use monochromatic information, and thus the data do not directly translate.
We should note, however, that though the time-domain data are expected to be more informa-
tive in theory, in practice, however, especially within the optimization-based reconstruction
algorithm framework, the typical \ell 2 misfit loss function results in an extremely nonlinear
problem that often leads to cycle skipping, and convergence to spurious, nonphysical, local
minima. The numerical problem is usually attenuated by using the time/frequency duality
and localizing the frequency content of the data, which is then processed in a hierarchical
fashion [16, 41]. These are beyond the focus of the paper.

2.2. High-frequency limit and inverse Liouville scattering problem. The Liouville equa-
tion is a well-studied classical model for describing particle propagation. Any system with a
large number of identical particles can be described by the Liouville equation, or its variants,
which is often written as

v \cdot \nabla xf +
1

2
\nabla xn \cdot \nabla vf = S\mathrm{L}(x, v),(2.12)

where f(x, v) characterizes the number of particles on the phase space (x, v). Following the
characteristics, we see that the particles follow Newton's second law:

\.x = v, \.v =
1

2
\nabla xn.

As usual in classical mechanics, we can define the Hamiltonian for each particle to be

H(x(t), v(t)) =
1

2
| v(t)| 2  - 1

2
n(x(t)),

which is preserved along the characteristics of the particles, i.e., \mathrm{d}H
\mathrm{d}t = 0.

We use (2.12) to describe photon propagation, and use the same setup as that in
section 2.1. The source term S\mathrm{L}(x, v) on the right-hand side of (2.12) describes how laser
beams are shone into the medium, and takes the form of
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INVERSE SCATTERING IN THE HIGH-FREQUENCY LIMIT 119

S\mathrm{L}(x, v;xs, vs) = \phi (x - xs)\psi (v  - vs) with (xs, vs) \in \Gamma  - ,(2.13)

where both \phi : \BbbR d \rightarrow \BbbR and \psi : \BbbR d \rightarrow \BbbR are radially symmetric smooth functions that
concentrate at the origin. By setting (xs, vs) \in \Gamma  - , we have the laser beam shining from the
boundary \partial B1 inward to the domain. The concentration of the beam is determined by \phi and
\psi in physical- and velocity-space, respectively.

Similarly to the previous section, we take the measurements of the light intensity at the
boundary pointing outside of the domain. To do so, we set the test function \zeta (x, v) and the
measurements would be its convolution with the solution to (2.12):

Lf(x, v) = f \ast \zeta (x, v).(2.14)

The physical setup is clear. Imaging \zeta a blob centers around (x, v) = (0, 0), then Lf(xr, vr)
essentially represents a measuring equipment that takes in light intensity concentrated around
(xr, vr) with the concentration determined by the size of the blob. The specific format of \zeta 
will be specified in section 3.

Forward map: we define the forward map in a similar fashion as in section 2.1. For any
(xs, vs) \in \Gamma  - , we solve (2.12) with S\mathrm{L} defined in (2.13), and test the solution on \zeta (x, v)
evaluated on \Gamma +:

\Lambda n : S\mathrm{L}(x, v;xs, vs) \rightarrow Lf(xr, vr)| \Gamma +
.

As a consequence, the dataset generated by this forward map is the collection of

\scrD [n] = \{ (S\mathrm{L}(x, v;xs, vs),\Lambda n[S\mathrm{L}](xr, vr)) : (xs, vs) \in \Gamma  - , (xr, vr) \in \Gamma +\} .(2.15)

While the forward problem is to compute and construct this \scrD [n] for any given n, the inverse
problem amounts to inferring n using the information in \scrD [n].

3. Relation between the two problems in the high-frequency regime. In this section we
discuss the connection between the forward maps for the wave- and particle-like descriptions
introduced in the section above. We start introducing the Wigner transform, and we use it
to present the equivalence of the two descriptions for the forward maps in the high-frequency
regime. Then we introduce the Husimi transform to take the limit of the measuring operator,
and this is used to show the equivalence of the two inverse problems. Finally, we briefly
introduce the stability of the inverse Liouville problem.

3.1. High-frequency limit of the forward problem. We first present their connection
in the forward setting. We discuss the derivation of the Liouville equation as the limiting
equation for the Helmholtz. This process is typically called taking the ``classical""-limit, to
reflect the passage from quantum mechanics to classical mechanics by linking the Schr\"odinger
equation to the Liouville equation in the small \hbar regime.

Among the multiple techniques to derive the classical limit we utilize the Wigner transform
[3, 15, 25, 44]. Compared to other techniques, such as WKB expansion [24] and Gaussian
beam expansion [34, 42, 48], the Wigner transform presents the equation on the phase space,
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120 S. CHEN, Z. DING, Q. LI, AND L. ZEPEDA-N\'U\~NEZ

and avoids the emerging singularities during the evolution. Let uk1 and uk2 be two functions,
then the corresponding Wigner transform is defined as

W k[uk1, u
k
2](x, v) =

1

(2\pi )d

\int 
\BbbR d

e\mathrm{i}v\cdot yuk1

\Bigl( 
x - y

2k

\Bigr) 
uk2

\Bigl( 
x+

y

2k

\Bigr) 
dy.(3.1)

Here uk2 is the complex conjugate of uk2. We furthermore abbreviate W k[uk1, u
k
2] to be W k[uk].

The Wigner transformW k[uk] is defined on the phase space, is always real valued, and the
moments in v of W k[uk] carry interesting physical meanings. In particular, the first moment
recovers the energy density \scrE k,

\scrE k(x) =

\int 
\BbbR d

W k[uk](x, v)dv =
\bigm| \bigm| \bigm| uk(x)\bigm| \bigm| \bigm| 2 ,(3.2)

and its second moment expresses the energy flux \scrF k,

\scrF k(x) =

\int 
\BbbR d

vW k[uk](x, v)dv =
1

k
Im

\Bigl( 
uk(x)\nabla xu

k(x)
\Bigr) 
.(3.3)

Most importantly, if uk solves the Helmholtz equation (2.1), one can show that W k[uk]
solves an equation in the form of the radiative transfer equation, and in the k \rightarrow \infty limit, this
degenerates to the Liouville equation (2.12). In what follows we seek to make this statement
more precise by defining the functional space and an appropriate metric.

Letting \lambda > 0, we define X\lambda a space that contains all scalar real valued functions defined
on the phase space \BbbR 3 \times \BbbR 3,

X\lambda =

\biggl\{ 
\phi (x, y) | | 

\int 
\BbbR 3

sup
x\in \BbbR 3

(1 + | x| + | \xi | )1+\lambda | \^\phi (x, \xi )| d\xi <\infty 
\biggr\} 

(3.4)

with associated norm given by

\| \phi \| X\lambda 
=

\int 
\BbbR 3

sup
x\in \BbbR 3

(1 + | x| + | \xi | )1+\lambda | \^\phi (x, \xi )| d\xi ,

where \^\phi (x, \xi ) = 1
(2\pi )d

\int 
\BbbR d \phi (x, y)e

 - i\xi \cdot ydy is the Fourier transform in velocity space. Now we

cite a result from [8, Theorems 3.11, 3.12].

