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- HARMONIC ANALYSIS AND DISCONTINUOUS

. GROUPS IN WEAKLY SYMMETRIC RIEMANNIAN

‘ SPACES WITH APPLICATIONS TO
DIRICHLET SERIES

By A. SELBERG
[Received May 2, 1956]

- Ix TE following lectures we shall give a brief sketch of some

- representative parts of certain investigations that have been under-
taken during the last five years. The center of these investigations
is a general relation which can be considered as a generalization of
the so-called Poisson summation formula (in one or more dimen-
sions). This relation we here refer to as the ‘ trace-formula.”

1. Let S be a Riemannian space, whose points we denote by z
and the (local) coordinates by 2!, 2%..., 2", with a positive
definite metric

ds® = z gy dac* daet,

We shall assume the g;; to be analytic in the coordinates. Further
we assume that we have a locally compact group G of isometries
of S8 (not necessarily the full group of isometries), whose elements
we denote by m, and that G acts transitively on S so that given x
and y in S, there exists an m € & such that @ = my. We shall be
concerned. with the linear operators on functions f(z) defined on 8,
which have the property that the operators are invariant under @,
or otherwise expressed, linear operators that commute with the
isometries m in &. We restrict ourselves here to the class of linear
operators that are differential operators of finite order, integral
operators of the form [ k(z, y) f(y) dy (where dy denotes the
s

invariant element of volume derived from the metric), or any

This is a summary of the results presented by the author to the International
Colloquium on Zeta-functions held at the Tata Institute of Fundamental Research,
Bombay, on February 14-21, 1956.



48 A. SELBERG

finite combination (by addition or multiplication) of such. This
class evidently forms a ring.

Turning first to the integral operators, one observes that in
order that the operator

jk(x. v) f(w) dy

S

should be invariant, it is necessary and sufficient that the kernel
satisfy the relation

k(mz, my) = k(x, y), (1.1)

for all z, y in § and all m in G We shall refer to such a kernel as a
“ point-pair invariant . If we consider such a point-pair invariant”’
k(z, y) as a function of one of the arguments, say , keeping the
other point y fixed, we see that k(x, ) is invariant under the sub-
group of @ that leaves y fixed. This subgroup we denote by Ry and
call it the rotation group of y. We express this property of k& by
saying that it has as a function of x rotational symmetry around
the point y. Let x, be a chosen fixed point in § and R° with elements
70 the rotation group of @, R° is isomorphic to a compact (or
possibly finite) subgroup of the orthogonal group of n elements.

Norming the bi-invariant Haar measure on R° so that J.ar’ =1,
RO
we can define for a function f(x) a symmetrized function

s a) = [ f0°) (1.2)

RO
x; x,) clear as rotational symmetry around the point 2z,.
o) clearly h ional symmetry d the point ,

Furthermore, if we have a function f(x ; #,) with rotational symmetry
around &,, we can define a point-pair invariant k(z, y) by the relation

k(z, y) = f(mx ; x;), where my = x,,

this definition is seen not to depend on the particular choice of m if
there is more than one m satisfying the relation my = z,. Therefore
the study of point pair invariants is equivalent to the study of
functions with rotational symmetry around some point .
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We observe also the following facts, before turning to the conside-

~ ration of differential operators. Because f acts transitively on S, an
~ invariant operator, say L, of our class is completely characterized
~ by its action at one point, say #,. By this we mean that, introducing
 the notation [Lf(%)],,, to denote the value of the function Lf(x)

~ at the point # =a, we can for an arbitrary point x, express

- [Lf(z) ],—,, by means of the relation

[Lf®) Joma, = [Lf(m2) Ly—sys

- where m is a solution of mx, = z,. Conversely if we have an operator
- & (not necessarily invariant), we can from its action at z,,

construct an invariant operator L by the relation

[L f@) Jymz, = [ £ (@) Jamay

provided
[ gf(rox) ]z-zo i [.?f(x) ]z-z,'

for every element #° in the rotation group R° of x,. Finally if %
does not have this property we may define

[Lf@) Yymz, = [ £ f(@; %) Jomsy

where f(x ; ,) is the symmetrized function of f around z, defined
by (1.2), because f(r%) and f(z) have the same symmetrized function
around z,. If % is invariant then L = 2.

Furthermore, one observes that an invariant operator applied
to a function with rotational symmetry around a point, gives a
function which again is rotationally symmetric around the same
point. Also an invariant operator applied to a point-pair invariant
as a function of say the first point, gives as result again a point-
pair invariant.

Consider now the class of invariant differential operators of
finite order, and let for simplicity the local co-ordinates around z,
be chosen such that the matrix (g;;) at x = , is the identity matrix
E,. Let D be an invariant differential operator, its action at the



50 A. SELBERG

point & = z, is identical to that of a differential operator D© with
constant coefficients,

2 Soea (3) (2)" (4)"

By the highest homogeneous part of D© we mean the aggregate
of terms in the above sum, where Uiin 7 0and 4 + 45 + ... 414,

attains its maximal value; we denote this by D©, and write
(o @) 0 0
DO — .(_,__,...,_),
Po\ot’ a2 o

where p;, is a homogeneous polynomial. The rotation group R°
induces on the tangent space of S at @, a subgroup R of the ortho-
gonal group 0@, and the polynomial Ppuy, g, ..., uw,) is seen to
be invariant under this group R of orthogonal transformations.
Conversely, if we have a homogeneous polynomial p(x,...u,)
which is invariant under the group R, we may define an invariant
differential operator D, by the relation

[Dpf(x)]z=:ro i [P(a%, a—zz, o %)f(x;xo)]zﬂo.

It should be observed that whereas Pw,= P, all one can say
about D, p» — D is that it is an invariant operator of lower order
than D. One also easily shows that if 2, and p, are two such homo-
geneous polynomials invariant under R, we have that Dplr.—Dﬁl Dy,
is an operator of lower order than D, ,,- Using these facts, and a
well-known result by Hilbert which says that the polynomials p have
a finite basis of homogeneous polynomials p,, pg, ..., p, 1 < I,
such that every homogeneous polynomial p can be written as a
polynomial (not necessarily in a unique way) of p,, p,,...,p, with
constant coefficients, one obtains the result that ‘Drz’ Dp’, ""Dpz
generate the ring of the invariant differential operators in the sense
that any invariant differential operator D can be written as a
finite expression
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D L z Avl,v.,...,vl 'D;: 'D;‘ Dpl, (1.3)

'1 where the 4’s are constants. Writing DPi =l fon o = 120 . L We
- shall call D;, D,, ..., D, a set of fundamental operators and we
may assume that it is so chosen that / is minimal.

] The fundamental operators in general do not commute, and
~as commutativity is essential for our later considerations, we
:— ~ shall make an additional assumption about G and S, which will
'.\' imply commutativity (as we do not know, however, whether this

- assumption is necessary for commutativity, we should note that

it is only the commutativity that is really necessary for the following
~ developments).

We assume that there is a fixed isometry w of S (possibly not in
@), such that uGu~=' = @, p® € @, and that for any pair of points
~zand y in S, there exists an m in G for which me = uy and
my = pr. We may call a space for which there is some group of
isometries G with these properties (if that is the case then the
full group of all isometries will have these properties too) a
“ weakly symmetric ”’ Riemannian space. This concept is more
general than E. Cartan’s concept of a symmetric space, as symmetric
implies weakly symmetric, whereas it can be shown by examples
that weakly symmetric does not imply symmetric.

