
ON A RESULT OF WALDSURGER II

HERVÉ JACQUET

Abstract. This is a translation of Hervé Jacquet’s 1987 paper ” Sur un résultat de Wald-

spurger”, published in Compositio Mathematica. The translation was accomplished with

AI. Any errors or inaccuracies are my responsibility. For typos, corrections, or suggestions,

please contact yluo237@wisc.edu.

1. Introduction

1.1. Let F be a field and E a quadratic extension of F , Ω a character of the ideal class

group of E, ω its restriction to the ideal class group of F . Let η denote the quadratic

character of the ideal class group of F attached to E, N0 the group of elements of F× which

are the norm of an element of E, and N1 the group of elements of E with norm 1. For each

non-zero ε in F , let Gε be the group formed by matrices of the following type:∣∣∣∣∣ a bε

bσ aσ

∣∣∣∣∣
where σ denotes conjugation in E with respect to F . Let G denote the group GL(2), viewed

as an algebraic group defined over F , Z its center, and A the subgroup of diagonal matrices.

If ε = 1 then G1 is isomorphic to G. In general, Gε is an inner form of G. In particular, if

ε is not a norm and π′ is an automorphic representation of infinite dimension of Gε, then

the [JL85] correspondence associates to π′ a cuspidal automorphic representation π of G1.

Conversely, if π is given, then there may be several ε such that the group Gε admits an

automorphic representation corresponding to π.

We now suppose that the representation π is not dihedral for the extension E. Then

the lifting Π of π to the extension E is a cuspidal automorphic representation of G(E) =

GL(2, E).

1.2. In [Wal85] Waldspurger considers two conditions relative to the representation π. Let

ω be the central character of π and Ω a multiplicative character of E whose restriction to

F is ω. We denote by T the subgroup of Gε formed by matrices of the form:

t =

∣∣∣∣∣a 0

0 aσ

∣∣∣∣∣ ;
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it is a torus defined over F and isomorphic to the multiplicative group of E. In particular,

Ω identifies with a character of the adelic group of T by the formula Ω(t) = Ω(a). By abuse

of notation, we also denote by Z the center of Gε. The first condition is stated as follows:

(1) There exists an ε, an automorphic representation π′ of Gε corresponding to π, and an

automorphic form ϕ in the space of π′ such that the integral∫
ϕ(t)Ω−1(t)dt, t ∈ T (FA)/T (F )Z(FA),

is non-zero.

(2) The function L(s,Π⊗ Ω−1) is not zero at the point 1/2.

Waldspurger proves that (1) implies (2) ([Wal85]). But he does not completely prove that

(2) implies (1). We propose to prove this implication. For this, we will prove a ”relative

trace formula.”

1.3. Let ω′ be the lifting of ω to E, such that ω′(a) = ω(aaσ). We choose a system of

representatives of the classes F×/N0; for each ε in this system of representatives, we fix a

smooth function fε on the group G(EA), transforming by the inverse of the character ω′

under the center and with compact support modulo the center; we assume the function is

zero for almost all ε. The function fε defines an operator in the space of cuspidal forms

transforming by the character ω′ of the center. This operator is represented by a kernel

which we denote Kε. We consider the expression:∑
ε

∫∫
Kε

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣ , g
]
Ω−1(a)daηω(det g)dg,

a ∈ E×
A/E

×, g ∈ Gε(F )Z(FA)\Gε(FA). (1.3.1)

On the other hand, for each ε we fix a smooth function f ′ε on the group Gε(FA), transforming

by the inverse of the character ω under the center and with compact support modulo the

center; we assume the function is zero for almost all ε. The function defines an operator

in the subspace of automorphic forms generated by cuspidal automorphic representations

(i.e., of infinite dimension if Gε is not split) which have ω as central character and are not

dihedral for E. We denote by K ′
ε the corresponding kernel. We also denote Ω′ the character

Ω−1ω′. In other words, Ω′ is the transform of Ω by σ. We consider the following expression:∑
ε

∫∫
K ′

ε[t1, t2]Ω(t1)Ω
′(t2)dt1dt2, t1 ∈ T (FA)/T (F )Z(FA). (1.3.2)

Then given a family of functions fε, there exists a family of functions f ′ε, zero for almost all

ε, such that expression (1.3.1) equals expression (1.3.2).

The novelty of the formula compared to previous cases ([JL85], [Jac86]) is the presence, at

least in principle, of infinitely many terms on both sides of the formula, each term involving

different groups. From another point of view, the formula is somewhat intermediate between
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that of [JL85] and [Jac86]. It relies on an identification of the disjoint union of double classes

A(E)\G(E)/Gε(F ) with the disjoint union of double classes T (F )\Gε(F )/T (F ).

The announced implication follows immediately from formula §7. In principle, one could

also prove Waldspurger’s arithmetic results given in [Wal85]. However, one should consider

the formula itself as the main object of study. Indeed, we hope that it is the precursor of

much more general formulas.

In §2, we study the properties of the above double classes. In §3 we study local orbital

integrals. In §4 we calculate those of Hecke functions. In §5 we study the integral of the

Eisenstein kernel and §6 that of the geometric kernel. Finally, we prove the formula in §7.
In fact, we only prove the formula in the particular case where all functions fε except one

are zero.

2. Doubles classes

In this section we keep the notations from §1 except that F is now an arbitrary field of

characteristic different from 2.

2.1. We choose a non-zero ε in F and study the space of double classes T (F )\Gε(F )/T (F ).

For g in the group Gε(F ) we set Xε(g) = bbσε(aaσ)−1 if

g =

∣∣∣∣∣ a bε

bσ aσ

∣∣∣∣∣ .
It is clear that the function thus defined is constant on the double classes of the group T (F )

in the group Gε(F ). We will say that g (or its double class) is regular if Xε(g) is neither zero

nor infinite, singular in the contrary case. If g and g′ are in Gε(F ) and Gε′(F ) respectively

and Xε(g) = Xε′(g
′) then ε = ε′ and the elements g and g′ are in the same double class of

the group T (F ). If g is regular in Gε(F ) then the relation tgt′−1 = g, where t and t′ are in

T (F ), implies that t and t′ are equal and in the center Z(F ). On the other hand, there are

only two singular double classes, those of e and of the element

h =

∣∣∣∣∣0 ε

1 0

∣∣∣∣∣ .
We still consider the relation tgt′−1 = g where t and t′ are in T (F ), but we now take g

singular. If g is e then the relation implies t′ = t. If g = h, we note that h normalizes T

and the relation implies t = gt′g−1. Finally, Xε(g) is never equal to 1 and takes, as ε and g

vary, all values in the set F − 1, augmented by a point at infinity. The verification of these

assertions is elementary and left to the reader.

2.2. Let A be the subgroup of diagonal matrices in the group G = GL(2). We propose to

study the space of double classes A(E)\G(E)/Gε(F ). For this, we introduce the group P

of upper triangular matrices and first study the space P (E)\G(E)/Gε(F ) of double classes

of the groups P (E) and Gε(F ).
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LEMMA. If ε is not a norm then there is only one double class of the groups P (E) and

Gε(F ). If ε is a norm let m be a matrix whose second row (r, s) satisfies εrrσ − ssσ = 0.

Then there are two double classes of the groups P (E) and Gε(F ), that of e and that of m.

Proof. Let g be an element of G(E) whose second row is (c, d). We first assume that

ccσε − ddσ is not zero, which is always the case if ε is not a norm. Then there exists an

element h of Gε(F ) whose second row is (c, d). The products of the row vector (0, 1) by h

and g are the same. Therefore the matrix p = gh−1 fixes the vector (0, 1); consequently, it

is in P and g = ph. If ε is not a norm, the assertion of the lemma is thus proven. We now

suppose that ccσε− ddσ is zero and ε is a norm. Then rs−1 and cd−1 have the same norm.

Therefore there exist a and z in E such that c = azr and d = aσzs. We define

t =

∣∣∣∣∣a 0

0 aσ

∣∣∣∣∣ , h = m

∣∣∣∣∣z 0

0 z

∣∣∣∣∣ t, q = gh−1

Then h and g have the same second line. It follows that q is in P and finally g = pmt with

p = q

∣∣∣∣∣z 0

0 z

∣∣∣∣∣ .
Since p is in P , the lemma is completely proven. □

2.3. We now introduce the involution i whose fixator is Gε:

gi =

∣∣∣∣∣0 ε

1 0

∣∣∣∣∣ gσ
∣∣∣∣∣0 ε

1 0

∣∣∣∣∣
−1

,

where, as above, σ denotes conjugation in E. We set H(g) = gg−i. Then the function H

is constant on the right classes of the group Gε(F ); moreover H(g) = H(g′) implies that g

and g′ are in the same class of Gε(F ). On the other hand, the function that associates the

scalar rq/ps to the matrix h with elements p, q, r, s is constant on the double classes of the

group A(E). Finally, for diagonal a we have: H(ag) = aH(g)a−i and a−i is also diagonal.

We are thus led to set

Yε(g) = rq/ps

where p, q, r, s are the elements of the matrix H(g). The function thus defined is constant

on the double classes of the groups Gε(F ). If g is in P (E)mGε(F ) then s = 0 and Yε(g) is

infinite. If g is in P (E)Gε(F ) then g is in the double class of an element of the form

n(x) =

∣∣∣∣∣1 x

0 1

∣∣∣∣∣ (2.3.1)

and we have:

Yε(g) = −ε−1xxσ(1− ε−1xxσ)−1. (2.3.2)

This shows that Yε takes its values in the set F augmented by a point at infinity. We will

say that g or its double class is regular if Yε(g) is neither zero nor infinite.
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LEMMA. Let g and g′ be regular for Gε(F ) and Gε′(F ) respectively. If Yε(g) = Yε′(g
′)

then ε = ε′ and the elements g and g′ are in the same double class of the groups A(E) and

Gε(F ).

Proof. We can assume g = n(x) and g′ = n(x′). Formula (2.3.2) above shows that ε−1xxσ =

ε′−1x′x′σ. It follows that x and x′ have the same norm; consequently, there exists a such

that x = x′aaσ−1. We therefore have:

g =

∣∣∣∣∣a 0

0 aσ

∣∣∣∣∣ g′
∣∣∣∣∣a 0

0 aσ

∣∣∣∣∣
−1

.

Hence the conclusion. □

Note that Yε(g) cannot equal 1 and takes, as ε and g vary, all values in the set F − 1

augmented by a point at infinity.

LEMMA 2.5. (i) If ε is not a norm, the only singular double class is that of e.

(ii) If ε is the norm of an element u, we set

m =

∣∣∣∣∣1 u

1 −u

∣∣∣∣∣ .
Then there are four singular classes, those of e, n(u), m and n(1)m.

Proof. If ε is not a norm, it follows from the previous considerations that Yε does not take

the infinite value. The only singular class is therefore that of e. If ε is the norm of u then

Yε(n(x)) is 0 if x = 0 and infinite if the norm of x is ε. As in the proof of lemma (2.4) the

double class of n(x) depends only on the norm of x. We thus see that P (E)Gε(F ) contains

two singular double classes, that of e and that of n(u). The other singular double classes are

contained in P (E)mGε(F ) and therefore have representatives of the form g(x) = n(x)m.

The elements g(x) and g(y) are in the same double class if and only if there exists a in

A(E) such that g(x) and ag(y) are in the same right classes of the group Gε(F ), or, which

amounts to the same thing, H(g(x)) = H(ag(y)). Denoting by a1 and a2 the diagonal

elements of matrix a, we see that this last relation is equivalent to:

a1 = aσ1 , a2 = aσ2 ,

a1a
σ−1
2 Try = Trx.

The first two relations imply that a1 and a2 are contained in F . Then we see that there

exists a satisfying the last relation if and only if Trx and Try are either both zero or both

non-zero. We conclude from this that there are two classes contained in P (E)mGε(F ), that

of m and that of n(1)m. □
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2.6. Given g in G(E), we now study the set Z(g) formed by the pairs (a, h) with a in A(E)

and h in Gε(F ) such that agh−1 = g.

LEMMA. (i) If g is regular or if g = n(u) or if g = mn(u) then Z(g) is the set of pairs

(z, z) with z in Z(F ).

(ii) If g = e then Z(g) is the set of pairs (t, t) with t arbitrary in T (F ).

(iii) If g = m then Z(g) is the set of pairs (a, g−1ag) with a arbitrary in A(F ).

Proof. Let p, q, r, s be the elements of matrix H(g). If (a, h) is in Z(g) then H(ag) = H(g)

and this last relation can be written, denoting by a1 and a2 the diagonal elements of matrix

a:

pa1a
−σ
2 = p, qa1a

−σ
1 = q, ra2a

−σ
2 = r, a2a

−σ
1 = s.

In case (i) the elements r and q are different from 0 and at least one of the elements p

and s is different from 0. It follows immediately that a is in Z(F ) and h = a. In case (ii)

we have p = s = 1 and q = r = 0. We deduce that a is in T and h = a. In case (iii) we

have p = s = 0 and r and q are non-zero. We deduce that a is in A(F ). Conversely if a is

in A(F ), then according to the previous calculation H(ag) = H(g) therefore ag = gh with

h in Gε(F ) and h = g−1ag.

The assertions of the lemma are thus proven. □

3. Orbit integrals

We keep the notations from the previous sections but now assume that F is a local field,

E a quadratic extension, η the quadratic character of F attached to E. The set of classes

of N0 in the multiplicative group of F is reduced to two elements. We denote by Ω a

multiplicative character of E and by ω its restriction to F , by ω′ the lifting of ω to E and

by Ω′ the character Ω−1ω′.

3.1. We now choose a non-zero ε in F and consider a function f on the group Gε, smooth,

transforming by the inverse of character ω under the center and with compact support

modulo the center. We define a function H(x) = H(x : f) by the formula:

H(x) = Ω(u)

∫∫
f

[
t1

∣∣∣∣∣ 1 uε

uσ 1

∣∣∣∣∣ t2
]
Ω(t1)Ω

′(t2)dt1dt2,

if x ̸= 1 and x = uuσε for at least one u;

H(x) = 0, otherwise. (3.1.1)

Each integral is over the compact set T (F )/Z(F ). A formal calculation shows that the

product of the double integral by Ω(u) does not change if we replace u by uaa−σ; it follows

that the right-hand side depends only on the norm of u, which justifies the notation. Note

that H(1) = 0 by definition. We propose to study the properties of function H.

PROPOSITION. (i) The function H is zero in a neighborhood of point 1.
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(ii) It is smooth at every point of F different from 0.

(iii) There exists a function G defined in a neighborhood of 0 of F and smooth, such that

H(x) = G(x−1), for x in εN of sufficiently large absolute value. In particular:

G(0) =

∫
f

[
t 0 ε

1 0

]
Ω(t)dt · vol(T (F )/Z(F ))

(iv) There exists a function I defined and smooth in a neighborhood of 0 of E, such that

H(x) = Ω(u)I(u) if x = εuuσ and the absolute value of x is sufficiently small.

(v) If Ω is the lift to E of a character λ of F then there exists a function J defined in a

neighborhood of zero of F , such that for x in εN0 of sufficiently small absolute value we

have: H(x) = λ(x)J(x). In particular:

J(0) =

∫
f(t)Ω(t)dt · vol(T (F )/Z(F ))λ−1(ε).

(vi) If H is a function satisfying properties (i) to (iv) then H = H(f) for an appropriate

function f .

Proof. The first assertion is evident if 1 is not in εN0, since H is then zero on the neighbor-

hood N0 of 1. We now suppose that 1 is in εN0, we have H(1) = 0 by definition. If x is in

εN and H(x) is non-zero then the matrix in the double integral must be in a fixed compact

of the group Gε(F )/Z(F ), thus in fact in a compact of the group Gε(F ). Its determinant

1− x must therefore be in a compact set of F ∗, which proves the first assertion.

The second assertion is evident. To prove the third assertion, we write, after a change of

variables:

H(x) =

∫∫
f

[
t1 u−1 ε

1 uσ−1

]
t2Ω(t1)Ω

′(t2)dt1dt2 (3.1.2)

In the p-adic case if the absolute value of u is large enough this equals:∫∫
fi

[
t1 0 ε

1 0

]
t2ω(t1)Ω

′(t2)dt1dt2

A change of variables gives the result in the required form. Hence the conclusion. In the real

case (3.1.2) depends only on the norm of u and we conclude similarly using the following

lemma:

LEMMA 3.1.3. Let T be a smooth function defined in a neighborhood of 0 in E. We

assume that T (u) depends only on the norm of u. Then there exists a smooth function S in

a neighborhood of 0 of F , such that T (u) = S(uuσ), if the absolute value of u is sufficiently

small.