Theorem 3.1. Let n(x) be a C2(\BbbR d;\BbbR +) function that satisfies certain conditions (see
Remark 3.2). Let uk be the solution to (2.1) with radiation conditions, where the source term
Sk
\mathrm{H} is defined in (2.4). Then the Wigner transform of uk, denoted by fk(x, v) =W k[uk](x, v),

solves

v \cdot \nabla xf
k +

1

2
\scrL k
n[f

k] =  - 1

k
Im

\Bigl( 
W k[uk, Sk]

\Bigr) 
, (x, v) \in \BbbR 2d,(3.5)

with the operator \scrL k
n defined as

\scrL k
n[f

k] :=
i

(2\pi )d

\int 
\BbbR 2d

\delta k[n](x, y)fk(x, p)e\mathrm{i}y(v - p) dy dp.(3.6)
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INVERSE SCATTERING IN THE HIGH-FREQUENCY LIMIT 121

Here \delta k[n](x, y) = k
\bigl[ 
n
\bigl( 
x+ y

2k

\bigr) 
 - n

\bigl( 
x - y

2k

\bigr) \bigr] 
. Furthermore, when k \rightarrow \infty , fk converges in

the weak-  \star sense to f(x, v) in (X\lambda )
 \star , the solution to the Liouville equation (2.12) with the

radiation condition lim| x| \rightarrow \infty f(x, v) = 0 for all x \cdot v < 0, and the source S\mathrm{L}(x, v) is

S\mathrm{L}(x, v) = (2\pi )d
\pi 

2
\delta (x - xs)| \^Svs

(v)| 2\delta 
\bigl( 
| v| 2 = n(xs)

\bigr) 
.(3.7)

Here \^Svs
denotes the Fourier transform, and the delta function \delta (| v| 2 = n(xs)) \in \scrD \prime (\BbbR d)

means

\langle \delta 
\bigl( 
| v| 2 = n(xs)

\bigr) 
, g\rangle =

\int 
| v| 2=n(xs)

g(v)dSv \forall g \in \scrS (\BbbR d).

Suppose Sv takes the form of (2.4), we can explicitly calculate its Fourier transform:

| \^Svs
(v)| 2 = C(\sigma , d)2

1

(2\pi )d\sigma 2d
e - 

| v - vs| 2

\sigma 2 .

Remark 3.2. The formal derivation of the limit is shown in Appendix A. To prove it
rigorously, we refer to [8, Theorems 3.11, 3.12] and [12]. The conditions for a rigorous proof
are rather complicated to obtain. However, we mention that if n is radially symmetric, i.e.,
n(x) = n(| x| ), the statement of the theorem holds true rigorously.

Theorem 3.1 suggests that the wave model and the particle model are asymptotically
equivalent in the high-frequency regime. According to (3.7), the source term concentrates at
(xs, vs), the source location and the source velocity, when k \rightarrow \infty . The concentration on x
is already achieved by taking to the limit as k \rightarrow \infty , but the concentration profile in v still
needs to be tuned by \sigma . A smaller \sigma results in a more concentrated source in this limiting
regime. Letting \sigma \rightarrow 0, we have the source term S\mathrm{L} turning into

(2\pi )d
\pi 

2
\delta (x - xs)| \^Svs

(v)| 2\delta (| v| = 1) = \delta (x - xs)

\biggl( 
1

\sigma 
\surd 
\pi 

\biggr) 
d - 1e - 

| v - vs| 2

\sigma 2 \delta (| v| = 1)

\rightarrow \delta (x - xs)\delta (v  - vs),

(3.8)

where we used n(xs) = 1, given that xs is out of the domain of interest B1.
In this specific limit, we have the explicit solution to the Liouville equation (2.12),

f(x, v) = \delta (x(t;(xs,vs)),v(t;(xs,vs))), k \rightarrow \infty ,(3.9)

where (x(t; (xs, vs)), v(t; (xs, vs))) are the location and velocity of a particle at time t that
starts off at (xs, vs), meaning (x(0; (xs, vs)), v(0; (xs, vs))) = (xs, vs) and\left\{     

dx(t; (xs, vs))

dt
= v(t; (xs, vs)),

dv(t; (xs, vs))

dt
=

1

2
\nabla xn(x(t; (xs, vs))).

(3.10)

The formulation in (3.9) means in this limit, with k \rightarrow \infty and \sigma \ll 1, the wave becomes a
curved ray that follows the trajectory of the particle that is governed by Newton's laws. As
a consequence, recall the definition of energy and energy flux in (3.2)--(3.3),
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122 S. CHEN, Z. DING, Q. LI, AND L. ZEPEDA-N\'U\~NEZ

lim
\sigma \rightarrow 0

lim
k\rightarrow \infty 

\scrE k(x) = \bfone t>0\delta x(t;(xs,vs)), lim
\sigma \rightarrow 0

lim
k\rightarrow \infty 

\scrF k(x) = \bfone t>0\delta x(t;(xs,vs))v(t; (xs, vs)),

suggesting that \scrE k and \scrF k, respectively, show approximately the location and velocity of the
trajectory.

3.2. High-frequency limit of the inverse problem. Earlier in the paper we linked the
two forward problems. We now proceed to connect the two inverse problems by evaluating
the convergence of the measurements. To do so, we first introduce Lemma 3.3 from [21,
section 2.5] that connects the Husimi and Wigner transforms.

Lemma 3.3. Assume u \in L2(\BbbR d;\BbbR ), and let Hku be the Husimi transform defined in (2.7)
with \phi kv being the test function (defined in (2.6)). Denote fk =W k[u] and Gk =W k[\phi k0], the
Wigner transform of uk and \phi k0, respectively. Here \phi k0 = \phi kv=0. Then

Hku(x, v) = fk \ast Gk(x, v) \forall (x, v) \in \BbbR 2d.(3.11)

Proof. This theorem is a directly result of the Moyal identity

(W k[h1],W
k[h2])L2(\BbbR 2d) =

\biggl( 
k

2\pi 

\biggr) 
d| (h1, h2)L2(\BbbR d)| 2 \forall h1, h2 \in L2(\BbbR d;\BbbR ),(3.12)

and the fact that
W k[\phi kv(x - \cdot )](y, p) =W k[\phi k0](x - y, v  - p).(3.13)

Using (2.7), we have

Hku(x, v) =

\biggl( 
k

2\pi 

\biggr) 
d
\bigm| \bigm| \bigm| u \ast \phi kv

\bigm| \bigm| \bigm| 2
=

\biggl( 
k

2\pi 

\biggr) 
d
\bigm| \bigm| \bigm| \Bigl( u(\cdot ), \phi kv(x - \cdot )

\Bigr) 
L2(\BbbR d)

\bigm| \bigm| \bigm| 2
=

\Bigl( 
W k[u],W k[\phi kv(x - \cdot )]

\Bigr) 
L2(\BbbR 2d)

=
\Bigl( 
W k[u],W k[\phi k0](x - \cdot , v  - \cdot )

\Bigr) 
L2(\BbbR 2d)

= fk \ast Gk,

where we use (3.12) in the third equality, (3.13) in the fourth equality, and the definitions of
fk and Gk in the last equality.

This lemma connects the measurement of uk with the measurement on the phase space.
Testing uk using the test function \phi k0 is translated to testing fk using the test function Gk.
This allows us to pass to the limit on the phase space. Combining with Theorem 3.1, we have
the following proposition.

Proposition 3.4. Let the assumption in Theorem 3.1 hold true. Denote fk = W k[uk] with
uk solving the Helmholtz equation (2.1) with the source term S\mathrm{H} defined in (2.4), and denote
f the solution to the Liouville equation (2.12) with source term S\mathrm{L} defined in (3.7). If \chi takes
the form of (2.8), so that Gk takes the form of

Gk(x, v) =

\biggl( 
k

\pi 

\biggr) 
d exp

\bigl( 
 - k

\bigl( 
| x| 2 + | v| 2

\bigr) \bigr) 
,(3.14)
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INVERSE SCATTERING IN THE HIGH-FREQUENCY LIMIT 123

as k \rightarrow \infty , we have

fk \ast Gk(x, v) \rightarrow f(x, v)

weak- \star in (X\lambda )
 \star .

