The $\omega(q)$ mock theta function and vector-valued Maass-Poincaré series

Sharon Anne Garthwaite

October 7, 2006

イロト イヨト イヨト イヨト

History Recent work Main Theorem

History

Let p(n) denote the number of partitions of n.

・ロト ・回ト ・ヨト ・ヨト

History Recent work Main Theorem

History

Let p(n) denote the number of partitions of n.

Hardy-Ramanujan-Rademacher formula (1917,1922):

$$p(n) = 2\pi(24n-1)^{-\frac{3}{4}} \sum_{k=1}^{\infty} \frac{A_k(n)}{k} \cdot I_{\frac{3}{2}}\left(\frac{\pi\sqrt{24n-1}}{6k}\right)$$

• $I_s(z)$ is an *I*-Bessel function.

• $A_k(n)$ is a "Kloosterman-type" sum.

イロト イヨト イヨト イヨト

History

In 1920 Ramanujan wrote about his discovery of "very interesting functions," such as

$$\begin{split} f(q) &:= 1 + \sum_{n=1}^{\infty} \frac{q^{n^2}}{(1+q)^2(1+q^2)^2 \cdots (1+q^n)^2} \\ &= 1 + q - 2q^2 + 3q^3 - 3q^4 + 3q^5 - 5q^6 + \cdots; \\ \omega(q) &:= \sum_{n=0}^{\infty} \frac{q^{2n^2+2n}}{(1-q)^2(1-q^3)^2 \cdots (1-q^{2n+1})^2} \\ &= 1 + 2q + 3q^2 + 4q^3 + 6q^4 + 8q^5 + 10q^6 + \cdots. \end{split}$$

Here $q := e^{2\pi i z}$.

・ロト ・ (日)・ ・ (日)・ ・ (日)・ ・

History Recent work Main Theorem

History

Define $\alpha_f(n)$ and $\alpha_\omega(n)$ by

$$f(q) = \sum_{n \ge 0} \alpha_f(n) q^n; \quad \omega(q) = \sum_{n \ge 0} \alpha_\omega(n) q^n.$$

・ロト ・回ト ・モト ・モト

æ

History Recent work Main Theorem

History

Define $\alpha_f(n)$ and $\alpha_\omega(n)$ by

$$f(q) = \sum_{n \ge 0} \alpha_f(n) q^n; \quad \omega(q) = \sum_{n \ge 0} \alpha_\omega(n) q^n.$$

Andrews-Dragonette Conjecture (1952,1966,2003):

$$\alpha_f(n) = \pi (24n-1)^{-\frac{1}{4}} \sum_{k=1}^{\infty} \frac{(-1)^{\lfloor \frac{k+1}{2} \rfloor} A_{2k} \left(n - \frac{k(1+(-1)^k)}{4}\right)}{k} \cdot I_{1/2} \left(\frac{\pi \sqrt{24n-1}}{12k}\right).$$

A_k(n) is the p(n) "Kloosterman-type" sum.
 I_{1/2}(z) satisfies

$$I_{1/2}(z) = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}} \sinh(z).$$

・ロト ・ 日 ・ ・ ヨ ト ・ ・ ヨ ト ・

Introduction

Proof of Main Theorem Maass-Poincaré series of all weights Summary History Recent work Main Theorem

Recent work

Zwegers (Contemp. Math., 2003) :

Vector-valued modular forms

・ロト ・ 日ト ・ モト・

History Recent work Main Theorem

Recent work

Zwegers (Contemp. Math., 2003) :

Vector-valued modular forms

Bringmann and Ono (Invent. Math., 2006) :

Weak Maass forms

イロト イヨト イヨト イヨト

History Recent work Main Theorem

Recent work

Zwegers (Contemp. Math., 2003) :

Vector-valued modular forms

Bringmann and Ono (Invent. Math., 2006) :

- Weak Maass forms
- Andrews-Dragonette conjecture

イロト イポト イヨト イヨト

History Recent work Main Theorem

Main Theorem

Theorem (G.) The coefficients $\alpha_{\omega}(n)$ of $\omega(q)$ are

$$\frac{\pi(3n+2)^{-1/4}}{2\sqrt{2}}\sum_{\substack{k=1\\(k,2)=1}}^{\infty}\frac{(-1)^{\frac{k-1}{2}}A_k\left(\frac{n(k+1)}{2}-\frac{3(k^2-1)}{8}\right)}{k}I_{1/2}\left(\frac{\pi\sqrt{3n+2}}{3k}\right).$$

