
Shimura varieties and their special cycles in the case of O(0, 2), O(1, 2), and O(2, 2).1

Outline of the talk:

(1) Primer on Shimura Varieties.
(2) Introduction to Shimura Varieties of Orthogonal Type.
(3) Definition of Natural, Shifted, Weighted, and Special Cycle.
(4) Examples of each of the cycles we consider.

References for the talk are:

(1) Kudla 1997 - Algebraic Cycles on Shimura Varieties of Orthogonal Type
(2) Kudla - Special Cycles and Derivatives of Eisenstein Series
(3) Bruinier & Yang 2008 - Faltings Heights of CM Cycles and Derivatives of L-functions
(4) Gross & Kohnen & Zagier - Heegner Points and Derivatives of L-Series.
(5) Kai-Wen Lan - An Example-Based Introduction to Shimura Varieties

Motivation. I’m not an expert on the history myself. I might return to add an explanation of the
history. The key work is Heegner points i.e. special cycles should generalize Heegner points. We show
this in our talk. Furthermore, special cycles should also behave well w.r.t. pull backs and much can be said
about their cohomology. I think Kudla’s paper on special cycles proved a formula for the intersection of
special cycles. In another direction, the generating series of special cycles is of interest and Bruinier-Yang &
the work of Bruinier-Rapoport-Yang develop the theory in the case of Simura curves.
0.1 Review of Shimura Varieties. There are two ways to try and think about Shimura varieties, as far
as I know. One is more direct i.e. thinking about symmetric domains and various quotients. The second is
the more abstract approach of Delgine. The crucial point is that they coincide.

Definition 0.1 (Low-Brow Definition of a Shimura Variety). A Shimura variety is is roughly as follows. Let
G be a reductive group over Q. Let D be a symmetric domain on which G(Q) acts. Then for a sufficiently
small open compact subgroup K ⊆ G(Af ), we get

XK(C) := G(Q)\D×G(Af )/K

where the action on the left is g[x, h]→ [gx, h] and on the right [x, h]g = [x, hg].
Throughout this talk, I write XK(C) if I am suggestively thinking about the complex points.

Definition 0.2 (Definition of Shimura Variety). A Shimura datum is a pair (G,X) consisting of

(1) G a reductive group2 over Q,
(2) X a G(R)-conjugacy class of homomorphisms h : S→ GR from the Deligne torus,

subjected to the conditions

SV1 for all h ∈ X, the Hodge structure on Lie(GR) defined by Ad ◦ h is of type (−1, 1), (0, 0), (1,−1),
SV2 for any h ∈ X, ad(h(i)) is a Cartan involution of GadR ,
SV3 Gad has no Q-factor such that the projection h is trivial.

Recall Gad is the quotient G/Z.
From this Shimura datum, one obtains a Shimura variety via the same double coset construction.

Remark 0.3. Let h ∈ X. The action of Ad◦h : S→ GR → End(LieGR) gives a Hodge structure on Lie(GR)

depending on how (z1, z2) ∈ SC act. There is a sign difference here hC(z1, z2) = z−p1 z−q2 v has v ∈ V p,q a
weight (p, q) vector.

Let θ be an involution of GadR . It is a Cartan involution if {g ∈ GadR (C) : g = θ(g)} is compact.

Example 0.4 (Casimir Kothari’s Notes). Let G := GL2. Let X be the GL2(R)-conjgates of the homomor-

phism h0 : S→ GL2,R given by a+ bi→
(
a b
−b a

)
. Then (G,X) is a Shimura datum. As a check,

(1) The Lie algebra is just 2× 2 real matices. The action of Ad ◦h is just studying the adjoint action on
the Lie algebra. But because of h0’s form, these all of the declared type. Essentially, h(z) acts on
the tangent space by z

z̄ .

1If there are any mistakes or typos please email them to me ktdao@wisc.edu.
2For example, think of GLn, SLn, Sp2g , Un, SOn, or any of the other classical groups.
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(2) ad(h(i)) being a Cartan involution just means we check {g ∈ GadR (C) : g = θ(ḡ)} is compact. One
can show we just get SU2(R) for so clearly compact.

(3) Gad has no Q-factor s.t. the projection on h is trivial is easy since it is just SL2 for the adjoint.

The bijection X ↔ C \ R is given by identifying h0 above with i ∈ C \ R.

Proposition 0.5. For any K ⊆ G(Af ) an open compact subgroup, we can form the associated Shimura
variety

XK(C) := G(Q)\ (D×G(Af )/K) ∼=
∐
j

Γj\D+.(1)

where Γj = G(Q)+ ∩ gjKg−1
j . where g1, . . . , gr are coset representatives of the finite double quotient3

G(Q)+\G(Af )/K.(2)

Proof of Double Coset Decomposition. First off, the double coset G(Q)+\G(Af )/K is finite.
Secondly, we show that the map

φ : Γg\D+ → G(Q)+\D+ ×G(Af )/K

is an injective map given by [x] 7→ [x, g]. Suppose [x1], [x2] ∈ Γg\D+ map to the same point of XK(C) i.e.
[x1, g] = [x2, g]. So there exists an h ∈ G(Q)+ and a k ∈ K such that

[x1, g]
literal
= [hx2, hgk].

