The $\omega(q)$ mock theta function and vector-valued Maass-Poincaré series

Sharon Anne Garthwaite

October 7, 2006

メロメ メ御メ メミメ メミメ

哇

 Ω

[Introduction](#page-1-0) [Proof of Main Theorem](#page-11-0)

[Summary](#page-31-0)

Maass-Poincaré series of all weights

[History](#page-2-0) [Recent work](#page-6-0) [Main Theorem](#page-9-0)

History

Let $p(n)$ denote the number of partitions of n.

メロメ メ御き メミメ メミメ

 \equiv

[History](#page-1-0) [Recent work](#page-6-0) [Main Theorem](#page-9-0)

History

Let $p(n)$ denote the number of partitions of n.

Hardy-Ramanujan-Rademacher formula (1917,1922):

$$
p(n) = 2\pi(24n-1)^{-\frac{3}{4}}\sum_{k=1}^{\infty}\frac{A_k(n)}{k}\cdot I_{\frac{3}{2}}\left(\frac{\pi\sqrt{24n-1}}{6k}\right).
$$

 $I_s(z)$ is an *I*-Bessel function.

 $A_k(n)$ is a "Kloosterman-type" sum.

メロメ メタメ メミメ メミメ

 Ω

[Introduction](#page-1-0) [Proof of Main Theorem](#page-11-0) Maass-Poincaré series of all weights **[Summary](#page-31-0) [History](#page-1-0)** [Recent work](#page-6-0) [Main Theorem](#page-9-0)

History

In 1920 Ramanujan wrote about his discovery of "very interesting functions," such as

$$
f(q) := 1 + \sum_{n=1}^{\infty} \frac{q^{n^2}}{(1+q)^2(1+q^2)^2 \cdots (1+q^n)^2}
$$

= 1 + q - 2q² + 3q³ - 3q⁴ + 3q⁵ - 5q⁶ + \cdots;

$$
\omega(q) := \sum_{n=0}^{\infty} \frac{q^{2n^2+2n}}{(1-q)^2(1-q^3)^2 \cdots (1-q^{2n+1})^2}
$$

= 1 + 2q + 3q² + 4q³ + 6q⁴ + 8q⁵ + 10q⁶ + \cdots.

Here $q := e^{2\pi i z}$.

メロメ メタメ メミメ メミメ

佳

 $2Q$

[History](#page-1-0) [Recent work](#page-6-0) [Main Theorem](#page-9-0)

History

Define $\alpha_f(n)$ and $\alpha_\omega(n)$ by

$$
f(q)=\sum_{n\geq 0}\alpha_f(n)q^n;\quad \omega(q)=\sum_{n\geq 0}\alpha_\omega(n)q^n.
$$

メロメ メ都 メ メ君 メ メ君 メー

佳

[History](#page-1-0) [Recent work](#page-6-0) [Main Theorem](#page-9-0)

History

Define $\alpha_f(n)$ and $\alpha_\omega(n)$ by

$$
f(q)=\sum_{n\geq 0}\alpha_f(n)q^n;\quad \omega(q)=\sum_{n\geq 0}\alpha_\omega(n)q^n.
$$

Andrews-Dragonette Conjecture (1952,1966,2003):

$$
\alpha_f(n) = \pi (24n-1)^{-\frac{1}{4}} \sum_{k=1}^{\infty} \frac{(-1)^{\lfloor \frac{k+1}{2} \rfloor} A_{2k} \left(n - \frac{k(1+(-1)^k)}{4} \right)}{k} \cdot l_{1/2} \left(\frac{\pi \sqrt{24n-1}}{12k} \right).
$$

 $A_k(n)$ is the $p(n)$ "Kloosterman-type" sum. \blacktriangleright $I_{1/2}(z)$ satisfies

$$
I_{1/2}(z)=\left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\sinh(z).
$$

メロメ メ御メ メミメ メミメー

哇

 OQ

[Introduction](#page-1-0)

[Proof of Main Theorem](#page-11-0) Maass-Poincaré series of all weights [Summary](#page-31-0) [History](#page-1-0) [Recent work](#page-8-0) [Main Theorem](#page-9-0)

Recent work

Zwegers (Contemp. Math., 2003) :

