
BRUINIER-YANG’S MAIN CONJECTURE

YU LUO

This note was written when I prepared my seminar talk, any mistakes are due to myself.

If you find any typos or have any suggestions, feel free to contact me.

Contents

1. Borcherds product 1

2. Arithmetic Chow group 7

3. Main conjecture and consequences 11

References 13

In this talk, I’ll give a closer look at Bruinier-Yang’s conjecture. The goal of today’s talk

is to convince you that the thing we will do in the April is really interesting. I will sketch

the theory of regularized theta lift without specifying details. This will be one of the topic

we want to take in details during the April.

1. Borcherds product

The main ingredient of everything is the Borcherds lift and its generalization. Roughly

speaking, regularized theta lift is trying to lift a “modular forms” of some specific weight

relate to the dimension of orthogonal group, to a “modular forms” on SO(n, 2). Note that

this is opposite to the direction we did previously: now we want to do theta lifts from SL2

to SO(V )!

Let’s specify notation here: H is the Poincare upper half plane, D is the symmetric space

of orthogonal group of signature (n, 2), is the space of negative definite oriented 2-subspaces.

K ′ is a level structure of metaplectic group, K is a level structure of orthogonal group. XK

is the Shimura variety with respect to the orthogonal group.

1.1. Theta lifting on SO(n, 2). Recall that the group SL2(R) has a double cover Mp2,R
whose elements can be written in the form((

a b

c d

)
, ϕ(τ)

)
,
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where

(
a b

c d

)
∈ SL2(R) and ϕ(τ) = ±

√
cτ + d is considered as a holomorphic function

of τ in H whose square is cτ + d. This will related to the maximal compact subgroup

SO(2) ⊂ SL2(R), as Simon mentioned. The matrix multiplication is defined by

(A, f(·))(B, g(·)) = (AB, f(B(·))g(·)),

where A,B ∈ SL2(R) and f and g are suitable functions on H. The group Mp2(Z) is the

discrete subgroup of Mp2(R) of elements of the form

(
a b

c d

)
∈ SL2(Z). We can still restrict

ourselves into SL2 without losing anything crutial. But in this talk, most things I talked

will be conceptional, it does not harm to stick into metaplectic group, and somehow this is

good for my personal mental health.

Let (V,Q) be a quadratic space over Q. We will be interested the Weil representation

with respect to the dual pair (SL2, SO(V )). Given a Weil representation ω on Sp(W ⊗ V ),

by restricting, we get a Weil representation on Mp2,A × SO(A). Such representation is

automorphic in the sense that is SL(Q)×SO(Q)-invariant, and stabilized by some compact

open subgroups. The theta function will be a function

θ : Mp2,A × SO(A)× S(V (A)) → C.

defined by

θ(g, h;φ) =
∑

x∈V (Q)

ω(g)φ(h−1x).

Recall that when (V,Q) has signature (n, 0), given an even lattice L, denote L̂ = L ⊗ Zp,

we choose and compute a specific Schwartz function φ = φ∞ ⊗ φp such that

φ∞ = e−πQ[x], φp = char(L̂).

From now on we will be interested in the orthogonal group of signature (n, 2). We will

start with an integral lattice L ⊂ L♯. Recall that it is unimodular when L = L♯. Feel free

to stick on this case for the rest part of the talk. The stabilizer of such lattice will give a

maximal open compact subgroup in the finite adele.

The maximal compact subgroup at archimedean place is S(O(2) × O(n)) ⊂ SO(V ). In

particular, you see that the group SO(n, 2) is not compact, since our quadratic form is not

positive definitive. We don’t want to think about functions with too deep level structure,

let’s stick on this level structure, which we will denote by K = K∞Kf . On the contrary,

we will denote an open compact of Mp2,Af
by K ′

f .

We first consider a specific Schwartz function in the archimedean place. Note that we

require Schwartz function to be exponentially decay, and φ∞ = e−πQ[x] does not satisfy

this.

Recall that the hermitian symmetric space D of H(R) parameterize oriented negative

definite 2-dimensional subspaces of V (R). For any z ∈ D, we can construct a positive
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defnite quadratic form

(x, x)z := (xz⊥ , xz⊥)− (xz, xz).

Then we define the Gaussian

φ∞(x, z) = exp(−π(x, x)z) ∈ S(V (R)).

Moreover, for any h ∈ H(R), we have φ∞(hx, hz) = φ∞(x, z). Now fix a point z0 ∈ D, and
φf ∈ S(V (Af )), we consider the theta function

θ(g, h;φf ) := θ(g, h;φ(·, z0)⊗ φf (·)).

