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This note was written when I prepared my seminar talk, any mistakes are due to myself.
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1. Baby example

Before we go into the deep details, let start with a classical question.

1.1. Sum of square. For the first few primes we easily find that

5 = 12 + 22, 13 = 22 + 32, 17 = 12 + 42, 29 = 22 + 52

are sum of squares, while other primes like 3, 7, 11, 19, 23 are not. We have following fact:

Theorem 1.1.1. A prime p ̸= 2 is the sum of two squares if and only if p ≡ 1 mod 4.

Using the observation

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad− bc)2.

We further have

Theorem 1.1.2. A positive integer n is of the form n = x2 + y2 if and only if each prime

factor p ≡ 3 mod 4 of n appears to an even power.

To answer this question, we naturally define the representation number

r(n) := #{(x, y) ∈ Z2 : n = x2 + y2}.

We will use baby version of the Siegel-Weil formula to prove
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Theorem 1.1.3 (Jacobi).

r(n) = 4

 ∑
d|n

d≡1 mod 4

1−
∑
d|n

d≡3 mod 4

1

 .

As a byproductm Jacobi’s formula shows that

p ≡ 1 mod 4 ⇒ r(p) = 4(2− 0) = 8,

p ≡ 3 mod 4 ⇒ r(p) = 4(1− 1) = 0.

1.2. Theta function. Consider the Jacobi’s theta series

θ(q) :=
∑
n∈Z

qn
2
= 1 + 2q + 2q4 + 2q9 + · · · .

Then the representation numbers r(n) naturally appear as the nth coefficients of the square

of Jacobi’s theta series

θ2 = (
∑
n∈Z

qn
2
)2 =

∑
n≥0

r(n)qn = 1 + 4q + 4q2 + 4q4 + 8q5 + 4q8 + · · · .

Let τ = u + iv, it’s clear that we have θ(τ + 1) = θ(τ). Using the Possion summation

formula, we have

θ(− 1

4τ
) = (−2iτ)1/2θ(τ).

This shows that θ ∈ M1/2(Γ1(4)) is a weight half modular form. A precise meaning would

be it’s an automorphic form of the Metaplectic group.

Remark 1.2.1. If we apply the Mellon transformation, then theta function becomes Rie-

mann zeta function, and the second equality implies the functional equation.

For our interests, we have θ2(τ) ∈M1(Γ(4)) is a weight 1 modular form of level Γ1(4).

Proposition 1.2.2.

dimM1(Γ1(4)) = 1.

Therefore, it is the only modular form of such weight and level. Now we have another

way to construct the modular form, basically the Eisenstein series.

1.3. Eisenstein series. Let χ : (Z/4Z)× ∼−→ {±1} be the unique nontrivial character. We

define an Eisenstein series

Gχk (τ) =
∑

(0,0) ̸=(c,d)∈Z2,4|c

χ(d)

(cτ + d)k
.

We can normalize it into

Eχk (τ) =
∑

Γ∞\Γ1(4)

χ(d)

(cτ + d)k
= 1 + cχk ·

∑
n≥1

∑
d|n

χ(d)dk−1

 qn.
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Where cχk is a constant related to the special L-values. The last equality is an standard

exercise, the main ingredient is applying twisted Possion summation formula to the function
1

(τ−u)k . See Bump for more details.

Disregarding some convergent issue, which is not really a issue using some analysis, we

have Eχ1 (τ) ∈M1(Γ1(4)). Moreover, by comparing the constant term, we get

θ2(τ) = Eχ1 (τ).

Comparing the coefficient before q, we obtain cχ1 = 4, and we conclude the Jacobi’s theorem.

The equality is exactly the Siegel-Weil formula. General pattern would be, theta function

have more arithmetic meaning inside, while Eisenstein series are more easy to compute by

hand. Siegel-Weil formula builds the bridge between the arithmetic and analytic.

2. Weil representation

2.1. Setup. Let V be a quadratic space over Q of dimension m with a symmetric bilinear

form ( , ). It associated to a quadratic form Q[x] = 1
2(x, x). We recover the symmetric

bilinear form by

(x, y) = Q[x+ y]−Q[x]−Q[y].

For simplicity we assume that m is even. We have

M(Q) =

{
m(a) =

(
a 0

0 a−1

)
: a ∈ Q

}
,

N(Q) =

{
n(b) =

(
1 b

0 1

)
: b ∈ Q

}
.

s0 = dimV/2− 1 = m
2 − 1.