 \blacktriangleright Vector-valued modular forms

メロメ メタメ メミメ メミメ

 \equiv

 $2Q$

[Introduction](#page-1-0) [Proof of Main Theorem](#page-11-0)

[Summary](#page-31-0)

[History](#page-1-0) [Recent work](#page-8-0) [Main Theorem](#page-9-0)

Recent work

Zwegers (Contemp. Math., 2003) :

Maass-Poincaré series of all weights

 \blacktriangleright Vector-valued modular forms

Bringmann and Ono (Invent. Math., 2006) :

 \blacktriangleright Weak Maass forms

メロメ メタメ メミメ メミメ

唾

 OQ

[Introduction](#page-1-0)

[Proof of Main Theorem](#page-11-0) Maass-Poincaré series of all weights [Summary](#page-31-0) **[History](#page-1-0)** [Recent work](#page-6-0) [Main Theorem](#page-9-0)

Recent work

Zwegers (Contemp. Math., 2003) :

 \blacktriangleright Vector-valued modular forms

Bringmann and Ono (Invent. Math., 2006) :

- \blacktriangleright Weak Maass forms
- ▶ Andrews-Dragonette conjecture

K ロ ▶ 〈 伊 ▶

化重新 化重新

[History](#page-1-0) [Recent work](#page-6-0) [Main Theorem](#page-10-0)

Main Theorem

Theorem (G.) The coefficients $\alpha_{\omega}(n)$ of $\omega(q)$ are

$$
\frac{\pi(3n+2)^{-1/4}}{2\sqrt{2}}\sum_{\substack{k=1\\(k,2)=1}}^{\infty}\frac{(-1)^{\frac{k-1}{2}}A_k\left(\frac{n(k+1)}{2}-\frac{3(k^2-1)}{8}\right)}{k}I_{1/2}\left(\frac{\pi\sqrt{3n+2}}{3k}\right).
$$

メロメ メタメ メミメ メミメ

佳

 $2Q$

[History](#page-1-0) [Recent work](#page-6-0) [Main Theorem](#page-9-0)

Main Theorem

Theorem (G.) The coefficients $\alpha_{\omega}(n)$ of $\omega(q)$ are

$$
\frac{\pi(3n+2)^{-1/4}}{2\sqrt{2}}\sum_{\substack{k=1\\(k,2)=1}}^{\infty}\frac{(-1)^{\frac{k-1}{2}}A_k\left(\frac{n(k+1)}{2}-\frac{3(k^2-1)}{8}\right)}{k}I_{1/2}\left(\frac{\pi\sqrt{3n+2}}{3k}\right).
$$

Define $c(n, m)$ by formula for $\alpha_{\omega}(n)$ truncated at $k = 2m - 1$.

K ロ ▶ 【 日 】

 \leftarrow \equiv

 Ω

[Notation & Background](#page-12-0) [Sketch of Proof](#page-16-0)

Real analytic vector-valued modular forms

Define the following:

$$
F(z) := \left(q^{-\frac{1}{24}}f(q), 2q^{\frac{1}{3}}\omega(q^{\frac{1}{2}}), 2q^{\frac{1}{3}}\omega(-q^{\frac{1}{2}})\right)^{\mathsf{T}}.
$$

$$
G(z) := 2i\sqrt{3}\int_{-\overline{z}}^{i\infty}\frac{(g_1(\tau), g_0(\tau), -g_2(\tau))^{\mathsf{T}}}{\sqrt{-i(\tau + z)}} d\tau.
$$

The $g_i(\tau)$ are the cuspidal weight 3/2 theta functions

$$
H(z) := (H_0(z), H_1(z), H_2(z)) = F(z) - G(z)
$$

メロメ メタメ メミメ メミメ

 OQ

哇

[Notation & Background](#page-11-0) [Sketch of Proof](#page-16-0)

Real analytic vector-valued modular forms

Define the following:

$$
F(z) := \left(q^{-\frac{1}{24}}f(q), 2q^{\frac{1}{3}}\omega(q^{\frac{1}{2}}), 2q^{\frac{1}{3}}\omega(-q^{\frac{1}{2}})\right)^{\mathsf{T}}.
$$

$$
G(z) := 2i\sqrt{3}\int_{-\overline{z}}^{i\infty}\frac{(g_1(\tau), g_0(\tau), -g_2(\tau))^{\mathsf{T}}}{\sqrt{-i(\tau + z)}} d\tau.
$$