This theta function has weight n/2 − 1 at the archimedean place of the Weil representa-

tion. In general, given a quadratic space with signature (b+, b−), the archimedean Schartz

functions will contribute a automorphic representation of weight b+b−

2 (But actually I don’t

know how to compute the Weil representation here).

Thanks to the strong approximation theorem and multiplying with some automorphic

factors to separating the action, we only need to consider the theta function restrict into

the symmetric space with some action from Weil representation:

θ : H× D×H(Af )× S(V (Af )) → C.

The precise formula can be found in [BY09, Section 2], and we won’t do it here. We will

specify the level structure soon. The point is that Weil representation in adeles are rather

complicated since it is hard to describe the Weil representation precisely in non-archimedean

places like in the archimedean place. But thanks to the fact that Weil representation is

global with nice compatibility, and we have strong approximation theorem for metaplectic

group, we can save our lift by restricting into archimedean place.

Another advantage of this form is that we can see how D involve into the story more

transparently. Now the Weil representation becomes((
a b

c d

)
, ϕ(τ)

)
· θ(τ, z, hf ;φ) = ϕ(τ)n−2θ(τ, z, hf ;φ

′
f ).

Here φ′
f is changed via the Weil representation.

What we want to do next is to focus on a small class of Schwartz functions with respect

to the Weil representations. We are interested in is the following representation: we will

start with a vector space C[L♯/L] spanned by the basis eγ , γ ∈ L♯/L. This admits a unitary

representation of Mp2(Z) defined by

ρL(T )(eγ) = e2πiQ[γ]eγ ,

ρL(S)(eγ) =

√
i√

|L♯/L|

∑
δ∈L♯/L

e−2πi(γ,δ)eδ,
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where T =

((
1 1

0 1

)
, 1

)
and S =

((
0 −1

1 0

)
,
√
τ

)
are the standard generator of Mp2(Z).

This is in fact arise from the natural Weil representation, but I don’t know what’s the right

way to think about this. The action will naturally factor through some quotient of the

arithmetic subgroup.

Example 1.1.1. For unimodular lattice L, this becomes

ρL(T )(x) = e2πix, ρL(S)(x) =
√
ie−2πix.

Now the answer is clear: we want to consider the subspace SL of Schwartz functions in

S(V (Af )) which is the linear combination of the characteristic functions

ϕµ = char(µ+ L̂), µ ∈ L♯/L.

Restricting into this, the theta function becomes a function

θL : H× D×H(Af )× SL → C.

Equivalently, this defines a function

θ : H× D×H(Af ) → S∨
L .

Suppose we have an automorphic function of the form

f : H → SL.

Then we can define a theta lifting

Φ(z, h, f) :=

∫
Γ\H

((f(τ), θ(τ, z, hf )))dµ(τ).

Here ((v, w)) is the following natural pairing:

((−,−)) : SL × S∨
L → C.

1.2. Regularized theta lift. Therefore, it’s natural now to introduce so called vector

valued holomorphic modular form. These are SL-valued functions on H such that each

entries are holomorphic modular forms. Such function admits a Fourier expansion

f(τ) =
∑
m≥0

c(m)qm, c(m) ∈ SL.

And each coefficient can be expanded uniquely as a linear combination

c(m) =
∑

µ∈L♯/L

c(m,µ) · φµ.

This sounds to be a perfect story, except that we didn’t get anything interesting for such

theta lifts. The problem is that since our theta function has weight n/2− 1, we need to lift

a modular form of weight 1 − n/2 since we took a dual representation. To look closer, we

are expect our inner product invariant under the action of Γ, which means the product has
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weight 0. We will have to face with similar situation even when we use adele formalism.

Trouble: we don’t have such modular form even in very small level structure.

Remark 1.2.1. If we consider (2, n)-signature, then the theta lift exists, and it’s the theta

correspondence.

Therefore, we introduce weakly holomorphic modular forms, which allows functions to

have poles at the cusp. In other words, the Fourier expansion now becomes of the form

f(τ) =
∑

m>>−∞
c(m)qm.

The arithmetic subgroup acting on them by

(γ, ϕ(τ)) · f(τ) := ϕ2kρL · f(τ).