2.1.1. Let A be the ring of adeles of Q. We fix the standard additive character ψ : A → C×

whose archimedean component is given by ψ∞ : R → C×, x 7→ e2πix.

Recall the Schrödinger model of the Weil representation ω = ωV,ψ is the representation

of G(A)×H(A) on the space of Schwartz functions S(V (A)) such that for any φ ∈ S(V (A))
and x ∈ V (A),

ω(m(a))φ(x) = χV (a)|a|m/2φ(x · a), m(a) ∈M(A),

ω(n(b))φ(x) = ψ(bQ(v))φ(x), n(b) ∈ N(A),

ω(w)φ(x) = φ̂(x), w =

(
0 1

−1 0

)
,

w(h)φ(x) = φ(h−1x), h ∈ H(A).

Here
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• χV : A×/Q× → C× is the quadratic character that corresponds to the quadratic extension

Q(
√

disc(V ))/Q, where

disc(V ) := (−1)(
m
2 ) det((xi, xj)) ∈ Q×/(Q×)2.

for any Q-basis {x1, · · · , xm} of V .

• φ̂ is the Fourier transform of φ using the additive character ψ:

φ̂(x) :=

∫
V (A)

φ(y)ψ((x, y))dy.

Associated to φ ∈ S(V (A)), we define the theta function

θ(g, h, φ) :=
∑

x∈V (Q)

ω(g)φ(h−1x), g ∈ G(A), h ∈ H(A).

Then θ(g, h, φ) is invariant under G(Q)×H(Q). We will be interested in the theta integral∫
H(Q)\h(A)

θ(g, h, φ)dh.

In other words, the theta lift of the constant function on H(A) to G(A).

2.2. Example of the theta integral. Assume that V is positive definite, with a lattice

Λ ⊂ V over Z. We consider the Schwartz function (⊗pφp)⊗ φ∞ ∈ S(V (A)n) such that

• φp is the characteristic function of Λ⊗ Zp,

• φ∞ is the Gaussian function φ∞(x) = e−π(x,x) = e−2πQ[x].

Let K ⊂ H(A) be the stabilizere of Λ, then the double quotient

H(Q)\H(A)/K ∼−→ Gen(Λ), h 7−→ h(Λ⊗ Ẑ) ∩ V.

Where Gen is the isomorphic class of lattices with the same genus as Λ. Recall that two

lattices have the same genus if they can be transformed by H(A). Let {hi} be a complete

set of representatives of H(Q)\H(A)/K and let {Λi} be the corresponding representatives.

Then ∫
H(Q)\H(A)

θ(g, h, φ)dh =
∑
i

∫
H(Q)\H(Q)hiK

θ(g, h, φ)dh.

Using H(Q) ∩ hiKh−1
i = Aut(Λi), each summand evaluates to∫

H(Q)\H(Q)hkKh
−1
i

θ(g, hhi, φ)dh =
1

#Aut(Λi)

∫
hiKh

−1
i

θ(g, hhi, φ)dh =
1

#Aut(Λi)

∫
K
θ(g, hih, φ)dh.

Assume g = gτ for τ = u + iv ∈ H, a.k.a., gτ = n(u)m(v1/2) and identity for the nonar-

chimedean places. Thanks to the strong approximation, this will be enough to determine

the theta function. Then we have∫
K
θ(gτ , hih, φ)dh =

∫
K

∑
x∈V (Q)

ω∞(gτ )φ(h
−1h−1

i x)dh.
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By our choice of {φp}, the summation and integration is 1 if and only if

h−1h−1
i x ∈ Λ ⇔ x ∈ hhiΛ = Λi.

Therefore the summand evaluates to

vol(K)
∑
x∈Λi

ω∞(gτ )φ∞(x).

Using the definition, we have

ω∞(gτ )φ∞(x) = ω(n(u)m(v1/2))φ∞(x),

= χV (v
1/2)|v|m/4ψ(uQ[x])φ∞(v1/2x),

= |v|m/4e2πiuQ[x]e−2πvQ[x],

= |v|m/4e2πiQ(x)τ .

Combine all the computations, we deduce that the theta integral equals

vol(K)|v|m/4
∑
i

1

#Aut(Λi)
·
∑
x∈Λi

e2πiQ(x)τ .

