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Schrodinger Equation

0 h2
h— U = —— AU V(z)U
Zh@t (CE,t) 9 (I,t) + (x) (:Cat)

Physical interpretation

= |U]°: Position probability density p(z,t)
= |¥|2: Momentum probability density
m  Wavepacket = particle

Wave packet solution
W (z,t;po) = / $(p — po)ve(x, t)e™ M dp

where g solves ——Aw + V(x) = E1 with Hamiltonian
E = p?/2m — V(z) along particle trajectory
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Viced Model Wigner distribution function

QZMJ(:U B — V() (1) = 0

ET
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Examples — 00

Conclusions

Wigner equation: W[SV, U] + W[V, SV¥]| =0

%f%—pr%—@:() where

O=—— [ [V(e+3ep) = V(z— 3e0)] f(w,y, )e™ dy
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Semiclassical limit

O =V,V-V,f - i i (=" (%)2nv2n+1vv2n—|—1f
el c= (2n+ 1! 7 b

For V(x) smooth, when ¢ — 0
©— V.,V -V,f(z,p,1)
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Why not use the Schrodinger Equation?

Liouville equation

m  Arbitrary particle distribution, but
m  No wave phenomena: tunneling, resonance, partial
transmission /reflection, interference

Schrodinger equation

Accurately models particle at any scale, but
Single particle (x and p distribution are not independent)
Numerically, we must resolve the de Broglie wavelength.

Typically, Ax = O(e/p) or Ax = o(e/p)

m  Numerically, difficult to implement boundary conditions

Use Liouville equation globally.

/
Idea Use Schrodinger equation locally.

9 / 26



- =+ How do we do it?

Background Coupling a quantum barrier with a Liouville

Semi-classical Limit ] ] Lo )

ed Model m  Solve the time-independent Schrodinger equation for the a
local barrier /well

Schrodinger Solution g |Jse the solution to determine scattering information
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Use scattering information to connect across the barrier
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Conclusions

Previous research

m N. Ben Abdallah, P. Degond and |.M. Gamba (2002)
m S. Jin and X. Wen (2005)

Simplifying assumptions

We work in 1-d

Particle moves instantaneously across the barrier

Barrier is sufficiently local

Particle has no phase information (no long range interaction)
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m Step (D)
m Translation (P)
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Current Density

Schrodinger equation

SU(r.t) = 2U(a 1) + SeAV(z, 1) — V(@)U (x.t) = 0

ot

21 €1

Consider:
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el / T —
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Semi-classical Limit /\

_ / Bicharacteristics:
Mixed Model

Schrédinger Solution m Classical particle is either transmit-
Liouville Solution ted or reﬂected

Semi-classical . .

Liouville Equation m  Quantum particle is generally both
Finite Difference i

Scheme \ transmitted and reflected

Barrier Interface i

2nd order method
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Conclusions m Particle density f(x,p,t) carried along bicharacteristics
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Semi-classical
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Finite Difference
Scheme

Barrier Interface
2nd order method
Ghost fluid

Examples

Conclusions

Finite Difference Scheme

ft “|_fo — fov =0
Grid points at (z;,v;). Barrier at w51/5.
Ofij +v5-Opfij —O0Vi-Opfij =0

where 0, f;; = (fi+1/2,j — fz'—1/2,j)/A$

fiz1/2
Jit1/2

Ti—1 Li Tit1

Stability requires upwinding to approximate f;11 /9
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Finite Difference . . _ +
Where 172 is continuous, [, = I,

Barrier Interface

2nd order method

Ghost fluid f . — f .
i+1/2,7 i—1/2,5 .
Examples agjfz] — Agj |f 'Uj > 0
Conclusions + f_|_
i+1/2,5  Ji—1/25 .
8xfz'j = / JAQ; /2.5 f vj < 0
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Barrier Interface
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Scheme
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Barrier Interface

At the quantum barrier x /9, we need to incorporate
information from two bicharacteristics.

Barrier interface condition

f;_|_1/2,j — R—jf;+1/2,—j + T_jfZ_-l-l/?a’w(j)
fZ__|_1/2’j — R—jfZ_+1/2,—j + T_jf;-ﬂ/?aw(j)'

We use the approximation

n 1 w(“j+1/2) B
T—jfz+1/2,w(j) - v;Av /w(v‘m) T(v)vf~ dv

where we use Hamiltonian to determine w

w(v)y)) = i\/?"72' - Q(V;+1/2 - VZ_—H/Q)
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2nd order method

Piecewise linear:
fzt1/2,j — fi,j _ % (1 - )‘j) Axagjj
fi11/2,j = fij+ % (1= 2Aj) Axg%

with the slope o7 calculated using the Van Leer slope limiter

N fz’—l,j) (fz'+1,j — fz’j) " _0+10]
N ( Ax ¢ fig = fi—1, here - 9(6) = 5 + 16

and the Courant number \; = |v;|At/Ax

We can’t do this directly across at the barrier!
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Ghost fluid

Across the barrier, we need to reconstruct “unmixed” flux.
For 5 > 0,

fz—5=Rifzv1; +T5fz0(-j)

with a similar system for 7 < 0. By inverting this system of
equations, we have the unmixed state downwind of the barrier

Tifz41,—w(—j) — Rifz—;

fZ+1,' — when 7 > 0
! Ty — R;
. Tjfz,—w—j) — Rjfz+1,—
Jzj5 = e ’ when j < 0
’ 1 — R,
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Eckart Potential
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Tunneling Diode
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Rectangular Potential
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Research Directions

Background Simplifying assumptions

Semi-classical Limit

m Particle moves instantaneously across the barrier

Mixed Model

Schrsdinger Solution M Barrier is sufficiently local

Liouville Solution m Particle has no phase information (no long range interaction)
Examples

Incorrect /inaccurate for

Conclusions

Research Directions

Thank you

m Larger quantum structures

m  Smaller domains (nonvanishing ¢)
m Periodic crystalline structures

m  Highly resonant barriers

Extension of model

m Introduce time delay
m Introduce phase information
m  Reconstruct solution inside the quantum barrier
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