・ロト ・ 日ト ・ モト・

History Recent work Main Theorem

Main Theorem

Theorem (G.) The coefficients $\alpha_{\omega}(n)$ of $\omega(q)$ are

$$\frac{\pi(3n+2)^{-1/4}}{2\sqrt{2}}\sum_{\substack{k=1\\(k,2)=1}}^{\infty}\frac{(-1)^{\frac{k-1}{2}}A_k\left(\frac{n(k+1)}{2}-\frac{3(k^2-1)}{8}\right)}{k}I_{1/2}\left(\frac{\pi\sqrt{3n+2}}{3k}\right).$$

Define c(n, m) by formula for $\alpha_{\omega}(n)$ truncated at k = 2m - 1.

n	$\alpha_{\omega}(n)$	c(n,1)	c(n,2)	c(n, 1000)
1	2	1.9949	2.2428	1.9963
5	8	7.8769	8.0420	7.9958
10	29	28.6164	29.0178	29.0000
100	1995002	1994993.7262	1995001.6972	1995001.9987

・ロト ・ 同ト ・ ヨト ・ ヨト

Notation & Background Sketch of Proof

Real analytic vector-valued modular forms

Define the following:

$$F(z) := \left(q^{-\frac{1}{24}}f(q), 2q^{\frac{1}{3}}\omega(q^{\frac{1}{2}}), 2q^{\frac{1}{3}}\omega(-q^{\frac{1}{2}})\right)^{T}.$$

$$G(z) := 2i\sqrt{3}\int_{-\overline{z}}^{i\infty} \frac{(g_{1}(\tau), g_{0}(\tau), -g_{2}(\tau))^{T}}{\sqrt{-i(\tau+z)}} d\tau.$$

The $g_i(\tau)$ are the cuspidal weight 3/2 theta functions

$$H(z) := (H_0(z), H_1(z), H_2(z)) = F(z) - G(z)$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Notation & Background Sketch of Proof

Real analytic vector-valued modular forms

Define the following:

$$F(z) := \left(q^{-\frac{1}{24}}f(q), 2q^{\frac{1}{3}}\omega(q^{\frac{1}{2}}), 2q^{\frac{1}{3}}\omega(-q^{\frac{1}{2}})\right)^{T}.$$

$$G(z) := 2i\sqrt{3}\int_{-\overline{z}}^{i\infty} \frac{(g_{1}(\tau), g_{0}(\tau), -g_{2}(\tau))^{T}}{\sqrt{-i(\tau+z)}} d\tau.$$

The $g_i(\tau)$ are the cuspidal weight 3/2 theta functions

 $H(z) := (H_0(z), H_1(z), H_2(z)) = F(z) - G(z)$

・ロト ・ 同ト ・ ヨト ・ ヨト

Notation & Background Sketch of Proof

Real analytic vector-valued modular forms

Theorem (Zwegers)

The function H(z) is a vector-valued real analytic modular form of weight 1/2 satisfying

$$H(z+1) = \begin{pmatrix} e(-1/24) & 0 & 0\\ 0 & 0 & e(1/3)\\ 0 & e(1/3) & 0 \end{pmatrix} H(z),$$
$$H(-1/z) = \sqrt{-iz} \cdot \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 0 \end{pmatrix} H(z),$$

$$H(-1/z) = \sqrt{-iz} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} H(z)$$

where $e(x) := e^{2\pi i x}$.

イロト イポト イヨト イヨト

Notation & Background Sketch of Proof

Weak Maass forms

Theorem (Bringmann-Ono)

► H₀(24z) is a weak Maass form of weight 1/2 on Γ₀(144) with Nebentypus (¹²/_●).