The equality hgk = g implies gkg−1 = h−1 ∈ gKg−1. But then h ∈ G(Q) ∩ gKg−1. This proves injectivity.
A standard fact in the theory is that the natural map

G(Q)+\D+ ×G(Af )/K ↔ G(Q)\D×G(Af )

is a bijection. So one gets φ : Γg\D+ → XK an injective map. But this implies XK is a disjoint union of
these images for various g. But the various g must vary over coset representatives of G(Q)+\G(Af )/K. □

We can recover the curves Y (Γ(N)) as follows. Let K := ker(GL2(Ẑ) → GL2(Z/NZ)). This is an open
compact subgroup of GL2(Af ). Then,

XK(C) =
∐

(Z/NZ)×
Y (Γ(N))

because

GL2(Q)+\GL2(Af )/K ∼= GL2(Q)+\GL2(Q)GL2(Ẑ)/K(3)

∼= GL2(Q)+\GL2(Q)GL2(Z/NZ)(4)

det∼= (Z/NZ)×.(5)

Our choice of K makes K normal so all the Γr are the same. One can check that XK is defined over Q by
considering the associated moduli problem:

(1) Y (Γ(N)) paramterizes elliptic curves with extra data (E,E[N ] ∼= (Z/NZ)2) and up to isomorphism
and preserving the symplectic form coming from a choice of polarization.

(2) There is always the Weil pairing which pairs the N -torsion points and lands in µN the Nth roots of
unity.

(3) Now we want to be able to solve this moduli problem over Q. The issue is we need to idenfiy
E[N ] ∼= µ2

N by picking an Nth root of unity. We can also require that E itself is defined over Q. So
the issue of getting a Q-point corresponds to

(E,µ2
N ), (E, (σµN )2, , (E, (σ2µN )2), . . . , . . . , (E, (σφ(N)−1µN )2).

In this case, we obtain a Shimura variety defined over Q.

3The group G(Q)+ is defined as the group of elements whose image under G → Gad land in the identity component. For

example, GL2(Q)+ is the group of positive determinant matrices.
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Example 0.6 (Recovering Y0(N) and Y1(N)). Since Y0(N) and Y1(N) are obtained by quotienting the
upperhalfplane by Γ0(N) and Γ1(N), we make the obvious modification to K as a kernel. Indeed, let K be
the preimage of the subgroup

{γ ∈ GL2(Z/NZ) : c ≡ 0 mod N} ⊆ GL2(Z/NZ)

under the map GL2(Ẑ)→ GL2(Z/NZ). Then K is a normal subgroup. Furthermore,

GL2(Q)+\GL2(Af )/K ∼= GL2(Q)+\GL2(Q) ·
(
GL2(Ẑ)/K

)
(6)

∼= GL2(Q)+\GL2(Q)(GL2(Z/NZ)/Γ0(N))(7)

∼= 1(8)

via the determinant map.

We now state one important theorem which is crucial to the arithmetic theory of Shimura varieties.

Theorem 0.7 (Existence of a Reflex field and Canonical Model). Let K be an open compact subgroup of
G(Af ) where (G,D) is a Shimura datum. Then the Shimura varieties

XK = G(Q)\D×G(Af )/K

have the structure of an algebraic (quasi-projective) variety with multiple connected components all of
which are defined over an algebraic number field called the reflex field and in particular, the number field
is independent of the choice of K. Furthermore, each XK has a Satake-Baily-Borel compactifiication
XK which is a projective variety defined over the reflex field.

Let K be an open compact subgroup of G(Af ) for G := GSpin(V ) where (V,Q) has signature (n, 2).
Then the Shimura varieties

XK = G(Q)\D×G(Af )/K
have the structure of an algebraic (quasi-projective) variety with multiple connected components which is
defined over the reflex field which is an algebraic number field.

Furthermore, each XK has a Satake-Baily-Borel compactification aka minimal compactification
XK which has the structure of a projective variety defined over the reflex field.

Remark 0.8 (Motivations for existence of reflex fields). Shimura varieties XK are allowed to have mutliple
components. This gives them a higher chance of having a smaller field of definition. Here’s an of example
demonstrating this principle.

Let us consider for the curve V (X − i) ∈ A2
C. This is a curve whose first coordinate is always i. It is clear

that there is no chance for this curve to be defined over a smaller field such as R since its defining equation
does not have coefficients in R. However, we can consider instead

V ((X − i)(X + i)) = V (X2 + 1) ⊆ A2
C

which does have coefficients in R. This also adds an additional component, but at least the algebra set is
preserved under the Galois action Gal(C/R) and is therefore defined over R (e.g. an Exercise in Hartshorne
II.4).

Example 0.9. The modular curves Y0(N), Y1(N) are by themselves defined over Q and are quasiprojective.
The number of cusps one has to add to get a projective variety can be computed in the case of modular
curves.

On the other hand, each of the Y (Γ(N)) are only defined over Q(ζN ). But putting them together∐
(Z/NZ)× Y (Γ(N)) produces a quasiprojective variety defined over Q.

Later, I shall give more examples of Shimura curves, but I think we have enough to see the flavor of
how they might be constructed. To even begin talking about “sub”-Shimura varieties, we need a notion of
maps of Shimura varieties. In particular, we give a criterion for a map of Shimura varieties to be a closed
embedding.

Definition 0.10. Fix (G,D) and (G′,D′). A map of Shimura varieties will always arise from a map of
algebraic groups G → G′ sending X to X ′. For fixed open compact subgroups K ⊆ G,K ′ ⊆ G′, a map
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XK(C)→ XK′(C) need not always be well-defined. In this talk, they always will be and are explicitly given
by a map of double cosets

G(Q)\D×G(Af )/K → G′(Q)\D′ ×G′(Af )/K ′.

Theorem 0.11 (Criterion for Closed Embeddings). A map of Shimura datum (G,D) → (G′,D′) defines a
map inverse systems of Shimura varieties Sh(G,D) → Sh(G′,D′). The inverse system of Shimura variety
associated to (G,D) is defined as

Sh(G,D) = {XK}K small open compact subgroups ⊆G(Af ).