Assertion (iv) is evident. To prove assertion (v) we proceed as for assertion (iii). For the

value of J at point zero we obtain the integral:∫∫
f(t1t2)Ω(t1)Ω

′(t2)dt1dt2
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A change of variables gives the result in the required form. We leave to the reader the task

of proving the last assertion. □

3.2. We now consider an element ε of F , a function f on G(E), transforming by the inverse

of the character ω′ under the center, smooth and with compact support modulo the center.

We propose to examine the properties of the function U(x) = U(x : f) = U(x : f : ε)

defined by

U(x) = Ω(u)

∫∫
f

[
a 0 1 u

0 1 0 1

]
gΩ(a)ηω(det g)dadg

a ∈ E×, g ∈ Gε(F )/Z(F ),

if x = −ε−1uuσ(1− ε−1uuσ)−1 for at least one u;

U(x) = 0 otherwise. (3.2.1)

A formal calculation shows as above that the product of the double integral by Ω(u) depends

only on the norm of u, which justifies the notation. On the other hand, we note that

U(1) = 0, by definition.

3.3. To study the properties of functions U we introduce the set X formed by matrices g

in G(E) such that ggi = 1, where i denotes the involution that fixes Gε. (Cf. (2.3)). We

denote P the application from G(E) to X defined by P (g) = gg−i.

LEMMA 3.3.1. The application P is surjective.

Proof. Let x be an element of X. For h in G(E) we set y(h) = h+ xhi. We have xy(h)i =

y(h) hence x = P (y(h)) if y(h) is invertible. We will show that y(h) is invertible for at

least one scalar matrix h, which will prove the proposition. If h is the scalar matrix with

element a and y(h) is not invertible then −aa−σ is an eigenvalue of x. Since every element

of norm 1 has this form and x has at most two eigenvalues, there exists at least one h such

that y(h) is invertible. Hence the lemma.

From the lemma we deduce that X is a closed subvariety of G(E) and that P defines a

diffeomorphism from G(E)/Gε(F ) onto X. Let µ be a character of E× that extends η. We

set:

f1(g) = f(g)µΩ(det g) (3.3.2)

Then the integral that defines U can be written:

U(x) = Ω(u)

∫∫
f1

[
a 0 1 u

0 1 0 1

]
gµ−1(a)dadg

a ∈ EX , g ∈ Gε(F )/Z(F ). (3.3.3)

The integral ∫
f1(hg)dg
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converges; its value depends only on the class of h modulo Gε(F ), or, which amounts to the

same thing, on P (h). There exists therefore a function F1 on X, smooth and with compact

support, such that F1(P (h)) equals the integral above. The function f1 transforms by the

character a → µΩ(aa−σ) of the center. On the other hand, writing a for the scalar matrix

having a for diagonal elements, we have: P (ah) = aP (h)a−σ. It follows that F1 has the

following invariance property: F1(uy) = F1(y)µΩ(u) for all y in X and all u in E of norm 1.

We extend it to a function still denoted F1 on G(E) having the same invariance property,

smooth and with compact support. In terms of F1 the integral that defines U(x) is written:

U(x) = Ω(u)

∫
F1

[
a(1− ε−1uuσ) aa−σu

−ε−1uσ a−σ

]
µ−1(a)da (3.3.4)

If x is finite, then 1 − ε−1uuσ is non-zero and the integrand has compact support; the

original integral therefore converges for all finite x, including x = 0.

We now examine the behavior of the function U(x). We set

s(u) = −ε−1uuσ(1− ε−1uuσ)−1 (3.3.5)

We first examine the behavior near 1. If ε is not a norm then U is zero in the neighborhood

N0 of 1. We now suppose that ε is a norm. Let x be an element of F ; if U(x) is not zero

then x = s(u) and the integral (3.3.4) above is not zero. This implies that the matrix in the

integral is in a compact set and that the absolute value of u is bounded above. It follows

that that of 1− x is bounded below. Therefore U is zero in the neighborhood of point 1 in

all cases.

We now examine the behavior near an arbitrary point of F× − 1. It is clear that the

integral defines a smooth function with compact support of u ∈ E; we conclude that U is

smooth at every point of F× − 1. Combining with the previous remarks, we conclude that

U is smooth at every point of F×. □

3.4. We now examine the behavior near 0. The function U(x) is 0 unless x = s(u), for at

least one u. If x is small enough then u is as small as we want and 1− ε−1uuσ as close as

we want to 1, in particular is a norm; then x is of the form −ε−1vvσ. Conversely if x is of

this form and small enough, then 1 − x is a norm and x(1 − x)−1 is therefore of the form

−ε−1uuσ. We then have x = s(u).

PROPOSITION. (i) If x is near 0 then U(x) = 0 unless x is in −ε−1N0.

(ii) There exists a smooth function I(v) defined in a neighborhood of 0 of E, such that, for

v sufficiently close to 0, we have U(−ε−1vvσ) = Ω(v)I(v).

(iii) We suppose that Ω is the lift of a character λ of F ; then there exists a smooth function

J defined near 0 on F such that U(x) = λ(x)J(x) for x in −ε−1N0 and small enough.

Moreover:

J(0) =

∫∫
f

[
a 0

0 1

]
gΩ(a)daηω(det g)dgλ(−ε)
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Proof. According to the remarks preceding the proposition, if x is close enough to 0, then

x is of the form s(u) if and only if x is in −ε−1N0. The first assertion is therefore evident.

Still for x sufficiently close to 0, we can write (1− x)−1 in the form z(x)z(x)σ, where z(x)

is an analytic function, defined on a neighborhood of 0 of F , with values in E. Then if x is

small enough and of the form −ε−1vvσ we can also write:

x = s(u) with u = vz(−ε−1vvσ)

Since U(x) = Ω(u)I1(u), where I1 is the function defined by the integral (3.3.4) in a neigh-

borhood of 0, we obtain the second assertion with:

I(v) = I1(vz(−ε−1vvσ)Ω(z(−ε−1vvσ)) (3.4.1)

Under the hypotheses of the third part of the lemma, Ω(v) depends only on the norm of

v. The same is therefore true of I(v). In the p-adic case I is constant in a neighborhood

of 0 therefore certainly a smooth function of the norm of u. The same conclusion remains

true in the real case according to lemma (3.1.3). Finally J(0), I(0) and I1(0) are equal and

given by the integral of the third part of the proposition. □

3.5. We now examine the behavior of U near infinity. For this we use without proof the

following lemma:

LEMMA 3.5.1. Let ϕ be a Schwartz-Bruhat function of two variables. For all non-zero x

in F, we set:

I(x) =

∫
ϕ(ax, a−1)η(a)d×a

Then there exist two Schwartz-Bruhat functions ϕ1 and ϕ2 such that for every non-zero x

in F :

I(x) = ϕ1(x) + η(x)ϕ2(x)

Moreover we have:

ϕ1(0) =

∫
ϕ(0, a)η(a)d×a, ϕ2(0) =

∫
ϕ(a, 0)η(a)d×a

The last two integrals are divergent; the last one for example is the value at point 0 of the

analytic continuation of the following integral, which converges for Res strictly positive:∫
ϕ(a, 0)|a|sd×a

After stating the lemma we return to studying the function U . If x = s(u) we have

ε−1uσu = (1 − x−1)−1. If the absolute value of x is large enough the right-hand side is a

norm; we conclude that if ε is not a norm then when the absolute value of x is large enough

x is not of the form s(u) and U(x) is zero. We now suppose that ε is indeed a norm. Then if

the absolute value of x is large enough the right-hand member is a norm, thus equal to the
10



left-hand member for an appropriate u; then x = s(u). On the other hand, we can regard

F1 as a Schwartz-Bruhat function of 4 variables. We consider the integral:

L(y, u) = Ω(u)

∫
F1

[
ay aa−σu

−ε−1uσ a−σ

]
µ−1(a)da (3.5.2)

The first variable y is in a neighborhood V of 0 of F but non-zero and the second is in a

subset V ′ of E, reciprocal image via the norm of a neighborhood of ε. It is clear that the

integral converges. To calculate it we can integrate first on F× then on the compact set

E×/F×. We can apply the lemma above (or rather a version of the lemma with parameters)

to the interior integral. It follows that there exist two smooth functions L1 and L2 on V ×V ′

such that

L(y, u) = L1(y, u) + η(y)L2(y, u) (3.5.3)

Moreover we have:

L1(0, u) = Ω(u)

∫
F1

[
0 a1−σu

−ε−1uσ a−σ

]
µ−1(a)da (3.5.4)

L2(0, u) = Ω(u)

∫
F1

[
a a1−σu

−ε−1uσ 0

]
µ−1(a)da (3.5.5)

The last two integrals are divergent; the second for example is the value at 0 of the analytic

continuation of the following integral, which converges for Res strictly positive:

Ω(u)

∫
F1

[
a a1−σu

−ε−1uσ 0

]
µ−1(a)|a|sda

We know that F1 has an invariance property: F1(hv) = F1(h)µΩ(v), for all v of norm 1. It

follows that L has the following property: L(y, uv) = L(y, u) for v of norm 1. By integrating

the identity (3.4.3) over the group of elements of norm 1, we see that we can assume that

L1 and L2 have the same invariance property as L. We can therefore write Li as a function

of the pair (y, t) with t = −εuuσ. Finally if the norm of x is large enough we can write

x = s(u). Then taking y = 1 − ε−1uuσ and t = −ε−1uuσ, we get U(x) = L(y, t). Since

t = 1/x−1−1 and y = −x−1/x−1−1 we can write Li(y, t) =Mi(x
−1), whereMi is a smooth

function defined in a neighborhood of 0 of F . If moreover the absolute value of x is large

enough then 1−x−1 is a norm and η(y) = η(−x). Taking u of norm ε, we obtain an infinite

value of x and the relation Mi(0) = Li(0, u). We thus arrive at the following proposition:

PROPOSITION. (i) If ε is not a norm then U(x) = 0 if the absolute value of x is large

enough.

(ii) Suppose that ε is a norm. Then there exist two smooth functions Mi, i = 1, 2, defined

in a neighborhood of 0 of F , such that, for x large enough, we have:

U(x) =M1(x
−1) + η(−x)M2(x

−1)
11



(iii) Under the hypotheses of (ii) if ε is the norm of v then:

M1(0) = Ω(u)

∫
F1

∣∣∣∣∣ 0 a1−σv

−ε−1vσ a−σ

∣∣∣∣∣µ−1(a)d×a

M2(0) = Ω(u)

∫
F1

∣∣∣∣∣ a a1−σv

−ε−1vσ 0

∣∣∣∣∣µ−1(a)d×a

The last two integrals are divergent and are defined as above by analytic continuation.

They can also be interpreted as orbital integrals (divergent) attached to singular orbits. For

this purpose we assume ε = 1 and v = 1. Then we have:

m =

∣∣∣∣∣1 1

1 −1

∣∣∣∣∣ , P (m) =

∣∣∣∣∣ 0 1

−1 0

∣∣∣∣∣ ,
P (n(1)) =

∣∣∣∣∣ 0 1

−1 1

∣∣∣∣∣ , P (mn(1)) =

∣∣∣∣∣−2 1

1 0

∣∣∣∣∣ (3.5.6)

By formal calculation we see that:

M1(0) =

∫∫
f

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣n(1)g
]
Ω(a)ηω(det g)d×adg,

M2(0) =

∫∫
f

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣n(1)mg
]
Ω(a)ηω(det g)d×adg (3.5.7)

3.6. Let ε be given in F , a function f on G(E), as above. We also give a system of

representatives {ε1, ε2} for the classes of N0 in the multiplicative group of F . We assume

ε1 is in N0. We write Gi for the group defined by εi.

PROPOSITION. Given f and ε, there exist functions f1 and f2 on G1 and G2 respectively

such that

U(x : f : ε) = H(x, fi) if x = εiuu
σ

The proposition is an immediate consequence of the characterization of orbital integrals

H and the properties of the function U .

4. Orbit integrals: unramified case

4.1. We return to the notations of §3; we now assume that F is a non-archimedean local

field and E is an unramified quadratic extension. We assume that the residual characteristic

is not 2. We also assume the characters ω and Ω are unramified. Let K = GL(2, RE), where

RE is the ring of integers of E. Similarly, let K ′ = GL(2, RF ). We denote by H(K) the

Hecke algebra of bi-invariant functions under K with compact support. Similarly, we denote

by H(K,ω′) the algebra of bi-invariant functions under K, transforming by the inverse of

character ω′ under the center and with compact support modulo the center. We define
12



similarly the algebras H(K ′) and H(K ′, ω) of functions on the group GL(2, F ). There exist

natural homomorphisms:

H(K) → H(K ′) (4.1.1)

and

H(K,ω′) → H(K,ω) (4.1.2)

The first can be defined in terms of the Satake transform. For f in H(K) we set:

f̂(X1, X2) =

∫
f

[∣∣∣∣∣1 u

0 1

∣∣∣∣∣
∣∣∣∣∣a 0

0 b

∣∣∣∣∣
]
|a|s1−1/2|b|s2+1/2da db du,

if Xi = qsiE .

The function f̂ is a polynomial; it is the Satake transform of f . We similarly define the

transform of a function f ′ of H(K ′). Then if f ′ is the image of f under the homomorphism

(4.1.1) we have:

f̂ ′(X1, X2) = f̂(X2
1 , X

2
2 )

To define the homomorphism (4.1.2) we write an element f of H(K,ω′) in the form:

f(g) =

∫
f0(ag)ω

′(a) da, a ∈ E×, (4.1.4)

with f0 in H(K). Let f ′0 be the image of f0 under the homomorphism (4.1.1). Then the

image f ′ of f under the homomorphism (4.1.2) is given by:

f ′(g) =

∫
f ′0(ag)ω(a) da, a ∈ F×. (4.1.5)

We are given a unit ε; thus it is a norm. We are also given a system of representatives

{ε1, ε2} for the classes of N0 in the multiplicative group of F . We assume that ε1 is a unit

thus a norm. We denote by G1 and G2 the groups defined by ε1 and ε2. The group G1

is isomorphic to the group G(F ) = GL(2, F ). In particular there exists an isomorphism

of G(F ) that transforms the group K ′ into the group K ∩ G1(F ): such an isomorphism

will be called privileged. We then take f in H(K,ω′); we denote by f ′ its image under

the homomorphism (4.1.2) and f1 the image of f ′ under a privileged isomorphism. Since

a privileged isomorphism is unique, up to composition with an inner automorphism of

GL(2, F ) defined by an element of K, the function f1 is well defined. We also denote by

f2 the zero function on the group G2(F ). Then we can specify proposition (3.5) as follows:

PROPOSITION: With the hypotheses and notations above, we have:

U(x : f : ε) = H(x : fi) if x = εiN(u)

The proof will occupy the remainder of §4.
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4.2. It is easy to see that we can reduce to the case where ε1 = 1 and ω = η. Then

ω′ = 1 and Ω is the unramified quadratic character of E. It will also be more convenient

to formulate the above equality in terms of functions belonging to H(K). Thus for such a

function f :

U(x : f) = Ω(y)

∫
f

[∣∣∣∣∣ab 0

0 b

∣∣∣∣∣
∣∣∣∣∣1 y

0 1

∣∣∣∣∣ g
]
Ω(a) da db dgif x = s(y) for a y;

= 0 otherwise. (4.2.1)

We can also write the above integral in the form:

U(x : f) = Ω(y)

∫
f

[∣∣∣∣∣a 0

0 b

∣∣∣∣∣
∣∣∣∣∣1 y

0 1

∣∣∣∣∣ g
]
Ω(a)Ω(b) da db dg,

if x = s(y). (4.2.2)

We then denote by f ′ the image of f in H(K ′), then f1 the image of f ′ under a privileged

isomorphism of G(F ) onto G1(F ). We write N(u) for the norm of u and we set

H(x : f1) = Ω(u)

∫∫
f

[
t1

∣∣∣∣∣ 1 u

uσ 1

∣∣∣∣∣ t2
]
Ω(t1)Ω(t2) dt1 dt2

if x = N(u);

= 0 if x is not a norm. (4.2.3)

We need to show that

U(x : f) = H(x : f1) if x is a norm;

U(x : f) = 0 if x is not a norm. (4.2.4)

By linearity, it is clear that it suffices to prove this assertion when f is the characteristic

function fm of the following set, where π denotes a uniformizer of E or F :

Km = K

∣∣∣∣∣πm 0

0 1

∣∣∣∣∣K
Still by linearity, it suffices to prove this assertion for the function

gm = fm + fm−1 + · · ·+ f1 + f0

We denote by U(x : m) the orbital integral corresponding to gm. We will first calculate

U(x : m).