Now it comes to another trouble: we want to integral along functions with singularities,

but such integration might diverges. This comes to the story of regularized theta lift, or

singular theta lift. This will be one of the topic we want to explore in the April. Once this

is settled, we get some meromorphic modular forms on SO(n, 2). The Borcherds lift declare

the following statement:

Theorem 1.2.2. The function Φ(z, h, f) is smooth on XK\Z(f), where

Z(f) =
∑

µ∈L♯/L

∑
m>0

c(−m,µ)Z(m,µ).

It has a logarithmic singularity along the divisor −2Z(f). The (1, 1)-form ddcΦ(z, h, f) can

be continued to a smooth form on all of XK = H(A) ∩K\D.

One can further define the Borcerds lift for more general SL-valued functions call har-

monic weak Maass forms, can get similar results. There is a exact sequence among these

two class of functions:

0 → M !
k,ρL

→ Hk,ρL
ξ,ρ̄L−−→ S2−k → 0.

The same theory of regularized theta lift exists, except now the coefficients will corresponds

to the holomorphic part c+(−m,µ) of the function. We will call such lift an automorphic

Green function, the reason will be explained later.

It is a good time to recall the special cycles and CM cycles we defined previous. Recall

that given a Schwartz function φ ∈ S(V (A))K , we define a special cycle on XK

Z(m,φ;K) :=
∑
j

φ(g−1
j x)Z(x, gj ;K).

Here m ∈ N, index j and elements gj are defined using

Supp(φ) ∩ Ωm(Af ) :=
⊔
j

Kg−1
j x, Ωm(Af ) := {x ∈ V : Q[x] = m}.

5



At this point we can also mention the advantage of the harmonic weak Maass forms: we

can always fund a weak harmonic Maass form f such that

Z(m, f) = Z(m,ϕµ).

While this is impossible for weakly holomorphic modular forms. This is the reason we would

like to focus on harmonic weak Maass forms. This will be the another topic we want to

study during the April.

1.3. Bruinier-Yang result. Next, we briefly discuss the main work of Schofer and Bruinier-

Yang.

We define CM cycles on XK as follows. Let U ⊂ V be a negative definite 2-dimensinoal

rational subspace of V . It determines a two point subset {z±U } ⊂ D given by U(R) with the

two possible choices of orientation. Let V+ ⊂ V be the orthogonal complement of U over Q.

Then V+ is a positive definite subspace of dimension n, and we have the rational splitting

V = V+ ⊕ U.

Let T = GSpin(U), which we view as a subgroup of H acting trivially on V+, and put

KT = K ∩ T (Af ). We obtain the CM cycle

Z(U) = T (Q)\({z±U } × T (Af )/KT ) → XK .

Here each point in the cycle is counted with multiplicity 2
wK,T

, where wK,T = #(T (Q)∩KT ).

The splitting induces definite lattices

N = L ∩ U, P = L ∩ V+.

Then N ⊕ P ⊂ L is a sublattice of finite index. The main result of Bruinier-Yang, which is

another topic we are going to pursue, is the following:

Theorem 1.3.1. The value of the automorphic Green function Φ(z, h, f) at the CM cycle

Z(U) is given by

Φ(Z(U), f) = deg(Z(U)) ·
(
constant term(⟨f+(τ), θP (τ)⊗ EN (τ)⟩) + L′(ξ(f), U, 0).

)
Here θP is the theta series with respect to the lattice P . The function EN (τ) is some specific

function constructed with respect to N . To be more fancy, it is the holomorphic part of the

harmonic weak Maass form of the derivative of the Siegel Eisenstein series: E′
N (τ, 0; 1).

Remark 1.3.2. Nowadays, L′(ξ(f), U, 0) is also written as L′(ξ(f), θP , center), viewed as

a Rankin-Selberg intergral.

When f is weakly holomorphic, the last term L′(ξ(f), U, 0) = 0, this is essentially the

result of Schofer. Schofer compute the CM value of the Green function in order to reprove

Gross-Zagier’s result about singular moduli. At that moment, he didn’t realize its relation

to the arithmetic intersection theory.
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This brilliant observation was done by Bruinier-Yang, after they find an additional term

related to the derivative of the L-function. Let’s take a example to see what we are supposed

to get for the derivative of the L-function: Consider the Riemann zeta function:

ζ(s) =
∞∑
n=0

1

ns
.

Suppose s0 is a zero of zeta function with real part lies in 1
2 . Then ζ ′(s0) equals∑

n>0

log n
1

ns0
=
∑
p

(ordp(n)n
s0) log p.

Now it becomes a rational numbers linear combination of the linear independent terms log p.