・ロト ・ 日ト ・ モト・

Notation & Background Sketch of Proof

Weak Maass forms

Theorem (Bringmann-Ono)

- ► H₀(24z) is a weak Maass form of weight 1/2 on Γ₀(144) with Nebentypus (¹²/_●).
- $H_0(24z) = P_{\frac{1}{2}}(\frac{3}{4}; 24z)$, where

$$P_k(s;z) := \frac{2}{\sqrt{\pi}} \sum_{M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_{\infty} \setminus \Gamma_0(2)} \chi(M)^{-1} (cz+d)^{-k} \varphi_{s,k}(Mz).$$

Here

$$\varphi_{s,k}(Mz) = |y|^{-\frac{k}{2}} M_{\frac{k}{2}\operatorname{sgn}(y), s-\frac{1}{2}}(|y|) \left(-\frac{\pi y}{6}\right) e\left(-\frac{x}{24}\right).$$

イロト イヨト イヨト イヨト

Notation & Background Sketch of Proof

Outline of Proof

To prove the Main Theorem:

イロン イヨン イヨン イヨン

Notation & Background Sketch of Proof

Outline of Proof

To prove the Main Theorem:

Construct a real analytic weight 1/2 vector-valued modular form reflecting transformations of P¹/₁(³/₄, z) on SL₂(ℤ)

< ロト (周) (日) (日)

Notation & Background Sketch of Proof

Outline of Proof

To prove the Main Theorem:

- Construct a real analytic weight 1/2 vector-valued modular form reflecting transformations of P¹/₁(³/₄, z) on SL₂(ℤ)
- Express the Fourier expansions of the component functions

Notation & Background Sketch of Proof

Outline of Proof

To prove the Main Theorem:

- Construct a real analytic weight 1/2 vector-valued modular form reflecting transformations of P_{1/2}(³/₄, z) on SL₂(ℤ)
- Express the Fourier expansions of the component functions
- Use Bringmann-Ono and the constructed vector-valued modular form to establish the coefficients of ω(q).

(D) (A) (A)

Notation & Background Sketch of Proof

Constructing the modular form

Definition
If
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$$
, define,
 $\chi_0(M) := \begin{cases} i^{-1/2}(-1)^{\frac{1}{2}(c+ad+1)}e^{\left(\frac{3dc}{8} - \frac{(a+d)}{24c} - \frac{a}{4}\right)}\omega_{-d,c}^{-1} & \text{if } c > 0, c \text{ even}, \\ e^{\left(\frac{-b}{24}\right)} & \text{if } c = 0; \end{cases}$
 $\chi_1(M) := i^{-1/2}(-1)^{\frac{c-1}{2}}e^{\left(\frac{3dc}{8} - \frac{(a+d)}{24c}\right)}\omega_{-d,c}^{-1} & \text{if } c > 0, d \text{ even}, \end{cases}$
 $\chi_2(M) := i^{-1/2}(-1)^{\frac{c-1}{2}}e^{\left(\frac{3dc}{8} - \frac{(a+d)}{24c}\right)}\omega_{-d,c}^{-1} & \text{if } c > 0, c, d \text{ odd}.$

<ロ> (四) (四) (注) (注) ()

Notation & Background Sketch of Proof

Constructing the modular form Definition

$$\mathcal{P}(z) := (P_0(z), P_1(z), P_2(z))^T$$
,

where,

$$\begin{split} P_{0}(z) &:= \frac{2}{\sqrt{\pi}} & \sum_{\substack{M = \binom{a \ b}{c \ d} \ \end{pmatrix} \in \Gamma_{\infty} \setminus \Gamma_{0}(2)}} \chi_{0}(M)^{-1}(cz+d)^{-1/2}\varphi_{3/4,1/2}(Mz); \\ P_{1}(z) &:= \frac{2}{\sqrt{\pi}} & \sum_{\substack{M = \binom{a \ b}{c \ d} \ \end{pmatrix} = M' \ S}} \chi_{1}(M)^{-1}(cz+d)^{-1/2}\varphi_{3/4,1/2}(Mz); \\ P_{2}(z) &:= \frac{2}{\sqrt{\pi}} & \sum_{\substack{M = \binom{a \ b}{c \ d} \ \end{pmatrix} = M' \ ST}} \chi_{2}(M)^{-1}(cz+d)^{-1/2}\varphi_{3/4,1/2}(Mz). \end{split}$$