4.3. Let Fm be the function defined by:

Fm(y) =

∫
gm

[∣∣∣∣∣a 0

0 b

∣∣∣∣∣
∣∣∣∣∣1 y

0 1

∣∣∣∣∣
]
Ω(a)Ω(b) da db (4.3.1)

We will calculate the function Fm then calculate the integral U(x : m) in terms of Fm.
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LEMMA 4.3.2. Let Φ be the characteristic function of RE, π a uniformizer. Then:

Fm(y) = (−1)mΦ(πmy)

Proof. We first calculate the function:

Hm(y) =

∫
fm

[∣∣∣∣∣a 0

0 b

∣∣∣∣∣
∣∣∣∣∣1 y

0 1

∣∣∣∣∣
]
Ω(a)Ω(b) da db (4.3.3)

This can be written as:

Hm(y) =
∑

(−1)j+kfm

[∣∣∣∣∣πj yπj

0 πk

∣∣∣∣∣
]

Since j + k equals m if the matrix above is in Km, the sum can also be written as:

Hm(y) = (−1)m
∑

fm

[∣∣∣∣∣πj yπj

0 πm−j

∣∣∣∣∣
]

where the sum is over all j such that:

j ≥ 0, m− j ≥ 0, j ≥ −v(y), Inf[j,m− j, j + v(y)] = 0

If m = 0 the sum reduces to the single term j = 0 and H0 = Φ. We now assume m > 0. If

v(y) ≥ 0 the sum reduces to the terms j = 0 and j = m; it follows that Hm(y) = 2(−1)m.

If −m < v(y) < 0 then the sum reduces to the terms j = −v(y) and j = m; it follows

that Hm(y) = 2(−1)m. If v(y) = −m the sum reduces to the term j = m = −v(y); then
Hm(y) = (−1)m. Finally if v(y) < −m the sum is empty and Hm(y) is zero. Therefore:

Hm(y) = (−1)m[Φ(yπm) + Φ(yπm−1) if m ≥ 1;

H0 = Φ

By writing that Fm is the sum of Hj for 0 ≤ j ≤ m we find the desired result. □

4.4. The relation between U(x : m) and the function Fm is the following:

LEMMA 4.4.1.

U(x : m) = 2Ω(y)(1− q−1)−1q−2Fm(y) + Ω(y)(1− q−1)−1

∫
Fm[(y + u)(1−N(u))−1]

+ Ω(y)(1− q−1)−1

∫
Fm[(y + u)(1−N(u))−1]

× [1−N(u)]−2
F Ω(1−N(u))du,

if x = s(y)(= −N(y)(1−N(y))−1),

where du denotes the Tamagawa measure and the integral is over the units of E.
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Proof. We use the following integration formula on the group G1(F ):∫
f(g)dg = (1− q−1)−1

∫
f

[
t1

∣∣∣∣∣ 1 u

uσ 1

∣∣∣∣∣ t2
]
dt1dt2[1−N(u)]−2

F du,

where dt denotes the Tamagawa measure on the torus T and du the Tamagawa measure on

the additive group of E. There exists an analogous formula for functions on G1(F ) that are

invariant under the center Z(F ). We will apply it to the restriction to G1(F ) of a function

f on G(E) that is right-invariant under K and invariant under the center Z(E) of G(E).

Then the integral in t2 disappears. To evaluate the integral in u, we decompose it into three

integrals corresponding to the three regions: |u| < 1, |u| = 1, |u| > 1. Moreover, in the

integral for |u| > 1, we change u to u−1. We obtain the product of the factor (1 − q−1)−1

and the following sum:∫ [
t

∣∣∣∣∣1 u

uσ 1

∣∣∣∣∣
]
dt du+

∫
f

[
t

∣∣∣∣∣u−1 0

0 u−σ

∣∣∣∣∣
∣∣∣∣∣u 1

1 uσ

∣∣∣∣∣
]
dt du

+

∫
f

[
t

∣∣∣∣∣1− uuσ u

0 1

∣∣∣∣∣
∣∣∣∣∣ 1 0

uσ 1

∣∣∣∣∣
]
dt |1−N(u)|−2

F du.

The first two integrals are for |u| < 1, the last one for |u| = 1. Taking into account the

right invariance under K, this reduces to:∫
f(g) dg = q−2(1− q−1)−12f(e)

+ (1− q−1)−1

∫
f

[
t

∣∣∣∣∣1−N(u) u

0 1

∣∣∣∣∣
]
dt |1−N(u)|−2du,

We now apply this formula to calculate U(x : m). If x = s(y), we obtain:

U(x : m) = 2Ω(y)q−2(1− q−1)−1Fm(y)+

Ω(y)(1− q−1)−1

∫ [
gm

∣∣∣∣∣a 0

0 b

∣∣∣∣∣
∣∣∣∣∣1−N(u) y + u

0 1

∣∣∣∣∣
]
|1−N(u)|−2

F

× Ω(ab) da db du.

A simple change of variables finally gives the desired result. □

4.5. We must now evaluate the integral from lemma (4.4.1), taking into account the value

of the function Fm given in lemma (4.3.2). In this section, we examine the case where the

absolute value of y is different from 1. If it is less than 1, then we immediately obtain:

Ω(y)(1− q−1)−1(−1)m ×
{
2q−2 +

∫
Φ(πm(1−N(u))−1)Ω(1−N(u))|1−N(u)|−2 du

}
.
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In the integral, we can take z = N(u) as a variable. Then dumust be replaced by (1+q−1) dz.

Therefore, we have:

Ω(y)(1− q−1)−1(−1)m ×
{
2q−2 + (1 + q−1)

∫
Φ(πm(1− z)−1)Ω(1− z)|1− z|−2 dz

}
.

The integral is taken over the set of z with absolute value 1. It can be written as the

difference between an integral over the set of z with absolute value at most 1 and an

integral over the set of z with absolute value strictly less than 1. In this latter integral,

1−z is a unit and the integral equals q−1. However, in the first integral, we can change z to

z + 1 and then evaluate the integral as a geometric series. Finally, we obtain the following

result:

LEMMA 4.5.1. If |y| < 1 and x = s(y), we have:

U(x : m) = Ω(y)qm.

We now move to the case where the absolute value of y is strictly greater than 1. We

first obtain:

(−1)m(1−q−1)−1Ω(y)×
{
2q−2Φ(yπm)+

∫
Φ[yπm(1−N(u))−1]|1−N(u)|−2Ω(1−N(u)) du

}
.

Again, in the integral we can take z = N(u) and replace du by (1 + q−1) dz. We obtain an

integral over the set of z with absolute value 1 which we treat as above. Finally, we obtain:

LEMMA 4.5.2. If w|y| > 1 and x = s(y) then:

U(x : m) = qm+v(y), if 1 < |y| ≤ |π−m|,

U(x : m) = 0 if |π−m| < |y|

4.6. We now move to the case where y is of absolute value 1. We will prove the following

result:

LEMMA 4.6.1. Suppose x = s(y) with y of absolute value 1.

(i) If N(y)− 1 is also of absolute value 1 then:

U(x : m) = qm

(ii) If N(y)− 1 is not of absolute value 1 we set z = N(y)− 1. Then:

U(x : m) = qm[(−1)v(z) + 1]/2.

We return again to the integral of lemma 4.4.1. Since y is a unit we can change u to uy.

On the other hand, the functions that we consider are invariant under a homothety of unit

ratio. We can see that we can write:

U(x : m) = Ω(y)(−1)m(1− q−1)−1 ×
{
2q−2 +

∫
Φ[(1 + u)A−1πm]Ω(A)|A|−2

F du
}

with A = N(y)−1 −N(u).
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We now choose a system of representatives for the classes of 1+PE in the unit group of E.

It will be convenient to take the q2−1 roots of unity in E for the system of representatives.

Then we can set u = t(1+v), where t runs through this set of representatives and v through

the set PE . The integral above becomes:

U(x : m) = (−1)m(1− q−1)−1 ×
{
2q−2 +

∑
t

∫
Φ[(1 + t+ tv)B−1πm]Ω(B)|B|−2

F dv
}
,

with B = N(y)−1N(t)−1 − 1−Q(v), Q(v) = Tr(v) +N(v).

In the sum over t we will distinguish the t for which N(y)N(t) is not congruent to 1

modulo PF . There are q2 − q − 2 such t. Moreover for such a t, B is a unit, 1 + t + tv an

integer and the integral above is independent of t with value q−2. The contribution of these

t is therefore 1− q−1 − 2q−2. Adding this to the first term in the expression above, we see

that:

U(x : m) = (−1)m ×
{
1 + (1− q−1)−1

∑
t

∫
Φ[(1 + t+ tv)B−1πm]Ω(B)|B|−2

F dv
}
,

with B = N(y)−1N(t)−1 − 1 −Q(v), Q(v) = Tr(v) +N(v), where the sum now runs over

the set X(y) formed by the t such that N(y)N(t) is congruent to 1 modulo PF . Note that

if N(y) is itself congruent to 1 modulo PF then t = −1 is in X(y) because N(−1) = 1. If

on the contrary N(y) is not congruent to 1 modulo PF then −1 is not in X(y).

We first assume that N(y) is not congruent to 1 mod PF . Then 1+ t is a unit since −1 is

not in X(y). The same is true for 1+ t+ tv which therefore ”disappears” from the integral.

We can then take Q(v) as a variable, that is to say use the integration formula:

∫
f [Q(v)]dv = q−1

∫
f [w]dw, v ∈ PE , w ∈ PF .

Therefore we have:

U(x : m) = (−1)m ×
{
1 + (1− q−1)−1q−1

∑
t

∫
Φ[B−1πm]Ω(B)|B|−2

F dw
}
,

with B = N(yt)−1 − 1− w, w ∈ PF .

Since N(yt)−1 − 1 is in PF , we can make it disappear from the integral by a translation

on w. The integral thus has a value independent of t which is moreover easy to calculate.

As for the number of elements of X(y), it is the number of elements in the finite field with

q2 elements having norm 1 in the field with q elements. This is therefore q+1. In total, we

find for U(x : m) the value announced in (4.6.1) (i).
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We now assume N(y) congruent to 1 mod P . Then −1 is in the set X(y). In the sum

over t we therefore separate the terms with t ̸= −1 from the term t = −1. We thus obtain:

U(x : m) = (−1)m

×
{
1 + (1− q−1)−1

∑
t

∫
Φ[(1 + t+ tv)B−1πm]Ω(B)|B|−2

F dv

+ (1− q−1)−1

∫
Φ[vC−1πm]Ω(C)|C|−2

F dv
}

with B = N(y)−1N(t)−1 − 1−Q(v), Q(v) = Tr(v) +N(v), C = N(y)−1 − 1−Q(v). The

first expression can be calculated as above, except that there are only q terms in the sum.

We find that its value is

(q + 1)−1[(−q)− (−q)m+1]

To calculate the second integral we use the following lemma:

LEMMA 4.6.2. Let z be an element of F of absolute value less than 1. Then we have:∫
Φ[vD−1πm]Ω(D)|D|−2dv = (1−q−1)[−(1 + q)−1+qm(−1)m((q + 1)−1+2−1((−1)v(z)−1))],

where we have set D = z −Q(v) and v ∈ PE.

Applying the lemma to z = N(y)−1 − 1 and adding the result to the value of the first

integral, we see that U(x : m) indeed has the given value; note that z and N(y) − 1 have

the same valuation since N(y) is a unit.

4.7. We will now prove lemma (4.6.2) which will complete the proof of lemma (4.6.1). We

set P = PF , P
′ = PE , Gi = 1 + P i and G′

i = 1 + P ′i. We denote Tr the trace and N the

norm. Then Tr(P ′) = P and N(G′
i) = Gi. Let K be the kernel of N in G′

1. We will use

without proof the following result:

LEMMA 4.7.1. The index of K ∩G′
j in K is qj−1.

To calculate the integral of lemma 4.6.2 we use the following integration formula:∫
P ′
F (u+ 1)du = q−1

∫
P
dv

∫
K
F [(1 + u0)k]dk,

where in the inner integral we choose a u0 such that N(1 + u0) = 1+ v and dk denotes the

Haar measure of volume 1 on K. Noting that Q(u) = v if N(1 + u) = 1 + v, we see that

the integral of lemma 4.6.2 can therefore be written as:

q−1

∫
P
Ω(z − v)|z − v|−2dv

∫
Φ[u(z − v)−1πm]dk,

where we write 1 + u = (1 + u0)k with N(1 + u0) = 1 + v. We write the outer integral as

the sum of an integral over the set of v such that 1 ≤ |(z− v)π−m| and an integral over the
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v such that |(z − v)π−m| < 1:

q−1

∫
Ω(z − v)|z − v|−2dv

∫
Φ[u(z − v)−1πm]dk, |z − v| ≥ q−m;

q−1

∫
Ω(z − v)|z − v|−2dv

∫
Φ[u(z − v)−1πm]dk, |z − v| < q−m. (4.7.2)

In the first integral, we note that in the domain of integration the function Φ is evaluated

on an integer; the inner integral is therefore independent of v with a value equal to 1. By

changing v to v + z, we finally obtain:

q−1

∫
Ω(v)|v|−2dv, q−m ≤ |v| < 1. (4.7.3)

The value of this integral is:

(1− q−1)(q + 1)−1[−1 + (−1)mqm].

We now consider the second integral (4.7.2). For u in P ′ we have |u|E ≥ |Q(u)|E . In the

inner integral we thus have:

|(z − v)π−m|E ≥ |u|E ≥ |Q(u)|E = |v|E .

We can therefore consider the outer integral as being over the set of v such that

q−m|v| ≤ |z − v| < q−m.

We now consider such a v. There exists a u0 with |u0|E = |v|E such that N(1+u0) = 1+v.

We then set 1 + u = k(1 + u0) and the inner integral is over the set of k such that |u| ≤
|(z− v)π−m|. Setting j = v[(z− v)π−m] this means that k is in G′

j ∩K. The inner integral

is therefore the volume of this intersection, which is q1−j according to lemma (4.7.1), or

equivalently q|(z − v)π−m|. In total, the second integral (??) becomes

qm
∫

Ω(z − v)|z − v|−1dv, q−m|v| ≤ |z − v| < q−m.

By changing v to v + z we arrive at:

qm
∫

Ω(v)|v|−1dv, q−m|v + z| ≤ |v| < q−m. (4.7.4)

The first inequality is automatically satisfied if |z| ≤ |v|. If |z| > |v| it reduces to the

inequality |v| ≥ q−m|z|. We thus see that the domain of integration is in fact defined by

the inequalities q−m|z| ≤ |v| < q−m. The calculation of the integral is then immediate. We

find:

(1− q−1)qm(−1)m[−1 + (−1)v(z)]/2.

Adding the results of calculating (4.7.3) and (4.7.4), we indeed arrive at lemma 4.6.2.
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4.8. In summary, for x of the form s(y), U(x : m) is given by the following formulas:

Ω(y)qm if v(y) > 0,

0 if v(y) < −m,
qm+v(y) if −m ≤ v(y) < 0,

qm2−1[1 + (−1)v(z)] with z = N(y)− 1 if v(y) = 0.

It remains to translate these formulas in terms of the variable x. We thus arrive at the

following result:

PROPOSITION. (i) U(x : m) = 0 unless the valuation v(x) of x is even.

(ii) We now assume v(x) even. Then U(x : m) is given by the following formulas:

qm(−1)v(x)/2 if v(x) > 0;

qm if v(x) < 0;

qmq−v(1−x)/2 if v(x) = 0, v(1− x) is odd and v(1− x) ≤ 2m;

0 if v(x) = 0 and v(1− x) is odd

or if v(x) = 0 and v(1− x) > 2m.

