
ON A RESULT OF WALDSURGER

HERVÉ JACQUET

Abstract. This is a translation of Hervé Jacquet’s 1986 paper ” Sur un résultat de

Waldspurger”, published in Annales scientifiques de l’É.N.S. 4e série. The translation

was accomplished with AI. Any errors or inaccuracies are my responsibility. For typos,

corrections, or suggestions, please contact yluo237@wisc.edu.

0. Introduction

0.1. We will provide a new proof of a remarkable result by Waldspurger ([Wal85, Theorem

2]). Waldspurger’s proof relies on the properties of the Weil representation. Ours relies on

a variant of the trace formula. We hope it will be of interest.

Let us first recall the result. Let F be a field of numbers, E a quadratic extension of F , η

the character of the ideal class group of F attached to E. Let us consider the group GL(2)

as an algebraic group G defined over F ; let Z be its center. Let A be a maximal split torus

in G, say, to fix ideas, the group of diagonal matrices. Let π be an automorphic cuspidal

representation of the group G(FA), trivial on the center Z(FA). We will say that π satisfies

the first Waldspurger condition (abbreviated W1) if there exist automorphic forms ϕ1 and

ϕ2 in the space of π such that the following integrals are non-zero:

(0.1.1)

∫
ϕ1(a)da,

∫
ϕ2(a)η(det a)da, a ∈ A(FA)/Z(FA).

Let us introduce on the other hand the set X(E : F ), or simply X, of isomorphism classes

of pairs (G′, T ′), where G′ is an inner form of G and T ′ a maximal torus of G′, isomorphic

over F to the multiplicative group of E. Recall that such a pair is obtained by means of

a pair (H,L), formed of a simple algebra H of rank four over F and a sub-field L of H

F -isomorphic to E, by taking for G′ the multiplicative group of H and for T ′ that of L.

The center of G′ will be denoted Z ′. We will identify the set X with one of its systems

of representatives. Let us also note X(π) the set of triplets (G′, T ′, π′), where the pair

(G′, T ′) is in X and π′ is a cuspidal automorphic representation of G′(FA) related to π by

the condition of [JL70, Th. (15.1)]; let us recall that this condition can be stated as follows:

there exists a finite set S of places of F such that, for v not in S, the groups Gv and G′
v

are isomorphic and the representations πv and π′v equivalent, after identification of the two

groups. We will say that π satisfies the second Waldspurger condition (W2) if there exists
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a triplet (G′, T ′, π′) in X(π) and an automorphic form ϕ in the space of π′ such that the

following integral is non-zero:

(0.1.2)

∫
ϕ(t)dt, t ∈ T ′(FA)/Z

′(FA).

Then:

Theorem (Waldspurger). Conditions W1 and W2 are equivalent.

0.2. Let us outline our demonstration. First, we can identify the set of double classes

A\G/A with the disjoint union of double classes T ′\G′/T ′ (§1). To be precise, for this

identification we must limit ourselves to ”regular” double classes. This leads us to consider

a smooth function with compact support f on G(FA)/Z(FA) and, for each (G′, T ′), a smooth

function with compact support f ′ on G′(FA)/Z
′(FA). In fact, f ′ will be zero for almost

all (G′, T ′). To the function f is associated the cuspidal kernel Kc and similarly to each

function f ′ is associated a cuspidal kernel K ′
c. The conditions imposed on these functions

are such that (§7 to §10):

(0.2.1)

{ ∫∫
Kc(a, b)daη(det b)db =

∑
(G′,T ′)

∫∫
K ′

c(s, t)dsdt,

a, b ∈ A(FA)/A(F )Z(FA), s, t ∈ T ′(FA)/T
′(F )Z ′(FA)

The relationship between f and the f ′ is as follows. These functions are naturally products

of local functions. If v is a place of F that decomposes in E then for all (G′, T ′) the groups

G′
v and Gv are the ”same” and we take for fv and f ′v the ”same” function. Suppose on the

contrary that v decomposes. Then the set X(Ev : Fv) is still defined but it is reduced to

two elements (Gvi, Tvi), i = 1, 2, with Gv1 split. We can still identify the regular double

classes of Av with the disjoint union of regular double classes of T1 and T2. We show that

for a given function f there exist functions fi on Gi such that∫∫
f(agb)daηv(det b)db =

∫∫
fi(sg

′t)dsdt,

a, b ∈ Av/Zv,s, t ∈ Tiv/Ziv,

if g corresponds to g′ (§2 to 4) (The exact statement is slightly different since the left-

hand side is not quite a function on the set of double classes). If moreover the situation is

unramified and fv is a Hecke function then we can take and do take f1 = fv and f2 = 0

(§5). The condition is now that f ′v = fi if G′
v = Gi. Waldspurger’s result follows easily

from identity ((0.2.1) (cf. §1.1). Paragraph 6 contains auxiliary results.

The method of demonstrating formula (0.2.1) is based on a generalization of the trace

formula which can be stated as follows. Let G be a semi-simple group defined over F and

A, B subgroups of G defined over F , λ and µ characters of A(FA)/A(F ) and B(FA)/B(F )

respectively. Let us consider a smooth function f on G(FA)/G(F ) with compact support

and calculate the following integral:∫∫
Kc(a, b)λ(a)µ(b)dadb
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where Kc is the cuspidal kernel attached to f . This kernel has a complicated expression

which contains in any case the sum:∑
ξ

f(x−1ξy), ξ ∈ G(F ).

Let us choose a system of representatives for the double classes of groups A(F ) and B(F ).

On the other hand, if η is an element of G(F ), let Hη be the subgroup of A×B formed of

pairs (α, β) such that α−1ηβ = η. Then any element of G(F ) can be uniquely written in

the form:

ξ = α−1ηβ η ∈ A(F )\G(F )/B(F ), (α, β) ∈ Hη(F )\A(F )×B(F ).

By imitating the usual formal calculation, we immediately arrive at the following expression

for the above integral:∑
η vol(Hη(F )\H(FA))

∫∫
f(a−1ηb)λ(a)η(b)dadb,

a ∈ A(F )\A(FA), b ∈ B(F )\B(FA),

the sum being over all η such that λ(a)µ(b) = 1 if a−1b = 1. Of course, we have ignored

the convergence problems and the existence of other terms in the expression for Kc.

0.3. I wish to thank the Institute for Advanced Study and its permanent members for

their hospitality, as the major part of this work was written during my stay at the Institute,

during the special year 1983-1984 on L-functions. In particular, I thank Langlands for the

interest he has taken in this work. Finally, I owe much gratitude to Piatetski-Shapiro who

was also at the Institute that same year. His deep knowledge of Waldspurger’s work has

been very helpful to me; moreover, a conversation with Piatetski-Shapiro was the starting

point of this work.

1. Double classes

1.1. In this paragraph F will be an arbitrary field, say of characteristic zero, and E a

quadratic extension of F . We will denote by N(E : F ) or simply N the subgroup of norms

of E in the multiplicative group of F . The set X(E : F ) or simply X introduced in the

paragraph is still defined. Let us consider one of its elements (G,T ). There exists therefore

a simple algebra H of rank 4 over F and a sub-field L of H isomorphic to E such that G

is the multiplicative group of H and T that of L. We propose to give a parametrization of

the double classes T\G/T . To this effect let ε be an element of the normalizer N(T ) of T

that is not in T . Then every h in H can be written uniquely in the form:

(1.1.1) h = h1 + εh2, where hi ∈ L.

On the other hand, if zßz−1 denotes the unique non-trivial F -automorphism of L then:

(1.1.2) εzε−1 = z−1.
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The square c = ε2 is in Z, or in other words, in F . Moreover, the class of c modulo N is

determined by the isomorphism class of the pair (G,T ) and, reciprocally, determines it.

Let us define two involutions j+ and j− of H by the formulas:

(1.1.3) j±(h) = h−1 ± εh2 where h is as in (1.1.1).

It is easy to verify that these are the only involutions of H which induce on L the unique

non-trivial F -automorphism of L. For h in G we will set:

(1.1.4) X(h) =
(1/2 tr(hj+(h))

(1/2 tr(hj−(h))

Since the denominator of this fraction is nothing other than the reduced norm of h, X(h)

is a well-defined element of F depending only on the double class of h modulo T . We will

also introduce the function P (h : T ) or simply P (h) defined by

(1.1.5) X(h) =
1 + P (h)

1− P (h)
,

or alternatively

(1.1.6) P (h) = ch2h
−
2 (h1h

−
1 )

−1, c = ε2.

Thus P is a function with values in the projective line that is constant on the double classes

of T in G. Note however that according to the preceding formula, if P (h) is neither zero

nor infinite, then it is an element of the class cN determined by the pair (G,T ). Moreover,

P (h) cannot equal one, as this would make X(h) infinite. We will say that h (or its double

class) is T -singular if P (h) is zero or infinite, T-regular in the contrary case.

Proposition. Two elements h and h′ of G have the same double class modulo T if and

only if P (h) = P (h′). Moreover, if x is in cN and different from 1, then there exists an h

in G such that P (h) = x.

The proof is left to the reader.

1.2. The following proposition justifies the use of the term T -regular:

Proposition. Suppose h is T -regular. Then the relations

sht = hz, s ∈ T, t ∈ T, z ∈ Z

imply

s ∈ Z, t ∈ Z, st = z.

The proof is left to the reader.
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1.3. What precedes applies “mutatis mutandis” to a pair of the form (G,A) where G is

the group GL(2) and A a maximal split torus, say the group of diagonal matrices in G.

Then H is the algebra of 2 by 2 matrices, L the subalgebra of diagonal matrices and we

can take

ε =

∣∣∣∣∣0 1

1 0

∣∣∣∣∣ , c = 1.

The functions X and P (· : A) (or simply P ) are defined as above. In particular:

P (h) = bc(ad)−1, if h =

∣∣∣∣∣a b

c d

∣∣∣∣∣ .
They are constant on the double classes of A in G. Again P cannot take the value 1. We

will still say that an element h of G is A-singular if P (h) is zero or infinity, A-regular in the

contrary case. There are now 6 A-singular double classes: the classes on which P takes the

value zero:

(1.3.1) T, Tn+T, Tn−T, where n+ =

∣∣∣∣∣1 1

0 1

∣∣∣∣∣ , n− =

∣∣∣∣∣1 0

1 1

∣∣∣∣∣ ,
and the classes on which P takes the value infinity:

(1.3.2) εT, Tεn+T, Tεn−T.

Thus P does not allow us to distinguish these classes from each other.

However P separates the A-regular classes:

Proposition. Let h and h′ be A-regular elements of G. Then h and h′ are in the same

class if and only if P (h) = P (h′). If x is in F different from 1 and 0, then there exists an

A-regular element h such that P (h) = x.

We will leave the proof to the reader.

1.4. We also have the analog of proposition 1.2:

Proposition. Suppose h is A-regular. Then the relations

ahb = hz, a ∈ A, b ∈ A, z ∈ Z

imply

a ∈ Z, b ∈ Z, ab = z.

We will leave the proof to the reader.
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2. Orbital integrals: case of a compact torus

2.1. Let’s keep the notations from paragraph 1 but now suppose that F is a local field.

Then T/Z is compact. Let’s choose once and for all a non-trivial additive character ψ of

F . Let’s equip the additive group F with the self-dual measure dx for the character ψ, the

multiplicative group F× with the measure L(1, 1F )|x|−1dx (Tamagawa relative measure to

ψ). Similarly, let’s equip the multiplicative group E× with the Tamagawa measure relative

to the character ψ ◦ tr. By transport of structure, we obtain measures on T and Z. Let’s

equip T/Z with the quotient measure. Let f be a smooth function with compact support

on G/Z. Let us set:

(2.1.1) H(g : f : T ) =

∫∫
f(sgt)dsdt, s, t ∈ T/Z.

It is clear that H(g : f : T ) depends only on the double class of g modulo T . Let x be

an element of F×. If there exists g in G such that P (g : T ) = x, we will set H(x : f :

T ) = H(g : f : T ). Otherwise, we will set H(x : f : T ) = 0. We thus obtain a function

H(f : T ) on F× and we propose to characterize the functions H on F× that are of the form

H = H(f : T ) for an appropriate function f .

2.2. Let us therefore consider a function H = H(f : T ). By definition H vanishes, thus

is smooth, on the complement of cN . Consider a point x of the form P (h : T ). Since the

norm is a submersive application from E× to F×, the application g → P (g : T ) is a fortiori

submersive at point h. It follows that H is smooth at point x. Finally, let us suppose that

1 is in cN (that is to say that the group G is split); we can then suppose that c = 1. We

are going to show that H is zero in the neighborhood of 1.

Since f has compact support modulo Z, there exists a compact subset C of G such that

H(g : f : T ) ̸= 0 implies g ∈ TCT . It will therefore suffice to show the existence of a

number K such that the relation g ∈ TCT implies |P (g : T ) − 1| > K. Suppose that no

such number exists. Then there would exist a sequence gi of elements of TCT such that

P (gi : T ) tends to 1. After enlarging C and multiplying the elements of the sequence by

elements of T we can suppose that

gi = 1 + εti = cizi

with ti in T , ci in C and zi in Z. Then

P (gi : T ) = tit
−
i = 1 + ai

and ai tends to zero. On the other hand we have:

det gi = −ai, and det gi = (zi)
2 det ci.

Therefore zi tends to zero. The same is thus true of gi. Since the projection of gi on L is

1, this gives us a contradiction.
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2.3. Let us examine the behavior of the function H in the neighborhood of zero and in the

neighborhood of infinity. We are going to show that there exists a neighborhood U of 0 in

F and a smooth function A on U such that:

(2.3.1) H(x) = A(x)(1 + η(cx)), for x ∈ U,

(2.3.2) 2A(0) = vol(T/Z)

∫
f(t)dt.