Proof. Given the form of Gk in (3.14), for any \phi \in X\lambda , as k \rightarrow \infty ,

Gk \ast \phi (x, v)  - \rightarrow \phi (x, v) in X\lambda .

Thus,

lim
k\rightarrow \infty 

\int 
\BbbR 3\times \BbbR 3

\Bigl( 
fk \ast Gk(x, v)

\Bigr) 
\phi (x, v)dx dv = lim

k\rightarrow \infty 

\int 
\BbbR 3\times \BbbR 3

fk(x, v)
\Bigl( 
Gk \ast \phi (x, v)

\Bigr) 
dx dv

= lim
k\rightarrow \infty 

\int 
\BbbR 3\times \BbbR 3

fk(x, v)\phi (x, v)dx dv

=

\int 
\BbbR 3\times \BbbR 3

f(x, v)\phi (x, v)dx dv,

where we use \| fk\| (X\lambda )\ast being bounded in the second equality, and fk \rightarrow f in the weak- \star sense
in the last equality.

Remark 3.5. We note that the statement of the proposition indeed uses the explicit form
of \chi as defined in (2.8), but the use only lies in the fact that Gk \ast \phi (x, v)  - \rightarrow \phi (x, v) in the
high frequency limit. Other forms of \chi works equally well as long as this Gk serves as a delta
measure when k \rightarrow \infty .

Theorem 3.6. Let the assumptions in Theorem 3.1 and Lemma 3.3 hold true, then

lim
k\rightarrow \infty 

Hkuk(x, v) = lim
k\rightarrow \infty 

fk \ast Gk(x, v)  -  -  -  -  - \rightarrow 
\mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k} -  \star 

f(x, v)

in (X\lambda )
\ast . Furthermore, if Hkuk and f are continuous, then each element in \scrD k[n] has a limit

in \scrD [n]. More specifically:

(Sk
\mathrm{H}(x;xs, vs),\Lambda 

k
n[S

k
\mathrm{H}](xr, vr)) \rightarrow (S\mathrm{L}(x, v;xs, vs),\Lambda n[S\mathrm{L}](xr, vr)),(3.15)

where S\mathrm{L} takes the form of (3.7), and \Lambda n[S\mathrm{L}](xr, vr) = f(xr, vr). In particular, if \sigma \rightarrow 0,

\Lambda n[S\mathrm{L}](xr, vr) = f \ast \delta (\vec{}0,\vec{}0)| \Gamma +
= f(xr, vr)| \Gamma +

= \delta (x - xrs)\delta (v  - vrs)(3.16)

with (xrs , vrs) being the outgoing location and velocity when the photon particle leaves the
domain, namely,

xrs = x(T ; (xs, vs)), vrs = v(T ; (xs, vs)),(3.17)

where T = supt\geq 0\{ t | | x(t; (xs, vs)) \in B1\} and \{ x(t; (xs, vs), v(t; (xs, vs))\} solves (3.10).

This theorem naturally links the two inverse problems. In the k \rightarrow \infty limit, the two
datasets (2.10), (2.15) are asymptotically close with \zeta = \delta (\vec{}0,\vec{}0)(x, v) in (2.14). In the limit of

k \rightarrow \infty and \sigma \rightarrow 0, the dataset (2.10) is asymptotically approximately equivalent to

\scrD \infty [n] = \{ ((xs, vs), (xr, vr)) : (xs, vs) \in \Gamma  - , (xr, vr) from (3.17)\} .(3.18)
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124 S. CHEN, Z. DING, Q. LI, AND L. ZEPEDA-N\'U\~NEZ

3.3. Stability of Liouville inverse problem. In this section, we consider the stability of
the Liouville inverse problem. In particular, we focus on the stability of (3.18). We will show
that when n is close enough to 1, D\infty 

n almost contains the information of the X-ray transforms
of n(x) and \nabla xn(x), while the inverse of the X-ray transform is a well-posed inverse problem.

We first introduce the X-ray transform. Define

TSd - 1 =
\Bigl\{ 
(x, v) | | x \in \BbbR d, v \in \scrS d - 1, \langle v, x\rangle = 0

\Bigr\} 
.

Assuming that n(x) is continuous, we introduce theX-ray transform P , which maps n(x),\nabla xn(x)
into functions Pn \in C(TSd - 1,\BbbR ) and P (\nabla xn) \in C(TSd - 1,\BbbR d), such that

Pn(v, x) =

\int \infty 

 - \infty 
n(tv + x)dt, P (\nabla xn)(v, x) =

\int \infty 

 - \infty 
\nabla xn(tv + x)dt.

To connect D\infty 
n with the X-ray transform, we define a projection map \scrP : \partial B1 \times \scrS d - 1 \rightarrow 

\BbbR d \times \scrS d - 1,

\scrP ((x, v)) = (x - \langle x, v\rangle v, v) ,

that projects x to the plane with normal vector v. We also define the in-out map \scrL : \Gamma  - \rightarrow \Gamma +

corresponding to (3.17):

\scrL ((xs, vs)) = (xr, vr).

Remark 3.7. We remark that the in-out map may not be well-defined for arbitrarily given
n. Suppose n(x) \geq c0 for all x \in \BbbR d and some c0 > 0, then according to the conservation of
the Hamiltonian

H(x, v) =
1

2
| v| 2  - 1

2
n(x) =

1

2
 - 1

2
= 0,(3.19)

the velocity of the particle satisfies

| v(t)| =
\sqrt{} 
n(x(t)) \geq 

\surd 
c0 > 0

for all time t \geq 0. This by no means suggests the nontrapping property, but it at least ensures
that the potential is not a sink. In the general case, we do assume that n is nontrapping, so
that any incoming particle can eventually be expelled out of the domain again, making the map
\scrL well-defined. Such a nontrapping condition is closely related to geodesic X-ray transforms,
and we list references [18, 35, 46] for interested readers. In our numerical examples, we choose
the media to be locally repulsive in the sense that

n(x) + x \cdot \nabla n(x) \geq c1 > 0 \forall x \in \BbbR d.(3.20)

Let (x(t), v(t)) be any particle trajectory that solves (3.10). Given (3.20), we obtain the
inequality

d2

dt2

\biggl( 
1

2
| x(t)| 2

\biggr) 
= | v(t)| 2 + x(t) \cdot dv

dt
= n(x(t)) + x(t) \cdot \nabla n(x(t)) \geq c1 > 0.(3.21)

In the last equality, we have used Equation (3.19). By making use of (3.21), the particle

is nontrapped since | x(t)| \geq t
\sqrt{} 

1
2c0 for sufficiently large s > 0.
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INVERSE SCATTERING IN THE HIGH-FREQUENCY LIMIT 125

We note that \scrP ((x, v)) \in TSd - 1 for any (x, v) \in \partial B1 \times \scrS d - 1, and \scrP | \Gamma  - : \Gamma  - \rightarrow \BbbR d \times 
\scrS d - 1,\scrP | \Gamma +

: \Gamma + \rightarrow \BbbR d \times \scrS d - 1 are invertible. Now, we are ready to introduce the following
approximation theorem [38, Theorem 4.1].

Theorem 3.8. Assume

\| \nabla n(x)\| L\infty \leq \Delta , \| \| Hn(x)\| F \| L\infty \leq \Delta 

for some \Delta > 0, then for any (v, x) \in TSd - 1, we have\bigm| \bigm| (Pn(v, x), P (\nabla xn)(v, x)) - \scrP | \Gamma +
\circ \scrL \circ 

\bigl( 
\scrP | \Gamma  - 

\bigr)  - 1(v, x)
\bigm| \bigm| \leq C\Delta 2,

where C > 0 is a constant that only depends on d.