4.9. Let f ′ be a function on G(F ) that is K ′-invariant. This function can be extended

to a function on G(E) invariant under K. We can then restrict this function to G1(F );

this is nothing other than the image of f ′ under a privileged isomorphism from G(F ) to

G1(F ). We will still denote by f ′ the extension and restriction of this extension. Let g′m
be the image of gm under the homomorphism (4.1.1). We now calculate the orbital integral

H(x : g′m). Let f ′a,i first be the characteristic function of the set:

K ′

∣∣∣∣∣πa+i 0

0 πi

∣∣∣∣∣K ′.

We write simply f ′a for f ′a,0. We first have the relation:

H(x : f ′a,i) = (−1)iH(x : f ′a). (4.9.1)

Since T (F ) is contained in Z(F )K ′ we immediately have:

H(x : f ′a) = Ω(u)
∑
i

(−1)if ′a[π
i

(
1 u

uσ 1

)
] if x = N(u).

If |x| < 1 then the matrix above is in K; this expression is therefore zero unless a = 0, in

which case it is (−1)v(x)/2. Similarly if |x| > 1 then the matrix above can be written:∣∣∣∣∣u 0

0 uσ

∣∣∣∣∣
∣∣∣∣∣u−1 1

1 uσ−1

∣∣∣∣∣
The first matrix is in T (F ) thus in Z(F )K. The second is in K. The value of the expression

above is therefore zero, unless a = 0 in which case it is 1. Finally we assume |x| = 1. Then
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the matrix above can be written:∣∣∣∣∣1 u

0 1

∣∣∣∣∣
∣∣∣∣∣1−N(u) 0

0 1

∣∣∣∣∣
∣∣∣∣∣ 1 0

uσ 1

∣∣∣∣∣ .
The first and third matrices are in K. The expression above is therefore zero unless a =

v(1 − N(u)), in which case it has the value 1. In summary, we have proved the following

lemma:

LEMMA 4.9.2. The function H = H(x : f ′a) is given by the following formulas:

(i) H = 0 if the valuation of x is odd;

Now suppose the valuation of x is even.

(ii) if v(x) > 0, H = 0 unless a = 0, in which case H = (−1)v(x)/2;

(iii) if v(x) < 0, H = 0 unless a = 0, in which case H = 1;

(iv) v(x) = 0, H = 0 unless a = v(1 − x) in which case H = 1. Now we need to calculate

g′m in terms of functions fa,i. This is a classical calculation that we leave to the reader (Cf.

[Lan80]).

LEMMA 4.9.3. We have:

g′m =
∑

0≤a≤m

f ′2a +
∑

0≤a≤m

∑
1≤i≤m−a

(−1)iqi(1− q−1)f ′2a,i

By applying relation (4.9.1) we immediately obtain

H(x : g′m) =
∑

0≤a≤m

qm−aH(x : f ′2a)

If v(x) is odd H(x : g′m) = 0 by definition. Now suppose v(x) is even. If v(x) > 0 this sum

reduces to the term a = 0 and thus has the value qm(−1)v(x)/2. If v(x) < 0 the sum still

reduces to the term a = 0 and takes the value qm. Finally if v(x) = 0 the sum reduces to

the term a = v(1− x)/2. It is therefore zero unless v(1− x) is even and v(1− x) ≤ 2m. Its

value is then qm−v(1−x)/2.

By comparing with proposition 4.8 we obtain the identity:

H(x : g′m) = U(x : m)

This is identity (4.2.4) for the function gm and proposition 4.1 is thus established.

5. Integral of Eisenstein series

5.1. We now take for F a number field and for E a quadratic extension of F . Let ω be a

character of the ideal class group of F . We assume it is trivial on the subgroup of ideals of

E whose finite components are 1 and whose infinite components are all equal and positive.

Unless explicitly stated otherwise, we make the same assumption for all characters of the

ideal class group of F or E. We denote by ω′ the lift of ω to the field E. We consider
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the Eisenstein series integrals of the group G(E) which we will need for the relative trace

formula. We consider a function ϕ on G(EA) such that:

ϕ

[
a x

0 b

]
g = χ(a)χ′(b)|a|u+1/2|b|u−1/2, (5.1.1)

where χ and χ′ are characters of the ideal class group of E whose product is ω′. Despite the

adopted notations, the function ϕ depends on u. It is determined by its restriction to the

usual maximal compact subgroup K. In general, we assume this restriction is independent

of u. We will denote by ϱ(χ, χ′, u) the representation of G(EA) in the space of functions

transforming as above. We write f · ϕ instead of ϱ(χ, χ′, u)(f)ϕ when this does not lead to

confusion. We denote by B the subgroup of upper triangular matrices and we set:

E(g, ϕ, χ, χ′, u) =
∑

B(E)\G(E)

ϕ(γg),

where the sum is defined by analytic continuation.

5.2. We will need a formula for the Mellin transform of E. Let ψ be a non-trivial character

of the ideal class group of E. We set:

W (g) =

∫
E

[
1 x

0 1

]
gψ(x)dx.

We also set, for Ω a character of the ideal class group of E:

L(Ω−1, ϕ, χ, χ′, u) =

∫
W

[
a 0

0 1

]
|a|s−1/2Ω−1(a)d×a|s=1/2. (5.2.1)

More precisely, the integral converges when the real part of s is large enough and extends

to a meromorphic function of s, holomorphic at point 1/2. We now integrate E over the

set of diagonal matrices diag(a, 1) with c−1 < |a| < c; the integral is taken modulo rational

elements. The Haar measure is the product of local Tamagawa measures by the residue at

point 1 of the function L(s, 1E). Moreover, given the result we have in mind (cf. (5.6)), the

choice of measure matters little. We obtain the following relation:∫ c

c−1

E

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣ , ϕ, χ, χ′, u

]
Ω−1(a)da = L(Ω−1, ϕ, χ, χ′, u)

+δ(χΩ−1)cu+1/2(u+ 1/2)−1ϕ(e)

+δ(χ′Ω−1)c−u+1/2(−u+ 1/2)−1(M(u, χ, χ′)ϕ(e))

+δ(χ′Ω−1)cu+1/2(u+ 1/2)−1ϕ(w)

+δ(χΩ−1)c−u+1/2(−u+ 1/2)−1(M(u, χ, χ′)ϕ)(w)

+R(c, u, f · ϕ) (5.2.2)
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where we set δ(χ) = 1 if χ is not trivial, δ(χ) = 0 if χ is trivial, M denotes the intertwining

operator and w is the matrix:

w =

∣∣∣∣∣0 1

1 0

∣∣∣∣∣
The “remainder” R(c, u,Φ) tends to 0 when c tends to infinity. For the proof see [Jac86]

§8. From now on we assume that the restriction of Ω to F is ω.

We will need precise estimates on the introduced quantities:

LEMMA 5.2.3. The function L(·, ·, u) and its derivatives are of slow growth on the line

Re(u) = 0.

Proof. We can assume that the function ϕ is a product of local functions ϕv. Let S be a

finite set of places of E containing all infinite places and such that, for all v not in S, ϕv is

Kv-invariant and the characters χv and χ′
v are unramified. Then, at places v not in S, we

can write

ϕv(g) = L(2u+ 1, χvχ
′−1
v )−1

∫
Φv[(0, 1)g]|t|2u+1χvχ

′−1
v (t)d×t

× χv(det g)|det g|u+1/2 (5.2.4)

where Φv is the characteristic function of integers. At places v in S we can write

ϕv(g) =

∫
Φv[(0, 1)g]|t|2u+1χvχ

′−1
v (t)d×tχv(det g)|det g|u+1/2, (5.2.5)

where Φv is a Schwartz-Bruhat function such that the function Φv[(0, 1)g] on SL(2, Fv) has

compact support, modulo the group of strictly upper triangular matrices. This being so,

denoting by Φ the product of functions Φv, we obtain for L(·, ·, u) the expression

L(Ω−1, ϕ, χ, χ′, u) = L(2u+1, χχ′−1S)−1×
∫∫

Φ′(a, b)Ω−1χ(a)|a|u+1/2daΩ−1χ′(b)|b|−u+1/2db

(5.2.6)

where Φ′ denotes a partial Fourier transform of Φ. The factor L in this formula denotes

the product of factors L(2u + 1, χvχ
′−1
v ) for v not in S. On the line Re(u) = 0 it is of

slow growth as well as all its derivatives, in fact of logarithmic growth. Its inverse is of

slow growth; its derivatives are therefore also of slow growth. The second factor is a Tate

integral without poles on the same line. It is therefore bounded as well as all its derivatives.

Hence the lemma. □

LEMMA 5.2.8. On the line Re(u) = 0 the function R(c, u, ϕ) and its derivatives are of

slow growth. Moreover, when c tends to infinity, the function and its derivatives tend to 0

in the space of functions of slow growth.

Proof. We again use the integral expression above for the function ϕ. We then obtain for

R(c, u, ϕ) the expression:

L(2u+ 1, χχ′−1S)−1

∫ [∫
Φ′(ta, t−1)χχ′−1(t)|t|2udt

]
Ω−1χ(a)|a|u+1/2d×a,

24



where the exterior integral is over ideals of norm greater than c or less than c−1. Let

R+(c, u) be the integral over a such that |a| > c. There exists a Schwartz-Bruhat function

ϕ ≥ 0 such that: ∫
|Φ′|(ta, t−1)d×t ≤ ϕ(a)|a|−1

We thus obtain a majorization of R+(c, u) by the integral∫
ϕ(a)|a|1/2d×a, |a| > c

which decreases rapidly for large c. We thus have the desired majorization for R+(u, c). For

R−(c, u) we have, after a change of variables, the following integral representation, where

we integrate over a of norm greater than c:

L(2u+ 1, χχ′−1S)−1 ×
∫ [∫

Φ′(t−1, at)χ′χ−1(t)|t|−2udt
]
χ−1(a)|a|−u+1/2d×a

We thus obtain an estimate for R−(c, u) and then R(c, u). Finally, we obtain similar esti-

mates for the derivatives of R(c, u) by replacing the factors |t|2u and |a|u with their deriva-

tives. □

LEMMA 5.2.9. On the line Re(u) = 0 the function:∫ c

c−1

E

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣ , f · ϕ, χ, χ′, u

]
da

and all its derivatives are rapidly decreasing. The function M(u, χ, χ′)ϕ(e) and its deriva-

tives are of slow growth.

Proof. We can write

f · ϕ =
∑
i

mi(u)ϕi

where the functions mi are rapidly decreasing. We thus see that for the first assertion it

suffices to prove that the integral obtained by replacing f ·ϕ with ϕ is of slow growth as well

as all its derivatives. Returning to expression (5.2.2) and using the preceding lemmas, we

see that it suffices to verify thatM(u, χ, χ′)ϕ(e) is of slow growth as well as all its derivatives

on the line Re(u) = 0. For this purpose we write:

M(u, χ, χ′)ϕ(e) = L(2u, χχ′−1)L(2u+ 1, χχ′−1)−1
∏
v

R(u, χv, χ
′
v)ϕv(e)

where R(u, χv, χ
′
v) is the normalized intertwining operator. In the infinite product almost

all factors are 1. Moreover, if v is a finite place the corresponding factor is a rational

function in q−u
v . If v is an infinite place the corresponding factor is a rational function in

u. Using the functional equation of the L functions, the ratio, up to an exponential factor,

can be written in the form:

L(1− 2u, χ′χ−1
S )L(1 + 2u, χχ′−1

S )−1 × L(1− 2u, χ′χ−1S)L(1 + 2u, χχ′−1S)−1,
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where S now denotes the set of places at infinity and the first factor is the product of

local L factors for all places in S. As in the proof of lemma 5.2.3 the second ratio and

its derivatives grow slowly. The first ratio has absolute value 1; moreover according to

the classical properties of the gamma function, the quotient of a derivative of the function

L(1+2u, ·, ·, s) by itself is of slow growth. It follows that all derivatives of the first quotient

are of slow growth. Hence the conclusion. □

We will also need the following result:

LEMMA 5.2.10. Suppose that χ is the lift of a character of F and that the restriction of

χ to F equals ωη. Then the function L(Ω−1, f · ϕ, χ, χ′, u) is zero at 0.

Proof. Under the hypotheses of the lemma, we have χ = χ′. As above, denoting by S the

set of infinite places, we have:

L(Ω−1, ϕ, χ, χ′, u) = L(2u+1, 1S)−1×
∫∫

Φ′(a, b)Ω−1(a)χ(a)|a|u+1/2daΩ−1(b)χ′(b)|b|−u+1/2db

The first factor has a zero at point 0 and the other two have no pole. The lemma follows. □

5.3. Let χ still be a character of the ideal class group of E and χ′ the character ω′χ−1. If

ϕ is as above we will set:

I(ϕ, χ, χ′, u) =

∫
ϕ(g)ηω−1(det g)dg, g ∈ Z(FA)T (F )\G6(FA). (5.3.1)

To calculate the integral, we can first integrate over the torus T . The integral over the

torus reduces to the integral of χ(a/aσ) over the quotient of E×
A by the product E×F×

A . It

is therefore zero unless χ is invariant under conjugation of E with respect to F . Under this

hypothesis it equals the volume of this quotient and the total integral equals:

I(ϕ, χ, χ′, u) =

∫
ϕ(g)ηω−1(det g)dg vol(E×

A/F
×
AE

×),

g ∈ Z(FA)T (FA)\G6(FA). (5.3.2)

LEMMA 5.3.3. If ε is not a norm and the real part of u is large enough then:∫
Z(FA)G6(F )\G6(FA)

E(g, ϕ, χ, χ′u)dg = I(ϕ, χ, χ′, u).

Proof. Indeed we have G(E) = P (E)G6(F ) and the intersection of these two subgroups is

T (F ). The series that defines the Eisenstein series can therefore be written:

E(g) =
∑

ϕ(γg), γ ∈ T (F )\G6(F ).

and the assertion of the lemma is therefore immediate. □
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If ε is a norm, the above integral diverges and we must use a truncation operator. For

this purpose we assume ε = 1, we choose an element of E with zero trace s and we set:

m =

∣∣∣∣∣s 0 1 1

0 1 1 −1

∣∣∣∣∣ .
Then we verify that mG1(F )m

−1 = G(F ). Moreover, according to lemma 2.2 we have:

G(E) = P (E)G1(F ) ∪ P (E)mG1(F ).

We therefore also have:

G(E) = P (E)G1(F ) ∪ P (E)G(F )m

If f is a function on G(E)\G(EA) the function truncated ”at height c” is the function T cf

on G1(F )\G1(FA) given by the sum:

T cf(g) = f(g)−
∑

fN (γmg)Hc(γmgm
−1), γ ∈ P (F )\G(F ),

where fN is the constant term of f , that is the integral:

fN (g) =

∫
f

[
1 x

0 1

]
gdx, x ∈ EA/E.

and we have set:

H(g) = |ab−1|E if g =

[
a x

0 b

]
k with k ∈ K,

Hc(g) = H(g) if H(g) ≥ c, = 0 otherwise.

LEMMA 5.3.4. Let ε = 1. Then, for a suitable choice of Haar measures we have:∫
T cE(g, ϕ, χ, χ′, u)ηω−1(det g)dg = I(ϕ, χ, χ′, u)

+δ(χω−1η)c2u(2u)−1

∫
ϕ(km)dk

−δ(χ′ω−1η)c−2u(2u)−1

∫
[M(u, χ, χ′)ϕ].(km)dk.

In this formula k is in the usual maximal compact subgroup KF of G(FA); moreover the

first δ for example is 1 if the restriction of χ to F equals ωη−1, 0 otherwise. Finally I = 0

unless χ is a lifting.

Proof. By combining the series that define E and its truncation, we obtain the expression:

T cE =
∑

T (F )G1(F )

ϕ(γg) +
∑

P (F )G(F )

[ϕ(γmg)− EN (γmg)Hc(γmgm
−1)].

We now integrate this expression against ηω−1 on the quotient of G1(FA) by Z(FA)G1(F ).

The first sum gives the integral I. The second becomes the integral:∫
P (E)Z(FA)G(FA)

[ϕ(gm)− EN (gm)Hc(g)]ηω
−1(det g)dg,
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or alternatively:∫
ϕ(gm)[1−Hc(g)]ηω

−1(det g)dg −
∫
M(u, χ, χ′)ϕ(gm)Hc(g)ηω

−1(det g)dg.