If G ↪→ G′ is an injective homomorphism, then the map on total Shimura varieties is a closed immersion
i.e. for any open compact subgroup K ⊆ G(Af ) there is an open compact subgroup K ′ ⊆ G′(Af ) such that

Sh(G,D)K → Sh(G′,D′)K′

is a closed immersion of algebraic varieties.
In practice, it is often possible to make the choice of K ′, which is dependent on K, very explicit.

0.2 Set-up for Shimura Varieties of Orthogonal Type. Throughout, we use the following set-up.

(1) V is an inner product space over Q of signature (n, 2). We write Q(x) := 1
2 (x, x) for the associated

quadratic form.
(2) SO(V ) = SO(n, 2) is the special orthgonal group of signature (n, 2)
(3) G := GSpin(n, 2).

The reason why people prefer to work with GSpin(n, 2) is because it leads to Shimura varieties
of Hodge type. This is an advantage because it leads to a moduli interpretation. One positive
consequence is it then lets one figure out the field of definition / reflex field more easily via the
moduli perspective.

(4) For K ⊆ G(Af ) open compact we can form

XK := G(Q)\(D ×G(Af )/K)

where

D := {w ∈ V (R) : (w,w) = 0, (w, w̄) < 0}/C×

is the Grassmannian of oriented negative definite 2-planes. One has

D = D+
∐

D− where the two are interchanged by complex conjugation.

(5) Decompose for any K open compact

XK =
∐

1≤j≤r

Γj\D+ for Γj = gjKg
−1
j ∩G(Q)+

and where the number of connected components correspond to the number of coset representatives
of

G(Q)+\G(Af )/K.
(6) Sh(G,D) := lim←−K⊆G(Af )

XK .

We discuss some generalities of GSpin(V ). First off, there is always a diagram

1 Gm GSpin(V ) SOV 1

1 {±1} Spin(V ) SOV

ψ

where ψ(g)(v) = gvg−1.

Definition 0.12. Let V be as before. Let C(V ) denote the Clifford algebra where C(V ) := T (V )
v2−Q(v) .

Then one can decompose C(V ) into its even part Ceven(V ) and its odd part Codd(V ). One gets a linear
inclusion

V ↪→ Codd(V ).



5

The Clifford algebra comes with what is known as the spinor norm ν(x) for x ∈ C(V ). Then

GSpin(V ) := {g ∈ Ceven(V )× : gV g−1 = V }.

Example 0.13. Since I assume people have not seen much of the Clifford algebra, let me compute one
example of GSpin(V ).

Let V := R2 and Q(x) = −x21 − x22. Let e1, e2 be the standard basis. Then

−2 = (e1 + e2)⊗ (e1 + e2) = −2 + (e1 ⊗ e2 + e2 ⊗ e1).

This implies e1 ⊗ e2 = −e2 ⊗ e1. Then

C(V ) has a basis given by 1, e1, e2, e1 ⊗ e2.

As R-algebras, we get C(V ) ∼= H as R-algebras

e1 → i, e2 → j, e1 ⊗ e2 → k.

Then, for GSpin(V ) we get

GSpin(V )(R) ∼= {g ∈ Ceven(V )× : gV g−1 = V } = {a+ b(e1 ⊗ e2) : (a, b) ̸= 0} ∼= C×.

Definition 0.14. The spin group Spin(V ) is defined as follows. It is the algebraic subgroup Spin(V ) ⊆
GSpin(V ) consisting of x ∈ GSpin(V ) with Clifford norm N(x) = xtx = 1. Here, xt just means for any
pure tensor x1 ⊗ · · · ⊗ xn one reverses the order of the entries xt = xn ⊗ · · · ⊗ x1.

Theorem 0.15 (General Facts about Shimura Varieties of Orthogonal Type). Assume the situation above.

(1) XK is a quasiprojective variety over Q. It is projective if and only if V is an anisotropic quadratic
space. This would force if n ≤ 2 by Meyer’s Theorem.

(2) dimXK = n,

Due to accidental isomorphisms in low dimensions, the Shimura varieties of orthogonal type can be
classified and put into a table;

dimX G := GSpin(n, 2) X
0 k× rank 2 tori Points
1 GL2 or B× for B an indefinite quaternion algebra Modular Curves / Shimura Curves

2 GL2×Gm
GL2 and GLdet∈Q×

2,F Product of Modular Curves / Hilbert Modular Surfaces.

For the same of completeness, we compute some examples corresponding to the dimension 0 case.

Example 0.16. The easiest is n = 0 in which (V,Q) is to be a 2-dimension Q-vector space with (0, 2)-
quadratic form. Let v1, v2 be an orthogonal basis of V and assume Q(vi) = qi ∈ Q×. The Clifford algebra
is

C(V ) ∼= Q⊕Qv1 ⊕Qv2 ⊕Q(v1 ⊗ v2).(9)

The even part of the Clifford algebra is Ceven(V ) = Q⊕Q(v1 ⊗ v2) and as a Q-algebra

Ceven(V ) ∼=
Q[X]

(X2 + q1q2)
(10)

because orthogonality implies 0 = (v1, v2) =
1
2 [Q(v1 + v2)−Q(v1)−Q(v2)] which means

0 =
1

2
[(v1 + v2)(v1 + v2)− v21 − v22 ] =

1

2
[v2v1 + v2v1] ⇒

1

2
v2v1 = −1

2
v1v2.(11)

in the Clifford algebra. Since char(Q) ̸= 2, the relation we get isX2 = (v1⊗v2)2 = v1v2v1v2 = −v1(v1v2)v2 =
−q1q2. It follows that

Ceven(V )× ∼= Q(
√
−q1q2)×

and since these elements always preserve V ↪→ Codd(V ), we know GSpin(V ) ∼= Q(
√
−q1q2)×.