・ロト ・ 日ト ・ モト・

Notation & Background Sketch of Proof

Connection to H(z)

Theorem (G.) The function $\mathcal{P}(z)$ is a vector-valued real analytic modular form of weight 1/2 satisfying

$$\mathcal{P}(z+1) = egin{pmatrix} e(-1/24) & 0 & 0 \ 0 & 0 & e(1/3) \ 0 & e(1/3) & 0 \end{pmatrix} \mathcal{P}(z),$$
 $\mathcal{P}(-1/z) = \sqrt{-iz} \cdot egin{pmatrix} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & -1 \end{pmatrix} \mathcal{P}(z).$

<ロ> (日) (日) (日) (日) (日)

Notation & Background Sketch of Proof

The coefficients of $\omega(q)$

► $H_1(24z) = (-i24z)^{-1/2} H_0\left(\frac{-1}{24z}\right) = (-i24z)^{-1/2} P_0\left(\frac{-1}{24z}\right) = P_1(24z).$

Notation & Background Sketch of Proof

The coefficients of $\omega(q)$

► $H_1(24z) = (-i24z)^{-1/2}H_0\left(\frac{-1}{24z}\right) = (-i24z)^{-1/2}P_0\left(\frac{-1}{24z}\right) = P_1(24z).$ ► $P_1(z) = \sum_{n\geq 0} \alpha(n)q^{\frac{n}{2}+\frac{1}{3}} + \sum_{n<0} \beta_y(n)q^{\frac{n}{2}+\frac{1}{3}},$ where,

$$\begin{aligned} \alpha(n) &= \frac{\pi}{\sqrt{2}} (3n+2)^{-\frac{1}{4}} \sum_{\substack{k=1\\(k,2)=1}}^{\infty} \frac{A_k \left(\frac{n(k+1)}{2} - \frac{3(k^2-1)}{8}\right)}{k} \cdot I_{\frac{1}{2}} \left(\frac{\pi\sqrt{3n+2}}{3k}\right), \\ \beta_y(n) &= \frac{\pi^{\frac{1}{2}}}{\sqrt{2}} |3n+2|^{-\frac{1}{4}} \cdot \Gamma\left(\frac{1}{2}, \frac{\pi|3n+2| \cdot y}{3}\right) \\ &\sum_{\substack{k=1\\(k,2)=1}}^{\infty} \frac{A_k \left(\frac{n(k+1)}{2} - \frac{3(k^2-1)}{8}\right)}{k} \cdot J_{\frac{1}{2}} \left(\frac{\pi\sqrt{|3n+2|}}{3k}\right). \end{aligned}$$

The coefficients of $\omega(q)$

*H*₁(24z) = (-i24z)^{-1/2}*H*₀(⁻¹/_{24z}) = (-i24z)^{-1/2}*P*₀(⁻¹/_{24z}) = *P*₁(24z).
 *P*₁(z) = ∑_{n≥0} α(n)q^{n/2+1/3} + ∑_{n<0} β_y(n)q^{n/2+1/3}, where,

$$\begin{aligned} \alpha(n) &= \frac{\pi}{\sqrt{2}} (3n+2)^{-\frac{1}{4}} \sum_{\substack{k=1\\(k,2)=1}}^{\infty} \frac{A_k \left(\frac{n(k+1)}{2} - \frac{3(k^2-1)}{8}\right)}{k} \cdot I_{\frac{1}{2}} \left(\frac{\pi\sqrt{3n+2}}{3k}\right), \\ \beta_y(n) &= \frac{\pi^{\frac{1}{2}}}{\sqrt{2}} |3n+2|^{-\frac{1}{4}} \cdot \Gamma\left(\frac{1}{2}, \frac{\pi|3n+2| \cdot y}{3}\right) \\ &\sum_{\substack{k=1\\(k,2)=1}}^{\infty} \frac{A_k \left(\frac{n(k+1)}{2} - \frac{3(k^2-1)}{8}\right)}{k} \cdot J_{\frac{1}{2}} \left(\frac{\pi\sqrt{|3n+2|}}{3k}\right). \end{aligned}$$

Maass-Poincaré series of all weights

Define

$$P(N,\chi,m,k,s;z) := \sum_{M = \binom{a \ b}{c \ d} \in \Gamma_{\infty} \setminus \Gamma_{0}(N)} \chi(M)^{-1} (cz+d)^{-k} \varphi_{s,k,m}(Mz).$$

k ∈ ¹/₂ℤ, N ∈ ℕ, 0 > m ∈ ℚ, s ∈ ℂ, and χ is a multiplier system for Γ₀(N).