The integrals are taken over P (E)Z(FA)Nn+1(FA) where N is the group of upper unipotent

matrices. We arrive at the desired result using the Iwasawa decomposition. □

5.4. We will need the analytic properties of the functions I(. . . u).

LEMMA 5.4.1. Suppose that χ is the lifting of a character of F . Then I(. . . u) is holo-

morphic and rapidly decreasing in the strip 0 ≤ Reu ≤ 1/2, except for a simple pole at

u = 0 and a simple pole at u = 1 if the restriction of χ to F equals ωη. Its derivatives have

slow growth on the line Re(u) = 1/2.

Proof. If χ is the lifting of the character µ, then the restriction of χ to F is the square of

µ. We use the same integral representation as above for the function ϕ, but we write it in

the form:

ϕ(g) = L(2u+ 1, χχ′−1S)−1

∫
Φ[(0, 1)|

(
t 0

0 tσ

)
g]µ2ω−1(ttσ)|ttσ||u+1/2

E

dt χ(det g)| det g|u+1/2
E ,

the integral being over the torus T . By integrating this over the quotient T (FA)Gε(FA) we

obtain an integral over Gε(FA):

L(2u+ 1, χχ′−1S)−1

∫
Φ[(0, 1)g]µ2ω−1η(det g)|det g|2u+1dg.

The function L is not zero in the band in question. Its inverse is therefore holomorphic and

has slow growth in the band. The second factor is a Tate integral for the division algebra

whose multiplicative group is Gε. According to the theory of these integrals, it is the prod-

uct of an entire function, the function L(2u + 1, µ2ω−1η) and the function L(2u, µ2ω−1η).

Moreover, in the first factor, the character is composed of µ2ω−1 and the norm. The holo-

morphic properties are thus manifest. A Tate integral is bounded at infinity in any vertical

band. Its derivatives similarly have slow growth in any vertical band. It is therefore clear

that the function has slow growth in the band. We move on to the behavior on the line

Reu = 1/2. Since L(2u+ 1, µ2ω−1ηS) is defined by a convergent product (or a convergent

Dirichlet series) its derivatives are bounded on the line in question. We conclude that the

derivatives of the product have slow growth. Hence the conclusion. □

LEMMA 5.4.2. Suppose that the character χ is a lifting and its restriction to F is ω. Let

z∗ denote the complex conjugate of the complex number z. Then the product

M(u, χ, χ′)f · ϕ(e)I(ϕ, χ, χ′,−u∗)∗

is holomorphic and rapidly decreasing in the strip 0 ≤ Reu ≤ 1/2. Its derivatives are rapidly

decreasing on the line Reu = 1/2.
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Proof. By hypothesis we have χ = χ′. By linearity we can assume that we are in the

following situation: the function ϕ is the product of local functions ϕv and S is a finite

set of places of E. For v not in S the function ϕv transforms under Kv according to the

character χv(det k)
−1. For v in S we have:∫

Kv

ϕv(gk)χv(det k)
−1dk = 0

Note that S may not contain certain archimedean places. We then have an integral rep-

resentation analogous to the one we have used until now. In particular, the quantity in

question can be written:

L(2u, 1)L(2u+1, 1)−1R(u, χ, χ′)f ·ϕ(e)L(−2u+1, 1S)−1×
∫

Φ∗[(0, 1)g]η(det g)| det g|1−2udg.

The last integral is a Tate integral over the group Gε. We write L(2u, 1) = L(1− 2u, 1), up

to an exponential factor. We thus obtain the expression in the form of a product of factors:

L(2u+ 1, 1S)−1[
∏
v∈S

L(1− 2u, 1v)L(1 + 2u, 1v)
−1fv ·R(u, χv, χ

′
v)ϕv(e)]

×
∫

Φ∗[(0, 1)g]η(det g)|det g|−2u+1dg.

This formula already gives holomorphicity. Indeed, the last factor is a holomorphic multiple

of L(1 − 2u, η)L(−2u, η) and is thus holomorphic. The first factor and the normalized

intertwining operator are holomorphic in the band in question. The factor L(−2u + 1, 1v)

where v is in archimedean S has a pole at point 1/2; however, according to our conventions

R(u, χ, χ′)ϕv = 0 at point 1/2. Thus the pole of the factor L(−2u+ 1, 1v) is compensated

by a zero. A similar argument applies to the poles of the factor L(−2u + 1, 1v) for finite

v in S. To obtain the required estimate we can further modify S as follows: we enlarge

S by adding all places at infinity. Then the first factor has slow growth in the band; its

derivatives have slow growth on the line Reu = 1/2. The last factor is bounded as are

all its derivatives in the band. The factor containing the intertwining operator is rapidly

decreasing for archimedean v. According to the properties of the gamma function, the

factor corresponding to an archimedean place v in S has slow growth in the band as do all

its derivatives. Finally, the remaining factors are rational functions of q−s
v without poles in

the band. Our assertion follows. □

5.5. Let us now consider the kernel Keis. Recall that z
∗ denotes the complex conjugate of

z. We have:

Keis(g, h) = 1/4iπ
∑
χ,ϕ

∫
E(g, f, ϕ, χ, χ′u) · E(h, χ, χ′, u)∗du;

the sum is over all characters χ and, for each χ, over an orthonormal basis of the representa-

tion space ρ(χ, χ′, u), considered as acting on a function space on K. We have written and

will often write in the sequel f · ϕ for the action of f on ϕ in the representation ρ(χ, χ′, u).
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We choose C > 0 and c > 0 and apply to the kernel the truncation operator with respect

to the second variable ”at height c”. It is clear that we can exchange the integration and

truncation. We consider the following integral:∫ C

C−1

∫
T c
2Keis

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣ , h
]
Ω−1(a)ηω(deth)dhd×a. (5.5.1)

The integral in h is over the quotient Gv(F )Z(Fλ)\Gv(Fλ); the integral in a is over the

elements a of the group of ideal classes of E such that C−1 < |a| < C. We will assume that

ε is a norm and even that ε = 1. We will indicate in passing the modifications to make if ε

is not a norm.

LEMMA 5.5.2. There exists a polynomial P (t) such that |T cE(h, ϕ, χ, χ′, it)| ≤ P (t) for

all t and all h. Moreover, given f , χ, a compact subset M and an integer N , there exists a

constant C such that |E(h, f, ϕ, χ, χ′, it)| ≤ C|t|−N for h in M .

Proof. The second assertion is standard. The first one is [JL85, Lemma 8.2.1]. □

The lemma shows that the integral (5.5.1) is in fact equal to a finite sum of integrals:∫ [∫ C

C−1

E

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣
]
, f · ϕ, χ, χ′, u)∗Ω−1(a)d×a×

∫
T cE(h, ϕ, χ, χ′, u)∗ηω(deth)dh

]
du.

According to (5.3.4), setting:∫ C

C−1

E

(
|a 0|
0 1

)
, f · ϕ, χ, χ′, uΩ−1(a)d×a = J(C, u),

we can write this in the form:∫
J(C, u)I(ϕ, χ, χ′, u)∗du

+δ(χω−1η)

∫
c−2u(−2u)−1J(C, u)

∫
ϕ(km)dk∗du

−δ(χ′ω−1η)

∫
c2u(−2u)−1J(C, u)

∫
M(u, χ, χ′)ϕ(km)dk∗du. (5.5.3)

The first term is zero unless χ is a lift. The last two terms are zero unless the restriction

of χ to F is ωη. Moreover, according to lemma (5.2.9), J(C, u) and its derivatives decrease

rapidly on the line Reu = 0. The last two integrals are therefore oscillating integrals with

a limit as c tends to infinity, namely:

iπ/2

∫ C

C−1

E

[
|a 0|
0 1

]
, f · ϕ, χ, χ′, 0Ω−1(a)d×a

∫
ϕ(km)dk∗,

iπ/2

∫ C

C−1

E

[
|a 0|
0 1

]
, f · ϕ, χ, χ′, 0Ω−1(a)d×a×

∫
M(0, ϕ, χ, χ′)ϕ(km)dk∗.

First, suppose that χ is the lift to E of a character µ of F . Since the restriction of χ to F

is µ2, we must have µ2 = ωη. It follows that χ′ equals χ. According to a well-known result,
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we then have M(0, χ, χ′) = −1 and the preceding terms cancel out. Now suppose that χ

is not a lift. We now use expression (5.2.4) to calculate the above integrals. The terms

δ(χΩ−1) and δ(χ′Ω−1) are zero because the restriction of Ω to F is ω while the restriction

of χ and χ′ to F is ωη. The term R(C, u, f, ϕ) tends to 0 as C tends to infinity. We thus

finally obtain the following contribution for the double limit of the last two terms of (5.5.3):∑
ϕ,χ

L(Ω−1, f · ϕ, χ, χ′, 0)(iπ/2)×
[∫

ϕ[km]dk∗ +

∫
[M(0, χ, χ′)ϕ](km)dk∗

]
. (5.5.4)

The sum is over all χ whose restriction to F is ωη and which are not lifts. These terms are

not present if ε is not a norm.

We now examine the first term of (5.5.3). We replace the integral in a by its expression

derived from (5.2.2). We obtain the following terms:∫
L(χ−1f · ϕ, χ, χ′, u)I(ϕ, χ, χ′, u)∗du

+δ(χΩ−1)

∫
Cu+1/2(u+ 1/2)−1f · ϕ(e)I(ϕ, χ, χ′, u)∗du

+δ(χ′Ω−1)

∫
C−u+1/2(−u+ 1/2)−1f ·M(u, χ, χ′)ϕ(e)I(ϕ, χ, χ′, u)∗du

+δ(χ′Ω−1)

∫
Cu+1/2(u+ 1/2)−1f · ϕ(e)I(ϕ, χ, χ′, u)∗du

+δ(χΩ−1)

∫
C−u+1/2(−u+ 1/2)−1f ·M(u, χ, χ′)ϕ(w)I(ϕ, χ, χ′, u)∗du

+

∫
R(C, u, f · ϕ)I(ϕ, χ, χ′, u)∗du.

Each term is zero unless χ is a lift. We can therefore assume this is the case. If moreover

the restriction of χ to F is the character ωη then I has a pole at point u = 0 (lemma

(5.4.1)); the integrals above are then improper. When C tends to infinity, the last term

tends to 0 as follows from lemma (5.2.8). We now examine the limit as C tends to infinity

of integrals 2 to 5. They are zero unless χ = χ′ = Ω. Since the restriction of Ω to F is

ω, that of χ is also ω and in particular different from ωη. According to lemma (5.4.1) the

function f · ϕ(e)I(ϕ, χ, χ′,−u∗)∗ is holomorphic in the band −1/2 ≤ Reu ≤ 0, with rapid

decay; its derivatives have rapid decay on the line Reu = −1/2. We can therefore deform

the integration contour and write integral 2 in the form:∫
Cvv−1f · ϕ(e)I(ϕ, χ, χ′, 1/2− v∗)∗dv,

the integral being extended to the imaginary axis, except that the arc from −iε to iε is

replaced by the semicircle passing through −iε, ε, iε; letting ε tend to 0 we see that the

above expression equals the (improper) integral over the entire imaginary axis plus iπ times

the value of the integrand at point v = 0. Now letting C tend to infinity, we finally obtain:

2iπf · ϕ(e)I(ϕ,Ω,Ω, 1/2)∗.
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We proceed similarly with integral 4 and obtain an analogous result. For integrals 3 and

5, we proceed as above except that the integration contour becomes the line Reu = 1/2

suitably deformed and we use lemma (5.4.2). In total, we obtain the following expression

for the double limit of the first term of (5.5.3):∫
L(Ω−1, f · ϕ, χ, χ′, u)I(ϕ, χ, χ′, u)∗du

+{2iπ[ϱ(Ω,Ω,−1/2)(f)ϕ(e) + ϱ(Ω,Ω,−1/2)(f)ϕ(w)]I(ϕ,Ω,Ω, 1/2)∗

+2iπ[ϱ(Ω,Ω,−1/2)(f)M(1/2,Ω,Ω)ϕ(e)

+ϱ(Ω,Ω,−1/2)(f)M(1/2,Ω,Ω)ϕ(w)]}I(ϕ,Ω,Ω,−1/2)∗,

the last two terms being present only if Ω is a lift. In summary, we have the following

formula:

PROPOSITION. Consider the integral (without T c
2 if ε is not in N0)∫ C

C−1

T c
2Eeis

(
|a 0|
0 1

)
, hηω(deth)dhd×a.

The double limit where c then C tends to infinity exists. It equals 4iπ−1 times:∑
χ,ϕ

∫
L(Ω−1, f · ϕ, χ, χ′, u)I(ϕ, χ, χ′, u)∗du

+
∑
ϕ

2iπϱ(Ω,Ω,−1/2)(f)ϕ(e)I(ϕ,Ω,Ω, 1/2)∗

+
∑
ϕ

2iπϱ(Ω,Ω,−1/2)(f)ϕ(w)I(ϕ,Ω,Ω, 1/2)∗

+
∑
ϕ

2iπϱ(Ω,Ω,−1/2)(f)M(1/2,Ω,Ω)ϕ(e)I(ϕ,Ω,Ω,−1/2)∗

+
∑
ϕ

2iπϱ(Ω,Ω,−1/2)(f)M(1/2,Ω,Ω)ϕ(w)I(ϕ,Ω,Ω,−1/2)∗

+
∑
χ,ϕ

L(Ω−1, f · ϕ, χ, χ′, 0)(iπ/2)

×
[∫

ϕ[km]dk∗ +

∫
[M(0, χ, χ′)ϕ](km)dk∗

]
The first sum is over all χ which are lifts. The following terms are zero unless Ω is the lift

of a character of F . The last sum is over all characters χ which are not lifts and whose

restriction to F is ωη. It is zero if ε is not a norm.

5.6. For the application we have in mind, we can reformulate this identity as follows. In

the first integral, the factor I may have a pole at point u = 0 if the restriction of χ to F

is ωη. However, according to lemma (5.2.8) the first factor then has a zero. This integral

is therefore always an ordinary integral. Let S be a finite set of places of E containing all
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places at infinity; if ε is not a norm we assume that S contains all places where ε is not a

norm as well as all places where ε is not a unit. For v not in S we take for fv a Kv-invariant

function. We write fS (resp. fS) for the product of fv, v not in S (resp. in S). Then the

Satake transform fS(χ, χ′, u) is defined by the formula:

fS(χ, χ′, u)ϕ = ϱ(χ, χ′, u)(fS)ϕ,

if ϕ is KS-invariant. Then the preceding expression has the form:∑ ∫
L(Ω−1, fS , ϕ, χ, χ

′, u)I(ϕ, χ, χ′, u)∗fS(χ, χ′, u)du

+
∑
χ

A(fS , ϕ, χ)f
S(χ, χ′, 0) +B(fS , ϕ,Ω)f

S(Ω,Ω, 1/2),

where A and B depend linearly on their first argument. Moreover, the characters that

appear in the sums are the unramified characters outside of S. The first sum is over all

characters χ which are lifts, the second over all characters which are not lifts and whose

restriction to F is ωη. Furthermore, the second sum is zero if ε is not a norm. Finally, the

last term is zero unless Ω is a lift.

5.7. We now study the integral from proposition (5.6) for the special kernel. This is given

by the sum:

Kspe(x, y) = 1/vol
∑
χ

∫
f(g)χ(det g)dgχ(x)χ(y)∗,

the sum being over all characters χ whose square is ω′. We first assume ε = 1. The integral

in question is written:∫ C

C−1

T c
2Kspe

(
|a 0|
0 1

)
, hηω(deth)dhΩ−1(a)d×a.

The integral in a is zero unless χ equals Ω. The integral in h gives a difference:∫
Z(Fλ)G1(F )\G1(Fλ)

χ∗(g)ωη(det g)dg −
∫
Z(Fλ)P (F )\G(Fλ)

χ∗ωη(det gm)Hc(gm)dg.

Both integrals are zero unless the restriction of χ to F equals ηω. We conclude that the

total integral is zero. We have an analogous conclusion for the case where ε is not a norm.

