Mathematics 221, Spring 2006 Lecture 3 (Wilson)
Final Exam  May 7, 2006
ANSWERS

Problem 1 (24 points)
Find the derivative D,y for:

(a) y = sin(z) cos(x)
ANSWER: We need to use the product rule: D,y = sin(x)D, cos(x) + cos(z)D, sin(x) =
—sin?(x) + cos?(z).
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sin(x)

(b) y=

ANSWER: We could either use the quotient rule or rewrite the function as y = x3(sin(xz))~!.

3z2sin(z)—z cos(:v)

Using the quotient rule we get D,y =

sin?(z)
(c) y = sin~1(z?) (If you prefer the other notation, y = arcsin(z?))
ANSWER: We need the formula D, (sin™!(u)) = ﬁDgcu. Then D,y = 11_x4 X 2r = %

(d) y=1n[(2— =) (1+27)].
ANSWER: The way this is written we would have to combine the product rule with the chain
rule and the derivative of the logarithm. But using rules for logarithms we can SiHlelify it to
y=In(2 — ) +In(1 4+ 2%) and then Dy = 51~ x (1) + 1+m3 x (32?) = -7 + ffxp,.

Problem 2 (18 points)

Find an equation for the tangent line to the graph of y = cos™!(2z) (or in other notation y =
arccos(2z), at the point (%, Z). which could be rewritten as y = —%x + \/Lg + 3.

ANSWER: We could remember a formula for the derivative of the inverse cosine, but it is perhaps

easier to remember that arccos(2x) +arcsin(2z) = § so y = § —arcsin(2z) and then use the derivative

. . _ 1 ) - 1y 2 _
of the inverse sine. We have ¢/ = — i X 2= T So the slope at = 7 will be ¢/(3) = _ﬁ =
—% Hence the tangent line can be written as y — 5 = —% (a: — Z) which could be rewritten as

™

Problem 3 (24 points)
Evaluate the integrals:

(a) /312 cos(z® + 5) du.

ANSWER: Since the derivative of z3 45 is 2 it looks useful to let v = 23 +5. Then du = 3z dx,
1
so the integral becomes %/cos(u) du = 3 sin(u) + C' = §sin(z® +5) + C.

dx
L e
ANSWER: This looks a lot like an integral that would yield an arctangent. If we rewrite
the denominator as 4(1 + (2)” and then let u = £ so that du = i du, the integral becomes
1
—><2/1 = arctan()+C S arctan (£) + C.



Problem 4 (20 points)

The Fundamental Theorems of Calculus tell us relationships between the derivative and the integral.
Using words, equations, pictures, whatever you find helpful, explain what these theorems say.

(I won’t worry about which one you call the First theorem or the Second, different books don’t even
agree on that. There is no one right answer to this question! Try to describe what is going on, what
the relationships between derivative and integral are that are so important.)

(a) One of the Fundamental Theorems of Calculus:

ANSWER: The derivative of a function defined by an integral is the integrand: More specifically
if we let F'(x) be defined as the integral from some point a to x of a given function f(¢), then at
any particular x value the rate at which F' is changing is just the value of f at that z value.

(b) The other Fundamental Theorem of Calculus:

ANSWER: If we want to evaluate a definite integral and we can find some antiderivative of the
function being integrated, we can evaluate that antiderivative at the upper and lower end points
on the integral and subtract and that will give the same value that the definition of the definite
integral as a limit of sums would give.

Problem 5 (16 points)

Find the area between the curves y = 22 and y = 2z — 22
ANSWER: The two curves meet where 22 = 2z — x2, 222 = 22, 22 =z, z(z — 1) = 0, i.e. where z =0
or z = 1. To the left of z = 0 the graph of y = 22 lies above y = 22 — 22, and also to the right of
x = 1. So the only finite region between the curves is the region where 0 < < 1, and on that interval

2

1
the y = x® curve is the lower one. So the area we want can be computed as / (293 — 2% - az2> dx
0
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Problem 6 (18 points)

d 1
Find all solutions of the equation d—y +—y= 2"
X X

You may assume x > 0.
ANSWER: This is set up for us as a 1%*-order linear differential equation, % + P(z)y = Q(x), where

dx
P(z) =1 and Q(z) = 2¢*”. Calculating /P(a:) dx = /— = Inz (+C) where we ignore the constant,
x
we get the integrating factor /™ = z. Now we can multiply the original equation by that integrating
factor and get x% +y = 2z¢®”: The left side is exactly the derivative of xy with respect to x, so

if we integrate we get xy = / 2we™” da. Letting v = 22 so du = 2xdx we get xy = e*” + C. So
Yy = % (QIQ + C)-

Problem 7 (18 points)
Let y = 223 + 322 — 361 — 4.