Under this assumption we can prove that all the invariant opera-
tors commute. We first show that they commute when applied to
point-pair invariants k(z, y) considered as functions of the first
point . We first notice that if L is an invariant operator then so

is also L defined by
L @) = [Lf(p7%) Loy

Also from our assumption about @ follows that for any point-pair
invariant k(z, y) we have

k(py, px) = k(me, my) = k@, y).
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Denoting by a subscript the argument (x or y) that the operator
is to act on, we have

Lk, y) = ¥'(x, y),

p— T St

-

where k’(z, ) again is a point-pair invariant. Now we have

Lz, y) = Lk(uy, pa)
= [Lk@y, p2)]yssy = K'Y, p2) 1y,
= k'(py, px) = k'(z, y).
Thus
Lk(z, y) = L, k(z, y),

so that we may shift the operator from the first to the second argu-

ment by replacing it with L. TIf we now have two operators LM
and L® we may write

LY Lk(z, y) = LO L k(z, y)
= I® Lk, y) = LY LY Kz, y),

(since the operators clearly may be interchanged when they act on
different arguments). Thus we have commutativity when our
operators are applied to point-pair invariants. Therefore we have
also commutativity if our operators are applied to a function with
rotational symmetry around a point, say z,. For a function without
rotational symmetry we notice that

[L® L® f(@))yos, = [LD LD f(a; )]

z =2, >

. : .
_—— _'—ﬂ)’“» P I I e — RS

where f(z;a,) is the function with rotational symmetry defined
by (1.2). From this follows

[ZO L® @),y = [L® LD f@)],..,.

P m——

or what is the same

LOL® f@) = L® L f),

that is, the operators commute.

. o AR
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- It can be shown that the operator L where the bar denotes
- conjugation, is the formal adjoint of the operator L.

Returning to (1.3) we may now write

.D o P (Dl’ D2, ceey Dl)’ (1.4)

~ where P is a polynomial with constant coefficients. It should be
noted that though our fundamental operators were chosen so that [
~ was minimal, there may sometimes still be algebraic relations
~ between them, so that the representation (1.4) may not necessarily
- be unique. Further it can be shown that one can always choose a
set of fundamental operators with minimal I, such that each of
them is self-adjoint.

Now let f(x) be a function which is an eigenfunction of all our
fundamental operators D; so that

D fte) =X [2), 4 ='1,2,.., 1 (1.5)

where the A; are constants; because of (1.4) it will then be an eigen-

function of all the invariant differential operators, and in particular

of the Laplace operator derived from the metric, therefore f(x) will

be analytic in the coordinates. If we take a point x, such that f(x,)

= 0, and form f(x; 2,) defined by (1.2), this will again satisfy the

equations (1.5) and will not vanish identically in z since f(z, ; %) =
f(@y) # 0. We now write

S5 xg) = [(@o) (@, %), (1.6)

where the subscript A is an abbreviation for the I-tuple (A, A;,..., &)
s0 that wy(xg, %) = 1. We call this the “ normed ” eigenfunction
with rotational symmetry around z, and shall show that it is
unique, that is to say a function with rotational symmetry around
&, which takes the value 1 at the point 2, and which satisfies the
equations (1.5) is identical with w,(#, %,). To prove this we observe
that for such a function g(z), we have, because g(x) = g( ; %),
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YO S
[(axl) ( ) (a%) 9(®; xo)] = [D 9@)],—s,

where D is an invariant differential operator depending only on
(v1, v3,...,%,). Because of (1.4) and since g() satisfies the equations
(1.5) we thus get on using g(z,) = 1,

[(gl)ﬁ (ax2 i (ax) g(x)] =Py, by,

where P is a polynomial depending only on (v, »,..., »,). This
shows that all the partial derivatives of g(x) at the point z,
are uniquely determined by the I-tuple (), As,..., &) and so since
g(x) is analytic in the coordinates, g(z) is unique, that is, it coincides
with w,(z, 2)). We may from w, (, %y) construct the point-pair
invariant w,(z, y) which will, because of the relation

Dz wA(x: y) = Dy w, (, y),

be a normed eigenfunction also in y with rotational symmetry
around the point 2. Therefore we must have

w,\(x, y) =Rt (y’ x), (17)

where A denotes an I-tuple (Xl, Xz, L5 7«,) not necessarily identical
to the original one. w,(z, y) is now easily seen to be an cigenfunction
(considered as a function of #) of our whole class of invariant opera-
tors for the reason that

Lz wA(x: y)

because of the commutativity of L and the D s k) 8500 1T
again satisfies the equations (1.5), and furthermore it is again a
function with rotational symmetry around y, and differs therefore
only by a factor independent of « (and hence since the factor is a
point pair invariant it is independent of y also) from w,(x, y),
that is to say
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L, wy(x, y) = A wy(@, y),
- where A is a constant depending on L and the I-tuple A only.

We can now show that any function which satisfies the equations
.5) will be an eigenfunction of our class of invariant operators,
- namely we have

[L f@)]amz, = [Lf@; %) )pms,
= [L (@) w) (@, %) sz,
= A f(wo) wy @, ) = A f(y).
Since this holds for any point x,, we have
L fx) = A flz),

and we see that the eigenvalue A does depend only on L and the
I-tuple A, but not on the particular function f(z).

Thus for an integral operator we may write

jk(x, ¥) ) dy = hQ) f@) (18)

S

where A(A) = (), Ag..., A;) depends on k and A only. In order
to get an expression for A(}) it is therefore enough to produce a
“ representative ” set of eigenfunctions, that is, one that exhausts
all the possibilities for the I-tuple (A,..., &), that is, I-tuples for
which there really do exist functions satisfying the equations (1.5).

In a number of cases that are of particular interest for applica-
tions, such a set can be obtained from the following lemma :

Let T with elements ¢ be a subgroup of G which is simply transitive
on 8, that is, such that the equation & = tx,, where x is any point
in 8 and z, a chosen fixed point, always has one and only one
group element ¢ as a solution. Further suppose that we have a
continuous non-vanishing function ¢(f) on 7' that satisfies the
relation
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4’(‘1‘2) i ¢'(t1) ¢(t2),

for all ¢, and ¢, in 7. If we now define f(z) —= f(txg) = ¢(t), where
txg = z, then f(z) is an eigenfunction of our operators, because

Lf@) = [Lf(t@)]sesy, = $(t) [L@))yesy, = [Lf@)], s, f@).

If we have several such multiplicatively independent functions

&1(t), Pa(t),...,h,(t), then
$.1(t) o%2(t) ... ()

will also be one (where, if 7 or what is the same 8, is not simply
connected the exponents s,, 85,...,8, have to be chosen such that
the resulting function is single-valued). It is of course not always
so that different choices of the w-tuple s,,...,s, necessarily lead
to different I-tuples A,,..., A,. In many cases one gets all possibili-
ties for which eigenfunctions exist covered by this construction.

The nature of the set of possible A\’s may differ from the
completely discrete set that would occur if S is compact,” to the
situation for many non-compact spaces where the set of all l-tuples
of complex numbers A, ..., A, which satisfy the possible algebraic
relations between the D,i1=1,2,..., 1 does occur. Intermediary
situations can of course also occur. In the case when the set of all
l[-tuples A of complex numbers satisfying the algebraic relations
between the D,’s does occur, it is easily shown that w,(z, y) as a
function of Ais an analytic function on the algebraic variety defined
by these relations, which is regular whenever all A/’s are finite.

As an illustration we may for instance consider the space of n
by n positive definite symmetric matrices ¥ — (y;) with the metric

ds® = o (Y-1dY Y-14Y)}

T Because we require our functions to be regular globally, if one admits * local *’
eigenfunctions (that cannot be continued everywhere in S, or that by such continua-
tion would not be single-valued) the situation is different as shown by the
examples of the surface of a sphere or the periphery of a circle.

1 o here and in the following denotes the trace.
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where dY = (dy;), and the group G may be taken as the group of

all non-singular real n by » matrices 4, the isometries being

Y>ATY A

(4’ is the transposed of A4); finally the isometry p may be taken as

Y—» YL

It is then easily established that all our requirements are satisfied.