A phenomenon observed by Gross-Zagier, Gross-Keating, Kudla, Kudla-Rapoport, among

others, is that the derivative of L-functions are related to the arithmetic intersection theory.

2. Arithmetic Chow group

I’m not intended to give a full introduction to the arithmetic intersection theory. Ac-

cording to Tonghai, the fundation is full of brilliant ideas. I’ll sketch the main spirit of the

theory which will be enough for the applications.

The model in mind is the following: assume we start with a comapct algebraic curve and

a rational function f , then the divisor div(f) would have degree zero.

Now when we look at SpecZ and r ∈ Q a rational function, we no longer have such nice

property. But we know that we have the following equality if we set up the height properly:∑
p

pvp(r) × |r|∞ = 1.

Equivalently, ∑
v

vp(r) log p+ log |r|∞ = 0.

The arithmetic intersection theory start with this observation, they first “compactify” the

SpecZ by adding the archimedean contribution. Then they define the intersection number

with some weight by logarithm. The amazing thing is that, this really defines a good theory,

in the sense that it satisfies many properties we know for the classical intersection theory.

2.1. Arithmetic Chow group. We will start with a arithmetic scheme M → SpecZ.

Definition 2.1.1. Suppose Z is a Cartier divisor on M. A Green function for Z is a

smooth real-valued function Φ on the M(C) \ Z(C) satisfying
(i) If f is a meromorphic funtion on a holomorphic chart U → M(C) satisfying

div(f) = Z(C)|U ,

then Φ|U + 2 log |f |, initially defined on U \ Z(C)|U , extends to a smooth function on U ;

(ii) Pullback by complex conjugation on M(C) fixes Φ.
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Definition 2.1.2. An arithmetic divisor on M is a pair Ẑ = (Z,Φ) consisting of a Cartier

divisor Z and a Green function Φ for Z. An arithmetic divisor as above is principal if it

has the form

Ẑ = (div(f),−2 log |f |)

for some rational function f on M.

The codimension one arithmetic Chow group ĈH
1
(M) is the quotient of the group of all

arithmetic divisors on M by the subgroup of principal arithmetic divisors.

Note that the Cartier divisor could be really mysterious in the arithmetic setting. For

instance, consider M = Z[x, y] and a Cartier divisor given by xy − N . Over the generic

fiber and those special fibers p ∤ N , this gives a hyperbola. When p | N , this separate into

two lines. On the other hand, p is also a Cartier divisor, which is the whole special fiber at

p. These two different classes are called vertical and horizontal divisors.

Now if we look back to the Borcherds product, we see that Φ(z, h, f) is exactly a Green

function. Therefore, we can re-interpret Borcherds product in the following way:

Assuming there is a good theory of integral model of XK , and a good definition for Z(f)

in the integral model, then

Ẑ(f) = (Z(f),Φ(f)) ∈ ĈH
1
(XK).

Such theory does exists (when the level structure is big enough)! It’s about the integral

model of GSpin Shimura varieties. We won’t do that here. It’s another totally different and

interesting worlds, and worth another semester’s reading seminar.

I leave a comment about the reason why we want to compare the singularity with

−2 log |f |, it’s related to the Poincaré-Lelong formula: One of the key ingredient here is

the following theorem

Theorem 2.1.3 (Poincaré-Lelong). Let L̂ be an hermitian line bundle on X and s a mero-

morphic section of L. Then we have the following formula in the (1, 1)-distributed form

ddc(− log ||s||2) + δdiv(s) = c1(L̂C).

The last term also suggests that given a Green function, we can relate them with some

line bundle, this idea will be realized in the next section.

Example 2.1.4. We provide here an example to illustrate why we want a Green function

has the same singularity as − log |f |2.
Given a differential (1, 1)-form ω. we define the distribution δZ :

δZ(ω) :=

∫
Z
ω.

If you are familiar with Poincaré duality, you can recognize this is exactly how we define

the intersection pair in algebriac topology.
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On the other hand, we consider the distribution

log |f |2(ω) :=
∫
X
log |f |2ω.

Now we considering the distribution ddc log |s|2. For simplicity, let’s consider s = z and

ω = z. Then

ddc log |z|2(z) =
∫
C
log |z|2 · ddcz,

=

∫
C
log(zz̄) · ddcz,

=

∫
γ
dc log(zz̄)dz,

=

∫
γ

1

z̄
dz,

= − 2π.