Let’s see what we will get in special example. Let V = Q2 with Q[(x, y)] = x2 + y2. Let

Λ = Z2, there is only one lattice in the equivalence of the genus class. Then the summation

becomes ∑
(a,b)∈Z2

q(a
2+b2) =

∑
n∈N

τ(n)qn.

This recovers our sum of square function.

2.3. Metaplectic group and Weil representation over R. In practice using the strong

approximation, we will mostly focus on the archimedean place. In this case, Weil represen-

tation is not that scary.

2.3.1. We define Mp2(R) to be the double cover of SL2(R) whose elements can be written

in the form ((
a b

c d

)
,±

√
cτ + d

)
,

where

(
a b

c d

)
∈ SL2(R) and

√
cτ + d is considered as a holomorphic function of τ in the

upper half-plane whose square is cτ + d. Misleadingly, we will write it as G′(R).
We will see later in the computation of the Eisenstein series that cτ + d plays a role in

the angle of γ, so it’s not hard to convince that this produce a double cover in the Iwasawa

decomposition.

Remark 2.3.2. Maybe Simon can give a better explanation?
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Taking K ′
∞ = S̃O(2) is the double cover of the SO(2), this is the maximal compact of

the metaplectic group. Therefore, the Iwasawa decomposition becomes

G′(R) = NAK ′.

We identify the character group of K ′
∞ with 1

2Z and note that the value of the character νℓ

on −1 ∈ µ2 ∩K ′
∞ is (−1)2ℓ. For ℓ ∈ Z, the character νℓ factors through K = SO(2) and we

write νℓ(k∞) = eiℓθ.

Globally, we have a metaplectic double coverG′(A) → G(A). The compact open subgroup

K0(4) has a split section.

Remark 2.3.3. K0(4) = K0(4)2 ×
∏
p ̸=2Kp, it has things to do with a independent choice

of square root, but I don’t konw how to explain this. Maybe Simon can. See also https://

math.stackexchange.com/questions/2802562/why-are-half-integral-weight-modular-forms-defined-on-congruence-subgroups-of.

Recall that SL2(Q) has a natural splitting. We denote the image as G′(Q). For any

K ′ ⊂ K0(4), we have strong approximation

G′(A) = G′(Q)G′(R)K ′.

Therefore, we may focus on the automorphic representation of the metaplectic group over

the archimedean place.

We extend the quadratic character χV to the double cover by defining

χψV (x, z) = χV (x) ·

{
z · γ(x, ψ)−1 if m is odd,

1 if m is even.

Where γ is the Weil index. In our case, ψ(x) = e2πix, we have

γR(a, ψ) =

{
1 if a > 0,

−i if a < 0.

The Weil representation now gives by (cf. [Kudla94, (3.1)-(3.3)], [Kudla96, Proposition 4.3],

and [KRY06, Lemma 8.5.6])

ω(m(a))φ(x) = χψV (a)|a|
m/2φ(x · a), m(a) ∈M(A),

ω(n(b))φ(v) = ψ(bQ(x))φ(x), n(b) ∈ N(A),

ω(w)φ(x) = γ(V )φ̂(x), w =

(
0 1

−1 0

)
,

w(h)φ(v) = φ(h−1v), h ∈ H(A).

Here assume V has signature (p, q), then

γ(V ) = χV (−1)e2πi(q−p+1).
6
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Furthermore. when m is odd, the central C1 (µ2) in G′ acts by scalar, while when m is

even, the central acts trivially.

The theta integral is defined as usual, we set∫
H(Q)\H(A)

θ(g′, h;φ)dh, g′ ∈ G′(A), φ ∈ S(V ).

Example 2.3.4. Let V = Q with lattice Z and quadratic form Q[x] = x2. Using the same

computation as 2.2, we get∫
H(Q)\H(A)

θ(g′τ , h, φ)dh = vol(K)
∑
x∈Z

ω∞(g′τ )φ∞(x).

Now apply the Weil representation, we have

ω∞(g′τ )φ∞(x) = ω(n(u)m(v1/2))φ∞(x),

= ψ(uQ[x])χψV (v
1/2)|v|1/4φ∞(x · v1/2),

= |y|1/4e2πuQ[x] · e−2πvQ[x],

= |y|1/4e2πiτQ[x].

Therefore, we recover the Jacobi theta function:

θ(τ, φ) := |y|−1/4

∫
H(Q)\H(A)

θ(g′τ , h, φ)dh =
∑
x∈Z

e2πiτx
2
.