6

Proof of claim. Let g ∈ Ceven(V )×. Focus on pure tensors so suppose g = v1v2. Then g
−1 = v2v1

1
q2q1

. It

follows that

gv1g
−1 =

1

q2q1
v1v2v1v2v1 =

−q2q1
q2q1

v1 = −v1(12)

gv2g
−1 1

q2q1
v1v2v2v2v1 =

1

q1
v1v2v1 = −q1

q1
v2 = −v2.(13)

Example 0.17 (Orthogonal Shimura Variety associated to O(0, 2)). Let (V,Q) be a quadratic space over

Q of signature (0, 2) as above. Set k := Q(
√
d) with d < 0 as the even part of the Clifford algebra. Then

G := GSpin(k) ∼= Resk/Q(Gm,k).(14)

It follows G(Af ) ∼= A×
k,f , the symmetric domain D consists of two points corresponding to the two orientations

of V ⊗ R, and if we pick K := Ôk
×
, then

XK = G(Q)\{z±0 } ×G(Af )/K ∼=
∐

k×\A×
k,f/Ôk

×

{z±0 } ∼= {z
±
0 } × (k×\A×

k,f/Ôk
×
) = {z+0 } × Cl(k).(15)

The last isomorphism is given by

(k×\A×
k,f/Ôk

×
)

∼=→ Cl(k) (av)v 7→
∏
v

vordv(av)(16)

and we remark that k× ∼= G(Q)+ since the adjoint Gad(Q) is trivial.
Warning. There is a potential for confusion here since we wrote XK =

∐
G(Q)+\G(Af )/K

Γgj\D+ above.

However, D+ does not mean we get {z+0 }.
One can see why there must be two points if one writes out what happens to the action of G(Q) on z±0 .

By definitoin, G(Q) ∼= k× consists of units and so G(Q)+ := {x ∈ k× : N(x) > 0}. Therefore, G(Q)+ does
not change the orientation of z+0 to z−0 .

Remark 0.18. The case of O(0, 2) is somewhat exceptional. Notice how I did not work directly with V
except to identify Ceven(V ). In low dimensions, it is possible to do this and I summarize this. Obviously
this list is not complete since I do not write down what happens for O(3, 2).

dimV = n+ 2, V over Q Ceven(V ) GSpin(n, 2)
dimV = 2 Imaginary Quadratic Field k Resk/QGk,m
dimV = 3 Quaternion Algebra over Q GL2 or B× (B an indefinite quaternion algebra)

dimV = 4 Quaternion algebra on Z(Ceven(V )) GL2×Gm GL2, GLdet∈Q×

2,F , B× ×Gm B×

Remark 0.19. Ryan Tamura asked during the seminar talk: Why do we focus solely on O(n, 2)? The
answer is that these are the only orthogonal groups which give rise to a Shimura variety. The 2 here is to
ensure that we can get a complex structure on D and then O(n, 2) produces a Shimura variety. As a fun
fact, O(4, 4) does produce a complex structure, but there is no associated Shimura variety.

Example 0.20 (Example in the case of O(1, 2) i.e. X0(N)). Following §7 of Bruinier-Yang. In this situation,
one can recover two of the three4 classes of Shimura curves one might have.

The goal is to pick a set-up which gives XK = Y0(N). This follows the presentation of Bruinier-Yang.
Let N be a positive integer. Let

V :=M2(Q)Tr=0 with quadratic form Q(x) := N det(x)(17)

and (x, y) = −N · Tr(xyι) for x, y ∈ V and where yι denotes the adjoint of a (2× 2)-matrix.
Then GSpin(V ) ∼= GL2 by letting

GL2(Q) ↷ V by conjugation γ.x = γxγ−1 for γ ∈ GL2(Q), x ∈ V.(18)

4The classical modular curves, the orthogonal Shimura curves, and the unitary Shimura curves.
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Furthermore, we identify D with H± by the bilomorphic map

z := x+ iy 7→
(
z −z2
1 −z

)
mod C× ∈ D(19)

and under this identification, the action of GL2(R) is the usual linear fractional action.
For our compact open subgroup, let Kp ⊆ G(Af ) be the subgroup

Kp =

{(
a b
c d

)
∈ GL2(Zp) | c ∈ NZp

}
(20)

and take K :=
∏
Kp ⊆ G(Af ). This matches our previous choice of K.

One can check directly G(Af ) = G(Q)K because of G(Af ) ∼= G(Q) ·G(Ẑ). So there is a single component.
Therefore,

Y0(N) = Γ0(N)
∼→ H→ XK(C) = G(Q)\D×G(Af )/K, Γ0(N)z 7→ G(Q)(z, 1)K(21)

is an isomorphism.

0.3 Definition and Properties of Special Cycles. We now describe the method to get sub-Shimura
varieties of XK .

(1) Given (V,Q), pick an x ∈ V (Q) a vector with Q(x) > 0.
(2) Let Vx := x⊥ be the orthogonal complement. The quadratic form Q descends to Vx but now has

signature (n− 1, 2).
(3) Let Gx := GSpin(Vx) denote the stabilizer of Vx in G := GSpin(V ).
(4) Let Dx := {z ∈ D : z ⊥ x}. This is a divisor on D and gives rise a natural map

Gx(Q)\Dx ×Gx(Af )/(Gx(Af ∩K)→ XK (z, g)→ (z, g).(22)

The image defines a divisor Z(x) of XK which is rational over Q.