For general Cartier divisor f , we can do this computation locally, it turns out that using

the integration by part, we can always identify these two distributions. For general rational

sections in line bundles, we do similar things, except that when we to the trivializztion, we

will get additional terms in the chern class.

2.2. Automorphic vector bundle. There is an equivalent way to view the codimension

one arithmetic Chow group.

Definition 2.2.1. A metrized line bundle on M is a pair

L̂ = (L, || · ||)

consisting of a line bundle on M, and a smoothly varying family of Hermitian metrics on

its complex fiber. We further require the metrics to be invariant under pullback by complex

conjugation on M(C).

If we denote by P̂ic(M) the group of metrized line bundles (under tensor product), there

is a canonical isomorphism

P̂ic(M) ≃ Ĥ1(M)

sending a metrized line bundle L̂ to the arithmetic divisor

d̂iv(s) = (div(s),−2 log ||s||)

for any nonzero rational section s of L. This is like a arithmetic version of relations between

Weil divisors and line bundles.

A natural question arise now: we have been talking about metrized line bundle and

sections on M, but why we want this form. The key observation is that automorphic

functions are exactly the rational sections on the Shimura varieties. Let’s do the complex

version here.
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Let G be any connected semisimple Lie group, K ⊂ G(R) a maximal compact subgroup,

(ρ,W ) a finite dimensional complex representation. Γ ⊂ G(R) a torsion-free discrete arith-

metic subgroup. Recall that the symmetric space is defined by D = G/K. We define the

homogeneous vector bundle

W := Γ\(G×W )/K → XΓ = Γ\X.

Here Γ acts trivially on W but acts on G×W on the right by (g, w)k = (gk, τ(k)−1w).

Let’s look at the global section. From the construction, the global section of W will

correspond to functions f : G(R) → W such that

f(γgk) = τ(k)−1f(g).

This defines an automorphic form on G(R). Similarly, given K = K∞Kf , and a represen-

tation ρ : K∞ → GL(W ), we can define

W = G(Q)\G(A)×W/(ZK ×Kf ) → ShK(G,X).

And the rational sections are automorphic functions with level structure K. Such con-

struction is compatible with the Borel compactification in a complicated sense, hence is

non-trivially an algebraic vector bundle. Such construction can be generlize to the case

when V admits a hermitian structure, and you won’t be surprise if I told you this give you

a hermitian vector bundles.

Example 2.2.2. Let’s do the example in the modular curve.

Now let’s consider the representation of K = SO2 = S1:

ρ : S1 → C×, z 7−→ zk.

Then SL2(R) × C/K consists of collections (g, z) such that (gkθ, z) ∼ (g, eikθz). A section

of SL2(Z)\SL2(R)× C/SO(2) → SL2(Z)\SL2(R)/SO(2) is a function

F : SL2(R) → SL2(R)× C, g 7−→ (g, f(g)),

satisfy the compatibility you expect. To be more precise, first we have

(gkθ, F (gkθ)) = (g, eikθF (gkθ)) = (g, F (g)),

hence we have

F (g) = eikθF (gkθ).

And γ · (g, F (g)) = (γg, F (g)) = (γg, F (γg)), hence F (γg) = F (g). Therefore, our section

F is equivalent to the function f : SL2(R) → C such that

F (γg) = f(g), f(gkθ) = eikθF (g).

This is exactly the automorphic forms with weight k. Recall that we recover our modular

form if we multiple back the automorphic factor and mix the action of arithmetic subgroup
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and maximal compact subgroup:

f(τ) := F (gτ )j(gτ , i)
k.

This also justify the name automorphic vector bundle rather than modular vector bundle.

Based on the computation here, it might be interesting to ask whether we can translate

the Maass forms into automorphic vector bundles. I guess so except that the representation

is no longer algebra and we can only define them on the Riemann surface and cannot descent

it into Shimura varieties.

2.3. Borcherds lift. When f is harmonic weak Maass form, there exists so called the

Borcherds lift that related to the regularized theta lift. Now rephrase into the following

way: assuming there is a good theory of integral model XK and special cycles ZK , then

Borcherds lift give an element in the arithmetic Chow group:

Ẑ(f) = (Z(f),Φ(f)) = d̂iv(Ψ),

where Ψ is the Borcherds lift, which is a rational section on hermitian line bundle ω⊗ 1
2
c(0,0),

where ω is the canoncial bundle. In particular, when c(0, 0) = 0, which means the weakly

holomorphic modular form does not have constant term, them Ẑ(f) is a principal divisor

in the arithmetic chow group of the integral model of the orthogonal Shimura varieties.