Similarly, we will show that there exists a neighborhood U of 0 in F and a smooth function

B on U such that:

(2.3.3) H(x) = B(x−1)(1 + η(cx)), for x−1 ∈ U,

(2.3.4) 2B(0) = vol(T/Z)

∫
f(εt)dt.

Indeed, since P (εg : T ) = P (g : T )−1 we have:∫∫
f(sεgt)dsdt = H(x−1 : f : T )

or alternatively:

H(x−1 : f : T ) = H(x : f ′ : T ) with f ′(g) = f(εg).

It will therefore suffice to prove the assertions relating to the zero point. It will be convenient

to first deal with the non-archimedean case. Take an x in cN . Then x = cll− where x = P (h)

with h = 1 + εl. We can therefore write:

H(x : f : T ) =

∫∫
f [t1(1 + εl)t2]dt1dt2

or after a change of variables:

(2.3.5) H(x : f : T ) =

∫∫
f

[(
1 + εl

t1
t1

)
t2

]
dt1dt2.

Since f is smooth there exists an ideal V of E such that for l in V we have:

f(g) = f [(1 + ε)g] for all g.

There exists then an ideal U in F such that ll− ∈ U is equivalent to l ∈ V . For x in cU we

therefore have H(x) = 0 if x is not in cN ; if on the contrary x is in cN then x = cl− with l

in V and we have according to formula (2.3.5):

H(x) = vol(T/Z)

∫
f(t)dt.

Our assertion is then immediate.

Let’s move on to the archimedean case. Then F is the field of real numbers and L the

field of complex numbers. Let K(x) = H(cx). Let V be a disk {z | zz− < a} in L such that
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1+ εV is contained in G. Then the second member of (2.3.5) defines a smooth function on

V , say C(l), depending only on the norm of l. We have

K(x) = 0 if x < 0,

K(x) = C(l) if x > 0 and x = ll− with l in V.

In particular the restriction of C to the real axis is smooth and even and we have

K(x) = 0 if x < 0,

K(x) = C(y) if 0 < x < a and x = y2 with l with y real.

The content of our assertion is the existence of a smooth function D on F such that D(x) =

K(x) for a > x > 0. It is therefore a consequence of a Whitney theorem.

2.4. The preceding properties characterize the functions H(f : T ):

Proposition. Let H be a function on F×. For there to exist a smooth function with compact

support f on G/Z such that H = H(f : T ), it is necessary and sufficient that the following

conditions be satisfied:

(1) H is zero in the complement of cN ;

(2) H is zero in a neighborhood of point 1;

(3) there exists a smooth function A on a neighborhood of 0 in F such that, for x near 0,

we have:

H(x) = A(x)(1 + η(cx));

(4) there exists a smooth function B on a neighborhood of 0 in F such that for |x| sufficiently

large we have:

H(x) = B(x−1)(1 + η(cx)).

Finally if f , A and B satisfy these conditions then:

2A(0) = vol(T/Z)

∫
f(t)dt, 2B(0) = vol(T/Z)

∫
f(εt)dt.

We have just shown that conditions (1) to (4) are necessary. We will leave to the reader

the task of showing that they are also sufficient. The last assertion of the proposition was

proved in number (2.3).

3. Orbital integrals: case of a split torus

3.1. In this paragraph F is a local field, E a quadratic extension, η the quadratic character

of F× attached to E, G the group GL(2) and A the subgroup of diagonal matrices. Let us

further equip F× with the Tamagawa measure, (F×)2 with the tensor product of Tamagawa

measures of the factors. By transport of structure we obtain a measure on A. Let us equip
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A/Z with the quotient measure. If f is a smooth function with compact support on G/Z

and g is A-regular in G we will set:

(3.1.1) H(g : f : A) = H(g : f : 1) =

∫∫
f(agb)dadb, a, b ∈ A/Z,

(3.1.2) H(g : f : η) =

∫∫
f(agb)daη(det b)dadb, , a, b ∈ A/Z.

The first integral only depends on P (g : A) and we shall denote by H(x : f : A) or

H(x : f : 1) its value at a point g such that P (g : A) = x. We shall also set H(1 : f : A) =

H(1 : f : 1) = 0. For x in F different from 0 and 1 we shall define a matrix g(x) by:

(3.1.3) g(x) =

∣∣∣∣∣1 x

1 1

∣∣∣∣∣ .
Then P (g(x)) = x so that we have defined a section of the space of double classes of A in

G. We shall set H(x : f : η) = H(g(x) : f : η) if x is different from 1 and 0; H(x : f : η) = 0

if x = 1. Let us set:

(3.1.4) w =

∣∣∣∣∣0 −1

1 0

∣∣∣∣∣ .
Let N be the group of strictly upper triangular matrices and N ′ the group of strictly lower

triangular matrices. Then we have a covering of G by two open sets:

(3.1.5) G = ANN ′ ∪ANwN.

We can therefore write f as a sum f1+ f2 where f1 has its support in the first open set and

f2 in the second. Let us set

(3.1.6) ϕ(g) =

∫
f(ag)da, a ∈ A/Z

and define ϕ1 and ϕ2 similarly. Then ϕ is left invariant under A and has compact support

modulo A. The same is true for ϕ1 and ϕ2 and ϕ = ϕ1 + ϕ2. Moreover, the functions ϕ1

and ϕ2 defined by

(3.1.7) Φ1(u, v) = ϕ1

[∣∣∣∣∣1 u

0 1

∣∣∣∣∣×
∣∣∣∣∣1 0

v 1

∣∣∣∣∣
]
,

(3.1.8) Φ2(u, v) = ϕ2

[∣∣∣∣∣1 u

0 1

∣∣∣∣∣w
∣∣∣∣∣1 v

0 1

∣∣∣∣∣
]

have compact support on F × F . Since

g(x)

∣∣∣∣∣a 0

0 1

∣∣∣∣∣ =
∣∣∣∣∣a(1− x) 0

0 1

∣∣∣∣∣×
∣∣∣∣∣1 a−1(1− x)−1x

0 1

∣∣∣∣∣×
∣∣∣∣∣1 0

a 1

∣∣∣∣∣(3.1.9)

=

∣∣∣∣∣1− x 0

0 a

∣∣∣∣∣×
∣∣∣∣∣1 a(1− x)−1

0 1

∣∣∣∣∣w
∣∣∣∣∣1 a−1

0 1

∣∣∣∣∣ ,
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for x different from 0 and 1:

(3.1.10) H(x : f : A) =

∫
Φ1[a

−1(1− x)−1x, a]dxa+

∫
Φ2[a(1− x)−1, a−1]dxa.

To prove the convergence of our integral, we can assume f positive. Then the previous

calculation is justified. In the right-hand side of (3.1.10) the integrands have compact

support in F× and thus give convergent integrals. Therefore H is convergent and equal to

(3.1.10). Similarly, we have, for x different from 0 and 1:

(3.1.11) H(x : f : η) =

∫
Φ1[a

−1(1− x)−1x, a]η(a)dxa+

∫
Φ2[a(1− x)−1, a−1]η(a)dxa.

3.2. We shall study the properties of the functions H(f : η). Formula (3.1.11) already

shows that H(x : F : η) is a smooth function at any point x different from 0 and 1. On the

other hand, if Φ1 and Φ2 have their support in the set of (x, y) such that |x| < C, |y| < C

then in the second integral we have, on the support of Φ2, |a(1− x)−1| < C and |a−1| < C

which gives: C−2 < |1− x| if the second integral is not zero. Similarly, if the first integral

is not zero we find |(1−x)−1x| < C2, which also implies D < |1−x| for a suitable constant

D. It follows that H(x : f : η) is zero in a neighborhood of 1. We can therefore consider

formula (3.1.11) as valid for all x not equal to zero.

Let us now study H(f : η) in the neighborhood of 0. In (3.1.11) the second integral is

evidently a smooth function of x at point 0. To study the first integral we will use the

following lemma, whose proof is left to the reader:

Lemma. Let Φ be a Schwartz-Bruhat function of two variables. Then there exist two

Schwartz-Bruhat functions of one variable A1 and A2 such that for all x different from 0

we have: ∫
Φ(a−1x, a)η(a)dxa = A1(x) +A2(x)η(x).

If F is real and Φ is given with compact support, we can take A1 and A2 with compact

support.

Let us return to the first integral of (3.1.11). Using the notation from the proof of the

lemma, the integral is equal to

(3.2.1) A1(x(1− x)−1) +A2(x(1− x)−1)η(x(1− x)−1).

If x is sufficiently close to 0 then 1 − x is a norm and η(x(1 − x)−1) = η(x). Moreover,

A1(x(1−x)−1) is a smooth function of x in a neighborhood of 0. Since the second integral of

(3.1.11) is evidently smooth at point 0, we conclude that, in a neighborhood of 0, H(x : f : η)

has the following form:

(3.2.2) H(x : f : η) = A1(x) +A2(x)η(x)

where Ai, i = 1, 2, is smooth.

To study H(x : f : η) for large |x| let us note that
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εg(x) = g(x−1)

∣∣∣∣∣1 0

0 x

∣∣∣∣∣ if ε =

∣∣∣∣∣0 1

1 0

∣∣∣∣∣ .
It follows that

(3.2.3) H(x−1 : f : η) = H(x : f ′ : η)η(x) with f ′(g) = f(εg).

There exist therefore two functions Bi, i = 1, 2, defined in a neighborhood of 0 and smooth,

such that:

(3.2.4) H(x : f : η) = B1(x
−1) +B2(x

−1)η(x)

for |x| sufficiently large.

3.3. In summary:

Proposition. Let H be a function on F× such that there exists a smooth function with

compact support f on G/Z with H(x : f : η) = H(x). Then:

(1) H is smooth on F×;

(2) H vanishes on a neighborhood of 1;

(3) there exists a neighborhood U of 0 and two smooth functions Ai, i = 1, 2, in U such

that, for x near 0, we have:

H(x) = A1(x) +A2(x)η(x);

(4) there exists a neighborhood U of 0 and two smooth functions Bi, i = 1, 2, in U such

that, for |x| sufficiently large, we have:

H(x) = B1(x
−1) +B2(x

−1)η(x).

3.4. We shall discuss the significance of the zero values of functions Ai and Bi from propo-

sition (3.3). For this purpose, let us first recall that, if Φ is a Schwartz-Bruhat function on

F , then the integral: ∫
ϕ(x)|x|sdxx,

or rather its analytic continuation, has a pole at point s = 0; the residue at this point has

the form CΦ(0), where the constant C depends on the choice of the Haar measure on the

group F×. On the other hand, the integral:∫
ϕ(x)|x|sη(x)dxx

has a holomorphic extension at point zero and its value at this point will still be denoted

as an integral: ∫
ϕ(x)η(x)dxx.
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We shall introduce the following quantities:

(3.4.1) H(n+ : f : η) =

∫∫
f

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣×
∣∣∣∣∣1 b

0 1

∣∣∣∣∣
]
dxaη(b)dxb,

(3.4.2) H(n− : f : η) =

∫∫
f

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣×
∣∣∣∣∣1 0

b 1

∣∣∣∣∣
]
dxaη(b)dxb,

(3.4.3) H(εn+ : f : η) =

∫∫
f

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣ ε
∣∣∣∣∣1 b

0 1

∣∣∣∣∣
]
dxaη(b)dxb,

(3.4.4) H(εn− : f : η) =

∫∫
f

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣ ε
∣∣∣∣∣1 0

b 1

∣∣∣∣∣
]
dxaη(b)dxb.

In general these integrals are divergent, but they can be interpreted as recalled above. For

example, the first integral is the value at point 0 of the meromorphic function which, for

Re s > 0, is given by the convergent integral:

(3.4.5)

∫∫
f

[∣∣∣∣∣a 0

0 1

∣∣∣∣∣
∣∣∣∣∣1 b

0 1

∣∣∣∣∣
]
dxaη(b)|b|sdxb.

Let us note however that if f has its support in the open set ANwN then integrals (3.4.1)

and (3.4.2) are convergent. In fact integral (3.4.1) is zero since AN does not intersect

ANwN . On the other hand, the intersection of AN ′ with a compact set contained in

ANwN is a compact set disjoint from A. It follows that in (3.4.2) the integrand has compact

support in F××F× and the integral therefore converges trivially. Similarly integrals (3.4.3)

and (3.4.4) converge if f has its support in ANN ′.

Proposition. With the above notations and those of proposition (3.3) we have:

(3.4.6) H(n+ : f : η) = A2(0)

(3.4.7) H(n− : f : η) = A1(0)

(3.4.8) H(εn+ : f : η) = B1(0)

(3.4.9) H(εn− : f : η) = B2(0).

Proof. Let us prove assertions (3.4.6) and (3.4.7). According to (3.4.1), it suffices to give

the proof when f has its support in ANN ′ or in ANwN . First suppose that f has its

support in ANwN . Then (cf. (3.1.9) and (3.1.11):

(3.4.10) H(x : f : η) =

∫
Φ[a(1− x)−1, a−1]η(a)dxa

12



where

(3.4.11) Φ(u, v) = ϕ

[∣∣∣∣∣1 u

0 1

∣∣∣∣∣w
∣∣∣∣∣1 v

0 1

∣∣∣∣∣
]
,

(3.4.12) ϕ(g) =

∫
f(ag)da, a ∈ A/Z.

Since H is smooth at zero we have A2 = 0 and A1 = H(f : η). Then:

A1(0) =

∫
ϕ

[∣∣∣∣∣1 a

0 1

∣∣∣∣∣w
∣∣∣∣∣1 a−1

0 1

∣∣∣∣∣
]
η(a)dxa.