This process produced cycles of codimension 1 aka divisors. If we want to obtain higher codimension
cycles as well, we could try and generalize this construction as follows. Let x ∈ V (Q)r be an r-tuple of
points. Let Vx, Gx,Dx be defined as above. So dim span1≤i≤r(xi) = r(x) and Q(x) := 1

2 (xi, xj) be a positive
semidefinite matrix of rank r(x) whose restriction to Vx has signature (n− r(x), 2) and then we get a cycle

Z(x;K) : Sh(Gx,Dx)K → Sh(G,D)K = XK

of codimension r(x) = rank(Q(x)) ≤ r.

Proposition 0.21. If rank(Q(x)) < r(x) or Q(x) is not positive semidefinite, then Z(x) = ∅.

Example 0.22. Consider the case where V has type (0, 2). Then the XK are disjoint unions of points.
There are no natural cycles of codimension > 0 in this case since there are no vectors x ∈ V (Q) such that
Q(x) > 0.

Definition 0.23 (Shifted Cycles Z(x, g;K)). Let g ∈ G(Af ). Then a shifted cycle Z(x, g;K) is the image
of the map

Z(x, g;K) : Gx(Q)\(Dx ×Gx(Af )/(Gx(Af ) ∩ gKg−1)→ XK(C) (z, h) 7→ (z, hg).

The cycle Z(x, g;K) is of course defined over Q once more. One good reason for this & for many classical
special cycles is that we should have a moduli interpretation of what points on these cycles are.

Proposition 0.24 (Properties of Shifted Cycles Z(x, g;K)). The shifted cycles we have just defined satisfy
the following properties:

(1) For k ∈ K, Z(x, g;K) = Z(x, gk;K).
(2) For h ∈ Gx(Af ), Z(x, hg;K) = Z(x, g;K).
(3) For f ∈ G(Q) one has Z(fx, fg;K) = Z(x, g;K).

Proof. The proof of (1)-(3) are rather straightforward:

(1) The image is defined up to a right action of K.
(2) The points of Z(x, g;K) are given by the images of Sh(Gx,Dx) sitting inside of XK(C). So the shift

by h is just an automorphism of the cycle and so the shifted cycle is preserved.
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(3) Given a point (z, hg) ∈ Z(x, g;K) we get that (fz, fhg) = (z, hg) since G(Q) acts on D × G(Af )
diagonally.

□

Remark 0.25. There is an issue with shifted cycles which makes life a little bit harder. The shifted cycles
are not invariant under pullbacks Sh(G,D)K → Sh(G,D)K′ . The next best thing we can do is to try and
put together shifted cycles so that we get something that is invariant.

Definition 0.26 (Weighted Cycles). Let φ ∈ S(V (Af )r)K be a K-invariant Schwarz function on V (Af )r.
Let T ∈ Symr≥0(Q). Define

ΩT := {x ∈ V r : Q(x) = T}.
If ΩT ̸= ∅, we may fix an x ∈ ΩT (Q) and by K-invariance we get

Supp(φ) ∩ ΩT (Af ) :=
∐
j

Kg−1
j x for gj ∈ G(Af ).

(1) The decomposition varies over a finite indexing set. The LHS is compact since Supp(φ) is compact
and ΩT (Af ) is closed. The decomposition follows from just taking K-orbits.

(2) Define the weighted cycle as

Z(T, φ;K) :=
∑
j

φ(g−1
j x)Z(x, gj ;K) =

∑
K\ Supp(φ)∩ΩT (Af )∋y

φ(y)Z(gjy, gj ;K).

which have codimension rank(T ). The gj in the second sum is fixed. In modern language, people
call these special cycles. Additionally,

Z(T, φ;K) ∈ CHrank(T )(XK)Q(Coefficients of Z(T,φ;K)).(23)

Since our Schwarz functions will typically be valued in Z or Q, we get integral/rational classes in
the Chow groups.

Proposition 0.27. Let pr : XK′ → XK be projection coming from K ⊆ K ′. Then,

pr∗Z(T, φ;K) ∼= Z(T, φ;K ′).

Remark 0.28. For the rest of the talk, we will specialize to the case r = 1 for clarity.

Lemma 0.29 (Bruinier-Yang Lemma 4.1). Let r = 1. Suppose G(Af ) = G(Q)+K and ΓK := G(Q)+ ∩K.
Then

Z(m,φ;K) =
∑

x∈ΓK\Ωm(Q)

φ(x)pr(Dx, 1)(24)

where pr : D×G(Af )→ XK is the natural projection.

Remark 0.30. This is a variant of a result in Kudla’s Algebraic Cycles on Shimura Varieties of Orthogonal
Types Proposition 5.4. In Kudla’s statement, he accounts for multiple connected components while in
Bruinier-Yang Lemma 4.1, they deal only with a single connected component.

For the sake of completeness, here we also present’s Kudla’s results.

Definition 0.31. Let K ⊆ G(Af ) be an open compact subgroup. For any g ∈ G(Af ), one can define

Γg := G(Q)+ ∩ gKg−1 & Γg,x := Gx(Q) ∩ Γg

where x ∈ V is a positive norm vector. Then, we let

pr(Dx, g) := image of Dx × {g} → XK(C).
In our formulas, g will be a coset reprensentative of

G(Q)+\G(Af )/K
parameterizing the connected components ofXK(C). In this way, pr(Dx, g) is always a connected cycle and
so Bruinier-Yang Lemma 4.1 is decomposing the special cycle into its connected cycles. This interpretation
makes clear of the formula

pr(Dx, g) = pr(Dx, gk) ∀k ∈ K.
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Proposition 0.32 (Kudla Proposition 5.4). Let G(Af ) =
∐
j G(Q)+gjK and let Γgj := G(Q)+ ∩ gjKg−1

j .
Then the special cycles can be written as

Z(m,φ;K) =
∑
j

∑
x∈Ωm(Q) mod Γgj

φ(g−1
j x)pr(Dx, gj).