According to Theorem 3.8, if n is almost a constant (close enough to 1), then we can use
the data set to recover the X-ray transform of n,\nabla n(x). Thus, we can separate (3.18) into
two inverse problems

\scrD \infty [n] =\Rightarrow (Pn(v, x), P (\nabla xn)(v, x)) =\Rightarrow n(x),

where the first one can be approximately calculated if n is an almost constant 1 and the second
one is the inverse of the X-ray transform that is well-posed according to [37, Theorem 5.1].

4. Numerical experiments. In this section we provide numerical evidence showcasing the
theory developed above. In particular, we would like to demonstrate that as k increases, the
measurement taken on the solution to the Helmholtz equation through the Husimi transform
converges to the pointwise evaluation of the solution to the Liouville equation, and that
the data become more and more sensitive to the perturbation in media, making the inverse
problem more and more stable.

We first summarize the numerical setup and unify the notations, and then present a class
of numerical results.

4.1. Numerical setup. We set up our experiment in a two-dimensional domain (see
Figure 1) that takes the form of

\Delta uk + k2n(x)uk =  - k
5

2Sv\mathrm{s}
(k(x - x\mathrm{s})), x \in \BbbR 2.(4.1)

The Sommerfeld radiation condition is imposed at infinity as well. The source term is given
by

Sv\mathrm{s}
(x) =

\surd 
2

\biggl( 
\sigma \surd 
\pi 

\biggr) 
3

2 exp

\biggl( 
 - \sigma 2 | x| 

2

2
+ iv\mathrm{s} \cdot x

\biggr) 
(4.2)

for (x\mathrm{s}, v\mathrm{s}) \in \Gamma  - . We denote the solution to (4.1) by ukx\mathrm{s},v\mathrm{s}
whenever the source center and

the incident direction are relevant for the discussion. The Husimi transform defined in (2.7)
takes the form

Hkuk(x\mathrm{r}, v\mathrm{r}) =

\biggl( 
k

2\pi 

\biggr) 
d
\bigm| \bigm| \bigm| uk \ast \phi kv\mathrm{r}

(x\mathrm{r})
\bigm| \bigm| \bigm| 2(4.3)

with (x\mathrm{r}, v\mathrm{r}) \in \Gamma +. We let the refractive index n(x) set to be n(x) = 1+q(x) with the support
of the heterogeneity q(x) \subset B(r). The measurement is taken on \partial B(R) with R > r. See
Figure 2 for an illustration of the configuration.
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𝑣𝑣𝑠𝑠
𝑥𝑥𝑠𝑠𝑣𝑣𝑟𝑟

𝑥𝑥𝑟𝑟

Figure 1. Illustration of the setup.

𝐵𝐵(𝑅𝑅)

𝐵𝐵(𝑟𝑟)

D

𝜃𝜃𝑠𝑠

𝜃𝜃𝑖𝑖

𝑥𝑥𝜃𝜃𝑟𝑟

𝜃𝜃𝑜𝑜

Figure 2. Left: Illustration of the setup for numerical experiments; right: sketch of the definition of the
angles on the circle \partial B(R) used to parameterize the data.

Computationally we set the domain D = [ - L/2, L/2]2 with L significantly bigger than R,
and choose the spatial mesh size h = 1/N with N being an even integer. For simplicity of
representation, we use the angles \theta \mathrm{s} and \theta \mathrm{r} to denote the center of the sources and the center
of the receivers, respectively, and the angles \theta \mathrm{i} and \theta \mathrm{o} are used to denote the incident and
outgoing direction of the sources and receivers, respectively, so that

x\mathrm{s} = (R cos \theta \mathrm{s}, R sin \theta \mathrm{s}),

v\mathrm{s} = ( - cos(\theta \mathrm{s} + \theta \mathrm{i}), - sin(\theta \mathrm{s} + \theta \mathrm{i})),
(4.4)

and

x\mathrm{r} = (R cos(\theta \mathrm{s} + \theta \mathrm{r}), R sin(\theta \mathrm{s} + \theta \mathrm{r})),

v\mathrm{r} = (cos(\theta \mathrm{s} + \theta \mathrm{r} + \theta \mathrm{o}), sin(\theta \mathrm{s} + \theta \mathrm{r} + \theta \mathrm{o})).
(4.5)

The angles \theta \mathrm{i} and \theta \mathrm{o} take values in [0, 2\pi ), whereas the angles \theta \mathrm{i} and \theta \mathrm{o} take values in ( - \pi 
2 ,

\pi 
2 ).

An illustration of the angles can be found in Figure 2. Since the mapping between (\theta \mathrm{s}, \theta \mathrm{i}, \theta \mathrm{s}, \theta \mathrm{o})
and the corresponding (x\mathrm{s}, v\mathrm{s}, x\mathrm{r}, v\mathrm{r}) is one-to-one, we present the quantities uk and Hkuk on
the \theta coordinate system whenever there is no confusion.

The angles are discretized with step size \Delta \theta and the angular grids are denoted by \theta j\mathrm{s} , \theta 
j
\mathrm{r} =

j\Delta \theta for all j = 0, . . . , 2\pi /\Delta \theta  - 1, and \theta j\mathrm{i} , \theta 
j
\mathrm{o} =  - \pi 

2 + j\Delta \theta for all j = 1, . . . , \pi /\Delta \theta  - 1.
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INVERSE SCATTERING IN THE HIGH-FREQUENCY LIMIT 127

To compare the Husimi transform of the solutions, we further define two quantities. The
first quantity is the Husimi transform integrated in the outgoing direction,

Mk
\mathrm{o} (x\mathrm{s}, v\mathrm{s}, x\mathrm{r}) :=

\int 
\BbbS +
x\mathrm{r}

Hkukx\mathrm{s},v\mathrm{s}
(x\mathrm{r}, v\mathrm{r})dv\mathrm{r} =

\int \pi /2

 - \pi /2
Hkuk\theta \mathrm{s},\theta \mathrm{i}(\theta \mathrm{r}, \theta \mathrm{o})d\theta \mathrm{o},(4.6)

where \BbbS \pm x\mathrm{r}
= \{ v \in \BbbS 1 : \pm \nu (x\mathrm{r}) \cdot v > 0\} and \nu (x) is the unit outer normal vector at x \in \partial \Omega .

Similarly, we also define the Husimi transform integrated along the outgoing boundary

Mk
\mathrm{r} (x\mathrm{s}, v\mathrm{i}, v\mathrm{r}) :=

\int 
\partial \Omega +

v\mathrm{r}

Hkukx\mathrm{s},v\mathrm{i}
(x\mathrm{r}, v\mathrm{r})dx\mathrm{r} =

\int 
( - \pi /2+\theta \mathrm{o}\mathrm{r},\pi /2+\theta \mathrm{o}\mathrm{r})

Hkuk\theta \mathrm{s},\theta \mathrm{i}(\theta \mathrm{r}, \theta \mathrm{o}\mathrm{r}  - \theta \mathrm{r})d\theta \mathrm{r},(4.7)

where we denote \theta \mathrm{o}\mathrm{r} = \theta \mathrm{o} + \theta \mathrm{r} \in [0, 2\pi ), and define \partial \Omega \pm 
v\mathrm{r}
= \{ x \in \partial \Omega : \pm \nu (x) \cdot v\mathrm{r} > 0\} .