;.,_ The point-pair invariants are easily seen to be of the form that
- k(Y,, Y,) is a symmetric function of the n eigenvalues of the matrix
- Y, Y%, or if one prefers it, k(Y,, Y,) is a function of the =

B!

ke
1

~ arguments o( (Y, Y7')), v=1, 2, ..., n. Conversely any such

- function is a point-pair invariant.

A set of fundamental operators can be obtained as follows : let

—a-— denote the matrix (l—+_8—'l _a_ ), where 3, ; is the Kronecker
oY 2 0y i

symbol ; then the operators

D,.=a((Y£; ) R L | (1.9)

are a set of fundamental operators, and they are algebraically
independent.

To obtain a representative set of eigenfunctions, consider the
subgroup of G formed by the * triangular” matrices 7' = (t;)
with ¢; =0 for i <j and ¢; > 0 for ¢ =1, 2, ..., n. This group
acts simply transitive on our space, and for any complex n-tuple
8 = (8, 83, ... 8,) the function

u(T) = T a2t e (1.10)
i=1

is single-valued and continuous on this group and has the property

¢3(T1) ¢c(T2) Jg ¢c (Tl Tz)-
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Thus defining for ¥ = 771"
Ji(Y) = ¢,(T), (L.11)
this is an eigenfunction. One can show that
D; f(Y) = X (s) fi(®),

where A(s) = Ay(sy, 8p, ... , 8,) is a polynomial in the s; of degree i
which is symmetric in the s; and of the form

A(sy, 890 v, 8,) = 8 + 8" + ... + 8,7 + terms of lower degree.

From this one sees that A; are a basis for the symmetric
polynomials of the s;, so that the s; are determined as roots of an
algebraic equation of nth degree whose coefficients are rational in
the A;, so they are determined up to a permutation of the s;. From
this it follows that we may by suitable choice of the s; make the
A; any n-tuple of finite complex numbers. One also can show that

X;(311 89 +ee 3 8y) = A(— 81, — 835 0oy — &),
To find an expression for the A(A) defined in (1.8),
j (Y, Y) f(Y)dY = h(}) f(Y)),
S
where dY is the invariant element of volume
2in(n—1)
lyli(n+1)1;—[ Yij»
i<j
we may write

k(Y1 Y) = k(o (YY1, o((Y Y71, oo, (XX, 7)),
and take Y, = K, the identity matrix so that f,(¥,) = 1; further
we may introduce the ¢;, ¢ > j, in ¥ = 7T'T” as new coordinates in our
on(n+8)/4
space, the element of volume then becomes ]—_[ dt; and

TR R e
tll t22 nn 127
the relation becomes

- P P R R i —
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9 in(n+3) j k( o(TT"), of ( TT:)z Wit s ol )y )¢

X nt,-?’““““’ I—[ dty; = h(A),

P 2]

- where the integration is carried from 0 to co over the #; and

from — oo to oo over the ¢; with 7 > j. For special forms of £ these.

~ integrations can be carried out explicitly, for instance if

k(Yy, ¥) = | YY1 [* e—Bo@y= -1,

~ where the real part of B is positive, and the real part of 2s; + 2« >
 J(m — 1) for i = 1, 2, ..., n; the integral then becomes

n
g [ foxp (= p > ) | [ uwemernn [ Tty
=]

i=1 2]

and splits into a product of n_(n_2+_1)

simple integrals, each of which

is expressible in terms of Gamma functions.’

2. Let now I' be a discrete subgroup of G which acts properly
discontinuous on the space S, and let there be given a representation
of I by unitary » by v matrices x(M), where we denote the elements
of I' by M. Consider function vectors F(z), that are column vectors,
whose » components are scalar functions of the point z, and which
furthermore satisfy the relation

F(M ) = x(M) F(), (2.1)

for all z in S and M in I'. Such a function F(z) is then of course fully
determined by its values on a fundamental domain Z of I' in §.
Applying one of the invariant integral operators to such a function
F(x) one sees that

j ke, ) F(y) dy = j K@ y; %) Plo) dy,
S

§ For this special choice of k, the resulting form of formula (1.8) has in the
meantime been derived by different means by H. Maass, Journal of the Indian
Maih. Soc. 19 (1965), 1-24,
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where the kernel K is a matrix given by
K@ ysx) = > x(M) ki, My). (2.2)
Mel’

Considering now the Hilbert space defined by the inner product

(Fyy Fy) — j F/(w) Fy@) da,
D

where fl’ is the conjugate transposed of F;, one sees easily that the
operator

| &K@ 9320 o) ay 2.3)
9
is normal since the adjoint operator has a kernel that is derived
from the right-hand side of (2.2) by replacing k(x, y) by 'l;(x, bl

k(y, ), and thus it commutes with the operator (2.3). The invariant
differential operators are also seen to be normal.

We have not up to now put any restrictions on our point-pair
invariants k(x, y), but always only assumed that the kernel and the
function that the operator acted on were such that the integral also
existed if absolute values were taken of the integrands.

It is now time to impose conditions that will enable us to make
definite statements about the absolute convergence of the series on
the right-hand side of (2.2) and also about the behavior of K (z, Y5 X)-

We make the following assumptions :

k(z, y) should have a majorant,

ky(@, y) such that (a) [ k,(x, y) dy < oo, (b) k,(, y) is of regular
growth; that is to say, tlfere should exist positive constants § and
A such that for all z and y,t

T One can relax this, and permit kernels with, for instance, a singularity at

@ = y by requiring (b’) to be fulfilled only if the smallest geodesic distance d(x, y)
exceeds some fixed number.
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bz, y) < A jkﬁwww )
d(y,y')<8

,‘f;"fwhere d(y, y') denotes the smallest geodesic distance between
~ yand y'. Under these assumptions the above series for K(z, y; x)
k. ‘converges absolutely for x and y in 8, and uniformly if 2 and y
~ are in some compact subregion of 8.}

- We also make the assumption that the fundamental domain 2
of I' in 8 is compact. Then K(z, y; x) will be uniformly bounded
'-Ej for # and y in 2 (and therefore also for all # and y in §). Therefore
~ also the expression

jjammwmxﬁyhmw@
9 9

~ is finite (K’ denotes the conjugate transposed of the matrix K)
5o that the integral operator is of the Hilbert-Schmidt class, and
the classical methods from the theory of integral equations can
be applied.

Consider now the functions F(z) satisfying (2.1) which are
eigenfunctions of our fundamental operators D; for i =1, 2, ..., .
We can then show from the preceding results about our integral
and differential operators, that there exist an orthonormal system
of eigenfunctions Fi(x), which is complete in our Hilbert space,
and such that if we write

for j =1, 2,..., I; the l-tuples X = (AL, Ai,..., X}) have no finite
point of accumulation in I-dimensional space. The complete-

ness in particular follows from the easily established fact that the
system of all admissible kernels K(z, y; x) is complete.

About the eigenvalues, the I-tuples A, one could at once make
statements based upon the fact that if the kernel of an integral

t Thus in particular K (z, y ; x) is continuous if b (@, y) is.
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operator is Hermitian (which is the case if k(x, y) = k(y, z)), the
eigenvalues A(X') must be real ; also, by looking at the differential
operators, if we have chosen the fundamental operators self-adjoint,
as one always can, the )\; forj = 1, 2,..., I have to be real, and for
the elliptic ones the sign of the eigenvalue is ’also given. In terms
of the corresponding normed rotationally symmetric eigenfunctions,
it follows that w; (v, y) = w,(y, ), and |w,; (2, y)| < 1 for all
2 and y in S.