Rough Idea of Proof. The cycles Z(y, 1;K) can be rewritten as a sum of connected cycles pr(Dx, gj). In
the case of Bruinier-Yang Lemma 4.1, the Z(y, 1;K) break up as a sum of copies of pr(Dx, 1). Since
G(Af ) = G(Q)+K, the decomposition

Supp(φ) ∩ Ωm(Af ) =
∐

j,gj∈G(Af )

Kg−1
j x =

∐
j,gj∈G(Q)+

Kg−1
j x

which implies that K\Supp(φ) ∩ Ωm(Af ) = K\ Supp(φ) ∩ Ωm(Q) and we can rewrite

Z(m,φ;K) =
∑

gj∈K\ Supp(φ)∩Ωm(Af )

φ(g−1
j x)Z(x, gj ;K)

(25)

=
∑

gj∈K\ Supp(φ)∩Ωm(Q)

φ(g−1
j x)Z(x, gj ;K)(26)

=
∑

gj∈K\ Supp(φ)∩Ωm(Q)

φ(g−1
j x)

∑
hi∈G(Q)+\G(Af )/K

pr(Dx, hi)(27)

=
∑

gk∈K\ Supp(φ)∩Ωm(Q)

φ(g−1
j x)pr(Dx, 1) there’s only a single connected component of XK(28)

=
∑

gj∈(K∩G(Q)+)\Ωm(Q)

φ(g−1
j x)pr(Dx, 1)(29)

and this last term is exactly what we wanted. □

Remark 0.33. To handle the general case, Kudla spent a lot of time working with double cosets and
rewriting the sums that appear in the formulas for special cycles.

0.4 Examples of Special Cycles for Orthogonal Shimura Varieties. Now we present some examples
of special cycles on orthogonal Shimura varieties. The focus will be on recovering many classical cycles /
divisors that have been showing up before Kudla’s 1997 work.

Example 0.34 (Special Cycles for O(0, 2)). For O(0, 2), there are no special cycles to consider for the reason
I mentioned before.

Remark 0.35 (Sketch of how to construct special cycles using lattices in general). The point of this remark
is to write down an outline on how to construct special cycles in general.

(1) Assume the set from before i.e. G := GSpin(V ) and (V,Q) signature (n, 2).
(2) Let L ⊆ V be an integral even lattice.

(3) Define a Schwarz function φ :=
∑
µ∈L∨/L char(µ+ L̂) where L⊗ Ẑ = L̂.

(4) Pick K ⊆ G(Af ) as to preserve L∨/L. Sometimes, we go the other way and pick K first and make
an informed decision on L.

(5) Form the special cycles Z(m,φ;K) =
∑
gj∈

∐
j Kg

−1
j x φ(g

−1
j x)Z(x, gj ;K) where x ∈ Ωm(Q). In the

case where XK is a single connected component, Bruinier-Yang Lemma 4.1 makes life significantly
more easier.

Example 0.36 (The Modular curve X0(N) following Bruinier-Yang). First, we define a lattice L ⊆
M2(Q)Tr=0;

L :=

{(
b −a/N
c −b

)
| a, b, c ∈ Z

}
& L∨ =

{(
b/2N −a/N
c −b/2N

)
| a, b, c ∈ Z

}
.(30)

The discriminant group L∨/L is identified with Z/2NZ by sending r ∈ Z/2NZ to µr := diag(r/2N,−r/2N).
From our definition of K, we see K acts on L′/L trivially and that K maps L to itself. In other words,

ϕµ := char(µ+ L̂) are K-invariant Schwarz function.
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Describing the set Supp(ϕµ) ∩ Ωm(Q). For m ∈ Z>0 and µ ∈ L∨/L, we would like to study

Supp(ϕµ) ∩ Ωm(Q) = {x ∈ µ+ L | Q(x) = m}.(31)

Let D := −4Nm ∈ Z be a negative discriminant. If r ∈ Z and µ = µr mod L, then

D = −4Nm = −4NQ(µr) = −4N
−r2

4N
= r2 ≡ r2 mod 4N

and so

x =

( r
2N

1
N

D−r2
4N

−r
2N

)
∈ Supp(ϕµ) ∩ Ωm(Q).(32)

OTOH, we know that for D < 0 and D ≡ r2 mod 4N , if m := −D
4N and µ := µr then m ∈ Q(m) + Z is

positive. This gets us most of the way to describing the choices of x we can make.
Furthermore, we get from Bruinier-Yang Lemma 4.1 that

Z(m,ϕµ) = PD,r + PD,−r

are the Heegner divisors defined in Gross-Kohnen-Zagier i.e.

PD,r := {z ∈ H/Γ0(N) : az2 + bz + c = 0, b2 − 4ac = D, a > 0, a ≡ 0 mod N, b ≡ r mod 2N}

counted with multiplicity.
Exercise: Check that Z(m,ϕµ) = PD,r +PD,−r. For sake of exposition, we leave the complete check that
this equality holds to the reader. The main difficulty is describing Supp(φ) ∩Ωm(Q) which is an exercise in
linear algebra.

OTOH, we do check that the x above gives a quadratic whose solutions are in PD,r. The inner product
gives

(w(z), x) = −N · Trace
(
z −z2
1 −z

)( −r
2N − 1

N

−D−r2
4N

r
2N

)
= (−N)(− r

2N
+
D − r2

4N
z2 − 1

N
− r

2N
z)(33)

=
r2 −D

4
z2 + rz + 1.(34)

Then the discriminant is

r2 − 4(
r2 −D

4
) = D.