Taking into account that f is invariant under the center we can write this in the form:

A1(0) =

∫∫
f

[
b

∣∣∣∣∣a2 0

a 1

∣∣∣∣∣
]
dbη(a)dxa.

A change of variables shows that this is nothing other than H(n− : f : η). Since A2 and

H(n+ : f : η) are zero, relation (3.4.6) is also verified.

Suppose now that f has its support in ANN ′. Then (cf. (3.1.7) and (3.1.11)):

(3.4.13) H(x : f : η) =

∫
Φ(a−1(1− x)−1x, a)η(a)d×a

where:

(3.4.14) Φ(u, v) = ϕ

[(
1 u

0 1

)
×

(
1 0

v 1

)]
,

(3.4.15) ϕ(g) =

∫
f(ag)da, a ∈ A/Z.

Let us recall the definition of A1 and A2:

(3.4.16) H(x) = A1(x) +A2(x)η(x);

On the other hand, according to lemma 3.2:

(3.4.17)

∫
Φ(a−1x, a)η(a)d×a = C1(x) + C2(x)η(x).

Comparing with (3.4.4), we see that Ci((1−x)−1x) = Ai(x). Therefore Ci and Ai have the

same value at zero. Taking the Mellin transform of the preceding equation, we obtain:∫∫
Φ(x, a)|x|sη(a)|a|sd×a =

∫
C1(x)|x|sd×x+

∫
C2(x)|x|sη(x)d×x.

Calculating the residue of both sides at s, we find:∫
Φ(0, a)η(a)d×a = C1(0).

According to (3.4.14) and (3.4.15), the left-hand side is none other than H(n− : f : η).

On the other hand, the right-hand side is none other than A1(0). Relation (3.4.7) is thus

established. Relation (3.4.6) can be established in the same way.
13



Relations (3.4.8) and (3.4.9) follow from relations (3.4.6) and (3.4.7) applied to the func-

tion f ′ defined by f ′(g) = f(εg). □

4. Matched functions

4.1. In this paragraph E is a local field, E a quadratic extension of F , η the quadratic

character attached to E. We will still consider the pair (G,A) formed by the group GL(2)

and the subgroup of diagonal matrices and the set X = X(E : F ). It is reduced to two

elements (Gi, Ti), i = 1, 2, with say G1 deployed. Let f be a smooth function with compact

support on G/Z and fi, i = 1, 2, a smooth function with compact support on Gi/Zi. We

will say that f and the pair (f1, f2) are matched if the following condition is satisfied. For

all x in F different from 1 and 0, let i and g in Gi be such that x = P (g : Ti) (i = 1 if x is

a norm of E, i = 2 otherwise); then:

H(x : f : η) = H(g : fi : Ti).

Proposition. Given a function f , there exists a pair (f1, f2) matched to f . Moreover, if f

and the pair (f1, f2) are matched we have:

vol(Ti/Zi)

∫
fi(ti)dti = H(n+ : f : η)±H(n− : f : η),

vol(Ti/Zi)

∫
fi(ϵti)dti = H(ϵn− : f : η)±H(ϵn+ : f : η)

with the + sign if i = 1, the − sign if i = 2.

Proof. This follows immediately from propositions (2.4), (3.3) and (3.4). □

4.2. If F is real we will denote by K the orthogonal subgroup in G. We will denote by U

the set of pairs (f1, f2) that are matched to a smooth function with compact support f on

G/Z, K-finite if F is real.

Let U1 (resp. U2) be the first (resp. second) projection of U . Then the sets Ui have a

density property.

Proposition. Let ϕ be a continuous function on Gi/Zi biinvariant under Ti. Suppose that

the integral of ϕ against any function in Ui is zero. Then ϕ is zero.

The proof will occupy the rest of this paragraph.

4.3. Let f be a continuous function with compact support on G/Z; then:

(4.3.1)

∫
f(g)dg = c

∫
H(x : f : A)|1− x|−2dx, x ̸= 0.

where c is a constant independent of f .

We will also need an estimate on the functions H(x : f : A) where f is continuous with

compact support on G/Z:
14



Lemma. Let f be a function with compact support on G/Z and H(x) = H(x : f : A).

Then H vanishes in a neighborhood of point 1 and is O(log |x|) for |x| small or large.

Proof of the lemma. It is analogous to that given in (3.2) except that lemma (3.2) is replaced

by the following assertion: if Φ is a Schwartz-Bruhat function of two variables, then there

exist two Schwartz-Bruhat functions of one variable Ai, i = 1, 2, such that:∫
Φ(a−1x, a)d∗a = A1(x) +A2(x) log |x|.

Finally, we will need integration formulas for the groups Gi analogous to (4.3.1):

(4.3.2)

∫
f1(g)dg = c1

∫
H(x : f1 : T1)|1− x|−2dx, x > 0

(4.3.3)

∫
f2(g)dg = c2

∫
H(x : f2 : T2)|1− x|−2dx, x < 0

where ci is a constant and fi is a continuous function with compact support on Gi/Zi. □

4.4.

Proof of proposition 4.2. To fix ideas, let’s suppose i = 1. Let H(x) = H(x : ϕ : T1). In

particular, H(x) = 0 if x is not a norm. We will calculate up to multiplicative constants.

Now suppose f and (f1, f2) are paired with f K-finite if F is real. Then according to (4.3.2):∫
ϕ(g1)f1(g1)dg1 =

∫
H(x)H(x : f1 : T1)|1− x|−2dx

On the other hand, let ϕ0 be the function on G defined by:

ϕ0(g) = H(x)η(det b) if g = ag(x)b.

Given the properties of H and the integration formula (4.3.1), ϕ0 is locally integrable and:∫
ϕ0(g)f(g)dg =

∫
H(x)H(x : f : η)|1− x|−2dx.

Since H(x : f : η) = H(x : f1 : T1) if x is a norm, we have:∫
ϕ0(g)f(g)dg =

∫
ϕ(g1)f1(g1)dg1.

The right-hand side is zero by hypothesis. Therefore ϕ0 is orthogonal to all smooth functions

(resp. all K-finite smooth functions if F is real). It follows that ϕ0 is zero. The same

therefore holds for H; since ϕ is T1-biinvariant, ϕ is completely determined by H and we

obtain ϕ = 0. □
15



5. Orbital integrals: the unramified situation

5.1. In this paragraph F is a non-archimedean local field, E a non-ramified quadratic

extension of F . We will assume that the residual characteristic of F is not 2 and that the

order of character ψ is 0. We will consider the pair (G,A) formed by the group GL(2) and

the diagonal subgroup. We will denote R as the ring of integers of F , P the maximal ideal

of R, ω a uniformizer and K the group GL(2, R). The set X = X(E : F ) is reduced to two

elements (G1, T1) and (G2, T2). We will assume G1 = G, T1 contained in the subgroup ZK.

We will simply write T for T1. The measures of A ∩K/Z ∩K and T ∩K/Z ∩K are thus

equal to 1. The aim of this paragraph is to prove the following proposition:

Proposition. Let f be a bi-K-invariant function with compact support on the group G/Z.

Then f and the pair (f, 0) are matched. Moreover:

H(n+ : f : η) = H(n− : f : η) =
1

2
vol(T/Z)

∫
f(t)dt.

It will be convenient to consider functions with compact support on G rather than func-

tions with compact support on G/Z. Of course, the measures of the sets A ∩ K, T ∩ K,

Z ∩K are thus equal to 1. If f is a bi-K-invariant function with compact support on G,

then we will set:

(5.1.1) H(g : f : T ) =

∫∫
f(sgt)dsdt, s ∈ T, t ∈ T/Z.

Since T is contained in ZK this reduces to:

(5.1.2) H(g : f : T ) =

∫
f(zg)dz, z ∈ Z.

Similarly, we will set:

(5.1.3) H(g : f : η) =

∫∫
f(agb)daη(det b)db, a ∈ A, b ∈ A/Z.

We will also write H(x : f : η) for H(g(x) : f : η). The relations to prove are thus:

(5.1.4) H(x : f : η) =

∫
f(zg)dz if v(x) is even and P (g : T ) = x,

(5.1.5) H(x : f : η) = 0 if v(x) is odd.

By linearity we can assume that f is either the characteristic function f0 of K, or the

characteristic function fm of the set

(5.1.6) K

∣∣∣∣∣ωm 0

0 1

∣∣∣∣∣K, where m > 0.
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Note that fm(g) ̸= 0 if and only if the following conditions are verified:

the coefficients of g are integers;(5.1.7)

v(det g) = m;(5.1.8)

at least one of the coefficients of g is a unit.(5.1.9)

Of course if m = 0 condition (5.1.9) is superfluous.

5.2. We will first calculate H(x : fm : η) which, for simplicity, we will denote H(x : m).

We will begin with the case m > 0.

Proposition. Suppose m > 0. Then H(x : m) is given by the following formulas:

(1) if v(x) is odd H(x : m) = 0;

(2) if v(x) is even H(x : m) = 0, unless v(x) = 0 and v(1 − x) = m in which case

H(x : m) = 1.

Proof We will use the following lemma:

Lemma. Let S = (−1)i+j where the sum is over all pairs of integers (i, j) belonging to the

border of the rectangle defined by the inequalities

0 ≤ i ≤ P, 0 ≤ j ≤ Q.

Then S is given by the following formulas:

if PQ > 0, then S = 0;(5.2.1)

if P = 0 and Q > 0, then S = 1 if Q is even and S = 0 if Q is odd;(5.2.2)

if Q = 0 and P > 0, then S = 1 if P is even and S = 0 if P is odd;(5.2.3)

if P = 0 and Q = 0, then S = 1.(5.2.4)

Let us now prove the proposition. It will be convenient to write Mat[a, b, c, d] for the

matrix whose coefficients are the numbers a, b, c, d. With this notation we have:

(5.2.5) H(x : m) =
∑

fm(Mat[ωi+k, xωj+k, ωi, ωj ])(−1)i+j ,

where the sum is over all triplets of integers (i, j, k). Since the determinant of matrix (5.2.5)

has a valuation equal to i+ j + k+ v(1− x) condition (5.1.8) shows that in the above sum

we can restrict ourselves to triplets such that:

i+ j + k + v(1− x) = m.

This allows us to eliminate k and, taking into account (5.1.7) and (5.1.9), to write:

(5.2.6) H(x : m) =
∑

(−1)i+j

17



where the sum is over all pairs of integers (i, j) such that:

0 ≤ i ≤ m− v(1− x) + v(x)(5.2.7)

0 ≤ j ≤ m− v(1− x)(5.2.8)

if [m− v(1− x) + v(x)− i]Km− v(1− x)− j] = 0.(5.2.9)

The sum is empty and H(x : m) is zero unless:

(5.2.10) m− v(1− x) ≥ 0 and m− v(1− x) + v(x) ≥ 0.

Suppose conditions (5.2.10) are satisfied. Then we can apply the lemma. We therefore have

H(x : m) = 0 unless

(5.2.11) [m− v(1− x)][m− v(1− x) + v(x)] = 0.

The verification of the proposition is then elementary.

5.3. Let us now calculate H(x : 0).

Proposition. H(x : 0) is given by the following formulas:

(1) if v(x) is odd then H(x : 0) = 0;

(2) if v(x) is even then H(x : 0) = 1, unless v(x) = 0 and v(1 − x) > 0 in which case

H(x : 0) = 0.

Proof. We still have:

(5.3.1) H(x : 0) =
∑

f0(Mat[ωi+k, xωj+k, ωi, ωj ])(−1)i+j ,

where the sum is over all triplets of integers (i, j, k). As above, taking into account conditions

(5.1.7) and (5.1.8), we can eliminate k and write:

(5.3.2) H(x : 0) =
∑

(−1)i+j

where the sum is over all pairs of integers (i, j) such that:

0 ≤ i ≤ v(x)− v(1− x)(5.3.3)

0 ≤ j ≤ −v(1− x).(5.3.4)

The verification of the proposition is then elementary. □

5.4. Let us now calculate the integral
∫
fm(zg)dz. It only depends on x = P (g : T ) and

we will denote its value H(x : m : T ). Recall that by definition x is a norm, in other words

the valuation of x is even. We will begin with the case m > 0.

Proposition. Suppose m > 0. Then H(x : m : T ) = 0, unless v(x) = 0 and v(1− x) = m

in which case H(x : m : T ) = 1.
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Proof. We can assume that E is the extension generated by the square root of τ , where

τ is a unit. Then we can take for T the multiplicative group of the algebra:

(5.4.1) L =

{∣∣∣∣∣ a b

bτ a

∣∣∣∣∣
}

and for ε the matrix:

(5.4.2) ε =

(
1 0

0 −1

)
Let’s calculate H(x : m : T ) where x = P (g : T ). We can assume that:

(5.4.3) g = I2 + ε

∣∣∣∣∣ u v

vτ u

∣∣∣∣∣
Then det g = 1− x and x = u2 − v2τ . We have:

(5.4.4) H(b : m : T ) =
∑
k

fm(ωkg)

where

(5.4.5) ωkg =

∣∣∣∣∣ωk(1 + u) ωkv

−ωkvτ ωk(1− u)

∣∣∣∣∣
Given condition (5.1.8), this sum thus has at most one term whose index k is determined

by the equation

(5.4.6) k = 1/2[m− v(1− x)]

In particular H(b : m : T ) = 0 or 1. Given conditions (5.1.7) to (5.1.9), H(x : m : T ) = 1 if

and only if the following conditions are verified:

(5.4.7) m ≡ v(1− x) mod 2

the coefficients of matrix (5.4.5) where k is given by (5.4.6) are integers;(5.4.8)

at least one of the coefficients of this matrix is a unit.(5.4.9)

Suppose first v(x) < 0. Then v(1− x) = v(x). Since x = u2 − vτ and τ is not a square,

v(x) is even. According to (5.4.7) H(x : m : T ) = 0 unless m is also even. Let’s suppose

therefore that this is the case. We can write:

(5.4.10) u = u0ω
1/2v(x), v = v0ω

1/2v(x)

where u0 and v0 are integers, at least one being a unit. Then the coefficients of matrix

(5.4.5) are the numbers:

ω1/2(m−v(x))(1 + u0ω
1/2v(x)), ω1/2mv0,

− ω1/2mv0τ, ω1/2(m−v(x))(1− u0ω
1/2v(x))
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All these numbers are in the ideal P thus H(x : m : T ) = 0. Suppose v(x) > 0. Then

v(1 − x) = 0. According to (5.4.7) H(x : m) = 0 unless m is even. Suppose this is the

case. Then k = 1/2m, u and v are integers. The coefficients of matrix (5.4.5) are now the

numbers:
ω1/2m(1 + u) ω1/2mv

−ω1/2mvτ ω1/2m(1− u)

All these numbers are in the ideal P thus H(x : m : T ) = 0.