Formally we have the expansion of K(z, y; ) in terms of the
eigenfunctions F,,

> XD k@, My) = > h(X) Fz) F/(9) (2.5)

Mell

The absolute convergence of the right-hand side and the equality
of the two sides could be proved under suitable additional
assumptions about k(z, y). However, since the eigenfunctions
themselves occar in (2.5), our attention here will instead centre
on the trace of the integral operators, where the eigenfunctions do
not anymore occur.

We may formally compute the trace of the integral operator in
two ways, namely on the one hand as

Z h(X), . (2.6)

and on the other hand as

ja(m,x;xndz: a(x(M))jk(x,Mx)dx. (2.7)
Mep 9

We leave aside for the moment the question whether the series
(2.6) is convergent or only summable in some sense and also the

§ This formula in the case x(}) identically 1, can be used for estimation of

the number of points Mz in large regions with rotational symmetry about the
point y,

TN RS
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question whether the sum is actually equal to the expression (2.7),
and turn our attention first to the latter expression. Under our

assumption on 2 and k(z, y) the series on the right-hand side of

~ (2.7) actually is absolutely convergent, even when we take absolute
- values under the integral signs.

We shall rearrange the series on the right-hand side of (2.7) by

. combining the terms in a suitable way. For this purpose we introduce

some notations.

Two elements M, and M, in I' are said to be conjugate within
I' if there exists My e I" such that M, = M M,M;'; we call the
class of all elements in I' which are conjugate to a given M the
conjugate class of M in T', and denote it by the symbol {M}y.
The subgroup of I' formed by the elements which commute with
M we call T', and denote its elements by N,,. Similarly we define
conjugacy within @&, and denote by {m}, the class of all elements
in G conjugate to an m in G. Clearly {M} is contained in {M }g.
Also the subgroup of G formed by the elements of G which
commute with m we call @, and denote its elements by =,,;
clearly T';, is contained in G,.

We now group together the terms on the right-hand side of (2.7),
where M belongs to the same conjugacy class in I'. The factor
o( x(M) ) has the same value for all elements M belonging to the
same conjugacy class in I'. Therefore we consider the sum

Z k(x, Mzx) da. (2.8)
Me {My)p 9

The terms here are of the form
[k(x, M M, M, z)dz = Ik(Mlx, My M, z) dx
9 9

= j k(z, M) dx,
WDy
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with M2 denoting the image of 2 under the transformation M 1-
Two M, give the same MMM, if and only if they differ on the
left by an element of I'y,. Thus the expression (2.8) becomes

J k(x, M, z) dx,
Dy

0

where the domain of integration is given by Dy, = ¥ M2,
MeT’
X* indicating that the summation is carried over a complete set of

elements M such that no two differ on the left by an element of Ly,
It is easily seen that Dy, is actually a fundamental domain of the
discontinuous group Iy, in 8. Thus we may rewrite the right-hand

side of (2.7) as
> olx (1)) j bz, Mz) da, (2.9)
{M}p

Dy

where the summation is extended over one representative for each
conjugacy class in I We shall transform the expression

J k@, M z) de
@ﬂ[

still further. We introduce on @, with elements ny the Haar
measure dny which is invariant with respect to multiplication on
the right. We construct some function p(x) which is everywhere
on 8 real and non-negative, and for which

j p(nyx) dny, = 1, for all z in S.
Gy

This can be done by constructing first a function q(x) > 0, every-
where on 8, for which the integral

J q(ny) dny = gq,()
G
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‘exists and is positive for every z in 8. This can be done for instance

1 4 p(@) — d(@), ford) <1 + p(a),

— [ 0, for d(@) > 1 + p(z),

~ where d(z) denotes the smallest geodesic distance from z to some

fixed point ), and p(¥) = mingyeqy d(ny ). Then p(z) = q()/q, ()
is seen to satisfy the above requirements. The group I';, acting on
the right of @y is discontinuous and we may denote by G/T') a
~ fundamental domain of Iy, in G4; we then get

‘[ k(x, Mx) dz
Du

o j jk(x, M) plnyge) de dnyg
Gy @M

== Z j k(x, Mx) p(ny Ny x) de dngy,
NueTM Gy Ty Dy

= [ E(Ny 2, M Ny ) p (ny Nyx) de dny,
Nymelyr ¢yt Dy

= k(x, Mz) p(nyx) de dny,

Nuty enit N, D,

= j j (@, M %) p (nyy) de iy
Ty, Mny) plny) dac dnyy
k(@, Ma) p(a) da dny,

o Vi j k(z, Mz) p(a) da,

ayTm S
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where we repeatedly have used the fact that k(x, Mz) is invariant
under the group @, that the measure dn,, is right-invariant, that
the measure dz is invariant, and also that

A Z (GyyTyy). Ny and 8 = Z N B,

Nyel'm Nymel'y

Writing now

dny = p(Gy/Ty),
Gyt
this factor measures the volume of the fundamental domain of
I'yyin G4, and does not in any way depend on k(xz, ). For the other
factor we write

jM&M@MMM=wQMhL
S

and observe that this factor only depends on k(z, ) and on the
conjugacy class { M }, of M in @. Combining our results we may
now write

|| oK@ 01 a0 = S ot (1) WGP (1)) (210
{M}p
9
We now turn to the question ‘when and in what sense are the two
expressions (2.6) and (2.10) equal?” We can at first say that the

series (2.6) converges absolutely and is equal to (2.10) if k(z, y) can
be written in the form

jhmahmaa (2.11)

where k, is a point-pair invariant satisfying our conditions (a) and
(b). From this we get next that the same conclusion holds if % can
be written in the form

j%@m@@ma @.11)

S

o e il e e L

B —
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:"I"if k, and k, both satisfy the conditions (a) and (b), since (2.11’) can
be written as a linear combination of expressions of the form (2.11).

Introducing the notation, for e > 0,

0«! for d(x: y) <6

aBd) v l 0, for dx,y) > ¢,

where d(z, y) is the smallest geodesic distance between x and y, and
- where C, is a constant depending on ¢, chosen such that

j K,('IE, ?/) dy =1,

f (the integral clearly is independent of ), «/(@, ¥) is a point-pair
_ invariant satisfying (a) and (b). Writing

0.(A) = j K (x, Y) w,(y, ) dy,
we have
lim 6,(A) = 1,

e—>0
and that for the Xi, in addition |6(X)| < 1.}

Now let k(x, y) satisfy (a) and (b) and in addition be continuous ;
considering the class

k(e y) = j (@, 2) Kz, ) d2,
S

for 0 < e < 1, we get that the class k, satisfy our counditions (a) and
(b) uniformly, and that lim k(z, y) = k(, ), uniformly for z and
>

0
y in any compact subregion of S. Using this we can show that the
“ trace formula

> N = > olx (D) w@ulTu) g({M}e)  (212)

i {M}p

+ With equality only if wxi(z, y) = 1.
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is valid if we give the left-hand side the interprétation
lim h(X) 6 (XY).
lim 2 (X) 0,(X)

In particular (2.12) holds whenever k satisfies (a) and (b) and is
continuous and the left-hand side of (2.12) converges absolutely.

Various types of sufficient conditions for absolute convergence
can be given,* for instance that K(z, y; y) have partial derivatives
up to the order [n/2] + 1, which is the case if k(z, y) has partial
derivatives up to this order which are such that (2.2) can be
differentiated term by term and the resulting series converges
absolutely.

The trace formula (2.12) may be used on the one hand to investi-
gate the distribution of the /-tuples X' and on the other hand also
to investigate the distribution of the conjugate classes {M }y., the
latter in the following sense : The conjugate classes in G can be
characterized by a certain number of numerical parameters and
so with each {M}. can be associated the numerical parameters
that characterize {M},; it is the distribution of these numerical
parameters that can be investigated by means of (2.12).

We shall mention briefly a certain generalization of (2.12) which
is of interest in connection with the so-called Hecke-operator for
the classical modular group and their analogues.