2.4. Some examples of quadratic space.

3. Siegel-Weil formula

3.1. Siegel Eisenstein series.

Definition 3.1.1. We denote by I(s, χV ) the principal series representation of G(A) in-

duced by χV | · |s; a.k.a, I(s0, χV ) := Ind
G(A)
B(A)χV | · |

s.

To be more precise, it consists of all smooth functions Φ(g, s) on G(A) such that

Φ(n(b)m(a)g, s) = χV (a)|a|s+1Φ(g, s).

Example 3.1.2. The example we are interested in comes from the Weil representation.

There is a G(A)-intertwining map

λ : S(V (A)) → I(s0, χV ), λ(φ)(g) = (ω(g)φ)(0).

This follows from the fact that

(ω(m(a))φ)(0) = χV (a)|a|m/2φ(0) = χV (a)|a|s0+1φ(0) = χV (a)|a|s0+1λ(φ).

A section Φ(s) ∈ I(s, χV ) is called standard, it its restriction to K∞K is independent of

s. One can show that any λ(φ) ∈ I(s0, χV ) can be extended into a standard section.
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For any standard section Φ(s), we define the Eisenstein series

E(g, s; Φ) :=
∑

γ∈P (Q)\G(Q)

Φ(γg, s).

It converges for Re(s) > 1, and defines an automorphic form on G(A). When Φ = λ(φ),

it’s called the Siegel Eisenstein series.

3.2. Relation to the classical Eisenstein series. Here we compute an easy case to

recover the classical Eisenstein series. Let ℓ be an even integer, and Φℓ∞(S) be the normalized

eigenfunction of weight ℓ in I∞(s, χ), i.e.,

Φℓ∞(g′k′, s) = νℓ(k
′)Φℓ∞(gq, s), Φℓ∞(1, s) = 1

for k′ ∈ K ′
∞, where νℓ is the character of K ′

∞ of weight ℓ. For our purpose, we can take

ℓ = 1. Let τ = u+ iv, with the correspond gτ = n(u)m(v1/2).

Lemma 3.2.1. Suppose γgτ = gγτkθ, then e
iθ = cτ̄+d

|cτ+d| .

Proof. We have

γτ =
aτ + b

cτ + d
=

1

|cτ + d|2
(
ac|τ |2 + bd+ (ad+ bc)Re(τ) + i Im(τ)

)
.

Therefore,

gγτ =

(
1 ac|τ |2+bd+(ad+bc)Re(τ)

|cτ+d|2

1

) Im(τ)1/2

|cτ+d| (
Im(τ)1/2

|cτ+d|

)−1

 .

Then

kθ =

(
1 ∗

1

)( |cτ+d|
v1/2

v1/2

|cτ+d|

)(
av1/2 auv−1/2 + bv−1/2

cv1/2 cuv−1/2 + dv−1/2

)
,

=

( |cτ+d|
v1/2

∗
v1/2

|cτ+d|

)(
av1/2 (au+ b)v−1/2

cv1/2 (cu+ d)v−1/2

)
,

=

(
∗ ∗
cv

|cτ+d|
cu+d
|cτ+d|

)
=

(
cos θ sin θ

− sin θ cos θ

)
.

Therefore, we have

eiθ = cos θ − sin θ =
c(u− iv) + d

|cτ + d|
=

cτ̄ + d

|cτ + d|
.

□

From the proof, we also obtain

Corollary 3.2.2.

Im(γτ) =
Im(τ)

|cτ + d|2
.
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Lemma 3.2.3.

Φℓ∞(gτ , s) = |v|
1
2
(s+1).

Proof.

Φℓ∞(gτ , s) = Φℓ∞

((
1 u

1

)(
v1/2

v−1/2

)
, s

)
,

= χ(v1/2)|v|
1
2
(s+1) = |v|

1
2
(s+1).

□

Corollary 3.2.4.

Φℓ∞(γgτ , s) = Φℓ∞(gγτkθ, s) =

(
cτ̄ + d

|cτ + d|

)ℓ
· Im(γτ)

1
2
(s+1).