Finally, suppose v(x) = 0. Then v(1−x) ≥ 0. Ifm−v(1−x) is odd thenH(x : m : T ) = 0.

Suppose therefore m − v(1 − x) is even. Then the coefficients of matrix (5.4.5) are the

numbers:

ω1/2[m−v(1−x)](1 + u) ω1/2[m−v(1−x)]v

−ω1/2[m−v(1−x)]vτ ω1/2[m−v(1−x)](1− u)

Since x is a unit, u and v are integers and at least one is a unit. If 1 + u and 1− u were

both in P we would have 2 ∈ P , a contradiction. Thus at least one of the numbers 1 + u

and 1− u is a unit. If therefore H(x : m : T ) is not zero then conditions (5.4.8) and (5.4.9)

imply that m = v(1− x). The coefficients of matrix (5.4.5) thus reduce to:

1 + u, v, −vτ, 1− u

These are integers and at least one is a unit. Thus H(x : m : T ) = 1.

We have therefore completely calculated H and our result agrees with the proposition.

5.5. Finally, let’s calculate H(x : 0 : T ). Recall once again that v(x) is even.

Proposition. H(x : 0 : T ) = 1, unless v(x) = 0 and v(1 − x) > 0 in which case H(x : 0 :

T ) = 0.

Proof. As above we have:

(5.5.1) H(x : m : T ) =
∑
k

f0(ω
kg)

The sum in fact has at most one term whose index k is given by:

(5.5.2) k = −1/2v(1− x)

In particular H(x : 0 : T ) = 0 or 1. Moreover H(x : 0 : T ) = 1 if and only if v(1 − x) is

even and the matrix

(5.5.3) ωkg =

∣∣∣∣∣ωk(1 + u) ωkv

−ωkvτ ωk(1− u)

∣∣∣∣∣
with k given by (5.5.2) is in GL(2, R).

Suppose v(x) < 0 and v(1− x) even. Then v(1− x) = v(x), v(x) is even and

u = u0ω
1/2v(x), v = v0ω

1/2v(x)
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where u0 and v0 are integers, at least one being a unit. Then the coefficients of matrix

(5.5.3) are the numbers:

ω−1/2v(x) + u0, v0, −v0τ, ω−1/2v(x) − u0.

These are integers. Since the determinant of matrix (5.5.3) is a unit according to the choice

of k, matrix (5.5.3) is in GL(2, R) and H(x : 0 : T ) = 1.

Suppose v(x) ≥ 0 and v(1−x) = 0 (of course v(x) > 0 implies v(1−x) = 0). Then k = 0

and the coefficients of matrix (5.5.3) reduce to the numbers:

1 + u, v, −vτ, 1− u

Since u and v are integers, these numbers are also integers and matrix (5.5.3) is in GL(2, R).

Thus H(x : 0 : T ) = 1.

Finally suppose v(x) = 0 and v(1 − x) > 0. Then H is zero unless v(1 − x) is even.

Suppose this is the case. Then the coefficients of matrix (5.5.3) are the numbers:

ω−1/2v(1−x)(1 + u) ω−1/2v(1−x)v

ω−1/2v(1−x)vτ ω−1/2v(1−x)(1− u)

Since 1 + u or 1− u is a unit, at least one of these numbers is not an integer thus (5.5.3) is

not in GL(2, R) and H(x : 0 : T ) = 0.

We have therefore completely calculated H and our result agrees with the proposition.

5.6. By bringing together propositions (5.2), (5.3), (5.4) and (5.5) we see that we have

proved the identities (5.1.4) and (5.1.5). This thus completes the proof of the first assertion

of proposition (5.1). The second then follows from proposition (4.1).

5.7. To establish the convergence of global orbital integrals we will need an additional

result, whose proof we will leave to the reader:

Lemma. Suppose h in KZ and let x = P (h : A). Suppose v(x) = 0 and v(1 − x) = 0.

Then the relations

ahb ∈ KZ, a ∈ A, b ∈ A

imply

a ∈ Z(K ∩A), b ∈ Z(K ∩A)

The lemma obviously implies the following proposition:

Proposition. Let f be the characteristic function of KZ. Suppose the quadratic extension

E is unramified and T contained in KZ. Let h be an element of KZ and x = P (h : A). If

x and 1− x are units then:

H(h : f : A) = 1, H(h : f : η) = 1
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6. Reminders about local representations of GL(2)

6.1. Let F be a local field and E a quadratic extension of F . We will again consider the

set X which is reduced to two elements (G1, T1) and (G2, T2), with say G1 deployed. It will

be convenient to use the following result:

Proposition. Let π be an irreducible unitary representation of G1/Z1. Then the dimension

of the space of continuous linear T1-invariant forms on the space of smooth vectors of π is at

most one. Moreover, such a form is given by the scalar product with a T1-invariant smooth

vector.

If F is not archimedean then the assertion about the dimension is proved in [Wal91,

Propositions 9]. If F is real, it is classical. The rest of the proposition is evident.

6.2. Similarly:

Proposition. Let π be an irreducible unitary representation of G1/Z1 of infinite dimen-

sion. Then the dimension of the space of continuous linear A-invariant forms (respectively

invariant relative to the character η ◦ det of A) on the space of smooth vectors of π is one.

These are propositions 9 and 10 of [Wal80].

6.3. Consider, for i = 1, 2, an irreducible unitary representation πi of Gi/Zi. We will

assume that the pair (π1, π2) satisfies the conditions of theorem (15.1) of [JL70]; in particular

π1 is in the discrete series.

Proposition. The representations πi cannot both have a non-zero vector invariant under

the group Ti.

If F is non-archimedean then our assertion is found in theorem 2 of [Wal91]. If F is real,

it is classical.

7. Global orbital integrals: case of a split torus

7.1. In the remainder of this work, F will be a number field and E a quadratic extension of

F , η the quadratic character of the ideal class group of F attached to E. In this paragraph

and the next, we will consider the pair (G,A) and a smooth function with compact support

f on G(FA)/Z(FA). To the function f is attached the cuspidal kernel Kc. Let φj be an

orthonormal basis of the space of cuspidal forms for the group G/Z.

Then, by definition:

(7.1.1) Kc(x, y) =
∑

ρ(f)ϕj(x)ϕj(y)

where:

(7.1.2) ρ(f)ϕ(x) =

∫
f(g)ϕ(xg)dg
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In this paragraph and the next, we propose to give a useful expression for the integral:

(7.1.3)

∫∫
Kc(a, b)η(det b)dadb, a, b ∈ A(FA)/A(F )Z(FA)

We have chosen a non-trivial character ψ of FA/F . We thus have at each place v the

Tamagawa measure attached to ψv and by transport of structure on Av and Zv. We therefore

have the product measure on A(FA/F ) and the quotient measure on A(FA)/Z(FA). We

will denote by S a finite set of places containing the infinite places, the ramified places in E

and the places of residual characteristic 2. For any place v of F , we will denote by Kv. The

usual maximal compact subgroup. In particular Kv = GL(2, Rv) if v is finite. We will take

the function f as a product of local functions fv which are Kv-finite at all places. We will

assume that fv is bi-Kv-invariant for all v not in S. Indeed, fv is actually the characteristic

function of KvZv for almost all v not in S. We have a decomposition of Kc as a sum:

(7.1.4) Kc(x, y) =
∑

f(x−1γy)−Ksp(x, y)−Kei(x, y),

where the sum is over all γ in G(F )/Z(F ), Ksp denotes the special kernel and Kei the

Eisenstein kernel (the definition is recalled later). We can write the first term of this sum

as the sum of two other terms Kr and Ks where:

(7.1.5) Kr(x, y) =
∑

f(x−1γ, y), γ A-regular;

(7.1.6) Ks(x, y) =
∑

f(x−1γ, y), γ A-singular.

Then Kc can be written as

(7.1.7) Kc = Kr +Ks −Ksp −Kei.

7.2. We first consider the integral of Kr. Any element γ of G(F )/Z(F ) can be uniquely

written in the form:

(7.2.1) γ = αg(ξ)β, with α and β ∈ A(F )/Z(F ) and ξ different from 0 and 1.

(cf. (3.1.3) for notation and §(1)). It follows immediately:

(7.2.2)

∫∫
Kr(a, b)η(det b)da db =

∑
H(ξ : f : η), ξ ̸= 0 and 1.

where we have set:

(7.2.3) H(ξ : f : η) =

∫∫
f(ag(ξ)b)η(det b)da db, a, b ∈ A(FA)/Z(FA).

Let us justify our formal calculations. First, the support of f meets only a finite number

of regular classes. Indeed, the function X introduced in paragraph 1 (cf. (1.1.4)) defines

a continuous function from the group G(FA)/Z(FA) to FA. It therefore takes only a finite

number of values on the intersection of the support of f with the set of rational points;

the same is thus true for the function P (· : A), which gives us our assertion. On the other
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hand, each of the integrals (7.2.3) converges absolutely: it is sufficient to prove this for the

integral

(7.2.4) H(ξ : f : A) =

∫∫
f(ag(ξ)b)da db, a, b ∈ A(A)/Z(A).

Each of the local integrals H(ξ : fv : Av) converges; almost all are equal to 1 (cf. (5.7)).

Therefore (7.2.4) converges. The same is thus true for (7.2.3) and (7.2.3) is the product of

the corresponding local integrals:

(7.2.5) H(ξ : f : η) =
∏

H(ξ : fv : ηv).

In this product almost all the integrals are equal to 1 (cf. (5.7)).

7.3. Let’s consider the integral of Ks. It is not absolutely convergent, but it is ”weakly”

convergent in the following sense. Let c be a number greater than 1. Let us denote by

(7.3.1)

∫ c

c−1

∫ c

c−1

Ks(a, b)η(det b)dadb, a, b ∈ A(FA)/A(F )Z(FA)

the integral of Ks(a, b)η(det b) over the set of pairs (a, b) satisfying c−1 < |a1/a2| < c,

c−1 < |b1/b2| < c; where a1 and a2 for example denote the diagonal coefficients of a. Since

the integral is taken over a compact set, it exists. We will see that the integral (7.3.1)

tends to a limit as c tends to infinity. This limit will be, by definition, the weak integral

of Ks(a, b)η(det b). We saw in section (1.3) that there were 6 singular double classes for A,

namely the double classes of the following elements: e, n+, n−, ε, εn+, εn−. Let’s number

them from 1 to 6. Then we have a decomposition of Ks into 6 terms Ki, 1 ≤ i ≤ 6, where

Ki is the sum of f(x−1γy) for all γ in the i-th double class. Let’s study the integral of K1

for example. We have

K1(x, y) =
∑

f(x−1αy), α ∈ A(F )/Z(F ).

Hence: ∫ c

c−1

∫ c

c−1

K1(a, b)η(det b)dadb =

∫ c

c−1

∫ c

c−1

f(ab)η(det b)dadb;

in the left integral, a and b vary in the compact subset of A(FA)/A(F )Z(FA) defined above;

in the right integral, b still varies in the compact subset of A(FA)/A(F )Z(FA) defined by

c−1 < |b1/b2| < c, but a varies in the subset of A(FA)/Z(FA) defined by c−1 < |a1/a2| < c.

Let’s change a to ab−1 in the right integral. We obtain a double integral, where the inner

integral depends only on |b1/b2|. This inner integral can be written as:∫ c

c−1

η(det b)db, b ∈ A(FA)/A(F )Z(FA).

It is zero because the restriction of η to the group of idéles of absolute value 1 is not trivial.

The integral of K1 is therefore weakly convergent and its value is 0. The same applies to

the integral of K4.
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Let’s examine the integrals of the other terms, K2 for example. We have:

(7.3.2) K2(x, y) =
∑

f(x−1αn+βy), α, β ∈ A(F )/Z(F ).

It follows that:∫ c

c−1

∫ c

c−1

K2(a, b)η(det b)dadb =

∫ c

c−1

∫ c

c−1

∑
f(αn+βb)η(det b)dadb;

in the right integral, b still varies in the compact subset of A(FA)/A(F )Z(FA) defined by

c−1 < |b1/b2| < c, but a varies in the subset of A(FA)/Z(FA) defined by c−1 < |a1/a2| < c.

Let’s now introduce the function ϕ on (F x)A × FA defined by:

(7.3.3) ϕ(x, y) = f

[
x 0

0 1

]
×

[
1 y

0 1

]
.

It has compact support. Our integral can be written as:∫ ∑
ζ

∫
ϕ(ab−1, bζ)η(b)dadb,

ζ ∈ F x, a ∈ (F x)A, c−1 < |a| < c, b ∈ (F x)A/F
x, c−1 < |b| < c.