The $g_i(\tau)$ are the cuspidal weight 3/2 theta functions

 $H(z) := (H_0(z), H_1(z), H_2(z)) = F(z) - G(z)$

メロメ メ母メ メミメ メミメー

[Notation & Background](#page-11-0) [Sketch of Proof](#page-16-0)

Real analytic vector-valued modular forms

Theorem (Zwegers)

The function $H(z)$ is a vector-valued real analytic modular form of weight 1/2 satisfying

$$
H(z + 1) = \begin{pmatrix} e(-1/24) & 0 & 0 \ 0 & 0 & e(1/3) \ 0 & e(1/3) & 0 \end{pmatrix} H(z),
$$

$$
H(-1/z) = \sqrt{-iz} \cdot \begin{pmatrix} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & -1 \end{pmatrix} H(z),
$$

where $e(x) := e^{2\pi ix}$.

K ロ ⊁ | K 御 ≯ | K 唐 ≯ | K 唐 ≯

 Ω

[Notation & Background](#page-11-0) [Sketch of Proof](#page-16-0)

Weak Maass forms

Theorem (Bringmann-Ono)

 $H_0(24z)$ is a weak Maass form of weight 1/2 on $\Gamma_0(144)$ with Nebentypus $\left(\frac{12}{•}\right)$.

メロメ メ御メ メミメ メミメ

 OQ

哇

[Notation & Background](#page-11-0) [Sketch of Proof](#page-16-0)

Weak Maass forms

Theorem (Bringmann-Ono)

- $H_0(24z)$ is a weak Maass form of weight 1/2 on $\Gamma_0(144)$ with Nebentypus $\left(\frac{12}{•}\right)$.
- $H_0(24z) = P_{\frac{1}{2}} \left(\frac{3}{4} \right)$ $\frac{3}{4}$; 24z), where

$$
P_k(s;z) := \frac{2}{\sqrt{\pi}} \sum_{M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_{\infty} \setminus \Gamma_0(2)} \chi(M)^{-1}(cz+d)^{-k} \varphi_{s,k}(Mz).
$$

Here

$$
\varphi_{\mathsf{s},k}(Mz) = |y|^{-\frac{k}{2}} M_{\frac{k}{2} \operatorname{sgn}(y), s-\frac{1}{2}}(|y|) \left(-\frac{\pi y}{6}\right) e\left(-\frac{x}{24}\right).
$$

メロメ メ御メ メミメ メミメ

[Notation & Background](#page-11-0) [Sketch of Proof](#page-19-0)

Outline of Proof

To prove the Main Theorem:

メロメ メ都 メ メ君 メ メ君 メー

 \equiv

[Notation & Background](#page-11-0) [Sketch of Proof](#page-19-0)

Outline of Proof

To prove the Main Theorem:

 \triangleright Construct a real analytic weight $1/2$ vector-valued modular form reflecting transformations of $P_{\frac{1}{2}}(\frac{3}{4}$ $\frac{3}{4}$, z) on $\mathrm{SL}_2(\mathbb{Z})$

K 御 ▶ | K 唐 ▶ | K 唐 ▶

4 m k 1

 Ω

[Notation & Background](#page-11-0) [Sketch of Proof](#page-19-0)

Outline of Proof

To prove the Main Theorem:

- \triangleright Construct a real analytic weight $1/2$ vector-valued modular form reflecting transformations of $P_{\frac{1}{2}}(\frac{3}{4}$ $\frac{3}{4}$, z) on $\mathrm{SL}_2(\mathbb{Z})$
- \triangleright Express the Fourier expansions of the component functions

 \mathcal{A} and \mathcal{A} in the set of \mathbb{R} is

へのへ

4 m k 1

[Notation & Background](#page-11-0) [Sketch of Proof](#page-16-0)

Outline of Proof

To prove the Main Theorem:

- \triangleright Construct a real analytic weight $1/2$ vector-valued modular form reflecting transformations of $P_{\frac{1}{2}}(\frac{3}{4}$ $\frac{3}{4}$, z) on $\mathrm{SL}_2(\mathbb{Z})$
- Express the Fourier expansions of the component functions
- ▶ Use Bringmann-Ono and the constructed vector-valued modular form to establish the coefficients of $\omega(q)$.