To solve the Helmholtz equation (4.1), we use the truncated kernel method [50], and solve
for the Lippmann--Schwinger equation to obtain the scattered field u\mathrm{s},k. This allows us to
push for high-frequency without suffering from the numerical pollution that finite differences
or finite elements methods often have. The scattered field is then combined with the incident
field u\mathrm{i},k to yield uk.

4.2. Numerical examples. In the first example, we set L = 1, R = 0.3, and r = 0.25. For
the medium, we set the heterogeneity to be the radially symmetric smooth function

q(x) =

\Biggl\{ 
A exp

\Bigl( 
 - 1

1 - | x| 2/r2

\Bigr) 
, | x| < r,

0, otherwise.
(4.8)

Clearly, the support of q(x) is contained in B(r); see Figure 3. We note that with  - 1 <
A \leq 0, the media is locally repulsive, and the incident wave is guaranteed to be expelled out
of the domain. For the source term, we fix \sigma = 2 - 5 in the following experiments. Noting that
the medium n(x) is radially symmetric, one can study the scattered data for a fixed source
location. We choose \theta \mathrm{s} = \pi /4; see Figure 3. For discretization, we choose spatial step size
h = 1/(2k) in the truncated kernel solver, and \Delta \theta = \pi /30 for the angular grids.
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Figure 3. The left plot illustrates the medium n(x) = 1+ q(x) in (4.8) with A =  - 0.5. The right plot shows
the amplitude of source | Svs(k(x - xs))| with k = 211, \sigma = 2 - 5, and \theta \mathrm{s} = \pi /4.
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Figure 4. The real part of uk for k = 29 (left), k = 210 (middle), and k = 211 (right). The blue lines show
the Liouville trajectory that solves (3.10). The medium (4.8) has amplitude A =  - 0.5. The incident direction
\theta \mathrm{i} = 0 (upper) and \theta \mathrm{i} =  - \pi /6 (lower).

We first show the solution's behavior as k increases in Figure 4. As k increases, the
solution converges to a narrow beam that follows the characteristic equation (3.10).

We compute the Husimi transform Hkuk for different k and we compare them with the
trajectories of the Liouville equation. The results are shown in Figure 5, where we can observe
that for a fixed \theta \mathrm{i}, H

kuk converges to a delta function on the \theta \mathrm{r}-\theta \mathrm{o} plane, as k increases. This
agrees with the statement in Theorem 3.1, especially (3.16).

We then compare the integrated Husimi transform defined in (4.6) and (4.7). In Figures 6
and 7, we demonstrate the convergence of Mk

\mathrm{o} and Mk
\mathrm{r} as k increases.

As k increases, the outgoing data become more and more sparse, and fewer and fewer
detectors can receive outgoing light, leading to the sparser matrix presentation of \Lambda k

n (see
definition in (2.9). This is shown in Figure 8 for different k.

Finally we compare the change of \Lambda k
n as n differs, for different k. Let n0(x) = 1 as the

background media whose corresponding map is denoted \Lambda k
0, and by adjusting A we design a

sequence of n(x). We measure how the Frobenius norm \| \Lambda k
n  - \Lambda k

0\| \mathrm{F} changes with respect to
\| n - n0\| L\infty for different k. As can be seen in Figure 9, as k increases, the slope of \| \Lambda k - \Lambda k

0\| \mathrm{F}
as \| n  - n0\| L\infty \rightarrow 0 increases. This confirms that bigger k sees more sensitivity of the data
when n changes, hence the reconstruction is expected to be better for higher k.

5. Inversion algorithm. The inverse problem that we study in this article has a different
setup from the conventional one. While the conventional setup has either the concentration
in the incoming direction, or in the incoming source location, our experimental setup requires
concentration in both direction and source location. Naturally we expect a better stability
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Figure 5. The Husimi transform Hkuk for k = 29 (left), k = 210 (middle), and k = 211 (right). The upper
row shows the results with \theta \mathrm{i} = 0, and the lower row shows the results with \theta \mathrm{i} =  - \pi /6. The red crosses show the
outgoing position and direction (3.17) of the Liouville trajectory. The medium (4.8) has amplitude A =  - 0.5.
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Figure 6. The averaged Husimi transform Mk
\mathrm{o} for k = 29 (left) and k = 211 (right). The red lines show

the outgoing position (3.17) of the Liouville trajectory. The medium (4.8) has amplitude A =  - 0.5.

in the reconstruction process, compared to the traditional formulation. In this section we
showcase such stability.

Numerically the reconstruction process is formulated as a PDE-constrained minimization
problem, where we seek to minimize the misfit between the data and the forward model,

min
n

\bigm\| \bigm\| \bigm\| D  - \scrD k[n]
\bigm\| \bigm\| \bigm\| 2
L2(\Gamma  - \times \Gamma +)

(5.1)

or, equivalently, in the discretized form
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Figure 7. The averaged Husimi transform Mk
\mathrm{r} for k = 29 (left) and k = 211 (right). The red lines show

the outgoing direction (3.17) of the Liouville trajectory. The medium (4.8) has amplitude A =  - 0.5.
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Figure 8. Sparsity of the matrix \Lambda k
n for k = 24 (left) and k = 211 (right). Rows represent different (\theta \mathrm{r}, \theta \mathrm{o}),

and columns represent different (\theta \mathrm{s}, \theta \mathrm{i}). Elements that are larger than half of the maximal element in \Lambda k
n are

shown. For k = 24, we use a larger computational domain [ - 8, 8]2, and the step size is h = 2 - 8.
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Figure 9. The dependence of \| \Lambda k  - \Lambda k
0\| \mathrm{F} on the medium perturbation \| n - n0\| L\infty . Different \| n - n0\| L\infty 

are obtained by tuning the amplitude A in the medium (4.8).
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INVERSE SCATTERING IN THE HIGH-FREQUENCY LIMIT 131

min
n

\scrJ [n], where \scrJ [n] :=
1

2n\ttr \ttc \ttv n\tts \ttr \ttc 

n\ttr \ttc \ttv \sum 
i=1

n\tts \ttr \ttc \sum 
j=1

\bigm| \bigm| \bigm| \bigm| Di,j  - 
\Bigl( 
\scrD k[n]

\Bigr) i,j
\bigm| \bigm| \bigm| \bigm| 2 .(5.2)

In particular, n\ttr \ttc \ttv and n\tts \ttr \ttc stand for the number of receivers and sources, and each point
(\scrD k[n])i,j is the intensity squared of the impulse response generated by illuminating the
medium n with a tight beam given by (2.4) originated at xi\mathrm{s} with direction vi\mathrm{s}, which is then
filtered using (2.6) centered at xj\mathrm{r} with direction vj\mathrm{r} . See the definition in (4.3) with (x\mathrm{r}, v\mathrm{r})
replaced by (xj\mathrm{r} , v

j
\mathrm{r} ), and uk solving (4.1) with (x\mathrm{s}, v\mathrm{s}) replaced by (xi\mathrm{s}, v

i
\mathrm{s}).

We employ quasi-Newton methods for finding a local minimum,4 thus we need to effi-
ciently compute the gradient of the misfit function. In order to provide a fully self-contained
exposition we briefly summarize below how to compute the gradient for only one data point
using the adjoint-state methods. From there the computation for the full gradient can be
easily deduced.