Using Poisson’s formula with respect to the second variable and taking the Fourier transform

with respect to the second variable, we obtain for this integral the expression:∫ ∑
ζ

∫
ϕ(ab−1, bζ)η(b)dadb+

∫ ∑
ζ

∫
ϕ∧(ab, bζ)|b|η(b)dadb, c−1 < |a| < c, 1 < |b| < c.

It is evident that the same two integrals extended to the domain:

a ∈ F x
A, b ∈ F x

A/F
x
A, 1 < |b|,

converge absolutely. Moreover, in the integrals extended to the preceding domain, we can

change a to ab±1. We conclude that the integral of K2 is weakly convergent and that its

value is the sum: ∫∫ ∑
ζ

ϕ(a, bζ)η(b)dadb+

∫∫
ζ
ϕ∧(a, bζ)|b|η(b)dadb,

a ∈ F x
A, b ∈ F x

A/F
x
A, 1 < |b|.

This is nothing other than the value at s = 0 of the analytic continuation of the following

integral:

(7.3.4)

∫∫
ϕ(a, b)|b|sη(b)dadb, a ∈ F x

A, b ∈ F x
A.

This value will also be written as an integral:

(7.3.5)

∫∫
ϕ(a, b)η(b)dadb, a ∈ F x

A, b ∈ F x
A.
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With this convention, we can write that the weak integral of K2 is equal to:

(7.3.6) H(n+ : f : η) =

∫∫
f

[
a 0

0 1

]
×

[
1 b

0 1

]
η(b)dadb.

An analogous result holds for the integrals of the other Ki. Finally, we see that the weak

integral of Ks exists and is equal to the sum:

(7.3.7) H(n+ : f : η) +H(n− : f : η) +H(εn+ : f : η) +H(εn− : f : η);

the first term is defined by (6) and the other terms are defined analogously:

(7.3.8) H(n− : f : η) =

∫∫
f

[
a 0

0 1

]
×

[
1 0

b 1

]
η(b)dadb;

(7.3.9) H(εn+ : f : η) =

∫∫
f

[
a 0

0 1

]
ε

[
1 b

0 1

]
η(b)dadb;

(7.3.10) H(εn− : f : η) =

∫∫
f

[
a 0

0 1

]
ε

[
1 0

b 1

]
η(b)dadb.

7.4. Let’s now consider the integral of Ksp. Recall the definition of Ksp:

Ksp(x, y) = vol−1
∑∫

f(g)χ(det g)dεχ(detx)χ−1(det y),

where the sum is over all quadratic characters χ of the idele class group of F and Vol is the

volume of the quotient G(FA)/G(F )Z(FA). If χ is such a character, then either χ or χη

has a non-trivial restriction to the groups of idele classes of norm 1. Reasoning as for K1,

we immediately see that Ksp is weakly integrable and its integral is zero.

8. The kernel of Eisenstein

8.1. We continue with the notations from paragraph 7. We will see that the integral

(8.1.1)

∫∫
Kei(a, b)η(det b)dadb, a, b ∈ A(FA)/A(F )Z(FA).

is weakly convergent. Regarding the value of the integral, as in the now-classical applications

of the trace formula, we will only need a rather weak result. Let us indeed choose a place

u outside of S that decomposes in E. Let us fix the components of f at other places and

consider the integral (8.1.1) as a function of fu. Let us denote by f∧u the Satake transform

of fu. We will prove the following:

Proposition. There exists an integrable function on the real line ϕ and a constant c such

that:

(8.1.2)

∫∫
Kei(a, b)η(det b)dadb =

∫
ϕ(t)f∧u (q

−it
u )dt+ cf∧u (q

−1).
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8.2. We will need standard results about the Mellin transform of an Eisenstein series. We

will fix once and for all a subgroup C of FA isomorphic to the group of real numbers > 0

such that FA is the product of C and F 1, the group of ideles of module 1. The group C is

equipped with the reciprocal image measure of the measure t−1dt by the application c→ |c|
and F 1 with the quotient measure. Unless explicitly stated otherwise, all characters of the

group of ideal classes will be assumed trivial on C. Let χ be such a character and V (χ) the

space of functions ϕ on K (the product of Kv) such that:

(8.2.1) ϕ

[
a x

0 b

]
k = χ(ab−1)ϕ(k)

if

∣∣∣∣∣a x

0 b

∣∣∣∣∣ is in K.

Let us now consider a function ϕ on K × C, such that for each complex number u

the function ϕ(·, u) is in V (χ). The function will be assumed to be holomorphic, or even

meromorphic with respect to u; for example, it can be independent of u. We will extend ϕ

to a function ϕ(g, u, χ) on G(FA) such that:

(8.2.2) ϕ

[
a x

0 b

]
g, u, χ = χ(ab−1)|ab−1|u+1/2ϕ(g, u, χ).

The Eisenstein series is then the analytic continuation of the series:

(8.2.3) E(g, ϕ, u, χ) =
∑

ϕ(γg, u, χ), γ ∈ G(F )/A(F )N(F ).

The series converges absolutely if Reu > 1/2. The constant term of E along N , the

group of strictly upper triangular matrices, is by definition the integral

(8.2.4) EN (g, ϕ, u, χ) =

∫
E(ng, ϕ, u, χ)dn, n ∈ N(FA)/N(F ).

It has the form:

(8.2.5) EN (g, ϕ, u, χ) = ϕ(g, u, χ) +M(u, χ)ϕ(g,−u, χ−1)

where M(u, χ) is the intertwining operator that goes from V (χ) to V (χ−1). We will also

need another Fourier coefficient of E, namely:

(8.2.6) W (g, ϕ, u, χ) =

∫
E

[
1 x

0 1

]
g, ϕ, u, χψ(−x)dx, x ∈ FA/F,

where ψ is the fixed character of the group FA/F . The Fourier series of E can thus be

written:

(8.2.7) E(g, ϕ, u, χ) = ϕ(g, u, χ) +M(u, χ)ϕ(g,−u, χ−1) +
∑

W (αg, ϕ, u, χ)
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where the sum is for α in A(F )/Z(F ). We can also consider a Fourier series for the group

N ′ of strictly lower triangular matrices. Since

(8.2.8) N ′ = wNw−1, with w =

∣∣∣∣∣0 −1

1 0

∣∣∣∣∣ ,
it is actually written:

(8.2.9) E(g, ϕ, u, χ) = ϕ(wg, u, χ) +M(u, χ)ϕ(wg,−u, χ−1) +
∑

W (αwg, ϕ, u, χ).

The Mellin transform L(s, λ : ϕ : u, χ) of E is defined by the following integral (or its

analytic continuation):

(8.2.10) L(s, λ : ϕ : u, χ) =

∫
{E[diag(a, 1)]−EN [diag(a, 1)]}|a|s−1/2λ(a)da, a ∈ F ∗

A/F
∗.

We have removed from the notation the dependence of E on variables other than the one.

By replacing E with its Fourier series, we immediately obtain for the Mellin transform the

expression:

(8.2.11)

∫
W [diag(a, 1)]|a|s−1/2λ(a)da.

We can also write the Mellin transform of E as follows:

(8.2.12) L(s, . . .) =

∫ +∞

1
(E − EN ) +

∫ 1

0
(E − EN ′) +

∫ +∞

1
EN +

∫ 1

0
EN ′ .

In each of these integrals, the function is evaluated at the point diag(a, 1) and integrated

against |a|s−1/2λ(a) over a subset of the group of ideal classes. For the first integral, for

example, the subset is defined by the inequality 1 < |a|. Using the Fourier series of E, we

obtain without difficulty another expression for the Mellin transform of E:∫ +∞

1
W [diag(a, 1)]|a|s−1/2λ(a)da(8.2.13)

+

∫ +∞

1
W [diag(a, 1)w]|a|s−1/2λ(a)da

+

∫ +∞

1
[|a|s+uλχ(a)ϕ(e) + |a|s−uχ−1(a)M(u, χ)ϕ(e)]da

+

∫ 1

0
[|a|s−u−1χ−1(a)ϕ(w) + |a|s+u−1χ(a)M(u, χ)ϕ(w)]da.

The first two integrals converge for all s and the last two for Re s > 1/2. The last two

integrals can be easily calculated. In particular, for s = 1/2 and u purely imaginary, we
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obtain the following expression for the Mellin transform of E at the point s = 1/2:

L(1/2, λ : ϕ : u, χ) =

∫ +∞

1
W [diag(a, 1)]λ(a)da(8.2.14)

+

∫ +∞

1
W [diag(a, 1)w]λ(a)da

− 1

u+ 1/2
[ϕ(w)δ(λχ−1) + ϕ(e)δ(λχ)]

+
1

u− 1/2
[M(u, χ)ϕ(w)δ(λχ) +M(u, χ)ϕ(e)δ(λχ−1)].

where we have defined for any character χ of the group of ideal classes

δ(χ) =

∫
χ(a)da, a ∈ F 1

A/F
∗.

We will need to calculate the difference between the Mellin transform and the following

integral:

(8.2.15)

∫ c

c−1

E[diag(a, 1)]λ(a)da.

Let us recall that this notation means that the integral is taken over the compact subset of

ideal classes a such that c−1 < |a| < c. Instead of (8.2.12), we have for integral (8.2.15) the

expression:

(8.2.16)

∫ c

1
(E − EN ) +

∫ 1

c−1

(E − EN ′) +

∫ c

1
EN +

∫ 1

c−1

EN ′ .

By replacing E again with its Fourier series, we obtain for (8.2.15) the expression:∫ c

1
W [diag(a, 1)]λ(a)da+

∫ c

1
W [diag(a, 1)w]λ(a)da(8.2.17)

+

∫ c

1
[|a|1/2+uχλ(a)ϕ(e) + |a|1/2−uχ−1λ(a)M(u, χ)ϕ(e)]da

+

∫ 1

c−1

[|a|−u−1/2χ−1λ(a)ϕ(w) + |a|u−1/2χλ(a)M(u, χ)ϕ(w)]da.

By calculating the last two integrals and comparing with (8.2.14), we finally obtain the

expression we were aiming for:∫ c

c−1

E[diag(a, 1)]λ(a)da = L(1/2, λ : ϕ : u, χ)(8.2.18)

+
cu+1/2

u+ 1/2
δ(χλ)ϕ(e) +

c−u+1/2

−u+ 1/2
δ(χ−1λ)M(u, χ)ϕ(e)

+
cu+1/2

u+ 1/2
δ(χ−1λ)ϕ(w) +

c−u+1/2

−u+ 1/2
δ(χλ)M(u, χ)ϕ(w) +R(c).

where R(c) is given by:

(8.2.19) −R(c) =
∫ +∞

c
W [diag(a, 1)]λ(a)da+

∫ +∞

c
W [diag(a, 1)w]λ(a)da.
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It is clear that R(c) tends to zero as c tends to infinity.

8.3. We will need precise estimates for R(c). Recall that R depends not only on c, but

also on u, λ and ϕ. Our estimates will be a consequence of the following lemma:

Lemma. Suppose the function ϕ is independent of u. Then there exists a Schwartz-Bruhat

function ϕ such that, for all imaginary u, we have:

|W [diag(a, 1), ϕ, u, χ]| ≤ Φ(a)|a|−1/2|L(2u+ 1, χ2S)|−1.

The notation L(s, χS) denotes the product of local factors L(s, χv) for all v not in S. Fur-

thermore, we assume ϕ is invariant under Kv for all v not in S.

Proof. There exists a Schwartz-Bruhat function in two variables ϕ such that:

ϕ(g, u, χ) =

∫
Φ[(0, t)g]χ2(t)|t|2u+1dt× χ(det g)| det g|u+1/2 × L(2u+ 1, χ2S)−1.

A formal calculation (done in detail in [JL70], §3) gives:

W [diag(a, 1), . . .] = L(2u+ 1, χ2S)−1 ×
∫

Φ∧(ta, t−1)χ2(t)|t|2u+1dtχ(a)|a|u+1/2,

where Φ∧ is the Fourier transform with respect to the second variable. It will therefore

suffice to prove the following assertion: given a Schwartz-Bruhat function Φ ≥ 0 in two

variables, there exists a Schwartz-Bruhat function in one variable ϕ ≥ 0 such that for all

idele a we have: ∫
Φ(at, t−1)dt ≤ ϕ(a)|a|−1.

Let us consider the analogous local problem. More precisely, let us first consider the case

where the local field F is non-archimedean and the function Φ is the characteristic function

of integers. Then the integral is nothing but the volume of the set defined by the inequalities

|a| ≤ |t| ≤ 1. The integral is thus 0 unless a is an integer. Assuming this is the case, the

integral equals 1+v(a). Since q ≥ a this is less than qv(a). Therefore our integral is at most

ϕ(a)|a|−1, where ϕ is the characteristic function of integers. If F and Φ are arbitrary, the

integral, viewed as a function of a, has the form:∫
Φ(at, t−1)dt = ϕ1(a) + ϕ2(a) log |a|

where the ϕi are Schwartz-Bruhat functions (cf. (4.3)). It is clear that the right-hand side

is majorized by ϕ(a)|a|−1, where ϕ is a suitable Schwartz-Bruhat function. By multiplying

these local majorizations, we easily obtain the required global majorization.

It is classical that the function L(2u + 1, χ2S)−1 has at most polynomial growth on the

line Re(u) = 0. On the other hand, if ϕ is a Schwartz-Bruhat function, there exists for all

N > 0 a constant C(N) such that∫ +∞

c
ϕ(a)|a|−1da ≤ C(N)c−N .

Comparing with the definition (8.2.19) of R, we immediately obtain:
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Lemma. For all N there exist constants C(N) and M such that for all imaginary u we

have:

|R(c, u)| ≤ C(N)|c|−N |u|M .