4 m +

化三氯化物

つひへ

[Notation & Background](#page-11-0) [Sketch of Proof](#page-16-0)

Constructing the modular form

Definition
\nIf
$$
M = \begin{pmatrix} a & b \ c & d \end{pmatrix} \in SL_2(\mathbb{Z})
$$
, define,
\n
$$
\chi_0(M) := \begin{cases} i^{-1/2}(-1)^{\frac{1}{2}(c+ad+1)} e\left(\frac{3dc}{8} - \frac{(a+d)}{24c} - \frac{a}{4}\right) \omega_{-d,c}^{-1} & \text{if } c > 0, c \text{ even,} \\ e\left(\frac{-b}{24}\right) & \text{if } c = 0; \end{cases}
$$
\n
$$
\chi_1(M) := i^{-1/2}(-1)^{\frac{c-1}{2}} e\left(\frac{3dc}{8} - \frac{(a+d)}{24c}\right) \omega_{-d,c}^{-1} \quad \text{if } c > 0, d \text{ even,}
$$
\n
$$
\chi_2(M) := i^{-1/2}(-1)^{\frac{c-1}{2}} e\left(\frac{3dc}{8} - \frac{(a+d)}{24c}\right) \omega_{-d,c}^{-1} \quad \text{if } c > 0, c, d \text{ odd,}
$$

メロメ メ母メ メミメ メミメー

 \equiv

[Notation & Background](#page-11-0) [Sketch of Proof](#page-16-0)

Constructing the modular form Definition

$$
\mathcal{P}(z) := (P_0(z), P_1(z), P_2(z))^T,
$$

where,

$$
P_0(z) := \frac{2}{\sqrt{\pi}} \sum_{M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_{\infty} \setminus \Gamma_0(2)} \chi_0(M)^{-1} (cz + d)^{-1/2} \varphi_{3/4, 1/2}(Mz);
$$

\n
$$
P_1(z) := \frac{2}{\sqrt{\pi}} \sum_{\substack{M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = M'S \\ M' \in \Gamma_{\infty} \setminus \Gamma_0(2) \\ \vdots \\ M' \in \Gamma_{\infty} \setminus \Gamma_0(2) \\ M' \in \Gamma_{\infty} \setminus \Gamma_0(2) } \chi_2(M)^{-1} (cz + d)^{-1/2} \varphi_{3/4, 1/2}(Mz).
$$

\n
$$
P_2(z) := \frac{2}{\sqrt{\pi}} \sum_{\substack{M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = M'ST \\ M' \in \Gamma_{\infty} \setminus \Gamma_0(2) } \chi_2(M)^{-1} (cz + d)^{-1/2} \varphi_{3/4, 1/2}(Mz).
$$

メロメ メタメ メミメ メミメ

 \equiv

[Notation & Background](#page-11-0) [Sketch of Proof](#page-16-0)

Connection to $H(z)$

Theorem (G.) The function $P(z)$ is a vector-valued real analytic modular form of weight 1/2 satisfying

$$
\mathcal{P}(z+1) = \begin{pmatrix} e(-1/24) & 0 & 0 \\ 0 & 0 & e(1/3) \\ 0 & e(1/3) & 0 \end{pmatrix} \mathcal{P}(z),
$$

$$
\mathcal{P}(-1/z) = \sqrt{-iz} \cdot \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \mathcal{P}(z).
$$

メロメ メ母メ メミメ メミメ

 OQ

哇

[Notation & Background](#page-11-0) [Sketch of Proof](#page-16-0)

The coefficients of $\omega(q)$

► $H_1(24z) = (-i24z)^{-1/2}H_0(\frac{-1}{24z}) = (-i24z)^{-1/2}P_0(\frac{-1}{24z}) = P_1(24z).$

メロメ メ御メ メミメ メミメー

佳

 $2Q$

[Notation & Background](#page-11-0) [Sketch of Proof](#page-16-0)