Hence:

PROPOSITION. If ε = 1 then the integral∫ C

C−1

T c
2Espe

(
|a 0|
0 1

)
, hηω(deth)dhΩ−1(a)d×a.

is convergent and zero. If ε is not a norm the integral∫ C

C−1

Espe

(
|a 0|
0 1

)
, hηω(deth)dhΩ−1(a)d×a.

is convergent and zero.
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6. Integration of kernel K

6.1. We keep the notations from §5. We set

K(x, y) =
∑

f(x−1ξy), ξ ∈ G(E)/Z(E).

If ε = 1 we study the integral∫ C

C−1

∫
T c
2K

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣ , h
]
ηω(deth)Ω−1(a)dhda,

a ∈ EX
Λ /E

X , h ∈ Z(FΛ)G1(F )\G1(FΛ) (6.1.1)

If ε is not a norm we study the integral∫ C

C−1

∫
K

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣ , h
]
ηω(deth)Ω−1(a)dhda,

a ∈ EX
Λ /E

X , h ∈ Z(FΛ)Gε(F )\Gε(FΛ). (6.1.2)

6.2. We will first show that the truncation operator in (6.1.1) is superfluous. For this

purpose, we set:

Scϕ(g) = (T c − 1)ϕ(g) =
∑

ϕN (γmg)Hc(γmgm
−1).

We then have the following proposition:

PROPOSITION. Given f and C > 0, there exists D > 0 such that the relations c > D

and C−1 < |a| < C imply

Sc
2K

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣ , h
]
= 0.

Proof. We use without proof the following lemma:

LEMMA 6.2.1. Let U be a compact subset of SL(2, FΛ). Then there exists D > 0 such

that the relations

g ∈ U, γ ∈ SL(2, F ) and H(γg) > D

imply that γ is triangular.

□

This being the case, the constant term of K with respect to the second variable is written:

K2N

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣ , y
]
=

∫
N(EΛ)

∑
γ∈Z(E)\G(E)/N(E)

f

[∣∣∣∣∣a−1 0

0 1

∣∣∣∣∣ γny
]
dn.

It follows therefore:

Sc
2K

[∣∣∣∣∣a 0

0 a

∣∣∣∣∣ , g
]
=

∑
θ∈P (F )\G(F )

∫
N(EΛ)

∑
γ

f

[∣∣∣∣∣a−1 0

0 1

∣∣∣∣∣ γnθmg
]
Hc(θmgm

−1)dn.
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In this expression we can assume that a is in a compact set. Under this hypothesis, if

the integrand is not zero then h = γnθmgm−1 is in a compact set modulo the center and

H(γ−1h) > c. According to the lemma, we therefore have γ ∈ P (E) if c is large enough.

Thus the preceding expression, for c large enough, reduces to:

∑
θ∈P (F )\G(F )

∫
N(EΛ)

∑
α

f

[∣∣∣∣∣αa−1 0

0 1

∣∣∣∣∣nθmg
]
Hc(θmgm

−1)dn.

We now write:

θmgm−1 =

∣∣∣∣∣b 0

0 1

∣∣∣∣∣n′k, |b| ≥ c, k ∈ K.

For the preceding expression, it follows:

∑
θ

∫ ∑
α

f

[∣∣∣∣∣a−1αb 0

0 1

∣∣∣∣∣nkm
]
dn|b|.

If this expression is not zero then |αa−1b| = |a−1b| is in a compact set of R×. The same is

therefore true of |b|. This expression is thus zero if c is large enough. Hence the conclusion.

6.3. We are now reduced in all cases to considering the integral (6.1.2). We will prove its

convergence. For this we write K as the sum of Kreg and Ksin with:

Kreg(x, y) =
∑

f(x−1ξy), ξ regular (6.3.1)

Ksin(x, y) =
∑

f(x−1ξy), ξ singular (6.3.2)

In this section we study the integral of Kreg. Every regular element can be written as:

γ =

∣∣∣∣∣α 0

0 1

∣∣∣∣∣n(ξ)µ, n(ξ) =

∣∣∣∣∣1 ξ

0 1

∣∣∣∣∣ ,
with

α ∈ EX , µ ∈ Gε(F )/Z(F ), N(ξ) ̸= 0, ε.

Moreover α, µ and N(ξ) are uniquely determined. It immediately follows that:∫ C

C−1

∫
Kreg

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣ , h
]
ηω(deth)dhΩ−1(a)da

=
∑
N(ξ)

∫ C

C−1

∫
f

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣n(ξ)h
]
ηω(deth)dhΩ(a)da (6.3.3)

where in the right-hand side a is in EX
Λ , h in Gε(FΛ)/Z(FΛ) and the sum is over the norm

of ξ, assumed different from 0 and ε. The support of function f is contained in a compact
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set modulo the center; the image of this set by the application P (g) = gg−1 associated to

Gε is thus contained in a union

⋃[
u 0

0 u

]
M, N(u) = 1,

where M is compact. If the integrand of the right-hand side of (6.3.3) is not zero then the

image of the inner matrix by P is in the preceding set, which gives:∣∣∣∣∣ a−1u ξu

−ε−1ξσaσ
−1
u (1− ε−1N(ξ))aσu

∣∣∣∣∣ ∈M,

for at least one u of norm 1. The element ξu is in a compact set of adèles. The same is

therefore true of its norm N(ξ) which thus takes only a finite number of values. According

to the choice of ξ, the same applies to ξ. Therefore u is in a compact set of adèles. Since

the quotient N1(FΛ)/N1(F ) is compact, u is thus in fact in a compact set of N1(FΛ), or

equivalently a compact set of ideals; thus a−1 is in a compact set of adéles. Since 1−ε−1N(ξ)

takes only a finite number of values, aσ is also in a compact set of adèles. It follows that a is

in a compact set of ideals; this implies that h is itself in a compact set. This shows that the

right-hand side of (6.3.3) converges and that its value is independent of C, provided that

C is large enough. Moreover, this value is nothing other than the value of the analogous

integral without restriction on a. A similar conclusion applies to the left-hand side and the

equality is verified. We thus obtain:

lim
C−→∞

∫ C

C−1

∫
Kreg

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣ , h
]
ηω(deth)dhΩ−1(a)da

=
∑
N(ξ)

Ω(ξ)

∫∫
f

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣n(ξ)h
]
ηω(deth)dhΩ(a)da (6.3.4)

the factor Ω(ξ) being in fact equal to one.

Now we write the integrals of (6.3.4) as a product of local integrals. If v is a place of F

inert in E and w the unique place of E above v, we set:

Uv(x) = Ωv(u)

∫∫
fw

[
a 0

0 1

][
1 u

0 1

]
hΩw(a)ηvωv(deth)dhda (6.3.5)

if x = −ε−1N(u)(1− ε−1N(u))−1 for at least one u, = 0 otherwise.

Then the local factor at place v in expression (6.3.4) is nothing other than:

Uv(µ), where µ = −ε−1N(ξ)(1− ε−1N(ξ))−1. (6.3.6)

We now consider a place v that decomposes into v1 and v2. We thus have isomorphisms:

Ev1 −→ Fv, Ev2 −→ Fv
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and we denote by ξ1 and ξ2 the images of ξ in Fv. The group Gεv is isomorphic to the group

of pairs (h1, h2) such that

h2 =

∣∣∣∣∣0 ε

1 0

∣∣∣∣∣h1
∣∣∣∣∣0 ε

1 0

∣∣∣∣∣
−1

, h1 ∈ GL(2, Fv).

Then the local factor at place v in expression (6.3.4) is written:∫
fv1

[∣∣∣∣∣a1 0

0 1

∣∣∣∣∣
∣∣∣∣∣1 ξ1

0 1

∣∣∣∣∣h1
]∫

fv2

[∣∣∣∣∣a2 0

0 1

∣∣∣∣∣
∣∣∣∣∣1 ξ2

0 1

∣∣∣∣∣h2
]
Ωv1(a1)Ωv2(a2)ωv(deth1)

da1da2dh1Ωv1(ξ1)Ωv2(ξ2).

We now introduce the function fv on GL(2, Fv) defined by:

fv(g) =

∫
fv1(gh1)fv2(h2)ωv(deth1)dh1. (6.3.7)

Then fv transforms according to the inverse of ωv under the center. We define a function

Uv on the multiplicative group of Fv by the formula:

fv(g) =

∫
fv1(gh1)fv2(h2)ωv(deth1)dh1. (6.3.8)

Then fv transforms according to the inverse of ωv under the center. We define a function

Uv on the multiplicative group of Fv by the formula:

Uv(x) = Ωv1(x)

∫∫
fv

[∣∣∣∣∣a1 0

0 1

∣∣∣∣∣
∣∣∣∣∣1 x

1 1

∣∣∣∣∣
∣∣∣∣∣a2 0

0 1

∣∣∣∣∣
]
Ωv1(a1)Ωv2(a2)da1da2 (6.3.9)

if x ̸= 1, = 0 if x = 1. One can easily see that this integral converges. After a change of

variables, the factor corresponding to place v in integral (6.3.4) becomes:

Ωv2(−ε)Uv(µ), µ = −ε−1ξ1ξ2(1− ε−1ξ1ξ2)
−1. (6.3.10)

In total, we see that the integral of Kreg can be written:∫∫
Kreg · · · =

∑
µ

∏
v

Uv(µ)
∏

Ωv2(−ε); (6.3.11)

the second product is over the set of places v decomposed in E; for such a place we choose,

once and for all, a numbering v1, v2 of the places of E above v; the sum is over all elements

µ of FX of the form

−ε−1N(ξ)(1− ε−1N(ξ))−1, with N(ξ) ̸= ε.

If µ is not of this form there exists at least one place v inert in E such that µ is not of the

form

−ε−1N(u)(1− ε−1N(u))−1 with u ∈ F×
v .

Then Uv(µ) = 0. We can therefore regard the sum in (6.3.11) as being over all µ ̸= 0 in F .
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6.4. We move on to the singular terms. If ε = 1, then there are four double singular

classes, those of n1, n1r, e, r, where we have set:

r =

∣∣∣∣∣1 −1

1 1

∣∣∣∣∣ , n1 =

∣∣∣∣∣1 1

0 1

∣∣∣∣∣ (6.4.1)

We denote by Ki, 1 ≤ i ≤ 4, the corresponding kernels. According to lemma 2.6 they are

given by:

K1 =
∑

f

[
x−1

∣∣∣∣∣α 0

0 1

∣∣∣∣∣n1γy
]
, α ∈ E×, γ ∈ G1(F )/Z(F ),

K2 =
∑

f

[
x−1

∣∣∣∣∣α 0

0 1

∣∣∣∣∣n1rγy
]
, α ∈ E×, γ ∈ G1(F )/Z(F ),

K3 =
∑

f

[
x−1

∣∣∣∣∣α 0

0 1

∣∣∣∣∣ γy
]
, α ∈ E×/N1(F ), γ ∈ G1(F )/Z(F ),

K4 =
∑

f

[
x−1

∣∣∣∣∣α 0

0 1

∣∣∣∣∣ rγy
]
, α ∈ E×/F×, γ ∈ G1(F )/Z(F ). (6.4.2)

If ε is not a norm then the only singular class is that of e and Ksin reduces to K3.

6.5. We study the integral of K3. We obtain:∫∫
f

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣
]
h Ω(a)ηω (deth)da dh, (6.5.1)

where a is integrated over the set of elements of E×
A/N1(F ) satisfying the inequality C−1 <

|a| < C. As in (6.3) there exists a compact set M of GL(2, EA) such that if the integrand

is not zero then

uP

∣∣∣∣∣a 0

0 1

∣∣∣∣∣ ∈M

for a u of norm 1. This gives ∣∣∣∣∣au 0

0 a−σu

∣∣∣∣∣ ∈M.

It follows that the norm of a is in a compact set and that a itself is in a compact subset

modulo N1(FA). Since N1(FA)/N1(F ) is compact, we see that a is actually in a compact

set. It follows that the integral converges and its value is independent of C, provided that

C is large enough. This value is moreover that of the integral obtained by integrating over

the whole quotient E×
A/N1(F ).

We now integrate over N1(FA)/N1(F ) (variable b) then over E×
A/N1(FA). We get:∫

f

[∣∣∣∣∣ab 0

0 1

∣∣∣∣∣
]
h Ω(a)Ω(b)ηω (deth) dh da db.
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If we write b = u1−σ this becomes:∫∫
f

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣
∣∣∣∣∣u 0

0 uσ

∣∣∣∣∣
]
h Ω(a)Ω(b)ω(N(u))ηω(deth) dh.

After a translation on h we obtain as a factor the integral of Ω over the quotientN1(FA)/N1(F ).

This factor is therefore zero, unless Ω is trivial on this subgroup, that is, the lifting of a

character λ of F . If this is the case, the integral becomes:

vol(N1(FA)/N1(F ))

∫∫
f

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣h
]
Ω(a)ηω(deth) dh da,

a ∈ E×
A/N1(FA), h ∈ G1(FA)/Z(FA). (6.5.2)

We now relate this integral to the functions Uv and fv (Cf. (6.3.5), (6.3.8), (6.3.9)). Let v

be a place of F inert in E and w the corresponding place of E. Then we know (Prop. 3.4)

that

lim
x−→0,x∈−εN0v

Uvλ
−1
v (x) =

∫∫
fw

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣h
]
Ωw(a)ηvωv(deth) da dh λ(−ε). (6.5.3)

In the integral of (6.5.2) the factor corresponding to the place v has the same form as above

except that the integral is over the quotient E×
v /N1v; this factor is therefore

lim
x−→0,x∈−εN0v

Uvλ
−1
v (x) vol(N1v)

−1 λ(−ε). (6.5.4)

If v decomposes into v1 and v2 then the local factor corresponding to v in (6.5.2) is nothing

but: ∫∫
fv1

[∣∣∣∣∣a1 0

0 1

∣∣∣∣∣h1
]
fv2

[∣∣∣∣∣a2 0

0 1

∣∣∣∣∣h2
]
Ωv1(a1)Ωv2(a2)ωv(deth1) dh1, (6.5.5)

the integral being over the group of pairs (a1, a2), modulo the subgroup of pairs of the form

(b, b−1). After a change of variables this can be written:∫
fv(a)λv(a) da, a ∈ Av/Zv.

where fv is the function (6.3.8). In summary:

PROPOSITION. We have:

lim
C−→∞

∫ C

C−1

∫
K3 =

∫∫
K3.

These integrals are zero unless Ω is of the form λ ◦N . If this is the case, the value of this

expression is the product of the following quantities:

(i) vol(E×
A/N1(FA));

(ii) for each inert place v:

lim
x−→0,x∈−εN0v

Uvλ
−1
v (x) vol(N1v)

−1 λ(−ε);
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(iii) for each decomposed place v:∫
fv(a)λv(a) da, a ∈ Av/Zv.

6.6. We now study the integral of K4. According to lemma (2.6) it can be written as∫∫
f

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣ rh
]
Ω(a)ω(deth) da dh,

a ∈ E×
A/F

×, C−1 < |a| < C, h ∈ G1(FA)/Z(FA).

As above there exists a compact set M such that if the integrand is not zero then

uP

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣ rh
]
∈M,

where u is of norm 1. This can also be written:∣∣∣∣∣ 0 a1−σu

−u 0

∣∣∣∣∣ ∈M.

It follows first that u is in a compact set, then that a1−σ is in a compact set. Thus a is

of the form btc where b is in a compact set, c in the group of ideles of F of norm 1 and t

in a subgroup of the ideles of F isomorphic to the group of real numbers > 0. Since the

absolute value of a is in a compact set, the same goes for t. Thus a is in a compact set and

the integral converges. According to lemma (2.6) we have:

r−1

∣∣∣∣∣c 0

0 1

∣∣∣∣∣ r ∈ G1;

after a change of variables we see that the integral admits:∫
Ω(c)ηω−1(c) dc =

∫
η(c) dc

as a factor. Since this factor is zero, we conclude that the integral is zero. Hence:

PROPOSITION.

lim
c−→∞

∫
C−1

K4 = 0.

6.7. We now study the integrals of K1 and K2. We recall that these terms are zero unless

ε is a norm, thus ε = 1 with the conventions made. They can be written:∫ C

C−1

∫
f

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣n1h
]
Ω(a) ωη(deth) dh, (6.7.1)

∫ C

C−1

∫
f

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣n1rh
]
Ω(a)ωη(deth) dh. (6.7.2)
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We study the first integral as an example. We will see that it is convergent and has a limit

when C tends to infinity, equal to the value at s = 0 of the analytic continuation of the

integral: ∫∫
f

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣n1h
]
|a|−sΩ(a)ωη(deth) dh, (6.7.3)

integral which itself converges for Res > 1. For this purpose we introduce a character µ of

the group of idele classes of E whose restriction to F is η and we set:

f1(g) = f(g) µΩ(det g).