We are ready to compute the Eisenstein series. We define

E(τ, s,Φℓ∞ ⊗ Φf ) := Im(τ)−
ℓ
2E(gτ , s,Φ

ℓ
∞ ⊗ Φf ),

= Im(τ)−
ℓ
2

∑
γ∈Γ∞\SL2(Z)

Φ∞(γgτ , s),

=
∑
γ

(
|cτ + d|2 Im(γτ)

)− ℓ
2

(
cτ̄ + d

|cτ + d|

)ℓ
· Im(γτ)

1
2
(s+1),

=
∑
γ

(
cτ̄ + d

|cτ + d|2

)ℓ
· Im(γτ)

1
2
(s+1−ℓ),

=
∑
γ

1

(cτ + d)ℓ
Im(γτ)

1
2
(s+1−ℓ).

This recovers our classical Eisenstein series.

Remark 3.2.5. We can further impose character into the principal series to get twisted

Eisenstein series. Nothing change in previous computation, except now non-archimedean

places will contribute a character:

E(τ, s,Φℓ∞ ⊗ Φf ) := Im(τ)−
ℓ
2E(gτ , s,Φ

ℓ
∞ ⊗ Φf ),

= Im(τ)−
ℓ
2

∑
γ∈Γ∞\SL2(Z)

Φℓ∞(γgτ , s)Φf (γ, s),

=
∑
γ

χ(d)

(cτ + d)ℓ
Im(γτ)

1
2
(s+1−ℓ).

When ℓ = 1, we get

E(τ, s,Φ) =
∑
γ

χ(d)

(cτ + d)
· vs/2

|cτ + d|s
.

This is the Eisenstein Maass form.

We can further impose character into the principal series to get twisted Eisenstein series.
9



3.3. Siegel-Weil formula. Assume V is anisotropic or m − r > 3 (Weil’s convergence

condition), then the Eisenstein series E(g, s;λ(φ)) is holomorphic at s0, and we have the

Siegel-Weil formula
α

2

∫
O(Q)\O(A)

θ(g, h;φ)dh = E(g, s0;λ(φ)).

Where α is the Tamagawa number, which we will discuss later.

4. Proof of the Siegel-Weil formula

4.1. Update after seminar. During the seminar, Simon give a wonderful way to think

about the Siegel-Weil formula, which is better than give a dry proof below. I have forgot

the precise statements so I will write down something vague but hopefully is the moral of

his claim.

The starting point is the theta correspondence. Recall that globally we define the theta

integral which assign an automorphic forms f ∈ A(H) to

f 7−→
∫
H(Q)\H(A)

f(h)θ(g, h;φ)dh.

This will give a automorphic form in A(H). From representation theory perspective, this

is roughly speaking a homomorphism

Hom(A(H)∨ × S(V (A)),A(G)).

Equivalently, it gives a homomorphism

Hom(S(V (A)),A(H)×A(G)).

The image will be of the form

⊕πH ⊗ πG.

The theory of theta correspondence says this gives a correspondence between the represen-

tations of H and G. This defines a function

Θ : Irr(H) → Irr.

If you write one of the automorphic representation into local components:

πH = ⊗vπv,

then the global theta also compatible with the local theta.

Now if we start with a trivial representation in A(H), then the theta integral becomes a

homomorphism:

Hom(S(V (A)),A(G)).

However, we know that there is another such homomorphism, which sends the Schwartz

functions into the Siegel Eisenstein series. If you assuming the uniqueness (which need to

be more careful in the archimedean place), then two homomorphisms should agree, which

is the Siegel-Weil formula.
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4.2. A fake reduction. First observe that the action on both sides of the Siegel-Weil

formula are compatible. In fact, the action of G(A) are inherit from the Weil representation.

To be more precise, for g′ ∈ G(A), and φ ∈ S(V (A)), define

φg′(x) := (ω(g′)φ)(x).

Then

θ(gg′, h;φ) =
∑

x∈V (Q)

(ω(gg′, h)φ)(x);

=
∑

x∈V (Q)

ω(g, h)(ω(g′)φ)(x);

=
∑

x∈V (Q)

ω(g, h)φg′(x);

= θ(g, h;φg′).

On the other hand,

E(gg′, s0;λ(φ)) =
∑

γ∈P (Q)/G(Q)

λ(φ)(γgg′, s0);

=
∑

γ∈P (Q)/G(Q)

(ω(γgg′)φ)(0);

=
∑

γ∈P (Q)\G(Q)

(ω(λg)φg′)(0);

= E(g, s0;λ(φg′)).

It’s not clear to me whether we can do this in the archimedean place. For instance, if we

thinking of (g,K)-module, then this is not what we are looking for.