Similarly, using expression (8.2.14) for the Mellin transform and the fact that the operator

M(u, χ) is unitary on the imaginary axis, we obtain the following estimate:

Lemma. On the imaginary axis M(u, χ)ϕ(k) and L(1/2, λ : ϕ : u, χ) have at most polyno-

mial growth.

8.4. Let us now study the integral of the kernel Kei. Let us recall its definition. For any

character χ, let us choose an orthonormal basis ϕi of the Hilbert space V (χ); let us denote

by ρ(u, χ) the representation of G(FA) by right translations in the space of functions ϕ such

that

(8.4.1) ϕ

[
a x

0 b

]
g = χ(ab−1)|ab−1|u+1/2ϕ(g).

We can identify the space of ρ(u, χ) with V(χ) and set:

(8.4.2) F (u, χ : i, j) = (ρ(u, χ)ϕi, ϕj).

We will write Eei(x, i, . . .) for Eei(x, ϕi, . . .). With these notations:

(8.4.3) Kei(x, y) =
∑
χ

Kχ(x, y)

where, for each character χ of the group of ideal classes,

(8.4.4) Kχ(x, y) = (2πi)−1
∑
i,j

∫ +i∞

−i∞
F (u, χ : i, j)E(x, j, u, χ)E(y, i, u, χ)−du.

For a given f , the sums (8.4.3) and (8.4.4) are finite. Let us set

(8.4.5) I(c, χ) =

∫ c

c−1

∫ c

c−1

Kχ(a, b)η(det b)dadb.
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We can obviously exchange the order of integration for u and the pair (a, b). Taking into

account (8.2.18), we obtain for I(c, χ) the following expression:

(iπ)−1
∑
i,j

∫ +i∞

−i∞
F (u, χ : i, j)

(8.4.6)

×

[
L(1/2, 1 : j, u, χ) +R(c, u) +

cu+1/2

u+ 1/2
δ(χ)ϕj(e) +

c−u+1/2

−u+ 1/2
δ(χ−1)M(u, χ)ϕj(e)

+
cu+1/2

u+ 1/2
δ(χ−1)ϕj(w) +

c−u+1/2

−u+ 1/2
δ(χ)M(u, χ)ϕj(w)

]

×

[
L(1/2, η, i, u, χ)− +R′(c, u) +

c−u+1/2

−u+ 1/2
δ(ηχ)ϕ−i (e) +

cu+1/2

u+ 1/2
δ(χ−1η)M(u, χ)ϕ−i (e)

+
c−u+1/2

−u+ 1/2
δ(χ−1η)ϕ−i (w) +

cu+1/2

u+ 1/2
δ(χη)M(u, χ)ϕ−i (w)

]
× du.

For each (i, j), the terms R(c, u) and R′(c, u) satisfy the conclusions of lemma (8.3). For

a given f , F (u, χ : i, j) is zero except for a finite number of pairs (i, j). In particular,

F (u, χ : i, j) is zero unless ϕi and ϕj are both invariant under all Kv with v not in S.

Moreover, on the imaginary axis, F (u, χ : i, j) decreases rapidly (faster than the inverse of

any polynomial in u). On the contrary, according to (8.3), the terms L(. . .) and the terms

containing powers of c have slow growth. It follows that when we develop expression (8.4.6),

we find a certain number of terms that when c tends to infinity, these terms tend to zero.

We can ignore these terms. Among the remaining terms, there is an integral independent

of c:

(8.4.7)
∑
i,j

∫ +i∞

−i∞
F (u, χ, i, j)× L(1/2, 1 : j : u, χ)× [L(1/2, η, i, u, χ)]−du.

The other terms are only present if χ = 1 or χ = η. Each of these terms is of one of the

following types:

(8.4.8)

∫
F (u, 1 : i, j)L(1/2, η : i : u, 1)−

c1/2+u

1/2 + u
(ϕj(e) + ϕj(w))du,

(8.4.9)

∫
F (u, η : i, j)L(1/2, 1 : j : u, η)

c1/2−u

1/2− u
(ϕ−i (e) + ϕ−i (w))du,

(8.4.10)

∫
F (u, 1 : i, j)L(1/2, η : i : u, 1)−

c1/2−u

1/2− u
(M(u, 1)ϕj(e) +M(u, 1)ϕj(w))du,

(8.4.11)

∫
F (u, η : i, j)L(1/2, 1 : j : u, η)

c1/2+u

1/2 + u
(M(u, η)ϕ−i (e) +M(u, η)ϕ−i (w))du.
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Integral (8.4.7) clearly has the properties required by proposition (8.1). To prove this

proposition, it will suffice to show that each of expressions (8.4.8) to (8.4.11) has a limit

when c tends to infinity and, moreover, this limit is zero if the Satake transform of the

function fu is zero at point q−1. This last condition means that the integral of fu on

Gu/Zu is zero and implies that F (u, 1 : i, j) and F (u, η : i, j) vanish at points u = 1/2 and

u = −1/2.

8.5. Let us examine term (8.4.8) from number (8.4). We will shift the integration contour

from the line Reu = 0 to the line Reu = −1/2; however on this latter line, we will replace

the segment joining point −1/2− iε to point −1/2 + iε by the semicircle with center −1/2

and radius ε passing through points −1/2 − εi, ε − 1/2 and −1/2 + iε. Let us verify that

this contour displacement is legitimate. The factor

F (u) = F (u, 1 : i, j)(ϕj(e) + ϕj(w))

as well as its derivatives, is holomorphic and rapidly decreasing in the vertical strip −1/2 ≤
Reu ≤ 0. The exponential function remains bounded. The factor (1/2 + u)−1 also remains

bounded at infinity in this vertical strip. Let us examine the Mellin transform. Recall that

we can find an integral representation of ϕi(g, u, 1):

ϕi(g, u, 1) =

∫
Φ[(0, t)g]|t|2u+1dt× | det g|u+1/2L(2u+ 1, 1S)−1.

A simple formal calculation then gives for the Mellin transform (denoted L(u) in abbreviated

form):

(8.5.1) L(u) = L(2u+ 1, 1S)−1

∫
Φ∧(a, b)|a|1/2+uη(a)|b|1/2−uη(b)dadb,

where Φ∧ is the Fourier transform of Φ with respect to the second variable. Taking the

complex conjugate of both sides, we obtain:

(8.5.2) L(−u−)− = L(−2u+ 1, 1S)−1T (u),

where

(8.5.3) T (u) =

∫
Φ1(a, b)|a|1/2−uη(a)|b|1/2+uη(b)dadb.

In this expression Φ1 is a Schwartz-Bruhat function; the double “Tate” integral T (u), as

well as all its derivatives, is bounded in the vertical strip −1/2 ≤ Re(u) ≤ 0. Finally, in

the strip in question we have 1 ≤ Re(−2u + 1) ≤ 2 and the function L(−2u + 1, 1S)
−1 is

holomorphic and bounded by a polynomial in Im(u). As our integral is written:∫
F (u)L(1− 2u, 1S)−1T (u)c1/2+u(1/2 + u)−1du.
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Our displacement of the integration contour is indeed legitimate. Replacing u by u− 1/2,

we obtain for term (8.4.8) the following expression:

(8.5.4)

∫
F (u− 1/2)L(2− 2u, 1S)−1T (u− 1/2)cuu−1du.

In (8.5.4) the integration contour is now the line Re(u) = 0, except that the segment joining

point −iε to point iε is replaced by the semicircle of center 0 passing through points −iε,
ε, iε. Let us now let ε tend to 0. Then the integral over the semicircle tends to

iπF (−1/2)L(2, 1S)−1T (−1/2),

while the integral over the rectilinear part of the contour tends to a ”Cauchy principal

value”. Using a real integration variable t we therefore obtain that (8.5.4) is also equal to:

(8.5.5)

∫ +∞

−∞
F (it−1/2)L(2−2it, 1S−1)T (it−1/2)citt−1dt+iπF (−1/2)L(2, 1S)−1T (−1/2).

For real t, the function L(−2it+2, 1S) is given by an absolutely and uniformly convergent

infinite product (or Dirichlet series). Its derivatives are thus bounded and its inverse is also

bounded. The derivatives of the factor L(−2it+ 2, 1S)−1 are therefore bounded. In (8.5.5)

the product of the first three terms is thus a Schwartz function of t. When c tends to infinity

the Cauchy integral tends to iπ times the value of the Schwartz function at point 0. In

total we see that (8.5.5), i.e. term (8.4.8), tends to a finite limit when c tends to infinity,

namely:

2iπF (−1/2)L(2, 1S)−1T (−1/2);

this limit vanishes at the same time as F (−1/2, 1 : i, j). This is indeed what we needed to

prove. An analogous conclusion applies to term (8.4.9).

8.6. Let us now examine term (8.4.10). For simplification, we will set:

F (u) = F (u, 1 : i, j).

We will use a slightly different expression from what we have used until now for the Mellin

transform.

Let us write ϕ for ϕj and assume, as is permissible, that ϕ is a product of local functions

ϕv. We can also assume that, for each place v, ϕv is either Kv invariant, or conversely has

zero integral over Kv. Let T be the set of places where this latter condition is satisfied.

Then T is finite and contains S. We can find an integral representation for ϕ(g, u, 1) of the

form:

(8.6.1) ϕ(g, u, 1) =

∫
Φ[(0, t)g]|t|2u+1dt× | det g|u+1/2L(2u+ 1, 1T )−1.

We conclude, as above, that the Mellin transform appearing in (8.4.10) can be written:

(8.6.2) L(−2u+ 1, 1T )−1T (u).
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where T (u) is defined by a double Tate integral, holomorphic for all u. On the other hand,

we can write the intertwining operator M(u, 1) as a product:

(8.6.3) M(u, 1) = L(2u, 1)L(2u+ 1, 1)−1N(u, 1)

where N is the normalized intertwining operator. Now the quotient of L(2u, 1) by L(−2u+

1, 1) is an exponential function abu. It follows that the product of factors (8.6.2) and (8.6.3)

reduces to:

(8.6.4) abuL(−2u+ 1, 1T )L(2u+ 1, 1T )
−1L(2u+ 1, 1T )−1T (u)N(u, 1).

Thus term (8.4.10) is given by the following integral:

(8.6.5)

∫
F (u)L(2u+ 1, 1T )−1T (u)c1/2−u(1/2− u)−1A(u)du,

with

A(u) = abuL(−2u+ 1, 1T )L(2u+ 1, 1T )
−1[N(u, 1)ϕ(e) +N(u, 1)ϕ(w)].

We will shift the integration contour. The present contour is the line Re(u) = 0. The new

contour will be the line Re(u) = 1/2, except that the segment joining the points 1/2−iε and
1/2+ iε will be replaced by the semicircle passing through points 1/2− iε, 1/2−ε, 1/2+ iε.
The end of the proof will then be the same as in the previous case, except that we must

show that the factor A(u) is holomorphic and slowly growing in the strip 0 ≤ Re(u) ≤ 1/2.

The ratio of L-factors appearing in A is the product of ratios

L(−2u+ 1, 1v)L(2u+ 1, 1v)
−1

for all v in T . If v is a finite place, then this ratio is a rational function in q−u
v and

thus is slowly growing. If v is infinite, Stirling’s formula shows that this ratio has slow

growth. Recall that ϕv equals one on all Kv for all v not in T . For such a v, we have

N(u, 1v)ϕv(kv) = 1 for all u. Thus N(u, 1)ϕ(e) is in fact the product over all v in T of:

N(u, 1v)ϕv(e)

If v is finite, this still has slow growth. If v is infinite, this is a polynomial in u. Therefore

A has slow growth. Let us finally prove the holomorphy of A at the poles of the factor

L(−2u+ 1, 1T ) in the strip. Let us prove for example the holomorphy at 1/2 of:

L(−2u+ 1, 1T )L(2u+ 1, 1T )
−1N(u, 1)ϕ(e)

The preceding product can in fact be written as:∏
v∈T

L(−2u+ 1, 1v)L(2u+ 1, 1v)
−1N(u, 1v)ϕv(e)

Take a v in T . Since the integral of ϕv over Kv is zero, N(u, 1v)ϕv(e) vanishes at point

u = 1/2 and this zero compensates for the pole of the factor L(−2u + 1, 1v) at the same

point. The product is therefore holomorphic at point 1/2 and this concludes our discussion
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for term (8.4.10). An analogous discussion applies to term (8.4.11). The assertions of

number (8.1) are therefore completely proved.

9. Global orbital integrals: the case of a compact torus

9.1. In this paragraph F is still a number field and E is a quadratic extension of F . We

will fix an element (G,T ) of the set X(E : F ) and an element ε of N(T ) − T . Then the

square c of ε is an element of F x and the class cN of the norm group N of E determines

the isomorphism class of (G,T ). Let f be a smooth function with compact support on the

group G(FA)/Z(FA). To the function f is attached the cuspidal kernel Kc. Let ϕi be an

orthonormal basis of the space of automorphic forms that are cuspidal and orthogonal to

the functions g → χ(det g), where χ is a trivial square character of the ideal class group of

F . Then, by definition:

(9.1.1) Kc(x, y) =
∑

ρ(f)ϕj(x)ϕ
−
j (y).

We propose to give a useful expression for the integral

(9.1.2)

∫∫
Kc(s, t)dsdt, s, t ∈ T (FA)/T (F )Z(FA).