The coefficients of $\omega(q)$

► $H_1(24z) = (-i24z)^{-1/2}H_0(\frac{-1}{24z}) = (-i24z)^{-1/2}P_0(\frac{-1}{24z}) = P_1(24z).$ $P_1(z) = \sum_{n\geq 0} \alpha(n) q^{\frac{n}{2} + \frac{1}{3}} + \sum_{n<0} \beta_{y}(n) q^{\frac{n}{2} + \frac{1}{3}}$ where,

$$
\alpha(n) = \frac{\pi}{\sqrt{2}} (3n+2)^{-\frac{1}{4}} \sum_{\substack{k=1 \ (k,2)=1}}^{\infty} \frac{A_k \left(\frac{n(k+1)}{2} - \frac{3(k^2-1)}{8} \right)}{k} \cdot I_{\frac{1}{2}} \left(\frac{\pi \sqrt{3n+2}}{3k} \right),
$$

$$
\beta_y(n) = \frac{\pi^{\frac{1}{2}}}{\sqrt{2}} |3n+2|^{-\frac{1}{4}} \cdot \Gamma \left(\frac{1}{2}, \frac{\pi |3n+2| \cdot y}{3} \right)
$$

$$
\sum_{\substack{k=1 \ (k,2)=1}}^{\infty} \frac{A_k \left(\frac{n(k+1)}{2} - \frac{3(k^2-1)}{8} \right)}{k} \cdot J_{\frac{1}{2}} \left(\frac{\pi \sqrt{|3n+2|}}{3k} \right).
$$

メロメ メ母メ メミメ メミメー

佳

 OQ

[Notation & Background](#page-11-0) [Sketch of Proof](#page-16-0)

The coefficients of $\omega(q)$

► $H_1(24z) = (-i24z)^{-1/2}H_0(\frac{-1}{24z}) = (-i24z)^{-1/2}P_0(\frac{-1}{24z}) = P_1(24z).$ $P_1(z) = \sum_{n\geq 0} \alpha(n) q^{\frac{n}{2} + \frac{1}{3}} + \sum_{n<0} \beta_{y}(n) q^{\frac{n}{2} + \frac{1}{3}}$ where,

$$
\alpha(n) = \frac{\pi}{\sqrt{2}} (3n+2)^{-\frac{1}{4}} \sum_{\substack{k=1 \ (k,2)=1}}^{\infty} \frac{A_k \left(\frac{n(k+1)}{2} - \frac{3(k^2-1)}{8} \right)}{k} \cdot I_{\frac{1}{2}} \left(\frac{\pi \sqrt{3n+2}}{3k} \right),
$$

$$
\beta_y(n) = \frac{\pi^{\frac{1}{2}}}{\sqrt{2}} |3n+2|^{-\frac{1}{4}} \cdot \Gamma \left(\frac{1}{2}, \frac{\pi |3n+2| \cdot y}{3} \right)
$$

$$
\sum_{\substack{k=1 \ (k,2)=1}}^{\infty} \frac{A_k \left(\frac{n(k+1)}{2} - \frac{3(k^2-1)}{8} \right)}{k} \cdot J_{\frac{1}{2}} \left(\frac{\pi \sqrt{|3n+2|}}{3k} \right).
$$

メロメ メ母メ メミメ メミメー

佳

 OQ

Maass-Poincaré series of all weights

Define

$$
P(N, \chi, m, k, s; z) := \sum_{M = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in \Gamma_{\infty} \setminus \Gamma_0(M)} \chi(M)^{-1}(cz+d)^{-k} \varphi_{s,k,m}(Mz).
$$

 $\blacktriangleright k \in \frac{1}{2}$ $\frac{1}{2}\mathbb{Z},\ N\in\mathbb{N},\ 0>m\in\mathbb{Q},\ s\in\mathbb{C},\ {\rm and}\ \chi$ is a multiplier system for $Γ_0(N)$.

$$
\blacktriangleright \varphi_{s,k,m}(z) := |y|^{-\frac{k}{2}} M_{\frac{k}{2} \operatorname{sgn}(y), s-\frac{1}{2}}(|y|) (4m\pi y) e(mx).
$$

メロメ メ御メ メミメ メミメ

 OQ

哇

Properties of $P(N, \chi, m, k, s; z)$

Absolutely convergent for $\Re(s) > 1$.