The congruence relations for a and b clearly hold;

a =
D − r2

4
≡ 0 mod N because D ≡ r2 mod 4N ⇒ 4N | D − r2 ⇒ N | D − r

2

4
(35)

b ≡ r mod 2N.(36)

Meanwhile, the quadratic form Q(x) gives

N det

( r
2N

1
N

D−r2
4N

−r
2N

)
= N ·

(
− r2

4N2
− D − r2

4N2

)
= N · −D

4N2
= − D

4N
= m.

Remark 0.37. If one considers, instead of M2(Q), an indefinite quaternion algebra B/Q and defined V
similarly, then one obtains Shimura curves which are not classical modular curves. One can then define
analogues of the Heegner divisors in these cases.

Example 0.38 (Heenger Divisors for Shimura Curves). First, we define the Shimura curve as follows.

(1) Fix B an indefinite quaternion algebra5 over Q.
(2) Let V := BTr=0 and let Q(x) := −x2 and so (x, y) = Tr(xyι) where ι denotes the adjgate transpose.
(3) The action by conjugation implies that B× ∼= GSpin(V ).
(4) Identify the Grassmannian of negative definite orientated 2-planes

H± → D z 7→ w(z) =

(
z −z2
1 z

)
mod C×.

5i.e. B ⊗Q R ∼= M2(R)
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(5) Because we work with an indefinite quaternion algebra, we need to be a little bit careful with how
we pick our open compact subgroup K ⊆ B×(Af ).

Let S be the set of primes p where Bp = Qp ⊗ B a division algebra. Let D(B) :=
∏
p∈S p and

there are only finintely many such primes by definition. Let OB ⊆ B be a maximal order and so

B(Af )
∼→

∏
p∈S

Bp ×M2(ASf )(37)

OB ⊗ Ẑ ∼→
∏
p∈S

OB,p ×M2(ẐS)(38)

Let R denote the Eichler order of discriminant N ·D(B). In this way,

K := R⊗Z Ẑ ∼=
∏
p∈B

OB,p × {x ∈M2(ẐS) : c ≡ 0 mod N}.

(6) Now K is an open compact subgroup of G(Af ). Then we define the Shimura curve

XB
0 (N) := XK(C) = B×(Q)\D×B×(Af )/K = Γ\D+

where Γ ∼= G(Q)+ ∩K ∼= R×.

Now we construct the Heegner divisors on Shimura curves. We are shall be very brief for the sake of time.

(1) Identify V (Q) with traceless matrices ofM2(R). ThenQ(x) = −(b2−4ac) whenever x =

(
b 2c
−2a −b

)
.

In this way,
Dx := {z ∈ H± | x ⊥ w(z) or just − 2(az2 + bz + c) = 0}.

(2) Ωd(Q) := {x ∈ V (Q) : Q(x) = d} and we pick φ, a K-invariant Schwarz-function, as follows

φ :=
∑

µ∈L∨/L

char(µ+ L∨)

and where L := R ∩ V (Q) which is a lattice. Then by Bruinier-Yang Lemma 4.1 we get

Z(d, φ;K) =
∑

x∈µ∈O⊆L∨/L mod Γ,x∈Ωd(Q)

pr(Dx, 1)

where µ determines an orbit of the K-action on L∨/L. This generalizes the classical Heegner points
to the case of any indefinite quaternion algebra.

Example 0.39 (Recovering the Modular Correspondence). Recall the definition of the modular correspon-
dence on Y (1) × Y (1) where Y (1) := H/SL2(Z). One definition6 is that the modular correspondences are
the cycles

Tm := {(z, w) ∈ Y (1)× Y (1) | w = Az for A =

(
a b
c d

)
∈M2(Z),det(A) = m}.

Using our definition of a special cycle, we can recover this up to a change of variable. Another definition is
to use modular polynomials as in the paper of Gross-Keating and a third is via a moduli interpretation.

First, we can realize Y (1) × Y (1) as an orthogonal Shimura variety. 7 Let V := M2(Q) and define the
form as Q(x) = det(x) where x ∈ V . This is a signature (2, 2) quadratic form since the associated symmetric

square matrix is


1/2

−1/2
−1/2

1/2

 where x =

(
a b
c d

)
∈ V corresponds to the vector


a
b
c
d

 is a

symmetric matrix with 2 negative eigenvalues and two positive eigenvalues. The associated inner product is
(x, y) = Tr(xyι).

6i.e. as in up to a change of variables

7The signature is (2, 2) since the matrix giving the form is


1/2

−1/2
−1/2

1/2

. There are 2 minus signs and 2 plus

signs.
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One can check that GSpin(V ) ∼= GL2×Gm GL2 and that pairs (g, h) with det(g) = det(h) act on V
by v 7→ gvh−1. This clearly preserves the quadratic form,. Furthermore, if K :=

∏
pKp where Kp =

GL2×Gm
GL2(Zp), then the associated Shimura variety is

XK
∼= Y (1)× Y (1)

which is clearly already defined over Q. There is only a single connected component because

G(Q)+\G(Af )/K ∼= G(Q)+\G(Q)/{±1} ∼= 1.

Since the Y (1)’s are not compact, we must compactify to get the usual modular curve X(1). We will not
worry about this.

Modular Correspondence. We identify D with H± ×H± by

γ : (z, w) 7→
(
zw w
z 1

)
mod C×.

Now let us pick an easy lattice to consider L :=M2(Z) ⊆ V . The dual lattice is clearly itself.

Let ϕ :=
∑
µ∈L∨/L char(µ + L̂) be a sum of characteristic functions. The first two things to check are

that ϕ is K-invariant and that L∨/L is preserved. First off, we can compute the dual lattice

L∨ = {x ∈ V : (x, L) ∈ Z} =M2(Z).