Of course ψ◦Tr is a character of EA/E and we thus have for each place v of E the Tamagawa

measure on the group Ex
v and, by transport of structure on the group Tv. We also have the

product measure on the group T (EA) and the quotient measure on T (FA)/Z(FA). We will

denote by S a finite set of places of F containing the infinite places, the places ramified in

E, the places where G is not split, the places where ψv is not of order 0 and the places of

residual characteristic 2. We will choose for all v a maximal compact subgroup Kv of Gv

such that Tv is contained in KvZv if v does not decompose in E and G(FA) is the restricted

product of the Gv with respect to theKv. We assume that f is the product of local functions

fv, smooth and with compact support, on Gv/Zv. We will assume fv is bi-Kv-invariant for

each v not in S. We do not change integral (9.1.1) if for v not decomposed in E we replace

fv by the function f ′v defined by:

f ′v(g) = vol(Tv)
−1

∫
f(svgtv)dsvdtv.

We can therefore assume that for each v that does not decompose in E the function fv is

bi-Tv-invariant, in particular bi-Kv-finite. Finally, we will assume fv bi-Kv-finite at places

v that decompose in E. We then have:

(9.1.3) Kc(x, y) =
∑

f(x−1γy)−Ksp(x, y)−Kei(x, y),

where the sum is over all γ in G(F )/Z(F ), Ksp denotes the special kernel and Kei the

Eisenstein kernel. The Eisenstein kernel is of course null if G is not split. The kernel Ksp

is defined by the following sum:

(9.1.4) Ksp(x, y) =
∑

vol−1

∫
f(det g)dgχ(detx)χ−1(det y);
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the sum is over all characters χ of trivial square of the ideal class group of F and Vol is the

volume of the quotient G(FA)/G(F )Z(FA). We can define two other kernels:

(9.1.5) Kr(x, y) =
∑

f(x−1γy), γ T -regular,

(9.1.6) Ks(x, y) =
∑

f(x−1γy), γ T -singular.

Then Kc is the following sum:

(9.1.7) Kc = Kr +Ks −Ksp −Kei.

Since the quotient T (FA)/T (F )Z(FA) is compact, integral (9.1.2) is simply the sum of the

integrals of each term in (9.1.7).

9.2. Let us study the integral of Kr. Each element γ of G(F )/Z(F ) that is T -regular can

be written uniquely in the form:

(9.2.1) γ = σ−1µτ,

where σ and τ range over T (F )/Z(F ) and µ a set of representatives for the regular double

classes T (F ) in G(F ) (Prop. (1.2)). We therefore immediately obtain:

(9.2.2)

∫∫
Kr(s, t)dsdt =

∑∫∫
f(s−1µt)dsdt,

the integrals on the right-hand side now both being over T (FA)/Z(FA). The double integral

on the right-hand side depends only on ζ = P (µ : T ) and we will denote its value by

H(ζ : f : T ). We can therefore write:

(9.2.3)

∫∫
Kr(s, t)dsdt =

∑
H(ζ : f : T ), ζ ∈ cN − 1,

since the function P parameterizes the regular double classes and its values, on regular

elements, are all points of the class cN associated with the pair (G,T ) minus point 1 (Prop.

(1.1)). Of course, the orbital integral H(ζ : f : T ) is the product of local orbital integrals:

(9.2.4) H(ζ : f : T ) =
∏

H(ζ : fv : Tv).

Almost all factors are equal to 1. Indeed, let v be a place of F that is not in S; suppose

that fv is the characteristic function of ZvKv. If v does not decompose in E, then Tv is

contained in ZvKv and the integral equals 1. If v decomposes in E then the local integral

still equals 1 according to proposition (5.7).

9.3. Let us move on to the integral of term Kr. There are only two singular double classes,

T (F ) and εT (F ). Therefore we have:

(9.3.1)

∫∫
Ks(s, t)dsdt = vol

∫
f(t)dt+ vol

∫
f(εt)dt,

where vol denotes the volume of the quotient T (FA)/T (F )Z(FA) and each of the integrals

is over the quotient T (FA)/Z(FA).
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9.4. Let us move on to the integral of term Ksp. According to (9.1.4), we have:

(9.4.1)

∫∫
Ksp(s, t)dsdt =

∑
Vol−1

∫
f(g)χ(det g)dg

∫
χ(det s)ds

∫
χ−1(det t)dt;

each of the integrals over the quotient T (FA)/T (F )Z(FA) is 0 unless s→ χ(det s) is trivial

on T (FA); this is the case if and only if χ = 1 or χ = η. The integral of Ksp thus reduces

to two terms:

(9.4.2)

∫∫
Ksp(s, t)dsdt = Vol−1 vol2

[∫
f(g)η(det g)dg +

∫
f(g)dg

]
.

In particular, let us choose as in (8.1) a place z of F not in S, fix the components of f at

places other than z and consider the integral as a function of f∧z . Then integral (9.1.5) is

of the form cf∧z (q
−1
z ), where c is a constant.

9.5. Let us move on to term Kei. It is null if G is not split over F . Suppose G is split and

let us return to the notations of (8.4). We have:

(9.5.1) Kei(x, y) = (iπ)−1

∫ +i∞

−i∞
A(x, y, u)du,

where

(9.5.2) A(x, y, u) =
∑
χ,j

[ρ(f)E](x, j, u, χ)E(y, j, u, χ)−.

Note that the maximal compact subgroup implicit in the definition of Eisenstein series is

now the product of groups Kv, with KvZv = Tv if v is infinite. In particular series (9.5.2)

is finite. Since we are integrating over a compact set we obtain:

(9.5.3)

∫∫
Kei(s, t)dsdt = (iπ)−1

∫ +i∞

−i∞
A(u : f)du,

where

(9.5.4) A(u : f) =
∑
χ,j

∫
[ρ(f)E](s, j, u, χ)ds

∫
E(t, j, u, χ)−dt.

Now [ρ(f)E](x, j, u, χ) is null unless ϕj isKv-invariant for all places v not in S. In particular,

let us choose as above a place z of F that is not in S and decomposes in E. Then f = fz ·fz
where fz is the product of fv for v ̸= z and

(9.5.5) [ρ(f)E](x, j, u, χ) = f∧z (q
−2iu
z )[ρ(fz)E](x, j, u, χ).

Therefore we have:

(9.5.6)

∫∫
Kei(s, t)dsdt = (2iπ)−1

∫ +i∞

−i∞
f∧z (q

−2iu
z )A(u : fz)du,

where A(u : fz) is integrable, a result that will be sufficient for our purpose.
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10. The fundamental identity

10.1. In this paragraph F is always a number field, E a quadratic extension of F , η the

quadratic character attached to E. We will further consider the pair (G,A) formed by

the group GL(2) and the subgroup of diagonal matrices A; we will fix an element ε of the

normalizer of A that is not in A. We will denote byKv the usual maximal compact subgroup

of Gv, and we will assume ε is contained in Kv for all v. We will give ourselves a finite

set S of places of F , containing the infinite places, the places that ramify in E, the places

where ψ is not of order 0 and the places of residual characteristic 2. It will be convenient

to assume that S has an even number of elements. Let X(S) be the set of pairs (G′, T ′)

in X(E : F ) such that G′ splits outside of S. For each (G′, T ′) in X(S) and each place v,

we will choose a maximal compact subgroup K ′
v of G′

v such that G′(FA) is the restricted

product of the G′
v with respect to the K ′

v. We will assume that if v does not decompose in

E then T ′
v is contained in K ′

vZv. For all v not in S the measures of T ′
v ∩K ′

v/K
′
v ∩ Z ′

v and

Av∩Kv/Kv∩Zv are 1. We will fix an element ε′ of the normalizer of T ′ that is not in T ′ and

we will assume that ε′ is in K ′
v for all v not in S. We will give ourselves a smooth function

with compact support f on G(FA)/Z(FA) and, for each (G′, T ′) in X(S), a smooth function

with compact support f ′ on G′(FA)/Z
′(FA). Of course these functions will be assumed to

be products of local functions. We will furthermore make the following hypotheses:

10.1.1. Let v be a place in S that does not decompose in E. Then f ′v is T ′
v-biinvariant.

Moreover if x is an element of Fv different from 1 and 0, (G′, T ′) an element of X(S) and

g′ an element of G′
v such that x = P (g′ : Tv) then (cf. §4):

H(x : fv : ηv) = H(g′ : f ′v : T ′
v).

10.1.2. Let v be a place of S that decomposes in E. Then fv isKv-finite and f
′
v isK

′
v-finite.

Let g be an Av-regular element of Gv. If (G
′, T ′) ∈ X(S) and g′ ∈ G′

v are such that

P (g : Av) = P (g′ : T ′
v)

then:

(i). H(g : fv : Av) = H(g′ : f ′v : T ′
v);

(ii).
∫
fv(av)dav =

∫
f ′v(t

′
v)dt

′
v;

(iii).
∫
fv(εav)dav =

∫
f ′v(ε

′t′v)dt
′
v.

10.1.3. If v is not in S then fv is Kv-biinvariant, f
′
v K

′
v-biinvariant and any isomorphism

of the pair (Gv,Kv) onto the pair (G′
v,K

′
v) transforms fv into f ′v.
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10.1.4. Remark. In the situation of condition (10.1.2) there exists an isomorphism of the

pair (Gv, Av) onto the pair (G′
v, T

′
v). Condition (10.1.2) is satisfied if we take for f ′v the

image of fv under this isomorphism. Indeed this is clear for ((10.1.2).i) and ((10.1.2).ii).

For ((10.1.2).iii), the integral on the right-hand side does not change if we replace ε′ by the

image of ε under the isomorphism in question and then our assertion is evident.

To the function f is associated the cuspidal kernel Kc for the group G. Similarly, for each

(G′, T ′), to the function f ′ is associated the cuspidal kernel K ′
c for the group G′. We will

prove in this paragraph the following result:

Theorem. With the preceding hypotheses and notations:

(10.1.1)

∫∫
Kc(a, b)η(det b)dadb =

∑
(G′,T ′)

∫∫
K ′

c(s, t)dsdt, (G′, T ′) ∈ X(S).

10.2. To prove our identity we will write, as in paragraphs 7 and 9:

(10.2.1) Kc = Kr +Ks −Ksp −Kei,

(10.2.2) K ′
c = K ′

r +K ′
s −K ′

sp −K ′
ei.

We will first prove the following identities:

(10.2.3)

∫∫
Kr(a, b)η(det b)dadb =

∑
(G′,T ′)

∫∫
K ′

r(s, t)dsdt,

(10.2.4)

∫∫
Ks(a, b)η(det b)dadb =

∑
(G′,T ′)

∫∫
K ′

s(s, t)dsdt.

Supposing these identities proven, let us show how the theorem follows. Consider the

difference:

(10.2.5)

∫∫
Kc(a, b)η(det b)dadb−

∑
(G′,T ′)

∫∫
K ′

c(s, t)dsdt.

Given (10.2.3) and (10.2.4), it can be written as:

−
∫∫

Ksp(a, b)η(det b)dadb+
∑

(G′,T ′)

∫∫
K ′

sp(s, t)dsdt

−
∫∫

Kei(a, b)η(det b)dadb+
∑

(G′,T ′)

∫∫
K ′

ei(s, t)dsdt.

Let us recall that for group G these are weak integrals.

Let us now choose a place z of E that is not in S and that decomposes in E. Let us fix

the components of f and f ′ at other places. At place z, the Satake transforms of fz and f ′z
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are the same. We can therefore consider our integrals as functions of f∧z . Then according

to (8.1), (9.3) and (9.4), the sum above has the form:

(10.2.6)

∫ +∞

−∞
ϕ(t)f∧z (q

−2it
z )dt+ cf∧z (q

−1
z ),

where ϕ is integrable. We complete the proof as in [Lan80] using the fact that the integrals

of Kc and K
′
c also have the form:

(10.2.7)
∑
t

atf
∧
z (t),

where the complex numbers t are either on the unit circle or on the real axis between q−1
z

and qz, and the series of at is absolutely convergent. The uniqueness of the decomposition

of a measure into an atomic measure and a continuous measure implies that the difference

(10.2.5) is in fact zero.

10.3. Let’s prove equality (10.2.3). The left-hand side can be written as:∑
ζ

H(ζ : f : η), ζ ̸= 0, 1,

while the right-hand side can be written as a double sum:∑
(G′,S′)

∑
ζ

H(ζ : f ′ : T ′)

where the inner sum is over all ζ in the class cN , excluding point 1, determined by the pair

(G′, T ′). We can recombine the two sums and write the right-hand side as a sum∑
ζ

H(ζ : f ′ : T ), ζ ∈ N(S)− 1,

where N(S) denotes the union of the classes cN determined by the elements of X(S).

According to class field theory, the elements of F x −N(S) are exactly the ζ in F x that

satisfy the following condition: there exists a place v of F , which is not in S, which does

not decompose in F and such that ζ is not a norm of the quadratic extension Ev of Fv.

According to Proposition (5.1), we have, for such a ζ, H(ζ : fv : ηv) = 0 if v is the place

in question. It follows that H(ζ : f : η) = 0. Therefore, it suffices to prove the equality of

the orbital integrals H(ζ : f : η) and H(ζ : f ′ : T ′) if ζ is in N(S). Let us decompose these

integrals into products of local integrals H(ζ : fv : ηv) and H(ζ : f ′v : T ′
v) respectively. For

v in S, the equality of these integrals follows from hypotheses (10.1.1) and (10.1.2). For v

not in S, the equality follows from hypothesis (10.1.3) and proposition (5.1). The equality

of global orbital integrals, and formula (10.2.3), are thus established.
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10.4. Let us now prove equality (10.2.4). We can use formula (7.3.7) to calculate the left-

hand side and formula (9.3.1) to calculate the right-hand side. Equality (10.2.4) will then

be a consequence of the following two equalities:

(10.4.1) H(n+ : f : η) +H(n− : f : η) =
∑

(G′,T ′)

vol(T ′(FA)/T
′(F )Z ′(FA))

∫
f ′(t)dt,

(10.4.2) H(εn+ : f : η) +H(εn− : f : η) =
∑

(G′,T ′)

vol(T ′(FA)/T
′(F )Z ′(FA))

∫
f ′(ε′t)dt.