We can readily compute the application of the gradient to a perturbation \delta n by using the
chain rule, which results in

\nabla \scrJ [n]\delta n =

\biggl( 
k

2\pi 

\biggr) 
d
\Bigl( 
D  - Hkuk(x\mathrm{r}, v\mathrm{r})

\Bigr) 
Real

\Bigl( 
2(uk \ast \phi kv\mathrm{r}

(x\mathrm{r}))(\phi 
k
v\mathrm{r}
(x\mathrm{r}) \ast F [n]\delta n)

\Bigr) 
,(5.3)

where F [n] is a linearized forward wave-propagation operator, given by the Born approxima-
tion of the scattered wavefield [10]. Thus the gradient can be easily computed by applying
the adjoint of the Born approximation to the residual times the filter function, i.e.,

\nabla \scrJ [n] = 2

\biggl( 
k

2\pi 

\biggr) 
dReal

\Bigl( 
F [n]\ast 

\Bigl( 
(D  - Hkuk(x\mathrm{r}, v\mathrm{r}))(u

k \ast \phi kv\mathrm{r}
(x\mathrm{r}))(\phi kv\mathrm{r}

(x\mathrm{r}  - x))
\Bigr) \Bigr) 

.

Fortunately, the application of the adjoint of the Born approximation operator is well studied:
it can be performed by solving the adjoint equation followed by a multiplication by the solution
of the forward wave problem.5 In this case the adjoint equation is the same Helmholtz equation,
but with adjoint Sommerfeld radiation conditions, i.e., we solve

\Delta v + k2n(x)v =
\Bigl( 
D  - Hkuk(x\mathrm{r}, v\mathrm{r})

\Bigr) 
(uk \ast \phi kv\mathrm{r}

(x\mathrm{r}))(\phi kv\mathrm{r}
(x\mathrm{r}  - x)), x \in \BbbR d,

\partial v

\partial r
+ ikv = \scrO (r - (d+1)/2) as r = | x| \rightarrow \infty .

(5.4)

Thus, using (5.4), we can easily compute the application of the adjoint of the Born
approximation

F [n]\ast 
\Bigl( 
(D  - Hkuk(x\mathrm{r}, v\mathrm{r}))(u

k \ast \phi kv\mathrm{r}
(x\mathrm{r}))(\phi kv\mathrm{r}

(x\mathrm{r}  - x))
\Bigr) 
= ukv,(5.5)

where v solves (5.4).
We point out that in (5.5), the source for the adjoint is conjugated, thus following (2.6),

we can see that it means that the (\phi kv\mathrm{r}
(x - x\mathrm{r})) is pointing towards the interior of the domain

in direction  - v\mathrm{r}.
4Given that the problem is very nonlinear, there is no guarantee that we can find the global minimum.
5We redirect the interested readers to [9] for a modern self-contained presentation.
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We solve (5.2) using L-BFGS [11, 56], a quasi-Newton method in MATLAB. We consider
the initial perturbation equal to zero. We set a first-order optimality tolerance of 10 - 5 and
let the algorithm run for a maximum of 300 iterations or until the tolerance is achieved.

To avoid the inverse crime [20], the data are generated by solving the Lippmann--Schwinger
equation discretized by the truncated kernel method [50] as in section 4, and the inversion is
performed with a fourth-order finite difference scheme for both (4.1) and (5.4). To generate
the data, we set the computational domain to be K = [ - 1, 1]2 with N\mathrm{L}\mathrm{S} = 2562 = 65536
grid points so that there are at least 12 points per wavelength for the largest k = 26. In the
inversion, we discretize the same domain K with N\mathrm{F}\mathrm{D} = 1632 = 26569 grid points so that
there are at least 8 points per wavelength for k = 26. We enclose the domain K with a perfect
matching layer (PML) to avoid reflection. We choose the thickness of PML to be 2.5 times
wavelength.

The measurement is taken on \partial B(R) with R = 0.4 in all the examples. To generate the
probing ray, we set \sigma = 2 - 2 in (4.2). We compute the data with the source position and
incident direction

xi1\mathrm{s} = (R cos \theta i1\mathrm{s} , R sin \theta i1\mathrm{s} ),

vi1,i2\mathrm{s} = ( - cos(\theta i1\mathrm{s} + \theta i2\mathrm{i} ), - sin(\theta i1\mathrm{s} + \theta i2\mathrm{i} )),

where \theta i1\mathrm{s} = \pi + i1
\pi 
48 for all i1 = 0, . . . , 95 and \theta i2\mathrm{i} =  - \pi 

2 + i2
\pi 
49 for all i2 = 1, . . . , 48, and the

receiver position

xj1\mathrm{r} = (R cos \theta j1\mathrm{r} , R sin \theta j1\mathrm{r} ),

vj1,j2\mathrm{r} = (cos(\theta j1\mathrm{r} + \theta j2\mathrm{o} ), sin(\theta j1\mathrm{r} + \theta j2\mathrm{o} )),

where \theta j1\mathrm{r} = j1
\pi 
48 for all j1 = 0, . . . , 95 and \theta j2\mathrm{o} =  - \pi 

2 + j2
\pi 
49 for all j2 = 1, . . . , 48.

In all the examples, the scattered data are perturbed with the noise in the form

\widetilde Di,j = Di,j + 0.05\varepsilon 
Di,j

| Di,j | 
,(5.6)

where \varepsilon is a symmetric Bernoulli random variable that takes the values \pm 1.
All the experiments are reported on a server with 64-core Intel Xeon CPU and 256 Giga-

bytes RAM. The codes accompanying this manuscript are publicly available [13].
In order to illustrate the reconstruction using Husimi data, we choose three examples of

increasing complexity. The exact contrast function q(x)'s are shown in Figure 10.
In the first example, we consider a single bump in the form (4.8) with A = 0.5 and r = 0.2,

which is shown in Figure 10 (left). We run the minimization loop as described above using
k = 24 and k = 26, and the resulting reconstructions are shown in Figure 11. From Figure 11
we can clearly see that as k becomes larger, the reconstruction becomes closer to the true
medium. The solution time for k = 26 is 15787.1 seconds.

In the second example, we consider a delocalized medium. The delocalized contrast func-
tion q(x) is obtained by convolving a pointwise independent Gaussian random field with a
Gaussian mollifier. The main difference with the single bump example is that the refractive
index, can be smaller than the background one, thus allowing for more complex ray paths as
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Figure 10. The contrast function q(x) for our three examples: a bump function (left), a delocalized function
(middle), and the Shepp--Logan phantom (right).
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Figure 11. Recovering a single bump contrast function. The upper row shows the estimated contrast function
and the lower row shows the reconstruction error at k = 26 (left) and k = 24 (right).

shown in Figure 10 (center). We repeat the same experiments, whose results are shown in
Figure 12. The solution time required for k = 26 is 13185.3 seconds.

Finally, for the third example, we consider the more challenging, and more practical,
problem of recovering the Shepp--Logan phantom, depicted in Figure 10 (right). In this case
we have very sharp transitions of the refractive index, which will generate a strong reflection,
compared to the refraction-dominated media considered before. In addition, the interior of
the still acts as a resonant cavity, thus creating a large number of interior reflections, which
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Figure 12. Recovering a delocalized contrast function. The upper row shows the estimated contrast function
and the lower row shows the reconstruction error at k = 26 (left) and k = 24 (right).
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Figure 13. Recovering the Shepp--Logan phantom. The estimated contrast functions are shown for k = 26

(left) and k = 24 (right).

are exacerbated as the frequency increases. We perform the same experiments as above, whose
results are depicted in in Figure 13. The solution time required for k = 26 is 14640.4 seconds.
In this case, the reconstruction is qualitatively worse than before. We can still see the shape
of the phantom, but with a large amount of artifacts. These artifacts are common to the
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Figure 14. Recovering a single bump contrast function with a 4th-order finite difference solver for both data
and inversion. The upper row shows the estimated contrast function and the lower row shows the reconstruction
error at k = 26 (left) and k = 24 (right).

three examples, but are somewhat more notorious for the Shepp--Logan phantom. Indeed,
these artifacts can in part be explained by the large difference in the dispersion relation
between the forward and backwards discretization. The Lippmann--Schwinger discretization
used for the forward problem is known to be highly accurate if the media is smooth. In the
previous cases, the data generated by the Lippmann--Schwinger solver is close to the analytical
solution, and the artifacts seems to come mostly for the phase errors in the finite-difference
discretization. However, in this case the phantom is discontinuous thus creating large phase
errors in the solution of the equation, and therefore the forward map, which in return produce
more notorious artifacts.