3. Main conjecture and consequences

3.1. Faltings height pair. Now we are ready to reformulate Bruinier-Yang’s computation

and estiblish the main conjecture.

Given XK the orthogonal Shimura variety, with a nice integral model XK . When K

is the stabilizer of a self-dual lattice, the level structure is hyperspecial and gives a good

reduction. In general, the integral model does not admit a good reduction, but in those

cases, the integral model is still normal and Cohen-Macaulay. There also have regular

integral model with semi-stable reduction but is no longer canonical.

Such integral model has relative dimension n, hence absolute dimension n+1. We consider

now Zn(X ) the cycles of codimension n. We can define a height pairing

ĈH
1
(X )× Zn(X ) → R.

When x̂ = (x, gx) ∈ ĈH
1
(X ) and y ∈ Zn(X ) such that x and y intersect properly, then in

particular it has dimension 0, then either they lies in the finite place or the generic fiber.

The intersection multiplicity is defined by

⟨x̂, y⟩Fal = ⟨x, y⟩fin + ⟨x̂, y⟩∞,

where

⟨x̂, y⟩∞ =
1

2
gx(y(C)),
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and ⟨x, y⟩fin denotes the intersection pairing at the finite places. It’s not the naive inter-

section pairing, but we will count them with multiplicities. To be more precise, it can be

written of the form ∑
p

∑
t∈Z(Falg

p )

mult(t) · log(p).

In general, there is a arithmetic version of rational equivalence to help computing the

intersection pair.

3.2. Main conjecture. Note that in our case, we have

⟨Ẑ(f),Z(U)⟩∞ =
1

2
Φ(Z(U), f).

Therefore, we can view Bruinier-Yang’s computation as a computation on the archimedean

place of the Faltings height.

Now assuming f is a weakly holomorphic modular form, so that ξ(f) = 0, and furthermore

assume it has constant term c(0, 0) = 0. Then is corresponds to a rational sections on the

trivial line bundle on XK . In particular, Ẑ(f) = d̂iv(Φ(f)) is rational equivalent to 0.

Therefore, we expect the Faltings intersection height equals 0:

0 = ⟨Ẑ(f),Z(U)⟩Fal = ⟨Z(f),Z(U)⟩fin +
1

2
Φ(Z(U), f).

Therefore, we get

⟨Z(f),Z(U)⟩fin = −deg(Z(U))

2
constant(⟨f+(τ), θP (τ)⊗ EN (τ)⟩).

Now LHS eauals ∑
µ∈L♯/L

∑
m>0

c(−m,µ)⟨Z(m,µ),Z(U)⟩fin.

with c(−m,µ) the singular coefficients of the weakly holomorphic modular form f . Next we

look at the analytic side. Note that θP and EN , note that these two functions are defined

by the lattice L, hence are two constant functions when f and c changes! We simply denote

θP (τ)⊗ EN (τ) :=
∑

µ∈L♯/L

∑
m>>0

ν(m,µ)qnϕµ.

If we denote

f+(τ) =
∑

µ∈L♯/L

∑
n

c+(n, µ)qnϕµ.

Then the right hand side equals∑
µ∈L♯/L

∑
m>0

c+(−m,µ)ν(m,µ).

Now we can formulate Bruinier-Yang’s conjecture:

Conjecture 3.2.1. ⟨Z(m,µ),Z(U)⟩fin = −deg(Z(U))
2 ν(m,µ).

Using this, we can impose the global conjuecture on the Faltings height:
12



Conjecture 3.2.2. For any f ∈ H1−n/2, ρ̄L, one has

⟨Ẑ(f),Z(U)⟩Fal =
deg(Z(U))

2
(c+(0, 0)κ(0, 0) + L′(ξ(f), U, 0)).

Where κ(0, 0) is the constant term of the EN .

Since we can choose f such that Z(f) = Z(m,µ) for a specific m and µ, these two

conjectures are in fact equivalent.

The amazing thing is that, we didn’t do anything on the finite place, we didn’t even

define the possible integral model, but we can predict the intersection number from the

archimedean place!

Also note that when we taking V = M tr=0
2 with the det as our quadratic form, then

the orthogonal Shimura variety becomes modular curve. In this case, special cycle and

CM cycles are both Heegner divisors. The inresection pair in the conjecure is exactly the

arithmetic intersection of the Heegner points. This is how this conjecture relates to the

Gross-Zagier formula.
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