Let us have given in connection with our group I' and the repre-
sentation (M), a subset I'* of elements M* of G with the following
properties : The set I'* (it does not need to be a group) and the

I Actually in the case of a particular & and S, the more convenient such
conditions are those that can be expressed in terms of 4(\) only. This involves
expressing k(z, y) in the form Ih(/\) w)(z, y)dA where d) is a certain measure, and
seeing what properties of %()) are sufficient to ensure that k(z, ¥) is continuous and
satisfies (a) and (b), then determining enough about the asymptotic distribution of
the A to see what additional condition should be imposed to ensure the absolute
convergence of X A(Ai).

i
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‘ﬁ elements M*, are such that with M* the inverse M*~! is also in I'¥,
" further for M* in T'* and M in I the element M* M is also in I'¥,
',‘ ‘and there should be a finite set of ‘left-representatives’ M,*, My*,

, M * such that I'* = 5 M *T, or otherwise expressed, every M*
i=1

can in a unique way be represented as M* M with M e I'. Further
let there be associated with each M* a v by v matrix x(M*) (not
~ necessarily unitary) such that y(M*M) = x(M*)x(M) for M* in I'*
'-‘l' and M in I, and such that

x(M*=1) = x(M*)'.

Defining now the operator 7'* by

T*F(x) = > x(M*) F(MHa), (2.13)
i=1
one establishes that T*F(x) again satisfies (2.1). T'* is seen to be
self-adjoint in our Hilbert space and further to commute with our
invariant integral operators (2.3) and with the fundamental diffe-
rential operators. Therefore our complete orthonormal system of
eigenfunctions F,(r) may be chosen such that they are also eigen-
functions of 7'*; writing then

T*F (@) = XoFy(z),

it can be shown by multiplying the 7* with an operator of the form
(2.3), which gives us an integral operator with the kernel

Koy 0 = 2 X% ki, M),

and computing the trace of this integral operator in a similar way
that

DHO) Xy = > olx(M*) (el Trs) g({H o) 2149

{M*}p

‘where the conjugacy classes {M*} are defined by conjugacy with
respect to I' (that is M, * and M,* belohg to the same conjugacy class,
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if and only if there exists M eI' such that M,* — MM,* M1,
and I'y. is the subgroup of I' that commute with M*. What was
said about the validity of (2.12) also holds for (2.14).

If for some I-tuple A it happens that w Alx, y) satisfies the
condition

j |wal®, )| dy < oo,
S

then one can show that w,(x, y) satisfies both our conditions (a)
and (b), and it can therefore be used as a k(x, y) in our trace formula.
Since it is seen that for the A(}) corresponding to w,(x, ¥) one
has h(A) = 0 for A % A, and

h(A) = j |wa @, 9) [ dy,
S

we get on the left-hand side of the formula (2.12) simply
N(A) k(A), where N(A) is the number of the l-tuples A’ that are
equal to A. I conjecture, but have only so far been able to verify this
conjecture for special types of spaces, that in this case g {M},;'
= 0 for all M which do not belong to some compact subgroup of @
so that (as one easily establishes) the number of terms on the right-
hand side which are not zero is finite. This would imply that one
gets a finite expression for N(A). As will be indicated later this has
interesting applications to the problem of determining the number
of linearly independent regular analytic automorphic forms of a
given dimension, in one or more complex variables.!

We have so far assumed that the fundamental domain 2 of our
group I' is compact. If we relax this condition and only require
that D have finite volume, the situation changes somewhat. While
the kernel K(z, y; x) will behave as before as long as at least one

T Of course the special g that is derived from wA(®, ¥).

I Similar remarks apply to formula (2.14), which is of interest for the theory
of Hecke-operators, as applied to the analytic modular forms,

o TN v‘« T g Y
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of the points x and y is restricted to a compact subregion of 9
(or of S for that matter), the kernel may exhibit a singular behavior
as both points tend simultaneously towards the  non-compact
boundary ”’ of 2, such that the integral

[ ] otk 0 Ky ) way (2.15)
9 9

does not exist. If, as it may happen for some y, the kernels K behave
well enough at the ““ non-compact boundary ” for (2.15) to exist,
the situation is not significantly changed, the spectrum of I-tuples
A for which there are eigenfunctions F is still discrete and the
eigenfunctions are in our Hilbert space, and one may in specific
cases by showing special care with the transformations M that
leave some ““ part ” of the  non-compact boundary * fixed (namely
by grouping together those that have the same I'y), prove a trace
formula that is not essentially different in form from (2.12),
only that some terms on the right-hand side will no longer
correspond to a single conjugacy class { M}, but to an aggregate of
conjugacy classes.

If however y is such that (2.15) does not exist, there
are in general continuous spectra (which may even be multi-
dimensional) besides the discrete spectrum. In some of the
simpler cases, where these continuous spectra have been studied,
it is possible to remove them by replacing the kernel
K, y; x) with a modified kernel which retains only
the eigenfunctions from the discrete spectrum and with
unchanged eigenvalues h(X'), the computation of the trace
of this modified integral operator leads then to a trace
formula, which however besides terms of the type occurring
on the righthand side of (2.12) will contain terms®of a
radically new nature.

3. We shall in the following give some explicit illustrations of
the formulas in the case of some simpler spaces S and groups @
satisfying our conditions,
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First we consider the case when S is the hyperbolic plane for
which we use the model represented by the upper complex half-

plane z =& + iy, ¥ > 0, with the metric ds® = M Our
Yy

group G may be taken as the group formed by all motions

el e+ Z where ad — be = 1, a, d, b, and ¢ real.! The Laplacian
c?

2 2
corresponding to the metric y?A = yg( i)a_x2 “ (%/2) is the only

fundamental operator, and the point-pair invariants are seen to be

all of the form
— 22
k(z, z’)=k(lz 'zj )
Yy

A representative set of eigenfunctions is given by %* since
YAy =2y
with A = — 8(1 — s). Writing s = § + @, we shall use for
convenience the r instead of the A as parameter. The connection
between k(z, 2’) and k() is given by the relations

MY g gy, bey = — 1 [ 290
j i = QW HH = - J et
Qe" + 7" —2) = g(u), (3.1)
e i sl .o
h(r) = j e g(u)du, g(u) = - j e~ h(r) dr.

Regarding now k(r) as the primary function, we see that if A(r)
satisfies the conditions®:

(1) A(r) = h(—1),
(2) h(r) is regular analytic in a strip [Im 7| < } + ¢, where € > 0,

and

§ This is not the full group of isometries, since this also contains the elements
af—i—;, with ad —bc = — 1. However, we shall for simplicity assume that our
cz

discontinuous group I' has only true motions as elements.

§ The conditions (2) and (3) could be somewhat weakened,

___eeand . s s ek o e S
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(3) h(r) = O((1 + |7[?)~"~*in this strip;
1;; then k will exist and satisfy our conditions (a) and (b).

- The elements of @ can, as it is well known, be divided into four
~ types, of which the first consists only of the identity element, while
~ the others are respectively the hyperbolic, the elliptic and the
parabolic elements. For a hyperbolic element m there is always a
representative of the conjugacy class {m}y of the form z—pz,
~ where p is real and > 1. We call p the norm of m, and also the
" porm of the hyperbolic conjugacy class {m}y and denote it by
. N{m}, leaving the subscript ¢ out. An elliptic element has always
one (and only one) fixed point in the space and represents a rotation
of the plane around this point, by an angle which we may count
positive in the counter-clockwise direction; we call this the rotation
angle of the elliptic element and also of the elliptic conjugacy class
in @ represented by the element. Finally if an element is parabolic
it belongs to one of the two parabolic conjugacy classes represented
by z —z + 1 and z —z — 1 respectively.