To avoid inverse crime, we have used two different solvers for computing the equation.
The two solvers produce relatively large phase errors that propagate in the reconstruction.
The reconstruction can be significantly improved if we use the same PDE solvers in generating
data and reconstructing the media. In Figure 14, we show the reconstructions of the same
single bump medium as in Figure 11 but with the fourth-order finite difference for both
data generation and inversion. It can be seen that the artifacts in the estimated medium
are much smaller for larger k and the reconstructed medium achieves a relative L2 error of
0.0389 for k = 26. Better reconstruction can also be seen in Figure 15 for the reconstructed
delocalized medium, whose relative L2 error is 0.0341 for k = 26. In Figure 16, we show the
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Figure 15. Recovering a delocalized contrast function with a 4th-order finite difference solver for both data
and inversion. The upper row shows the estimated contrast function and the lower row shows the reconstruction
error at k = 26 (left) and k = 24 (right).

reconstruction for the Shepp--Logan phantom. We can observe that as the frequency increases
the reconstruction becomes better, though due to computational limitations induced by the
current implementation, we were unable to test with a higher frequency. However, we would
expect to obtain even a better reconstruction.

Last, we compare the conventional inverse scattering problem and our new inverse problem

using the Husimi data. We choose the incident wave u\mathrm{i},k = e\mathrm{i}\omega 
\^\theta \cdot x with \^\theta \in \BbbS 1 in (2.2), and

measure the scattered far field data u\mathrm{s},k. Again we cast the problem as a nonlinear least
squares problem, and solve it using L-BFGS. We consider the initial perturbation equal to
zero, and set a first-order optimality tolerance of 10 - 5.

For simplicity, we use a fourth-order finite difference for both data generation and inver-
sion. The setup of the computational domain and the discretization are the same as in the
previous examples.

The far-field measurement is taken on the boundary \partial B( \widetilde R) with \widetilde R = 1. We compute the
data with 180 incident directions \^\theta that are equally distributed on \BbbS 1 and 180 receivers that
are equally distributed on \partial B( \widetilde R). We add 5\% noise to the scattered data in the form of (5.6).

Finally, we test the robustness of the new formulation with respect to the nonconvexity
of the loss function. The ill-posedness of the inverse scattering problem is often manifested
as a very nonconvex loss function with a myriad of local minima. As a consequence, any
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Figure 16. Recovering the Shepp--Logan phantom with a 4th-order finite difference solver for both data and
inversion. The estimated contrast functions are shown for k = 26 (left) and k = 24 (right).
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Figure 17. Recovering a single bump contrast function by plane waves. The estimated contrast function
at k = 26 (left) and k = 24 (right) are shown. A 4th-order finite difference solver is used for both data and
inversion.
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Figure 18. Recovering a delocalized contrast function by plane wave. The estimated contrast function at
k = 26 (left) and k = 24 (right) are shown. A 4th-order finite difference solver is used for both data and
inversion.
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Figure 19. Recovering the Shepp--Logan phantom by plane wave. The estimated contrast function at k = 26

(left) and k = 24 (right) are shown. A 4th-order finite difference solver is used for both data and inversion.

PDE constrained optimization-based reconstruction has a higher chance of converging to a
nonphysical minimum, a process that is often called cycle skipping [51]. For comparing the
new formulation and the traditional one we also run the classical full-wave form inversion in the
frequency domain, using data at a single frequency, using the delocalized media in Figure 10.
As discussed in section 2.1.1, in the classical formulation one probes the medium with plane
waves, and the measurement operator samples the wavefield directly on the boundary of the
domain of interest. Numerically, we minimize the \ell 2 misfit of the wavefield at the boundary,
using the same L-BFGS solver as before. The initial guess is zero. We repeat the experiments
for two different wave numbers that are used in the new formulation as well. The results
are shown in Figures 17, 18, and 19, respectively. In the plots we can observe that at low
frequencies we recover a smoothed version of the medium, but as the frequency increases we
encounter cycle skipping, i.e., the algorithm converges to a spurious medium. This is a stark
contrast to the inversion results of the new formulation shown in Figures 14, 15, and 16, where
at low frequency the reconstruction does not perform as well, but it is more stable at high
frequencies, providing an accurate reconstruction.

In summary the numerical experiments seem to indicate that the new inverse formulation
is far more robust to cycle skipping than its traditional counterpart.

6. Conclusions. To reconstruct an unknown medium, the generalized Helmholtz inverse
scattering problem uses data pairs consisting of the impinging and scattered wave fields, while
the Liouville inverse scattering problems use data pairs consisting of incoming and outgoing
wave location and direction. The former is regarded as ill-posed in the high-frequency regime,
while the latter is well-posed. This is intuitively contradicting the fact that the Liouville
equation is the asymptotic limit of the Helmholtz equation.

We investigate this issue in this paper. In particular, we develop a new formulation for
studying the Helmholtz inverse scattering problem with a new data collection process, and
we show that this new formulation, in the high-frequency limit, becomes the Liouville inverse
scattering problem, and thus inherits the well-posedness nature. This discovery bares the
conceptual merit of providing the mathematical description of the wave-particle duality for
light propagation in the inverse setting. In addition, this discovery also suggests a more stable
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numerical reconstruction process for studying the Helmholtz inverse scattering problem, which
we showcase using several numerical experiments.

Appendix A. Formal derivation of Theorem 3.1. We start from the equation

ik\alpha kuk +\Delta uk + k2n(x)uk =  - Sk(x) =  - k
d+3

2 S(k(x - xs)), x \in \BbbR d,(A.1)

and assume that \alpha k \rightarrow \alpha \geq 0 in the limit k \rightarrow \infty . We denote the density matrix of uk

satisfying (A.1) by

gk(x, y) = uk
\Bigl( 
x - y

2k

\Bigr) 
uk

\Bigl( 
x+

y

2k

\Bigr) 
,(A.2)

and the Fourier transform of a generic u by

\widehat u(v) = \scrF y\rightarrow vu(y) =
1

(2\pi )d

\int 
\BbbR d

e - \mathrm{i}yvu(y)dy.(A.3)

The inverse Fourier transform is then

\scrF  - 1
v\rightarrow xu(v) =

\int 
\BbbR d

e\mathrm{i}xvu(v)dv.(A.4)

Now we compute the equation satisfied by the Wigner transform. The first step is to compute
the derivatives of gk,

\nabla y \cdot \nabla xg
k(x, y) =  - 1

2k

\Bigl[ 
\Delta uk

\Bigl( 
x - y

2k

\Bigr) 
uk

\Bigl( 
x+

y

2k

\Bigr) 
 - uk

\Bigl( 
x - y

2k

\Bigr) 
\Delta uk

\Bigl( 
x+

y

2k

\Bigr) \Bigr] 
,(A.5)

and thus we have

\alpha kgk + i\nabla y \cdot \nabla xg
k(x, y) +

ik

2

\Bigl[ 
n
\Bigl( 
x+

y

2k

\Bigr) 
 - n

\Bigl( 
x - y

2k

\Bigr) \Bigr] 
gk(x, y)

= \sigma k(x, y)

:=
i

2k

\Bigl[ 
Sk

\Bigl( 
x - y

2k

\Bigr) 
uk

\Bigl( 
x+

y

2k

\Bigr) 
 - Sk

\Bigl( 
x+

y

2k

\Bigr) 
uk

\Bigl( 
x - y

2k

\Bigr) \Bigr] 
.