Then the above integral can be written:∫∫
f1

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣n1h
]
|a|−sµ−1(a) da dh. (6.7.4)

We introduce the function Φ defined by

Φ(a−1) =

∫
f1

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣n1h
]
dh. (6.7.5)

Then the integral (6.7.4) can be written, after a change of variables:∫
Φ(a)|a|sµ(a) da. (6.7.6)

We write the function Φ as a product over all places of F . Let v be an inert place of F

and w the unique place of E above v. Since P is submersive there exists a function f0w on

G(Ew), smooth, with compact support, such that:

f0w(P (g)) =

∫
f1w(gh) dh. (6.7.7)

On the other hand:

P

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣n1
]
=

∣∣∣∣∣ 0 a1−σ

−1 a−σ

∣∣∣∣∣ . (6.7.8)

It follows that the local factor for the function Φ corresponding to the place v can be written:

Φv(a) = f0w

[∣∣∣∣∣ 0 aσ−1

−1 aσ

∣∣∣∣∣
]
. (6.7.9)

If we write a = tb with t in Fv and b non-zero, we obtain a Schwartz-Bruhat function of t

depending on b. Moreover, for all w not in T , the function f0w is the characteristic function

of Kw (and Φw the characteristic function of Rw), as follows from the following lemma:

LEMMA 6.7.10. Suppose v finite, inert and unramified in E. Let x be in Kw such that

xxt = 1. Then x = P (h) with h in Kw.
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Proof. It suffices to show that y = t+ xt′ is in Kw for at least one scalar t which is a unit

of E; indeed we have xy′ = y from which x = p(y) if y is invertible. Since the matrix y has

integer coefficients it suffices to show that it is invertible mod P . We are thus reduced to an

analogous problem for a finite field e and a quadratic extension f : given an invertible 2× 2

matrix x, there exists a scalar t such that the matrix y is invertible. If this were not the

case, the matrix x would admit all numbers −t1−σ as eigenvalues. Since there are q+1 > 2

such numbers, we would obtain a contradiction. Hence the conclusion. □

We now consider a place v of F which decomposes into v1 and v2. We set:

f0w(g) =

∫
fv1(gh1)fv2(h2)dh1 (= Ωv1µv1(det g)fv(g)). (6.7.11)

This is a smooth function, with compact support modulo the center, characteristic function

of ZvKv for almost all v. Then the factor corresponding to place v for the function Φ can

be written:

Φv(a1, a2) = f0w

[∣∣∣∣∣ 0 a−1
1 a2

−1 a2

∣∣∣∣∣
]

(6.7.12)

Thus Φ is the product of expressions (6.7.9) and (6.7.12). In particular if Φ(a) is not zero

then a1−σ is in a compact set of ideles; we can then write a = mb, where m is in a fixed

compact set and b in the ideles of F . Moreover a is in a compact set of adeles of E. We

can therefore regard the function Φ as a Schwartz-Bruhat function of b, depending on the

parameter m. It follows that the integral (6.7.6) converges when the real part of s is large

enough. Similarly the integral from which we started can be written:∫
Φ(a)µ(a) da, C−1 < |a| < C. (6.7.13)

It therefore converges. We recall moreover the following result:

LEMMA 6.7.14. let ϕ be a Schwartz-Bruhat function. Then the following limit exists:

lim
C−→∞

∫ C

C−1

ϕ(b)η(b) db.

It is equal to the analytic continuation at point 0 of the integral∫
ϕ(b)|b|sη(b) db.

Finally this limit is equal to the product of the following factors:

(i) L(0, η);

(ii) for each inert place v:

L(0, ηv)
−1

∫
ϕv(b)ηv(b) db;

(iii) for each place v decomposed in E:

lim
s−→0

L(s, 1v)
−1

∫
ϕv(b)|b|s db = |av|1/2ϕv(0);
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where a denotes a differential idele of F . Almost all factors are equal to 1.

We apply this lemma, or rather a variant of this lemma with parameters, to the integral

(6.7.13). We first obtain that the integral (6.7.1), that is the integral of K1, has a limit

when C tends to infinity, equal to the value of the integral (6.7.4) at point 0. Moreover we

can calculate this limit as the product of the following factors, almost all equal to 1:

(i) L(0, η);

(ii) for each inert place v below a place w of E:

L(0, ηv)
−1

∫
f0w

[∣∣∣∣∣ 0 aσ−1

−1 aσ

∣∣∣∣∣
]
µw(a) da;

(iii) for each place v decomposed in E:

|av|1/2
∫
f0w

[∣∣∣∣∣ 0 a

−1 0

∣∣∣∣∣
]
µv1(a)

−1 da. (6.7.15)

Similarly using the fact that

P

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣n1r
]
=

∣∣∣∣∣−2a a1−σ

−1 0

∣∣∣∣∣
we find that the integral of K2 has a limit when C tends to infinity, equal to the product

of the following factors:

(i) L(0, η);

(ii) for each inert place v below a place w of E:

L(0, ηv)
−1

∫
f0w

[∣∣∣∣∣ a aσ−1

−1 0

∣∣∣∣∣
]
µw(a) da;

(iii) for each place v decomposed in E:

|av|1/2
∫
f0w

[∣∣∣∣∣ 0 a

−1 0

∣∣∣∣∣
]
µv1(a)

−1 da. (6.7.16)

We can also formulate these results in terms of the functions Uv for v inert and the functions

fv for v decomposed. We know that

Uv(x) =M1v(x
−1) + ηv(−x)M2v(x

−1), (6.7.17)

where the functions Miw are smooth near 0 and we have (Prop 3.5):

M1v(0) =

∫
f0w

[∣∣∣∣∣ 0 aσ−1

−1 aσ

∣∣∣∣∣
]
µw(a) da,

M2v(0) =

∫
f0w

[∣∣∣∣∣ a aσ−1

−1 0

∣∣∣∣∣
]
µw(a) da.
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Similarly the integral (6.7.15) (iii) above is nothing but

|av|1/2
∫
fv

[∣∣∣∣∣ 0 a

−1 0

∣∣∣∣∣
]
Ωv1(a) da,

and an analogous remark applies to (6.7.16) (iii).

6.8. We can summarize the preceding discussion as follows: for each inert place v we

have the orbital integral function Uv defined by (6.3.5) and the numbers Miw(0) defined

by (6.3.8); for each decomposed place v we have the function fv on the group GL(2, Fv)

defined by (6.3.8), as well as the function Uv defined in terms of fv by (6.3.9).

PROPOSITION. The integral∫ C

C−1

∫
K

(
resp

∫ C

C−1

∫
T ∗
2K if ε = 1

)
has a limit when C tends to infinity (resp. when c tends to infinity and then C tends to

infinity). The limit is equal to the sum of the following terms:

(1)
∑

µ ̸=0ΠvUv(µ)ΠΩv2(−ε);

(2) a term present only if Ω is the lift of a character λ of F×; it is the product of the

following factors:

(i) vol(N1A/N1F );

(ii) for each inert place v of F :

lim
x−→0,x∈−εN0v

Uvλ
−1
v (x)vol(N1v)

−1λ(−ε);

(iii) for each decomposed place v:∫
fv(a)λv(a)da, a ∈ A(Fv)/Z(Fv);

(3) two terms present only if ε = 1; each term is the product of the following factors where

index i takes values 1 or 2 depending on the term:

(i) L(0, η);

(ii) for each inert place v:

Miv(0)L(0, ηv)
−1;

(iii) for each decomposed place v:

|av|1/2
∫
fv

∣∣∣∣∣ 0 a

−1 0

∣∣∣∣∣Ωv1(a)da.
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7. Comparison

7.1. Now we fix an element ε0 of F×. If ε0 is a norm we assume ε0 = 1. We write G0

for the group Gε with ε = ε0. We consider a finite set S of places of F containing all

places at infinity, all places that ramify in E, and finally all finite places where ε0 is not a

unit. We denote by T the set of places of E which are above a place of E contained in S.

We furthermore assume that S is large enough so that ω is unramified outside S and Ω is

unramified outside T . As in §6, we consider a smooth function f on G(EA), transforming by

the inverse of ω′ under the center and with compact support modulo the center; the function

f is a product of local functions fw. For w not in T we assume that fw is Kw-invariant.

From the function f , we define for every inert place v a function Uv on F×
v and for every

decomposed place v a function fv on Gv as well as a function Uv; to do this we choose if v

is decomposed a numbering of the two places of E above v (6.3).

We choose on the other hand a system of representatives of the norm classes of the group

N0 in the multiplicative group of F . We assume that −ε−1
0 is in this system. For each ε in

this system we choose a function fε on the adelic group of Gε, transforming by the inverse

of the character ω under the center and with compact support modulo the center. The

function fε is a product of local functions fεv. If v decomposes into v1 and v2 then Gεv is

the group of pairs of matrices of Gv = GL(2, Fv) of the form:

(h1, h2) with h2 =

∣∣∣∣∣0 ε

1 0

∣∣∣∣∣h1
∣∣∣∣∣0 ε

1 0

∣∣∣∣∣
−1

. (7.1.1)

By transporting fv to Gεv by the isomorphism of Gεv onto Gv which sends the pair (h1, h2)

to h1 we can regard fv as a function on Gεv. We will take:

fεv = fvΩv2(−ε0)Ωv1(ε). (7.1.2)

If v is an inert place and w the unique place of E above v then we consider the orbital

integral function Hεw defined by fεw:

Hεw(x) = Ωw(u)

∫∫
fεw

∣∣∣∣∣ 1 uε

uσ 1

∣∣∣∣∣Ωw(t1)Ω
σ
w(t2)dt1dt2, (7.1.3)

if x is of the form εN(u) for at least one u,

Hεw(x) = 0 otherwise.

We choose fεw such that

Hεw(x) = Uv(x) if x ∈ εN0v. (7.1.4)

This is possible according to the results of §3. In particular if v is inert but not in S then

the function fw is Kw-invariant. It follows that Uv(x) = 0 if the valuation of x is odd

(lemma (4.7.2)). According to the choice of fεw, if ε is not a norm at place v, that is if

v(ε) is odd, then Hεw = 0. We will in fact take fεw = 0. Let fv be on the other hand

the Kv-invariant function which is the image of fw by the homomorphism (4.1.2); then fv
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transforms by the inverse of the character ωv under the center. If ε is a norm then we

choose an isomorphism of GL(2, Fv) onto Gεw and we take for fεw the image of fv by this

isomorphism, as it is possible to do according to Prop. (4.1). We denote by Kεw the image

of Kw by this isomorphism; it is thus a maximal compact subgroup of Gεw and the function

fεw is invariant under this group. If moreover ε is a unit at place v then we choose the

isomorphism such that Kεw is the intersection of Kw with Gεw (”privileged isomorphism”).

We note that fε = 0 if ε is not a norm in at least one place of F which is not in S. We

can therefore ignore such ε. The remaining ε, that is those which are norms at all places

not in S, form a finite set.

7.2. Let τ be a cuspidal representation of Gε(FA) of central character ω; it is thus a rep-

resentation of infinite dimension, by definition if ε is not a norm. Let ϕi be an orthonormal

basis of the representation space τ . We set:

Kτ (x, y) =
∑

ϱ(fε)ϕi(x)ϕi(y)
∗.

LEMMA 7.2.1. The series ∑
Kτ (x, y)

converges uniformly on any compact. Moreover if ε is a norm then the series converges

uniformly.

Proof. The series converges in any case in the space L2. On the other hand we know that

fε is a finite sum of convolution products f1 ∗ f ′ ∗ f2. By linearity we can assume that fε is

such a product. Denoting by K ′
τ the kernel associated to f ′ we have:

Kτ (x, y) =

∫
K ′

τ (h1.x, h2.y)f1(h1)f2(h
−1
2 )dh1dh2.

In other words, the series associated to fε is obtained by applying to the series associated

to f ′ convolution operators with smooth functions of compact support. In general these

operators send the space L2 into the space of smooth functions; if moreover ε is a norm

then these operators send the space of L2 and cuspidal functions into the space of bounded

continuous functions. The result follows. □

7.2.2. We will set:

(dihedral kernel)

Kε,die =
∑

Kτ , τ dihedral;

(proper kernel)

Kε,pro =
∑

Kτ , τ cuspidal non-dihedral;

(special kernel)

Kε,spe =
∑

Kτ , dim τ = 1;

(geometric kernel)

Kε(x, y) =
∑

fε(x
−1ξy), all ξ;
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(regular kernel)

Kε,reg(x, y) =
∑

fε(x
−1ξy), ξ regular;

(singular kernel)

Kε,sin(x, y) =
∑

fε(x
−1ξy), ξ singular.

Finally, we will denote by K1,eis the Eisenstein kernel associated to the group Gε and the

function fε, where ε is the unique element that is a norm in E. We thus have:

Kε,pro = Kε −Kε,spe −Kε,die −K1,eis, (7.2.3)

the last term being present only if ε is a norm.

We have on the other hand the kernel Kcusp associated to function f . The main result

of this work can then be stated as follows:

THEOREM 7.2. With the above notations we have:∑
ε

∫∫
Kεpro(t1, t2)Ω

−1(t1)Ω(t2)dt1dt2

=

∫∫
Kcusp

[
a 0

0 1

]
, hΩ−1(a)η(deth)dadh,

ti ∈ T (Fλ)/T (F )Z(Fλ), a ∈ E×
λ /E

×, h ∈ G0(F )Z(Fλ)\G0(Fλ)

7.3. We will calculate the left-hand side. For this, we integrate each term in the right-hand

side of (7.2.3) and sum over ε. We begin with the regular kernel. We have:

Kεreg(x, y) =
∑
N(ξ)

∑
τ1,τ2

fε

[
x−1τ1

∣∣∣∣∣ 1 ξε

ξσ 1

∣∣∣∣∣ τ2y
]
;

in the sum, each τi runs through T (F )/Z(F ) and N(ξ) runs through the norm group

deprived of point 1 if ε is a norm. It follows that the integral of the regular kernel is

written: ∫∫
Kreg =

∑
Ω(ξ)

∫
fε

[
t1

∣∣∣∣∣ 1 ξε

ξσ 1

∣∣∣∣∣ t2
]
Ω(t1)Ω

′(t2)dt1dt2,

the factor Ω(ξ) being in fact equal to 1. This integral decomposes into a product of local

integrals. The factor corresponding to an inert place v of F in E is by definition the

orbital integral of fεv evaluated at the point N(ξ)ε. By the very choice of fεv, this factor

equals Uv(N(ξ)ε). If on the contrary v is a place that decomposes into v1 and v2, then the

corresponding local factor is written:

Ωv1(ξ1)Ωv2(ξ2)Ωv2(−ε0)Ωv1(ε)∫
fv

[∣∣∣∣∣a1 0

0 a2

∣∣∣∣∣
∣∣∣∣∣ 1 ξ1ε

ξ2 1

∣∣∣∣∣
∣∣∣∣∣b1 0

0 b2

∣∣∣∣∣
]

Ωv1(a1)Ωv2(a2)Ωv1(b2)Ωv2(b1)dadb.
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Since the restriction of Ω to F is ω, the product Ωv1Ωv2 equals ωv. After a change of

variables, this integral is written:

Ωv2(−ε0)Ωv1(εξ1, ξ2)

∫
fv

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣
∣∣∣∣∣1 ξ1ξ2ε

1 1

∣∣∣∣∣
∣∣∣∣∣b 0

0 1

∣∣∣∣∣
]
Ωv1(a)Ωv2(b)dadb.

This is nothing other than

Ωv2(−ε0)Uv(εξ1, ξ2).

Writing µ for εN(ξ), we see that the integral of the kernel Kεreg is written∑
µ

∏
v

Uv(µ)
∏
v

Ωv2(−ε0),

where the sum is over all elements of εN0 different from 0; the first product is over all places

v of F and the second over those that decompose in E. Summing over all ε, we find:∑
ε

∫∫
Kεreg =

∑
µ

∏
v

Uv(µ)
∏
v

Ωv2(−ε0), (7.3.1)

the sum being over all elements µ of F except point 1. This is nothing other than term (1)

in proposition (6.8). We have thus proved the following proposition:

PROPOSITION 7.3. We have∫∫
Kreg =

∑
ε

∫∫
Kεreg.