In T' we shall call a hyperbolic element P primitive, if it is not a
power with exponent > 1 of any other element in the group T,
correspondingly we say that the conjugacy class { P} is primitive.
For the elliptic elements of I, those with the same fixed point form
a finite group generated by a single element, and the one that has
the smallest positive rotation angle we call primitive and denote it
by R and call the corresponding class a primitive elliptic conjugacy
class { R} inI'. Finally a parabolic element of I' which is not a power
with exponent > 1 of any other element in I', and which belongs to
the first of the two parabolic conjugacy classes in G, we call a primi-
tive parabolic element of I and, denoting it by S, the corresponding
class {8}y a primitive parabolic class. It should be mentioned that
if the area of the fundamental domain 2 of I' is finite, that is to say

a@) = | d’;fy <w,
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there are only a finite number of elliptic and primitive parabolic
conjugacy classes in I, and if 2 is compact there are no parabolic
ones. The primitive hyperbolic classes { P} on the other hand
are always present in infinite number.

Assuming first that 2 is compact, the trace formula takes the form

N A(D) v T e — e~
Z h(ry) = EE rmk(r) dr +

b=y o0
'S _oHR) [ emtem
= Z z Msmkﬂ-/m J1+e2—wk(7) d’l‘+

0

= o(}(P)) log N{P
s Z z (_N{(fgg}cgm))_o(fv{;})zk/z g(k log N{P}). (3.2)
(Pyr k=1

Here the r; are the values for which there is a solution of the equation
YAF(R) =AF@), A= —(}+1?)

with F(z) in our Hilbert space ; since we count both values of r that
give the same A (and if A = — 1, 7 = 0 with double multiplicity)
our formula actually represents twice the trace of the integral
operator. A(Z) is the area of the fundamental domain. m — m(R)
represents the order of the primitive elliptic element R, and the
summations X and X are taken over one representative from each

primitive el]ilf)tic anla each primitive hyperbolic class respectively.
The r; have to be such that } + 7% is real and non-negative, so that
the r; are either real, or they are purely imaginary with absolute
value < $." The formula (3.2) can now on the one hand be used for

determining the asymptotic distribution of the 7;, and on the other
hand the asymptotic distribution of the norms of the primitive

hyperbolic classes in I'. Under our assumptions on A(r) all infinite
series occurring in (3.2) converge absolutely.

1 These latter could of course only occur in finite number, but one can show
that their number for suitable I' and X may become arbitrarily large, although it
can be shown to be less than a certain constant times v A(D).
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(3.2) has a rather striking analogy to certain formulas that arise in

- analytic number theory from the zeta -and L-functions of algebraic
~ number fields. This leads us to introduce the function defined by

Ze(; )= [ [ [ ] 1B —xP) @{PH*1, (3
{Pir k=0

" for real part of s > 1, when the product converges absolutely. ,

bt

is here the v by v identity matrix, and | ... | denotes the determinant.

From (3.2) one can derive the following facts about this analytic

~ function of s :

(A). Zp(s; x) is an integral function of s of order 2, except in the
case when the genus of the fundamental domain & is zero, in this
case there may be a pole at s = 0 of order at most ».}

(B). Zp(s; x) has “trivial” zeros at the integers — k fork >0,
whose multiplicity can be explicitly given in terms of k, v, 4(2)
(or the genus of the fundamental domain if one prefers), and the
m(R), the orders of the primitive elliptic classes, and the traces
o(x’(R)) fori =1, 2,...m(R) — 1. In the particular case that there
are no elliptic classes in I' one has that the multiplicity of the trivial
zero at — k is (2k + 1) (2p — 2), where p is the genus' (which is in
this case always > 1).

(C). Zy(s; x) satisfies a functional equation which relates the
value of Z(1 — s; x) to that of Z(s; x). The form of this functional
equation depends on the quantities v, 4(2), and the orders m (R) of
the primitive elliptic classes and the traces o(x'(R)) for + =1, 2, ...,
m(R) — 1. In the particular case that there are no elliptio classes
in I' this functional equation has the form

s—3%
Z(1—s8; X) = Zy(s; x) exp [ -v A(92) ]. v tg wo dv l (3.4)

0

1 If one assumes the representation x(M) to be irreducible, this pole only
occurs for y(M) identically equal to 1, and is then a simple pole.

4(D)

§ In this particular case p—1= T
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(D). The zeros of Zy(s, x) which are not mentioned under (B), are
the numbers § + i, and have thus real part equal to §, with the
possible exception of a finite number of zeros that are real and lie
in the interval 0 < s < 1.

As one sees from (D) the analog of the Riemann hypothesis is
true for our Z(s; x) with the slight modification that real zeros
may occur in the interval 0 < s < 1.

If we only require 4(2) to be finite, there will, if 2 is not compact,
always be at least one primitive parabolic class {8}r. If {S;}r
for i =1, 2, ..., k, are the different primitive parabolic classes in
I, the situation will depend on the matrices x(8y); if x(S;) has y,
eigenvalues equal to 1, we say that X is singular of degree y; with

respect to the class { 8; };, and singular of degree p = X w; with
i=1

respect to I If u = 0, that is if y is non-singular with respect
to I, the situation is only slightly altered from the compact case.
The spectrum is still discrete and in our trace-formula (3.2), will
occur on the right-hand side the new term

K

—29(0) > log|| &, — x(S)Il. (3.5)

i=1

This new term does not essentially alter the statements (A), (B),
(C) and (D) about Zy. (s; x). If u > 1 however the situation is very
much altered, in that we have then for our eigenvalue problem,
besides the discrete spectrum, also a continuous spectrum of multi-
plicity u. As mentioned in the previous section we have then first
to investigate the eigenfunctions in the continuous spectra and
then to remove their contribution to the kernel K and develop a
trace formula for the modified kernel. As a description of the general
case is rather complicated, we shall here only briefly indicate the
results in the simplest case when there is only one parabolic class
{8} with respect to which y is singular, and further that y is
one dimensional, so that x(8) = 1,
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We may assume for simplicity that one representative S of the

~ class {8}r is 8z =2z + 1. Forming for real part of s greater

 than 1 the function

B s x) = Z x(M) (Im M 2)* = Z x(M1) ]

- lez + d|*
MeS|T MeS|T (3.6)

az + b
2 = ¢
cz +0b

where M € S/I' means that M runs over a complete set of elements

‘; of I' that do not differ by a power of S on the left, one establishes

- that this series is absolutely convergent for ¢ > 1, s =0 + it

Further one has
E(Mz, s; %) = x(M) E(z, s; X)s
for M in T, and ‘
VA Bz 85 x) = — 8(1 — 8) Bz, s; X)-

It can then be proved that E(z, s; x) is a meromorphic function
of s in the whole s-plane, and that the poles are all in the region

o< %, with the possible exception of a finite number of simple poles

which are real and lie in the interval } <s<1; these poles are
independent of z, and E(z, s;x) may be written as a quotient
of two integral functions in s, each of which is at most of order
9 and where the denominator is independent of z. Further
E(z, s; x) satisfies a functional equation, which may be described
as follows :

‘We write for o > 1,

7 D(s — }) XD . (3.7)

i A 17 joT®

e70 0<d<lel
then one can show that ¢(s, x) is meromorphic in the whole s-plane
and regular for o > } with the possible exception of a finite number
of simple poles in the interval § <s < 1, and can be written as a
quotient of two integral functions at most of order 2. Further one
has the functional equation
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b(s, x) #(1 —s, X) = 1! (3.8)
Then the functional equation of Bz s; x) is
Lz 85 x) = $(s, x) B(z, 1—s; ). (3.9)

Forming now the kernel

4 j!
H(z,z;X):ET

h(r) E(z, % + ir; x) B@', } + ir; x)dr, (3.10)