The second identity follows from the first identity applied to the function f1 defined by

f1(g) = f(εg) and to the functions f ′1 defined by f ′1(g) = f ′(ε′g). It is indeed easy to verify

that conditions (10.1.1) to (10.1.3) are satisfied by f1 and the f ′1. Let us therefore prove

the first identity.

Let us calculate the right-hand side of (10.4.1). Let us introduce a differential ideal a of

E and b of F . The analytic continuation of the Tate integral

(10.4.3)

∫
ϕ(t)|t|sη(t)dt,

where ϕ is a Schwartz-Bruhat function, takes at point s = 0 the value:

L(0, η)
∏
v∈T

∫
ϕv(tv)η(tv)dtvL(0, ηv)

−1
∏
v∈V

ϕv(0)|av|1/2,

where T is the set of places of F that do not decompose in E and V the set of those that

do decompose.

Let us apply this formula to the functions ϕ+ and ϕ− defined by:

ϕ+(x) =

∫
f

[
a

(
1 x

0 1

)]
da, a ∈ A(FA)/Z(FA),

ϕ−(x) =

∫
f

[
a

(
1 0

x 1

)]
da, a ∈ A(FA)/Z(FA).

The local components of ϕ+ and ϕ− are defined analogously in terms of the local com-

ponents of f . Then the right-hand side of (10.4.1) is nothing but the sum of the values of

the Tate integrals (10.4.3) of ϕ+ and ϕ− at point s = 0. Moreover, we obviously have for

each v in V :

ϕ+,v(0) = ϕ−,v(0) =

∫
fv(av)dav, av ∈ Av/Zv.

On the other hand, for each v in T , the values at point 0 of the Tate integrals of ϕ+,v and

ϕ−,v are nothing but the singular orbital integrals of points n+ and n−. Let us therefore

set, to simplify the notation:

Mv =

∫
fv(av)dav for v in V ,

Mv± = 2H(n± : fv : ηv) for v in T .
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Then the left-hand side of equality (10.4.1) can be written:

(10.4.4) L(0, η)
∏
T

1/2L(0, ηv)
−1
∏
V

|av|1/2 ×
∏
V

Mv[
∏
T

Mv+ +
∏
T

Mv−].

Note that in each of the infinite products, almost all factors are equal to 1.

Let’s move to the second member of (10.4.1). The volume that appears there is none

other than 2L(1, η), as is well known. The integral is obviously the product of analogous

local integrals: ∫
f ′(t)dt =

∏
v

∫
f ′v(tv)dtv.

If v is in V , the local integral is none other than Mv according to hypothesis (10.1.2)(ii). If

v is in T , then the integral is equal to

vol(Tv/Zv)
−11/2[Mv− + ηv(c)Mv+]

according to proposition (4.1) and proposition (5.1). The volume that appears in this

formula is none other than |bw|1/2|av|−1/2, where w is the unique place of E above v. In

total, the right-hand side of (10.4.1) is equal to the following product:

(10.4.5)

2L(1, η)
∑

c∈N(S)/N

∏
v∈T

1/2L(0, ηv)
−1
∏
v∈T

|bw|−1/2|av|1/2
∏
v∈V

Mv

∏
v∈T

1/2[Mv− + ηv(c)Mv+].

Comparing with (10.4.4), we see that it suffices to prove the following equalities:

(10.4.6) L(0, η)
∏
v∈V

|av|1/2 = L(1, η)
∏
v∈T

|bw|−1/2|av|1/2,

(10.4.7)
∏
v∈T

Mv+ +
∏
v∈T

Mv− = 2
∑

c∈N(S)/N

∏
v∈T

1/2[Mv− + ηv(c)Mv+].

Equality (10.4.6) follows immediately from the functional equations of functions L(s, 1E)

and L(s, 1F ) and their relation with L(s, η).

Let’s move to equality (10.4.7). For v ∈ T − S we have ηv(c) = 1 according to the

definition of N(S) and Mv+ = Mv− (Prop. (5.1)); moreover, for almost all v ∈ T − V ,

Mv+ =Mv− = 1. Setting U = T ∩ S, we see that identity (10.4.7) reduces to:∏
v∈U

Mv+ +
∏
v∈U

Mv− = 2
∑

c∈N(S)/N

∏
v∈U

1/2[Mv− + ηv(c)Mv+].

Let H be the group {1,−1}U . For each v in U , let us define a character χv of H by the

formula χv(h) = hv. Let H
′ be the subgroup of H defined by the equation

∏
v∈U χv(h) = 1.

Then the mapping c→ (ηv(c)) defines a bijection from N(S)/N to H ′. With this notation,

the formula to be proved becomes∏
v∈U

Mv+ +
∏
v∈U

Mv− = 2
∑
h∈H

∏
v∈U

1/2[Mv− + χv(h)Mv+].
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Since [H : e] = 2[H ′ : e], the right-hand side can be written:

[H ′ : e]−1
∑
Y

∑
h∈H′

∏
v∈Y

χv(h)
∏
v∈Y

Mv+

∏
v∈U−Y

Mv−,

where the outer sum is over all subsets Y of U . The character
∏

v∈Y χv has a non-trivial

restriction to H ′, unless Y is empty or equal to U . In the preceding sum, therefore, only

the terms corresponding to the empty set and U remain; this gives us our equality.

11. The result of Waldspurger

11.1. We will finally prove Waldspurger’s result using the identity from paragraph (10).

We will denote by S a finite set of places of F satisfying the conditions of paragraph (10).

Since we can take S arbitrarily large, there will be no issue in only considering cuspidal

representations of G that are unramified outside S, couples (G′, T ′) belonging to X(S), and

for such a couple, cuspidal representations of G′ that are unramified outside S. We will

denote by K (resp. KS) the product of compact subgroups Kv for all v (resp. all v not in

S) and GS the restricted product of Gv for v not in S. For a couple (G′, T ′) in X(S), the

notations K ′, K ′S and G′S have analogous meanings.

To specify the first Waldspurger condition, let us note that if the integrals∫
ϕ(a)da and

∫
ϕ(bc)η(det b)db

are not zero for a couple of smooth vectors, they are not zero for a couple of K-finite vectors

(ϕ, ϕ′); moreover if S is large enough, then ϕ and ϕ′ are KS-invariant. Similarly if there

exists a couple (G′, T ′) in X, a cuspidal representation π′ and a smooth vector ϕ in the space

of π′ such that the integral
∫
ϕ(t)dt is not zero, then we can take ϕ K ′-finite; moreover, if

S is large enough, (G′, T ′) is in X(S) and ϕ is invariant under K ′S .

11.2. Let us therefore consider a set S and functions f and f ′ satisfying the conditions of

paragraph (10). In particular fv (resp. f ′v) is bi-invariant under Kv (resp. K ′
v). Consider

the kernel Kc. We can write it as:

(11.2.1) Kc =
∑
π

Kπ,

where, for each cuspidal automorphic representation (unramified outside S) π, we have

defined:

(11.2.2) Kπ(x, y) =
∑
j

ρ(f)ϕj(x)ϕ
−
j (y),

ϕj denoting an orthonormal basis of the subspace of KS-invariant vectors in the space of

π. We will assume the ϕj are K-finite. The series (11.2.1) converges not only in the Hilbert

space of square-integrable functions on the quotient G(FA)/G(F )Z(FA), but also in the

space of rapidly decreasing functions on the quotient G(FA)/G(F )Z(FA). Moreover, since

fv is Kv-finite for infinite v, the series (11.2.2), for a given f , has only a finite number of
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non-zero terms. Let us denote by H(S) the Hecke algebra of group GS relative to subgroup

KS . Let us write f = fSf
S , where fS (resp. fS) is the product of fv for v in S (resp. not

in S). Let Λπ be the character of H(S) attached to a representation π. Then we have:

(11.2.3)

∫∫
Kc(a, b)η(det b)dadb =

∑
π

a(π, fS)Λπ(f
S),

where we have defined:

(11.2.4) a(π, fS) =
∑
j

∫
ρ(fS)ϕj(a)da

∫
ϕ−j (b)η(det b)db.

11.3. Let us similarly consider a couple (G′, S′) in X(S). We still have a decomposition

(11.3.1) K ′
c =

∑
π′

Kπ′ ,

(11.3.2) Kπ′(x, y) =
∑
j

ρ(f ′)ϕj(x)ϕ
−
j (y),

where ϕj is an orthonormal basis of the space of K ′S-invariant vectors of π. The series

(11.3.1) still converges in the space of rapidly decreasing functions and series (11.3.2) is

finite. By integrating term by term we find:

(11.3.3)

∫∫
Kπ′(s, t)dsdt = a(π′, f ′S)Λπ′(f ′S),

where we have defined

(11.3.4) a(π′, f ′S) =
∑
j

∫
ρ(f ′)ϕj(s)ds

∫
ϕ−j (t)dt.

The total integral is therefore:∫∫
K ′

c(s, t)dsdt =
∑
π′

a(π′, f ′S)Λπ′(f ′S).

11.4. Let us now use our fundamental identity. Note that if π′ is a cuspidal representation

of G′ and π the cuspidal representation of G that corresponds to it, then Λπ(fS) = Λπ′(f ′S).

Since π′ determines π we can write a(π, f ′S) for a(π′, f ′S). On the other hand, for a given

representation π for group G, it will be convenient to set a(π, f ′S) = 0 if there does not exist

a representation π′ for G′ corresponding to π. Then our fundamental identity becomes:

(11.4.1)
∑
π

a(π, fS)Λ(π, f
S) =

∑
π

[
∑

(G′,T ′)

∑
a(π, f ′S)]Λ(π, f

S).

In this formula fS is an arbitrary element of H(S). Let v be a place in S. Then the

function fv is arbitrary Kv-finite. The function f ′v is related to fv by conditions (10.1.1) or

(10.1.2). If v decomposes, f ′v is in fact arbitrary K ′
v-finite (cf. (10.1.1)). If on the contrary

v does not decompose, then f ′v is no longer arbitrary but satisfies a density condition: if a
45



continuous function h on Gv/Zv is bi-Tv-invariant and orthogonal to all possible f ′v then h

is zero (Prop. (4.2)).

Suppose that π satisfies the first Waldspurger condition; then there exist K-finite vectors

ϕ and ϕ′ in the space of π such that:∫
ϕ(a)da ̸= 0 and

∫
ϕ′(b)η(det b)db ̸= 0,

and we can suppose ϕ and ϕ′ are KS-invariant. Let us choose the basis ϕj such that

ϕ1 = ϕ′/∥ϕ′∥−1. There exists fS such that ρ(fS)ϕ1 = ϕ and ρ(fS)ϕj = 0 if j ̸= 1. Then we

have:

a(π, fS) =

∫
ϕ(a)da

[∫
ϕ1(b)η(det b)db

]−
̸= 0.

According to the principle of “infinite” linear independence of characters of H(S) ([Lan80,

p. 211]), there exists at least one (G′, T ′) such that a(π, f ′S) is not zero. It evidently follows

that there exists at least one ϕ in the space of π′ such that
∫
ϕ(t)dt is not zero. Thus π

satisfies the second Waldspurger condition.

Suppose now that there exists a couple (G′, T ′), a representation π′ and a K ′-finite vector

ϕ in the space of π′ such that the integral
∫
ϕ(t)dt is not zero; we can suppose that (G′, T ′)

is in X(S) and ϕ is invariant under K ′S . We will see that we can choose f ′S such that

a(π′, f ′S) is not zero. The integral over T defines a continuous linear form on the space of

smooth vectors of π′ fixed by K ′S . Let us write it as the scalar product with a ”generalized”

vector eT : ∫
ϕ(t)dt = (ϕ, eT ).

If h is a smooth function with compact support on GS/ZS , then π
′(h)(eT ) is defined: it is a

smooth vector such that (ϕ, π′(h)eT ) = (π′(h∗)ϕ, eT ) for all vectors ϕ, smooth or not. With

this notation we have:

a(π, f ′S) = (π′(f ′S)eT , eT ).

The subspace of π′ formed by K ′S-invariant vectors is isomorphic to the tensor product of

the spaces of π′v with v in S. For each v in S, there exists a non-zero continuous linear form

ev on the space of smooth vectors of π′v that is invariant under Tv. This form is unique up

to a scalar factor (cf. (6.1) and (6.2)), and we can therefore write:

a(π′, f ′S) = (π′(f ′S)eT , eT ) = C
∏
v∈S

(πv(f
′
v)ev, ev),

where C is a non-zero constant. It remains to see that we can choose f ′v such that

(πv(f
′
v)ev, ev) is not zero. This is evident if v decomposes since f ′v is then arbitraryK ′

v-finite.

If v decomposes, ev is in fact an ordinary vector since Tv is compact. Then (πv(f
′
v)ev, ev)

is the scalar product of the function f ′v with the continuous matrix coefficient (π′(g)ev, ev);

it therefore cannot be zero for any choice of f ′v according to the density property of f ′v. On

the other hand, if (G′′, T ′′) is another element of X(S), then a(π, f ′′S) = 0; otherwise there

would exist at least one place v in S where the groups G′
v and G

′′
v are not isomorphic and the
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representations π′v and π′′v admit non-zero vectors invariant under T ′
v and T ′′

v respectively.

But this is impossible (Proposition (6.3)). The coefficient of Λπ in the second member

of (11.4.1) is therefore non-zero, for a suitable choice of f ′S (i.e. fS). It follows as above

that a(π, fS) is not zero. This evidently implies that π satisfies the first Waldspurger condi-

tion. This therefore completes the demonstration of the equivalence of the two Waldspurger

conditions.
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