メロメ メタメ メミメ メミメ

哇

Properties of $P(N, \chi, m, k, s; z)$

- Absolutely convergent for $\Re(s) > 1$.
- \blacktriangleright If $\Re(s)>1$ and $V=\left(\frac{\alpha}{\gamma}\frac{\beta}{\delta}\right)\in\Gamma_0(N)$ then

$$
P(N, \chi, m, k, s; Vz) = \chi(V)(\gamma z + \delta)^k P(N, \chi, m, k, s; z).
$$

メ御 メミメ メミメ

4 0 8 1

 290

哇

Properties of $P(N, \chi, m, k, s; z)$

- Absolutely convergent for $\Re(s) > 1$.
- \blacktriangleright If $\Re(s)>1$ and $V=\left(\frac{\alpha}{\gamma}\frac{\beta}{\delta}\right)\in\Gamma_0(N)$ then

$$
P(N, \chi, m, k, s; Vz) = \chi(V)(\gamma z + \delta)^k P(N, \chi, m, k, s; z).
$$

If $k < 0$ and $s = 1 - k/2$ or $k > 2$ and $s = k/2$, then $P(N, \chi, m, k, s; z)$ is a weak Maass form of weight k on $\Gamma_0(N)$ with Nebentypus if χ is of the correct form.

K 御 ▶ | K 唐 ▶ | K 唐 ▶

つひへ

Properties of $P(N, \chi, m, k, s; z)$

- Absolutely convergent for $\Re(s) > 1$.
- \blacktriangleright If $\Re(s)>1$ and $V=\left(\frac{\alpha}{\gamma}\frac{\beta}{\delta}\right)\in\Gamma_0(N)$ then

$$
P(N, \chi, m, k, s; Vz) = \chi(V)(\gamma z + \delta)^k P(N, \chi, m, k, s; z).
$$

- If $k < 0$ and $s = 1 k/2$ or $k > 2$ and $s = k/2$, then $P(N, \chi, m, k, s; z)$ is a weak Maass form of weight k on $\Gamma_0(N)$ with Nebentypus if χ is of the correct form.
- \triangleright We can express the Fourier expansion for $P(N, \chi, m, k, s; Vz)$, $V \in SL_2(\mathbb{Z})$.

イロメ マ桐 ビーイチャーイチャ

つひへ

Summary

 \blacktriangleright Mock theta functions are the holomorphic projection of weight 1/2 weak Maass forms

メロメ メタメ メミメ メミメ

哇

Summary

- \triangleright Mock theta functions are the holomorphic projection of weight 1/2 weak Maass forms
- \blacktriangleright These Maass forms are weight $1/2$ vector-valued modular forms

メロメ メ御メ メミメ メミメ

 OQ

哇

Summary

- \triangleright Mock theta functions are the holomorphic projection of weight 1/2 weak Maass forms
- \blacktriangleright These Maass forms are weight 1/2 vector-valued modular forms
- \blacktriangleright For $f(q)$ we can construct a Maass-Poincaré series whose Fourier expansion yields $\alpha_f(n)$.

K ロ ⊁ | K 御 ≯ | K 重 ≯ | K 重 ≯

へのへ

[Introduction](#page-1-0) "heorem Maass-Poincaré series of all weights [Summary](#page-31-0)

Summary

- \triangleright Mock theta functions are the holomorphic projection of weight 1/2 weak Maass forms
- \blacktriangleright These Maass forms are weight 1/2 vector-valued modular forms
- \blacktriangleright For $f(q)$ we can construct a Maass-Poincaré series whose Fourier expansion yields $\alpha_f(n)$.
- \triangleright We can use the transformation properties of the Maass form and Maass-Poincaré series to find $\alpha_{\omega}(n)$.

K ロ ⊁ | K 御 ≯ | K 重 ≯ | K 重 ≯

つひへ

Summary

- \triangleright Mock theta functions are the holomorphic projection of weight 1/2 weak Maass forms
- \blacktriangleright These Maass forms are weight 1/2 vector-valued modular forms
- \blacktriangleright For $f(q)$ we can construct a Maass-Poincaré series whose Fourier expansion yields $\alpha_f(n)$.
- \triangleright We can use the transformation properties of the Maass form and Maass-Poincaré series to find $\alpha_{\omega}(n)$.
- \triangleright We can do this construction and express the Fourier coefficients for the general $P(N, \chi, m, k, s; Vz)$, $V \in SL_2(\mathbb{Z})$.

K ロ ⊁ | K 御 ≯ | K 重 ≯ | K 重 ≯

つひへ