8 &8

one can show that the kernel

K*@ 2 x) = K(z, 2s x) — H(z, 2'; x), (3.11)

where
K@z 0= > x(M) ke M),
Mel"

has the property that it retains only the discrete spectrum (that is
all eigenfunctions which are not in our Hilbert space are annihilated
by the integral operator with kernel K *), and this is retained with
unchanged eigenvalues h(r;). The evaluation of the trace of this
modified integral operator then gives us a trace formula which
differs from the earlier in that on the right-hand side we have the
new terms

%‘hm%@+mwm_%jmn%u+mw—
—2log 2. 9(0) + % (1 — 4}, x)) A(0). (3.12)
These new terms make a rather drastic change in the nature of
Zp(s, x), in particular Zp(s; x) will have simple poles at s = — 1/2,
— 3/2, — 5/2,...; because of the second term in (3.12), the last term
produces a simple pole at s —  if ¢(3, x) = — 1 (this pole may

however be cancelled by a zero if one or more of the 7; equals zero),
80 that Zp(s; x) is no longer an integral function. Furthermore in
addition to the non-trivial zeros at the points % + dr;, namely

wherever ¢(s, x) has a pole in the region o < $.Z (s, x) will have a

T Since the coefficients of the Dirichlet series of (3.7) are actually real, this
implies |¢(3 + 4r, x)| = 1.

€

<
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a zero of the same multiplicity. The functional equation is also
correspondingly modified in that besides simple factors also the
function ¢(s, x) occurs in it.

In the general case one has a system of u series like (3.6), with
similar properties : when s is replaced by 1 — s, this system trans-
forms by a matrix ¢(s, x) whose elements are of a similar nature
as (3.7) ; the determinant of this matrix will essentially then play
the role that ¢(s, x) does in the former case.

In the 3-dimensional hyperbolic space, the situation is similar
but in some respects simpler. One can introduce also there a
Z(s; x)* which although it will be a function of order 3, has a
functional equation which is essentially simpler than in the case
of the hyperbolic plane. For general n-dimensional hyperbolic space
the explicit computations are somewhat complicated by the fact
that the groups I'y, and G, now may not always be abelian when
M is different from the identity element; this complicates the form
of the trace formula, which however is always in a certain sense
simpler when 7 is odd than when # is even. The non-compact case
with finite volume of Z can in all these cases be treated satisfactorily.

For groups acting simultaneously on the product of a finite
number of such spaces,’ the situation can also be handled even
in the non-compact case as long as the ““ non-compact boundaries *’
of 9 are point-like.

For other higher dimensional spaces, as for instance the space of
positive definite, » by n symmetric matrices with determinant 1,
the situation, for n > 2, is not so simple. The continuous spectra that
may occur in the non-compact case at present cannot be handled
properly. One will also here try to obtain them by analytic continua-
tion of certain Dirichlet series, like we did for the hyperbolic plane;
only these Dirichlet series are more complicated and in the case of
spectra that have a dimension > 1, they are Dirichlet series in several

1 Defined by a somewhat more complicated product than (3.3).
§ Like the so-called Hilbert group acting on a product of hyperbolic planes.
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variables. This problem of analytic continuation cannot be handled
at present, except for special groups that arise from arithmetic,
where one may be able to utilize this to effect the continuation.
As an example could be mentioned the case when % — 3 for the
above space, and the group I' is the group of 3 by 3 matrices with
determinant 1 and integral rational elements, and x identical to 1;
when one is led to consider the series
lrls, 8) = > (XY X)(Z Y2y,

X'Z=0
where the summation is carried over all pairs of column vectors
X and Z, with integral rational components which satisfy the
conditions X'X > 0, Z'Z > 0, X'Z = 0. The series converges
absolutely for ¢ > 1,6’ > 1, where s — o + ¢, 8’ =o' + 9’. One
can in this case show that

(s —1) (5'—1) (s + ' —3/2) {25 + 26'—1) Ly(s, '),

where {(2s + 25" — 1) is the ordinary Riemann zeta-function, is an
integral function in the two complex arguments s and s’. Further
if one writes

Ep(8, 8)=n"2"% D) I'(s) I'(s + &' — 3) U2s + 28" — 1) Ly(s, &),

then the function £y (s, s’) remains invariant by replacing (s, s”) by
any of the following pairs of complex arguments (s + s’ —1 /2,1—s"),
(1—¢8+8—1/2), (82—s—4¢3), (¢, 3/2—s5—¢') and (1—¢,
1 — s), so that it has a larger number of functional equations than
the zeta-functions in one variable. It should be noted that the
group under which ¢y (s, s') is invariant is isomorphic to the per-
mutation group of 3 elements, as the three quantities 4s + 25’ — 3,
25" — 25, — 48’ — 25+ 3, undergo permutations. £5(1/2 + 4t, 1/2 + it’)
is here connected with the two-dimensional continuous spectrum.
Besides this there is a denumerably infinite sequence of
Dirichlet series in one complex variable that are connected with
one-dimensional continuous spectra.

Similar Dirichlet series in up to (n — 1) complex variables, can be
defined for general =, by looking at the definite forms in (n —1)

¢

¥
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variables that can be represented by the quadratic form with
matrix Y, then the (n — 2) forms that can be represented by the
(n — 1) form, and so on down to a form in one variable, and forming
a product of the determinants of the (n — 1), (n — 2), ..., 1 form raised
to complex exponents —s,_y, — 8,_s, ..., — 8; respectively, and sum-
ming over all such  descending ** series of forms that are inequiva-
lent in a certain sense. In the case n = 3 this would lead to a function
which differs only by a simple factor (which is independent of
Y) from Ly(s;, sy) as it was defined above. The general study of
these series has not yet been undertaken, but it is conceivable that
it may prove of value for the theory of quadratic forms.

4, We shall finally give some applications to more classical
problems. We go back to the hyperbolic plane z = + iy, y > 0,
and add a third coordinate ¢, where we will identify ¢ and ¢ + 2.
On this space consisting now of points (2, ¢), we take the following

group G with elements m,, where m is a real matrix (Z 2) with

determinant 1, and « a real number, and let it act on the space
(2, ¢) in the way that
az+b

o ¢ + arg (cz + d) +a).

ma(z’ ‘I’) e (
Further we define p such that
P"(z’ ‘/’) i (_ 2, — ?S)
One then establishes that the two differential forms

2 2 j
e tdy and d¢ — e
Y

2y’

have the property that they both are invariant under &, the first
one is also invariant under u whereas the second only changes sign.
We may therefore take for instance

da® + dy? dx\?
ot S0 O (d —_)
i o i ¢ 2y
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as our invariant metric. We have two fundamental differential
operators in this case, namely %5 and the Laplacian derived from

the metric. The point-pair invariants are seen to be all functions
of the two real arguments
e —2"
49y’

z2—7z

and ¢ — ¢’ + arg g

where (2, ¢) and (2’, ¢') are the two points.

If we now have a group I' which is discontinuous in the hyper-
bolic plane, it is seen that the group T obtained from I' by, for each

7':1—2 in I', counting both M = (32)

transformation Mz —

and — M — ( Phss :2) as different elements of I', has the

_0,

property that when T acts on our space (2, ¢) in the way

Mz, §) = (Z:ig ¢+arg(cz+d)),

the group I is discontinuous in this space, and if the fundamental
domain Z in the hyperbolic plane of I is compact, then so is the

fundamental domain & of l—‘, and if 2 has finite area & has finite
volume. The converse is also true.

Similarly a representation y of I' can be extended to ' by letting
both M and — M correspond to the same x as the transformation
MzinT'. There may however also be other representations y of I’
where the two elements M and — M correspond to different y.