•
$$\varphi_{s,k,m}(z) := |y|^{-\frac{k}{2}} M_{\frac{k}{2} \operatorname{sgn}(y), s-\frac{1}{2}}(|y|) (4m\pi y) e(mx).$$

<ロ> (四) (四) (三) (三) (三)

Properties of $P(N, \chi, m, k, s; z)$

• Absolutely convergent for $\Re(s) > 1$.

・ロト ・ 日ト ・ モト・

Properties of $P(N, \chi, m, k, s; z)$

- Absolutely convergent for $\Re(s) > 1$.
- ▶ If $\Re(s) > 1$ and $V = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \Gamma_0(N)$ then

$$P(N, \chi, m, k, s; Vz) = \chi(V)(\gamma z + \delta)^k P(N, \chi, m, k, s; z).$$

イロト イポト イヨト イヨト

Properties of $P(N, \chi, m, k, s; z)$

- Absolutely convergent for $\Re(s) > 1$.
- If $\Re(s) > 1$ and $V = \begin{pmatrix} lpha & eta \\ \gamma & \delta \end{pmatrix} \in \Gamma_0(N)$ then

$$P(N, \chi, m, k, s; Vz) = \chi(V)(\gamma z + \delta)^k P(N, \chi, m, k, s; z).$$

If k < 0 and s = 1 − k/2 or k > 2 and s = k/2, then
 P(N, χ, m, k, s; z) is a weak Maass form of weight k on Γ₀(N) with Nebentypus if χ is of the correct form.

(日) (日) (日) (日) (日)

Properties of $P(N, \chi, m, k, s; z)$

- Absolutely convergent for $\Re(s) > 1$.
- If $\Re(s) > 1$ and $V = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \Gamma_0(N)$ then

$$P(N, \chi, m, k, s; Vz) = \chi(V)(\gamma z + \delta)^k P(N, \chi, m, k, s; z).$$

- If k < 0 and s = 1 − k/2 or k > 2 and s = k/2, then
 P(N, χ, m, k, s; z) is a weak Maass form of weight k on Γ₀(N) with Nebentypus if χ is of the correct form.
- We can express the Fourier expansion for P(N, χ, m, k, s; Vz), V ∈ SL₂(ℤ).

イロト イポト イヨト イヨト

Summary

 Mock theta functions are the holomorphic projection of weight 1/2 weak Maass forms

<ロ> (四) (四) (三) (三) (三)

Summary

- Mock theta functions are the holomorphic projection of weight 1/2 weak Maass forms
- These Maass forms are weight 1/2 vector-valued modular forms

・ロト ・ 日 ・ ・ ヨ ト ・ ・ ヨ ト ・

Summary

- Mock theta functions are the holomorphic projection of weight 1/2 weak Maass forms
- These Maass forms are weight 1/2 vector-valued modular forms
- For f(q) we can construct a Maass-Poincaré series whose Fourier expansion yields α_f(n).

Summary

- Mock theta functions are the holomorphic projection of weight 1/2 weak Maass forms
- These Maass forms are weight 1/2 vector-valued modular forms
- For f(q) we can construct a Maass-Poincaré series whose Fourier expansion yields α_f(n).
- We can use the transformation properties of the Maass form and Maass-Poincaré series to find α_ω(n).

・ロト ・ 日 ・ ・ ヨ ・ ・ モ ト

Summary

- Mock theta functions are the holomorphic projection of weight 1/2 weak Maass forms
- These Maass forms are weight 1/2 vector-valued modular forms
- For f(q) we can construct a Maass-Poincaré series whose Fourier expansion yields α_f(n).
- We can use the transformation properties of the Maass form and Maass-Poincaré series to find α_ω(n).
- We can do this construction and express the Fourier coefficients for the general P(N, χ, m, k, s; Vz), V ∈ SL₂(ℤ).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・