The discriminant group is then trivial and clearly preserved by K. Furthermore, K itself must preserve the

lattice. Let m ∈ Q>0. Then, we know for an x =

(
a b
c d

)
∈ L, with a fixed determinant det(x) = m, we get

Dx =
{
(z, w) ∈ H± ×H± | (γ(z, w), x) = −azw + bw + cz − d = 0}.

}
since one can check

(γ(z, w), x) = Tr

(
−zw z
w −1

)(
a b
c d

)
= Tr

(
−azw + cz ∗
∗∗ bw − d

)
= −azw + bw + cz − d.

But observe that Bruinier-Yang Lemma 4.1 gives

Z(m,ϕ) = Tm

where the Tm are Hirzebruch-Zagier cycles / modular correspondences on a product of modular curves (c.f.
this paper).

Indeed, one could interpret the divisors Tm as

{(z, w) ∈ Y (1)× Y (1) | (z, w) = (z,Az) for A =

(
−c d
−a b

)
∈M2(Z),det(A) = m}.

Indeed, Az = −cz+d
−az+b and so the equation in Dx’s definition gives

−azw + bw + cz − d = 0 ⇒ w =
−cz + d

−az + b
.

Remark 0.40. This is not a formal proof. For anyK-invariant Schwarz function φ of the form
∑
µ∈L∨/L char(µ+

L̂) where L is an even integral lattice of V , and (V,Q) with open compactK the data determining the Shimura
variety Y (1)×Y (1), the special cycles are all, up to isomorphism, described by the modular correspondences.

Example 0.41 (Hilbert Modular Surfaces and the Hirzbruch Zagier Surfaces). Let F := Q(
√
p) be a real

quadratic field where p ≡ 1 mod 4. Let OF be the ring of integers. Let ∂F :=
√
pOF be the different. Define

a quadratic space

V := {x ∈M2(F ) | x′ = xt} = {x =

(
a λ
λ′ b

)
| a, b ∈ Q, λ ∈ F}

with quadratic form Q(x) = det(x) which has signature (2, 2). Then the bilinear form is (x, y) = Tr(xyι).
Define a lattice

L := V ∩M2(OF ) and so its dual lattice is L′ =

{(
a λ
b λ′

)
| a, b ∈ Z, λ ∈ √pOF

}
.

https://arxiv.org/pdf/1205.6417.pdf
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In this way, we can identify

G := GSpin(V ) ∼= {g ∈ GL2(F ) | det(g) ∈ Q×} ∼= ResF/Q GL2

which acts on V by g · x = 1
det g gx

tg′. Let

K := G(Ẑ) = {g ∈ GL2(OF ⊗ Ẑ) | det(g) ∈ Ẑ×}.
Now identify the Grassmannian of negative definite oriented 2-planes by(

H±)2 w→ D, w((z1, z2)) =

(
z1z2 z1
z2 1

)
.

Furthermore G(Af ) = G(Q)+K, because we can write

G(Af ) ∼= G(Q)G(Ẑ) ∼= G(Q)K ∼= G(Q)+K

and the last isomorphism follows since

(
−1 0
0 1

)
∈ K lets us swap the sign of the determinant. This

isomorphism implies in particular that G(Q)+\G(Af )/K is trivial and so there is only a single conected
component that appears in the double coset

XK(C) = G(Q)\D×G(Af )/K ∼= SL2(OF )\H2.

So far, we used/shall use some of the following facts. The object on the RHS is precisely the Hilbert modular
surface as defined in Hirzebruch and Zagier’s paper8.

(1) K is a normal algebraic subgroup of G(Af ),
(2) Γ = G(Q)+ ∩K is isomorphic to SL2(OF ),
(3) the double quotient G(Q)\G(Af )/K is trivial,
(4) one has that

Trace

(
z1z2 z1
z2 1

)(
−b λ
λ′ −a

)
= −bz1z2 + λ′z1 + λz2 − a.

(5) K acts transitively on L∨/L ∼= Z/pZ and we know ΓK\Ωm
p
(Q) ∼= Lm

p
/{±1}.

The RHS is the Hilbert modular surface defined e.g. in Gross-Hirzebruch. After picking an x and using
the identification above, we find that

Dx ∼= {(z1, z2) ∈ (H±)2 | −bz1z2 + γ′z1 + γz2 − a = 0}.

Now if we take the Schwarz function φ =
∑
µ∈L∨/L char(µ+ L̂), we obtain the special cycles

Z(
m

p
,φ;K)

(∗)
=

∑
x∈(G(Q)+∩K)\Ωm

p
(Q)

φ(x)pr(Dx, 1)(39)

=
∑

x∈ΓK\Ωm
p
(Q)

∑
µ∈L∨/L

char(µ+ L̂)(x)pr(Dx, 1)(40)

=
∑

x∈Lm
p
/{±1}

{(z1, z2) ∈ H2 | bz1z2 − γ′z1 − γz2 + a = 0}.(41)

The last equality follows from the fact that ΓK acts on L∨/L transitively and modulo this action gives me
Lm

p
/{±1} where

Lm
p
:= {x =

(
a λ
λ′ b

)
∈ V (Q) | Q(x) =

m

p
}.

The step made at (*) uses Kudla’s Proposition 5.4 and/or Bruinier-Yang’s Lemma 4.1.
The special cycle Z(mp , φ;K) is precisely the Hirzebruch-Zagier cycle up to a change of variables or sign

on the Hilbert modular surface.

8In [HZ], the quotient is via the action of

(
a b
c d

)
↷ H2 sending (z, w) 7→ (az+b

cz+d
, a′z+b′

c′z+d′ )
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