(A.6)

Therefore, after a Fourier transform, we obtain the following transport equation on the Wigner
transform fk,

\alpha kfk(x, v) + v \cdot \nabla xf
k(x, v) + Zk(x, v) \ast v fk(x, v) = Qk(x, v),(A.7)

where the last term denotes the convolution in v,

Zk(x, v) \ast v fk(x, v) =
\int 
\BbbR d

Zk(x, v  - p)fk(x, p)dp,

and the quantities Zk, Qk arising in this equation are given by

Zk(x, v) =
1

(2\pi )d
ik

2
\scrF  - 1
y\rightarrow v

\Bigl[ 
n
\Bigl( 
x+

y

2k

\Bigr) 
 - n

\Bigl( 
x - y

2k

\Bigr) \Bigr] 
,

Qk(x, v) =
1

(2\pi )d
\scrF  - 1
y\rightarrow v\sigma 

k(x, y).
(A.8)
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From this equation we can formally compute the limits. For Zk we have that

Zk(x, v)
k\rightarrow \infty  -  -  - \rightarrow 1

(2\pi )d
i

2
(\scrF  - 1

y\rightarrow vy) \cdot \nabla xn(x) =  - 1

2
\nabla xn(x) \cdot \nabla v\delta (v).(A.9)

The limit of the source term Qk is slightly more involved. First, we define the complex-valued
function

wk(y) =
1

k
d - 1

2

uk
\Bigl( 
xs +

y

k

\Bigr) 
,(A.10)

which after a change of variable can be rewritten as

uk(x) = k
d - 1

2 wk(k(x - xs)),(A.11)

where function wk satisfies the rescaled Helmholtz equation

i
\alpha k

k
wk +\Delta wk + n

\Bigl( 
xs +

y

k

\Bigr) 
wk =  - S(y).(A.12)

In the high-frequency limit, wk converges towards a solution w of

\Delta w + n(xs)w =  - S(y).(A.13)

The second step is to compute the Fourier transform of w. To do so, we add an absorption
term to the equation above, resulting in

i\beta w +\Delta w + n(xs)w =  - S(y),(A.14)

where \beta > 0. This new term is used as a broadening factor, which helps to smooth the Fourier
transform. We perform a Fourier transform on both sides, which leads to

\widehat w(v) =  - \^S(v)

n(xs) - | v| 2 + i\beta 
= \^S(v) \^G(v;\beta ),(A.15)

where \^G(v;\beta ) denotes the Fourier transform of the outgoing Green's function that vanishes
at infinity:

(A.16)

\^G(v;\beta ) \equiv  - 1

n(xs) - | v| 2 + i\beta 
=  - n(xs) - | v| 2

(n(xs) - | v| 2)2 + \beta 2
+

i\beta 

(n(xs) - | v| 2)2 + \beta 2
, \beta > 0.

As usual, we take the limit \beta \rightarrow 0+. The first term converges weakly to the principal value
(P.V.)

 - n(xs) - | v| 2

(n(xs) - | v| 2)2 + \beta 2
\beta \rightarrow 0+ -  -  -  - \rightarrow  - P.V.

\biggl( 
1

n(xs) - | v| 2

\biggr) 
.(A.17)

The second term converges to a delta function on the sphere \{ | v| 2 = n(xs)\} as \beta \rightarrow 0+:

i\beta 

(n(xs) - | v| 2)2 + \beta 2
\beta \rightarrow 0+ -  -  -  - \rightarrow i\pi 

2
\delta (| v| 2 = n(xs)).(A.18)
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In summary, we obtain the Fourier transform of the outgoing solution to (A.13):

\widehat w(v) = lim
\beta \rightarrow 0+

\^S(v) \^G(v;\beta ) = \^S(v)

\biggl[ 
i\pi 

2
\delta (| v| 2 = n(xs)) - P.V.

\biggl( 
1

n(xs) - | v| 2

\biggr) \biggr] 
.(A.19)

Now we are ready to compute Qk. We take two test functions \phi (x) and \psi (y):\int 
\BbbR 2d

\sigma k(x, y)\phi (x)\psi (y) dx dy

=
i

2k

\int 
\BbbR 2d

\Bigl[ 
Sk

\Bigl( 
x - y

2k

\Bigr) 
uk

\Bigl( 
x+

y

2k

\Bigr) 
 - Sk

\Bigl( 
x+

y

2k

\Bigr) 
uk

\Bigl( 
x - y

2k

\Bigr) \Bigr] 
\phi (x)\psi (y)dxdy

=
ikd

2

\int 
\BbbR d

\biggl[ 
S
\Bigl( 
k
\Bigl( 
x - y

2k
 - xs

\Bigr) \Bigr) 
wk

\Bigl( 
k
\Bigl( 
x+

y

2k
 - xs

\Bigr) \Bigr) 
 - S

\Bigl( 
k
\Bigl( 
x+

y

2k
 - xs

\Bigr) \Bigr) 
wk

\Bigl( 
k
\Bigl( 
x - y

2k
 - xs

\Bigr) \Bigr) \biggr] 
\phi (x)\psi (y)dxdy

=
i

2

\int 
\BbbR 2d

\Bigl[ 
S(z)wk(z + y)\phi 

\Bigl( z
k
+

y

2k
+ xs

\Bigr) 
 - S(z)wk(z  - y)\phi 

\Bigl( z
k
 - y

2k
+ xs

\Bigr) \Bigr] 
\psi (y)dzdy

k\rightarrow \infty  -  -  - \rightarrow i

2
\phi (xs)

\int 
\BbbR 2d

\bigl[ 
S(z)w(z + y) - S(z)w(z  - y)

\bigr] 
\psi (y)dzdy.

(A.20)

In other words, we have formally obtained that

\sigma k(x, y)
k\rightarrow \infty  -  -  - \rightarrow i

2
\delta (x - xs)

\int 
\BbbR d

\bigl[ 
S(z)w(z + y) - S(z)w(z  - y)

\bigr] 
dz,(A.21)

which after a Fourier transform gives

Qk(x, v) =
1

(2\pi )d
\scrF  - 1
y\rightarrow v\sigma 

k(x, y)

k\rightarrow \infty  -  -  - \rightarrow 1

(2\pi )d
i

2
\delta (x - xs)\scrF  - 1

y\rightarrow v

\biggl\{ \int 
\BbbR d

\bigl[ 
S(z)w(z + y) - S(z)w(z  - y)

\bigr] 
dz

\biggr\} 
=

i

2
\delta (x - xs)(2\pi )

d
\Bigl[ 
\^S(v) \^w(v) - \^S(v) \^w(v)

\Bigr] 
= (2\pi )d\delta (x - xs)Im

\Bigl[ 
\^S(v) \^w(v)

\Bigr] 
.

(A.22)

We finally obtain

Qk(x, v)
k\rightarrow \infty  -  -  - \rightarrow (2\pi )d

\pi 

2
\delta (x - xs)| \^S(v)| 2\delta (| v| 2 = n(xs))(A.23)

by substituting (A.19) in (A.22).
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