(a) On which intervals of real numbers is this an increasing function? A decreasing function? Give
reasons based on calculus, not just looking at the graph on a calculator.

ANSWER: We can tell where the function is increasing or decreasing by examining the sign of
its derivative. y = 622 4+ 6x — 36. That is a continuous function (being a polynomial) at all z,
so it can change sign only where the derivative is zero. Setting it equal to zero, and factoring,
we have 622 + 6z — 36 = 6(z2 + 2 —6) = 6(z — 2)(x +3) = 0, so either x —2 =0, z = 2, or
r+3 =0, z=—3. Calculating ¢/ at z = —4 we get 6 x (—4)2 +6 x (—4) — 36 = 36 > 0: Since
y > 0 at —4 and ¢’ can only change sign at —3 and 2, 3’ must be positive at every = to the




left of —3, i.e. the function is increasing on (—oo, —3). Similarly calculating " at z = 0 we get
—36, so 3/ is negative and hence y is increasing everywhere on (—3,2). Lastly, v/ at z = 3 is
6 x 32 4+ 6 x 3 — 36 = 36, so 9/ is positive, and y is increasing, on (2, c0).

(b) On which intervals of real number is the graph of this function concave upward? Concave
downward? Give reasons based on calculus, not just looking at the graph on a calculator.

ANSWER: We use the second derivative 3" = 122 + 6 to determine concavity. That is zero at
T = —%. For any z < —%, 12z is more negative than —6 so y” < 0, and the graph is concave
downward. For any = > —% the second derivative is positive and the graph is concave upward.
So the graph is concave downward on (—oo, —3) and concave upward on (—1, c0).

(¢c) Where does this graph have point(s) of inflection?

ANSWER: The only point of inflection is where the second derivative changes sign, which we
found in (b) to be at # = —3. The corresponding point on the graph has y = 2234322 —362—4 =
2% (—%)+3x 5 —36x(—3)—4=-213, ie. the actual point is (—3, —213).

Problem 8 (20 points)
Let R be the region between the curves y = z and y = z°.
If we rotate R about the z-axis, what is the volume of the resulting solid?
ANSWER: We can set this up either with slices across the axis of rotation, “washers”, or slices parallel
to the axis, “shells”. The curves meet at (0,0) and (1,1).
Using washers: The inner radius of the washer is y = 22 and the outer radius is y = . So the area
of one side of a washer is (2% — (22)?) = 7(2? — 2*. Hence the volume we want can be computed as
w/l(xQ—x4)dx:7r x_3_x_5 =r(i-LH==2

0 3 5, 375 15°
Using shells: The width of a shell from left to right extends from z = y to x = ,/y, a distance \/y —y.
The radius of a shell coming from a slice at height ¥ is y, so if the shell has thickness Ay it contributes

1
2my(\/y — y)Ay to the total volume. Thus we can evaluate the integral 27 /0 vy (V/y — y) dy which

gives the same result.

Problem 9 (22 points)
Evaluate the integrals:

ANSWER: The derivative of % is, up to a constant multiple, 971;, so we try u = % Then

Nl

du = —%daz. Now at x =1, u=3,and at t =2, u = %, so the integral becomes —%/ e du
3

1rus _1(.3_ 32
=—3le3 = § (¢ —e2)

(b) /0 " sin?(22) cos(2x) dz.

ANSWER: Again we note that one part, cos 2z, is almost the derivative of what is inside the other
(cubing) part, so we let u = cos 2z and then du = —2sin(2x)dx. When x = 0, u = cos(0) = 1, and

0 1 [ut1°
when x = 7, u = cos § = 0. So the integral becomes —%/1 wdu = —3 luz] = —%(O— i) = %.
1



Problem 10 (20 points)

Let y = 223 + 322 — 361 — 4.

Find and identify any/all local/global maxima and minima for this function.

ANSWER: In problem 7 we found 3 = 622 4 62 — 36 with zeros only at —3 and +2: The derivative
exists anywhere, and the domain has no endpoints, so the only critical points are x = —3 and = = 2.
In problem 7 we also found the graph changes from increasing to decreasing at x = —3, so there is
at least a local maximum there, by the first derivative test. And we found the graph changes from
decreasing to increasing at x = 2, so there must be at least a local minimum there. Since the function
was increasing on (—oo, —3), i.e. decreasing if we went off to the left, with the x® term making it go
arbitrarily far in the negative direction, there is no global minimum. Likewise the function increases
without bound to the right, so there is no global maximum. Thus there are only two points to consider.
At z = —3, the function takes the value 77, and at x = 2 it takes the value —48: Pulling the results
together, there is a local but not global maximum at (—3,77) and there is a local but not global
minimum at (2, —48).