7.4. We now move on to the integral of the singular kernel. According to the results of §2:

Kεsin(x, y) =
∑
τ

fε(x
−1τy) +

∑
τ

fε

(
x−1τ

∣∣∣∣∣0 ε

1 0

∣∣∣∣∣ y
)
,

where the sum is over all τ in T (F )/Z(F ). Therefore we find:∫∫
Kεsin =

∫∫
fε(t1t2)Ω(t1)Ω

′(t2)dt1dt2 +

∫∫
fε

[
t1

∣∣∣∣∣0 ε

1 0

∣∣∣∣∣ t2
]
Ω(t1)Ω

′(t2)dt1dt2,

where t1 is integrated over T (Fλ)/Z(Fλ) and t2 over T (Fλ)/T (F )Z(Fλ). Since Ω′ is in fact

the transform of Ω by the Galois automorphism σ, the second integral is written:

vol(T (Fλ)/Z(Fλ)T (F ))

∫
fε

[
t

∣∣∣∣∣0 ε

1 0

∣∣∣∣∣
]
Ω(t)dt. (7.4.1)

Similarly in the first integral, the integral of the character Ω1−σ is a factor; the integral is

therefore zero unless Ω is invariant by σ, that is unless it is the lift of a character λ. The

integral is then written

vol(T (Fλ)/Z(Fλ)T (F ))

∫
fε[t]λ(det t)dt. (7.4.2)
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We will calculate these integrals in terms of the local data fv and Uv. The integral (7.4.2)

is a product of local integrals. The factor corresponding to an inert place v is written:∫
fεv[t]λv(det t)dt.

According to proposition (3.1) this is nothing other than the limit of

vol(Tv/Zv)
−1Hεv(x)λv(x)

−1

for x tending to 0 in εN0v; by the very choice of fεv, this is the limit of

vol(Tv/Zv)
−1Uv(x)λv(x)

−1

for x tending to 0 in εN0v. However if x is small enough Uv(x) = 0, unless x is in −ε0N0v

(Prop. (3.4)). It follows that (7.4.2) is 0 unless ε is in −ε−1
0 N0v for all inert places v. This

condition means in fact that ε is in −ε−1
0 N0; there is thus only one such ε, namely ε−1

0 . On

the other hand, the factor corresponding to a place v decomposed into v1 and v2 is written:

Ωv2(−ε0)Ωv1(ε)

∫
fv

[∣∣∣∣∣a1 0

0 a2

∣∣∣∣∣
]
Ωv1(a1)Ωv2(a2)da1da2,

the integral being taken modulo the center. Since:

εε0 = −1 and µv1 = µv2 = λv

this is nothing other than: ∫
fv(a)λv(det a)da, a ∈ Av/Zv.

In total, the sum over all ε of the integrals (7.4.2) is zero unless Ω is the lift to E of a

character λ of F . If this is the case, this sum reduces to one term; in turn this term is

written as the product of the following factors:

(i) vol(E×
λ /F

×
λ E

×);

(ii) for each inert place v:

vol(E×
v /F

×
v )−1 limUvλ

−1
v (x)λ(−ε0), x −→ 0, x ∈ −ε0N0v;

(iii) for each place v decomposed in E:∫
fv(a)λv(det a)da, a ∈ Av/Zv. (7.4.3)

We now compare this result with expression (2) in proposition (6.8). Taking into account

the exact sequence:

1 −→ F× −→ E× −→ N1 −→ 1

where the second arrow is

x −→ x1−σ,

we see that the volumes are identical in the two expressions. The two expressions are

therefore themselves identical.
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7.5. We now move on to (7.4.1). The factor corresponding to an inert place v is written:∫
fεv

[∣∣∣∣∣a 0

0 aσ

∣∣∣∣∣
∣∣∣∣∣0 ε

1 1

∣∣∣∣∣
]
Ωv(a)da.

As we have seen (Prop. (3.1)) this is nothing other than the limit of

vol(Tv/Zv)
−1Hεv(x)

for x tending to infinity in εN0v. Still according to the choice of function fεv this is also the

limit of

vol(Tv/Zv)
−1Uv(x),

when x tends to infinity in εN0v. Now we know that for x large enough, Uv(x) is zero unless

ε0 is a norm (Prop. (3.4)). We conclude that (7.4.1) is zero unless ε0 is a norm at each

inert place v, that is unless ε0 is a norm; with the conventions made this implies ε0 = 1.

Under this hypothesis we know (loc. cit.) that the function Uv has the form:

Uv(x) =M1v(x
−1) + ηv(−x)M2v(x

−1),

where the functions Miv are smooth near 0. The above limit therefore has the form:

M1v(0) + ηv(−ε)M2v(0).

On the other hand, the factor corresponding to a place v that decomposes into v1 and v2 is

written:

Ωv2(−ε0)Ωv1(ε)

∫
fv

[∣∣∣∣∣a1 0

0 a2

∣∣∣∣∣
∣∣∣∣∣0 ε

1 0

∣∣∣∣∣
]
Ωv1(a1)Ωv2(a2)da1da2;

Since ε0 = 1, we obtain after a change of variables:∫
fv

[∣∣∣∣∣ 0 a

−1 0

∣∣∣∣∣
]
Ωv1(a)da.

Finally, we see that the integral (7.4.1) is zero unless ε0 = 1. If this is the case, this integral

equals the product of the following factors:

(i) vol(E×
λ /E

×F×
λ );

(ii) for each place v, decomposed:∫
fv

[∣∣∣∣∣ 0 a

−1 0

∣∣∣∣∣
]
Ωv1(a)da; (7.5.1)

(iii) for each inert place v under the place w of E:

vol(E×
w /F

×
v )−1[M1v(0) +M2v(0)ηv(−ε)]
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We will now show that the sum of the integrals (7.4.1) for all ε equals the sum of the two

terms 3 in proposition (6.8). By examining the terms in this proposition and comparing

them with the above expression, we see that it suffices to prove the following identity:

L(0, η)

{∏
v

M1v(0)L(0, ηv)
−1 +

∏
v

M2v(0)L(0, ηv)
−1

} ∏
v decomposed

|av|1/2

= vol(E×
λ /F

×
λ E

×)
∑
ε

∏
v

{M1v(0) +M2v(0)ηv(−ε)}vol(E×
w/F

×
v )−1.

In this formula, the products containing the functions Miv(0) are over the inert places.

Note that for almost all inert v we have Uv(x) = 1 if v(x) is even and x is large enough,

Uv(x) = 0 if v(x) is odd and x is large enough and ηv(−ε) = 1. These relations imply

that Miv(0) = 1/2. We also have L(0, ηv) = 1/2. We thus see that the products in the

left member have almost all their factors equal to 1. Let U be a set of inert places such

that the preceding conditions are satisfied for v not in U . For a given ε if v is not in U

and ηv(−ε) = 1 then the corresponding factor in the infinite product of the right member

corresponding to ε is 1. This already shows that the infinite products of the right member

have a meaning. On the other hand if ηv(−ε) = −1 for an inert v not in U , then the

corresponding factor is zero. Thus the product is zero for all −ε that is not a norm in at

least one place not in U . The sum is therefore finite.

To prove this identity we introduce a differential ideal b for E. The local volume that

appears in the formula is nothing other than:

2L(0, ηv)|bw|1/2|av|−1/2

while the global volume is 2L(1, η). Setting

Av =M1v(0)L(0, ηv)
−1, Bv =M2v(0)L(0, ηv)

−1

we see that the relation to be proved is a consequence of the following two relations:

|a|1/2L(0, η) = L(1, η)
∏
v

|bw|1/2,

1/2

{∏
v

Av +
∏
v

Bv

}
=
∑
ε

∏
v

1/2{Av + ηv(−ε)Bv}.

The first follows from the functional equation of the L-functions. The second is an exercise

in group theory (Cf. [Jac86, §10] ). We have thus finally proved the following result:

PROPOSITION 7.5. The sum of the integrals of the kernels Kεsin equals the sum of

terms (2) and (3) in proposition 6.8.
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7.6. The difference between the two members of the equality in theorem 7.2 is thus equal

to the difference of the contributions of the Eisenstein, special and dihedral terms. More

precisely, let U be a set of places of F containing S and let V be the set of places of E

above U . We suppose that ε0 and all the ε that effectively enter the formula are units at all

places not in U . We write fV for the product of fw with w in V and fV for the product of

fw with w not in V . Let π be a cuspidal representation of G(Eλ) with central character ω′

and admitting an invariant vector under the group KV , that is the product of groups Kw

for w not in V . Let ϕi be an orthonormal basis of the space of vectors fixed by KV ; we set

Kπ(x, y) =
∑
i

ϱ(fV )ϕi(x)ϕi(y)
∗.

We also denote by fV (π) the eigenvalue of the Hecke algebra associated to π:

ϱ(fV )ϕi = f V̂ (π)ϕi.

Then the cuspidal kernel has the following expression:

Kcusp(x, y) =
∑
π

f V̂ (π)Kπ(x, y),

the series being uniformly convergent. The integral of the cuspidal kernel can therefore be

written: ∫∫
Kcusp =

∑
π

f V̂ (π)A(π; fV ) (7.6.1)

with

A(π; fV ) =

∫∫
Kπ

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣ , h
]
Ω−1(a)dηω(deth)dh. (7.6.2)

Similarly, the contribution of the Eisenstein kernel is the sum of two terms (Cf. (5.6)). The

first is written: ∑
χ

∫
A(µ, χ, χ′)f V̂ (µ, χ, χ′)dµ (7.6.3)

where A(·, ·, ·) denotes an appropriate function and the second factor is the eigenvalue f V̂ (π)

for the representation π = π(αuχ, αuχ′), the sum being over all characters χ which are lifts

and χ′ is the product of ω′ by the inverse of χ. The other term is written:∑
χ

f V̂ (0, χ, χ′)A(χ, χ′), (7.6.4)

the sum being over all characters χ which are not lifts and whose restriction to F is ωη and

A(·, ·) denotes an appropriate constant. The contribution of the special kernel is written:

fV (Ω)A (7.6.5)

where we write Ω for the representation Ω0 det and A is an appropriate constant.
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Similarly for each ε we consider the functions fεU and fUε . We have a decomposition of

the kernel Kεcus:

Kεcus =
∑
V

fUε (σε)Kσε , Kσε(x, y) =
∑
i

ϱ(fUε )ϕi(x)ϕ
∗
i (y),

where the first sum is over all cuspidal representations σε having an invariant vector under

the compact group KU
ε and ϕi runs through an orthonormal basis of the space formed by

these vectors. By integrating this kernel we therefore obtain:∫∫
Kεcus =

∑
σε

f Ûε (σε)a(σε, fεU ), (7.6.6)

where we have set:

a(σε, fεU ) =

∫∫
Kσε(t1, t2)Ω(t1)Ω

′(t2)dt1dt2. (7.6.7)

We now sum the integrals (7.6.4) over all ε. For a given representation σε, there exists

a cuspidal representation ε of G(Fλ) which corresponds. For v not in U and inert under

w, we have denoted fv the image of fw by the Hecke homomorphism. For v not in S and

decomposed into v1 and v2, we have defined a function fv on Gv. Given the choices made,

we see that:

f Û (σ) = f Ûε (σε). (7.6.8)

Making the announced sum, we get:∫∫
Kεpro =

∑
σ

f Û (σ)
∑
ε

a(σε, fεU ). (7.6.9)

The first sum is over all cuspidal representations σ of G(Fλ) that are not dihedral for the

extension E and the second over all ε that are norms at all places not in S and such that

there exists a cuspidal representation of Gε corresponding to σ.

We have also defined dihedral kernels. They have expressions analogous to the above and

the sum of the integrals of the dihedral kernels is written:∑
ε

∫∫
Kεdie =

∑
σ

f Û (σ)
∑
ε

a(σε, fεU ). (7.6.10)

where the first sum is now over all dihedral cuspidal representations.

The integral of the Eisenstein kernel (for ε a norm) is similarly written:∫∫
K1eis =

∑
χ

∫
f Û (u, χ, χ′)a(u, χ, χ′)du. (7.6.11)

Finally the special kernel is written:

Kεspe(x, y) =
∑
λ

∫
λ(det g)fε(g)dgλ(detx)λ

∗(det y)V −1, (7.6.12)
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where the sum is over all characters λ whose square is ω and V denotes the volume of

the quotient G(Fλ)/G(F )Z(Fλ). Integrating this we find 0 unless Ω is the lift to E of a

character λ. Then Ω is also the lift of ηλ and we can write the integral as a sum:∫∫
Kεspe = f Û (λ)a1 + f Û (λη)a2. (7.6.13)

where a1 and a2 are appropriate constants. We now note that if σ lifts to π then

f V̂ (π) = f Û (σ). (7.6.14)

Indeed if v is a place of F , inert and not in U , under w then we have:

f̂w(πw) = f̂v(σv),

because πw is the lift of σv. If on the contrary v decomposes into v1 and v2 then taking into

account that ε is a unit at place v we have:

fv(g) =

∫
fv1(gh)fv2(h)ωv(deth)dh.

Since the contragredient representation of σv is its tensor product with the inverse of its

central character and since

πv1 ≃ πv2 ≃ σv

we see that

f̂v(πv) = f̂v1(πv)fv2(πv) = f̂v1(πv1)f̂v2(πv2).

The relation (7.6.14) follows from these identities. Similarly, we have:

f V̂ (u, χ, χ′) = f Û (u, λ, λ′)

if χ is the lift of λ, and

f V̂ (Ω) = f Û (λ)

if Ω is the lift of λ. Finally if σ is dihedral, there exists a character χ of E whose restriction

to F is ωη and such that π(0, χ, χ′) is the lift of σ. We then have:

f V̂ (0, χ, χ′) = f Û (σ).

We now consider the difference of the two members in proposition (7.2). According to what

precedes, it is a linear combination of the differences of expressions (7.6.1) and (7.6.9),

(7.6.3) and (7.6.11), (7.6.4) and (7.6.10), (7.6.5) and (7.6.13). According to the preceding

equalities, the difference of (7.6.3) and (7.6.11) has the form (7.6.3), with a different function

A. Similarly, the difference of (7.6.5) and (7.6.13) has the form (7.6.5), with another

constant A. Again similarly the difference of (7.6.4) and (7.6.10) has the form (7.6.4) with

a different constant A. Finally since every σ admits a lift the difference of (7.6.1) and (7.6.9)

also has the form (7.6.1). First, as in the ”Base Change”, we use the fact that a continuous

measure cannot be equal to a discrete measure to show that the difference of (7.6.3) and

(7.6.11) is zero. We then apply the principle of infinite linear independence of characters to
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show that each of the differences is in fact zero. In particular the terms (7.6.1) and (7.6.9)

are equal which finally proves the sought assertion.

7.6. We now prove the fact that the first Waldspurger condition implies the second. We

thus consider a proper cuspidal representation σ of G(FA) of central character ω and we

denote π its lift to E. We suppose that L(1/2, π ⊗ Ω−1) is not zero. There thus exists a

K-finite function ϕ in the space of π such that the following integral is not zero:∫
ϕ

[
a 0

0 1

]
Ω−1(a)da.

On the other hand [HLR86] we know that there exists a K-finite function ϕ′ in the space

of π such that the following integral is non zero:∫
ϕ′(h)ηω−1(deth)dh, h ∈ G1(FA)/Z(FA)G1(F ).

We apply the above result with ε0 = 1. We choose S and U large enough so that the

functions ϕ and ϕ′ are KV invariant. It is then clear that we can choose the function fV

such that A(π, fV ) is not zero. We know that the set of representations of which π is the

lift is composed of σ and its tensor product with the character η. By applying again the

linear independence of characters we obtain:

A(π, fv) =
∑

a(σv, fU ) +
∑

a(σv ⊗ η, fU ).

Each sum extends over all ε such that there exists a cuspidal representation σε of Gε

corresponding to σ. There exists therefore at least one ε such that a(σε, fεU) or a(σε ⊗
η, fεU) is non zero. In both cases this implies the existence of a function ϕ in the space of

σε such that the following integral is non zero:∫
ϕ(t)Ω−1(t)dt.

The second Waldspurger condition is therefore satisfied.
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