But still, to save our life, we reduce to show the special case of the Siegel-Weil formula to

the case when g = 1, in this case, we are expected to get an equality between two numbers.

In fact, in the later computation, if we replace φ by ω(g′)φ, the same computation works

and we get Siegel-Weil formula for general g′. The main reason is that G and H actions are

commute.

4.3. Tamagama measure on orthogonal groups. One of the main ingredient of the

proof of the Siegel-Weil formula is the well-compatibility of different measures, which we

will justify now. Let A be an Q-algebra with measure, in our case we can take A to be A,
R, and Qp.

The philosophy is that, given any linear algebraic group G or its homogeneous space

G/H, we have natural measure defined on G(A) and G/H(A), which will be left or right

invariant under the group action.

Consider the vector space V (A), where A could be A,R,Qp,Q, or any Q-algebra. For

any α ∈ Gm(A), denote VA[α] = {x ∈ V (A) | 1
2(x, x) = Q[x] = α}.
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Proposition 4.3.1. Take 0 ̸= x ∈ V (A) such that Q[x] = α, we have identification

VA[α]− {0} ≃ Ox(A)\O(A),

where Ox(A) is the stabilizer of x. We will later also consider the case when λ = 0.

Proof. The proof idea is as follows. First it’s clear that that O(A) acts on the space

VA[α]− {0}. Next O(A) acts transitively on VA[α]− {0}: it was by Witt’s theorem which

says that any isometry between two subspaces of the non-degenerate quadratic space will

extend to an isometry of the whole space. In particular, we get a transitively action by

extending the map x 7→ y for any x, y ∈ VA[α]− {0}. □

Next, we given α ̸= β ∈ A when A is p-adic, we can find a linear transformation γ ∈
GL(V,A) such that (γx, γy) = α−1β(x, y) for any x, y ∈ VA. In this way, it constructs an

isomorphism

V [α] ≃ Ox(A)\O(A) ≃ Oγx(A)\O(A) ≃ V [β].

Therefore, with some artificial choice, we can write VA − VA[0] ≃ V [α] × Gm. By some

linear transformation, one can further identify VA[α] ≃ VA[0] Hence VA − {0} = VA[α] ×
Ga(A). We will have a natural volume form ω = dxα ∧ dα for α ∈ Ga(A), and dxα is a

volume form on Ox\O. The magic fact is the following equality:∫
V (A)

f(x)dx =

∫
A

∫
VA[α]

f(x)dxαdα.

The same procedure can apply to R and A as well, those the discussion might differs.

Example 4.3.2. For V = R2 with Q[(x, y)] = x2 + y2. We have

dx ∧ dy =
1

r
dθ ∧ dr

for r > 0. When r ≤ 0, we assign with 0 measure.

4.4. Fourier expansion of the theta integral. We compute the Fourier expansion of

the theta series

∫
O(Q)\O(A)

θ(1, h;φ)dh =
∑

x∈V (Q)

∫
O(Q)\O(A)

(ω(h)φ)(x)dh;

=
∑

x∈V (Q)

∫
O(Q)\O(A)

φ(h−1x)dh;

=
∑
r∈Q

∑
x∈V (Q)
Q[x]=r

∫
O(Q)\O(A)

φ(h−1x)dh.

12



Therefore for r ̸= 0, we have

∑
x∈V (Q)
Q[x]=r

∫
O(Q)\O(A)

φ(h−1v)dh =
∑

γ∈Or(Q)\O(Q)

∫
O(Q)\O(A)

φ(h−1γx)dh;

=

∫
Or(Q)/O(A)

φ(h−1x)dh;

=

∫
Or(Q)\Or(A)

∫
Or(A)\O(A)

φ(h−1x)dh;

=

∫
Or(Q)\Or(A)

∫
VA[r]

φ(x)dxr

= τ(Or)

∫
VA[r]

φ(x)dxr.

The last equality holds because, φ(x) is Or(A)-invariant.
For r = 0, we have

∑
x∈V (Q)
Q[x]=0

∫
O(Q)\O(A)

φ(h−1x)dh =

∫
O(Q)\O(A)

φ(0)dh+
∑

γ∈Or(Q)\O(Q)

∫
O(Q)\O(A)

φ(h−1x)dh;

= τ(O)φ(0) + τ(O0)

∫
VA[0]−{0}

φ(x)dx.

Now the area τ(O) has been computed by Weil:

Proposition 4.4.1 (Weil). τ(O) = τ(Or) = 2 is a constant when n ≥ 3.