If we have such a representation X(M) of T' one now sees that
the eigenfunctions of our operators, because of the presence of

the fundamental operator a%s and the identification of (z, ¢) and

(2,6 + 27) must be of the form e~*# times a function of the

point z, where k is an integer. The eigenfunctions F(z, ¢) which
satisfy the relation

3

ot o

v}

- x"-';,
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F(M(z ¢) = x(M) F(z, )
can therefore be written in the form
F(z, ¢) = 4" F(z) e~ ™, (4.1)
and the former relation takes the form

F(Mz) = x(M) (cz + d)t F(z). (4.2)

Thus we see that we have the same type of transformation law as
(in the case of one-dimensional y) is known from the theory of the
analytic automorphic forms.

Instead of studying the general eigenfunction, and the general
form of the trace-formula, which can be carried out without serious
difficulties, we shall here only study a particular type that is
associated with certain eigenfunctions with rotational symmetry
which have the property that they satisfy our conditions (a) and
(b) and so can be used as point-pair invariants in forming our
kernels K.

It can be established that

B O T e
wk(z!¢:z’¢)“m

gT % =8) (4.3)
for any integer k is an eigenfunction in (2, ¢) which is a point-pair
invariant in the two points (z, ¢) and (2’, ¢') ; further that for & > 2
the conditions (a) and (b) are satisfied. As a consequence the integral
operator with the kernel

Kl $3 2,850 = > x(MD) oy {2 ¢; U, ¢}, (44)
MeT'
can be shown to have only eigenfunctions® of the form (4.1) where
F(z) is an analytic function of z regular in the interior of the upper
half plane and satisfying the condition that

T We get here only integral dimensions, k; if one wants to study arbitrary real
dimension, one has to give up the identification (z, ¢) = (z, ¢ + 27), also T" has to
be defined in a different way.

§ That is corresponding to an eigenvalue different from zero,
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y'* F(z)

is uniformly bounded throughout this region, and every such
eigenfunction corresponds to the same eigenvalue given by

j g (2 65 %/, &) 2 dlz, §)

S

where the integral is taken over our whole (2, ¢)-space and d(z, ¢)
is the invariant element of volume. The trace-formula for this
particular kernel gives us then the number N i of regular analytic
forms F(z) satisfying (4.2) as a finite expression depending on
k, v, the area 4(2) of the fundamental domain, the elliptic primitive
classes {R}r and the eigenvalues of the x’s that correspond to
them, and the primitive parabolic classes and the eigenvalues of
the x’s that correspond to them. The hyperbolic classes give no
contribution at all. For k = 2 it is possible to obtain a similar result
by replacing w, with w, ( _(:@2_ )8 where 8§ > 0, and in the
[(z —2")/20]
trace formula for this kernel letting § tend to zero.

alb
cd)’
where ad —bc =1, and a, d, b, ¢ are rational integers, and the
representation x identical to 1, Hecke has introduced certain opera-
tors 7', for each positive integer n and studied their action on
the regular modular forms, in connection with his theory about
Dirichlet series with functional equations (of a certain type) and
Euler products.

If we consider the classical modular group I' with elements (

These 7', are of the type (2.13), associated with the set of trans-

X 1 : g

formations M™ — _—_ (a b), where a, b, ¢, d are rational integers
\/ n\cd

with ad — bc = n, in the way that T* was associated with the set

M?*. The generalized trace formula (2.14) gives then applied to the

{ If D is not compact, but has finite area, the condition that ykI2 F(z) is
uniformly bounded, implies that we are only counting the so-called cusp-forms here,
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point-pair invariant eigenfunction wy for k> 2, the following

 formula for the trace of the Hecke operator 7', acting on the space

of cusp-forms of dimension — £.

a(T,) = } Z H(dn —m?) T~ 7w _

2 — 2y n<m<2Vn M N m
= ST d g sym S el (4)
din 12
d</n

Here the H(d) denotes the number of inequivalent positive definite
forms ax® + bwy + cy® with 4dac — p2 — d, counted in the usual
way that a form equivalent to a(@® + y?) is counted with the
weight } and one equivalent to a(@® + 2y + y*) with weight 1/3.
Further

m + 1 (4n — m?)}
N = B »

8(x) is defined as 1 if 2 is an integer and zero otherwise, and 3
means that if d = 4/n the corresponding term is counted with
weight §. For k = 2 one can again by a limit process arrive at a
similar formula which however will contain one new term, and
turns out (since there are no cusp forms of dimension — 2 for the
modular group, so that oo(T,) = 0), to be identical with the
so-called Kronecker class number relation. For k& = 4, 6, 8, 10 and
14 there are again no cusp forms, so that the left-hand side of (4.5)
is zero, which gives five new class number relations, while for k= 12,
for instance the left-hand side is identical to the number theoretical
function 7(n) of Ramanujan, so that one gets an explicit (admit-
tedly rather complicated) formula for this. While the results about
the number of regular analytic forms of a given dimension — k and
representation x of T are classicall and previously were derived
from the Riemann-Roch formula, the evaluation of the trace of

§ k will here be even, since with x identical to one there are no non-vanishing
functions satisfying (4.2), for k odd, since the left-hand side remains the same by
replacing M by — M whereas the right-hand side changes sign.

+ Although as far as I know only the case of one-dimensional y occurs in the
literature.
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the Hecke operator has not yet been accomplished by other means.
From our point of view these expressions are finite elementary cases
of the general trace formulas (2.12) and (2.14).

It is of interest to note that the method sketched above carries
immediately over to the analytic automorphic forms in higher
dimensional spaces, as for instance a product space formed by a
finite number of hyperbolic planes or the general symplectic space,
which can all be handled in a similar way without any essential
difficulties occurring as long as the discontinuous group I' has
compact fundamental domain. For the symplectic space for instance,
one can introduce in a similar way as before a space (Z, ¢) and define
the group @ acting on the space with elements M,, where the

symplectic matrix M = (g g), with MZ = (AZ + B) (CZ + D)~}
and we define
M2, $) = (MZ, ¢ + arg |CZ + D| + w),
and as before
Wz, $) = (— Z, — ¢).

In this space again the point-pair invariant of the two points (Z, ¢)
and (Z*, ¢*) which has the form

| [+
| Z — -Z-* C
2% |

w4, ¢; Z*,p*) = e~ ik$—9%)

where Z = X + 1Y, is an eigenfunction for every integer & and for
k positive and large enough? it will again satisfy our requirements
(a) and (b).

We shall finally briefly indicate the most general result that we
at present can obtain along these lines. Let there be in our space S a
sequence of I-tuples A®, k = 1, 2, 3 ..., with the property that we
have the relation

{ If we consider the symplectic space of dimension n2 + n, thig takes place for
k>2n,
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i (@ Y) = (0,0 @ y) )

for all positive integers k, where as before w,(x, y) denotes the
ecigenfunction in « that corresponds to the I-tuple A, and has rotational
symmetry around the point y and is normed so as to take the value 1
for 2 = y. Further assume that for £ sufficiently large and positive,

j |wyw (@, y) | dy < o0;
S

then w,w(e, y) can be seen to satisfy both conditions (a) and
(b). If we now have a discontinuous group I" whose fundamental
domain is compact, with a representation by unitary matrices y,
in our space, and denote the number of eigenfunctions corresponding
to the eigenvalue X® by N, then one can show that for & sufficiently
large, N, is given by a finite expression,

N, = Py (k) + Z & P;(k), (4.6)

where P, is a polynomial and the P; certain polynomials in general
of lower degree’ and the ¢ are certain roots of unity, such that
if g; is the smallest positive integer for which €% =1, the
number ¢; divides the order of some element® in I' which is of
finite order.

The Institute for Advanced Study
Princeton, N. J., U.S.A.

+ The only case when some of them can be of the same degree as P, is when I'
contains other elements than the identity which commute with the whole group G.

§ Different from the identity.