Therefore, we conclude that when n ≥ 4, we have

(4.4.1)
1

2

∫
O(Q)\O(A)

θ(1, h;φ) = φ(0) +
∑
r∈Q

∫
VA[r]−{0}

φ(x)dxr.

4.4.2. If we work harder, we can see it is in fact the Fourier coefficients of the theta integral.
13



Let n(α) =

(
1 α

0 1

)
. We compute

∫
O(Q)\O(A)

θ(n(α), h;φ)dh =
∑

x∈V (Q)

∫
O(Q)\O(A)

(ω(n(α), h)φ)(x)dh;

=
∑

x∈V (Q)

∫
O(Q)\O(A)

φ(h−1x)ψ(αQ[x])dh;

=
∑
r∈Q

 ∑
x∈V (Q)
Q[x]=r

∫
O(Q)\O(A)

φ(h−1x)dh

ψ(rα);

= 2φ(0) + 2

∫
VA[0]−{0}

φ(x)dx0 + 2
∑
r∈Q∗

(∫
VA[r]−{0}

φ(x)dxr

)
ψ(αr).

(4.4.2)

4.5. Fourier expansion of the Siegel-Eisenstein series.

4.5.1. Bruhat decomposition. Our first goal is finding representative elements in the quotient

B\G. Recall the Bruhat decomposition

G = B ⊔BJB,

where J =

(
0 1

−1 0

)
. Further, we can decompose

B\BJB ≃ B ∩ J−1BJ\B BJb 7−→ b.

Therefore we can choose representative elements:

B(Q)\G(Q) = BI2 ⊔
⊔
r∈Q

BJn(r).

Remark 4.5.2. For c ̸= 0, we have(
a b

c d

)
=

(
1 ac−1

0 1

)(
0 −c−1

c 0

)(
1 c−1d

0 1

)
.

4.6. Fourier expansion. First let’s compute

(ω(Jn(b))φ)(0) =

∫
V (A)

(n(b)φ)(x)ψ((0, x))dx;

=

∫
V (A)

(n(b)φ)(x)dx;

=

∫
V (A)

ψ(
1

2
b(x, x))φ(x)dx;

=

∫
V (A)

ψ(bQ[x])φ(x)dx.

14



Therefore, we have

E(n(α), s0;λ(φ)) =
∑

γ∈P (Q)\G(Q)

λ(φ)(γn(α), s0);

=
∑

γ∈B(Q)\G(Q)

(ω(γn(α))φ)(0);

= (ω(n(α))φ)(0) +
∑
r∈Q

(ω(n(r + α))φ)(0);

= φ(0) +
∑
r∈Q

∫
V (A)

ψ((r + α)Q[x])φ(x)dx.

Check the partial summation part, the summation equals∑
r∈Q

∫
V (A)

ψ((r + α)Q[x])φ(x)dx;

=
∑
r∈Q

∫
A

(∫
V (A)[ρ]

ψ((r + α)ρ)φ(x)dxρ

)
dρ;

=
∑
r∈Q

∫
A

(∫
V (A)[ρ]

φ(x)dxρ

)
ψ((r + α)ρ)dρ.

If we set α = 0, the summation becomes∑
r∈Q

∫
A

(∫
V (A)[ρ]

φ(x)dxρ

)
ψ(rρ)dρ.

Denote f(ρ) :=
∫
V (A)[ρ] φ(x)dxρ, then we have∑

r∈Q
f̂(r) =

∑
r∈Q

f(r) =
∑
r∈Q

∫
V (A)[r]

φ(x)dxr.

Conpare with (4.4.1), we finishes the proof of the Siegel-Weil formula.

To get the Fourier coefficient, recall how we proof the Possion summation formula. Given

ρ ∈ A, the summation
∑

r∈Q f(r + ρ) is Q-invariant. Using Fourier expansion, we have∑
r∈Q

f(r + ρ) =
∑
r∈Q

f̂(r)ψ(rρ).

In particular, if we apply ρ = 0, we get the Possion summation formula. From the proof,

we see that we have a more general formula∑
r∈Q

f̂(r + ρ) =
∑
r∈Q

f(r)ψ(rρ).

This gives the Fourier expansion of the Eisenstein series. Compare with (4.4.2), we get

identification between their Fourier coefficients.
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4.7. General Siegel-Weil formula for Sp. singular term
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