
c©FW Math 321, 2012/12/11 Elements of Complex Calculus

1 Basics of Series and Complex Numbers

1.1 Algebra of Complex numbers

A complex number z = x+ iy is composed of a real part <(z) = x and an imaginary part =(z) = y,
both of which are real numbers, x, y ∈ R. Complex numbers can be defined as pairs of real numbers
(x, y) with special manipulation rules. That’s how complex numbers are defined in Fortran or C. We
can map complex numbers to the plane R2 with the real part as the x axis and the imaginary part
as the y-axis. We refer to that mapping as the complex plane. This is a very useful visualization.
The form x+ iy is convenient with the special symbol i standing as the imaginary unit defined such
that i2 = −1. With that form and that special i2 = −1 rule, complex numbers can be manipulated
like regular real numbers.

|z|
z = x+ i y

z∗ = x− i y

x

y

Addition/subtraction:

z1 + z2 = (x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2). (1)

This is identical to vector addition for the 2D vectors (x1, y1) and (x2, y2).
Multiplication:

z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1). (2)

Complex conjugate:
z∗ = x− iy (3)

An overbar z̄ or a star z∗ denotes the complex conjugate of z, which is same as z but with the sign
of the imaginary part flipped. It is readily verified that the complex conjugate of a sum is the sum
of the conjugates: (z1 + z2)∗ = z∗1 + z∗2 , and the complex conjugate of a product is the product of
the conjugates (z1z2)∗ = z∗1z

∗
2 (show that as an exercise).

Modulus (or Norm)

|z| =
√
zz∗ =

√
x2 + y2, (4)

This modulus is equivalent to the euclidean norm of the 2D vector (x, y), hence it obviously satisfy
the triangle inequality |z1 + z2| ≤ |z1|+ |z2|. However we can verify that |z1z2| = |z1| |z2|.
Division:

z1

z2
=
z1z
∗
2

z2z∗2
=

(x1 + iy1)(x2 − iy2)

x2
2 + y2

2

=

(
x1x2 + y1y2

x2
2 + y2

2

)
+ i

(
x2y1 − x1y2

x2
2 + y2

2

)
. (5)

All the usual algebraic formula apply, for instance (z+ a)2 = z2 + 2za+ a2 and more generally the
binomial formula (defining 0! = 1)

(z + a)n =

n∑
k=0

(
n

k

)
zkan−k =

n∑
k=0

n!

k!(n− k)!
zkan−k. (6)
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Exercises:

1. Prove that (z1 + z2)∗ = z∗1 + z∗2 , (z1z2)∗ = z∗1z
∗
2 and |z1z2| = |z1||z2|.

2. Calculate (1 + i)/(2 + i3).

3. Show that the final formula for division follows from the definition of multiplication (as it
should): if z = z1/z2 then z1 = zz2, solve for <(z) and =(z).

1.2 Limits and Derivatives

The modulus allows the definition of distance and limit. The distance between two complex
numbers z and a is the modulus of their difference |z−a|. A complex number z tends to a complex
number a if |z−a| → 0, where |z−a| is the euclidean distance between the complex numbers z and
a in the complex plane. A function f(z) is continuous at a if limz→a f(z) = f(a). These concepts
allow the definition of derivatives and series.
The derivative of a function f(z) at z is

df(z)

dz
= lim

a→0

f(z + a)− f(z)

a
(7)

where a is a complex number and a → 0 means |a| → 0. This limit must be the same no matter
how a→ 0.
We can use the binomial formula (6) as done in Calc I to deduce that

dzn

dz
= nzn−1 (8)

for any integer n = 0,±1,±2, . . ., and we can define the anti-derivative of zn as zn+1/(n+1)+C for
all integer n 6= −1. All the usual rules of differentiation: product rule, quotient rule, chain rule,. . . ,
still apply for complex differentiation and we will not bother to prove those here, the proofs are
just like in Calc I.
So there is nothing special about complex derivatives, or is there? Consider the function f(z) =
<(z) = x, the real part of z. What is its derivative? Hmm. . . , none of the rules of differentiation
help us here, so let’s go back to first principles:

d<(z)

dz
= lim

a→0

<(z + a)−<(z)

a
= lim

a→0

<(a)

a
=?! (9)

What is that limit? If a is real, then a = <(a) so the limit is 1, but if a is imaginary then <(a) = 0
and the limit is 0. So there is no limit that holds for all a → 0. The limit depends on how
a→ 0, and we cannot define the z-derivative of <(z). <(z) is continuous everywhere, but nowhere
z-differentiable!
Exercises:

1. Prove formula (8) from the limit definition of the derivative [Hint: use the binomial formula].

2. Prove that (8) also applies to negative integer powers z−n = 1/zn from the limit definition of
the derivative.
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1.3 Geometric sums and series

For any complex number q 6= 1, the geometric sum

1 + q + q2 + · · ·+ qn =
1− qn+1

1− q
. (10)

To prove this, let Sn = 1 + q + · · ·+ qn and note that qSn = Sn + qn+1 − 1, then solve that for Sn.
The geometric series is the limit of the sum as n → ∞. It follows from (10), that the geometric
series converges to 1/(1− q) if |q| < 1, and diverges if |q| > 1,

∞∑
n=0

qn = 1 + q + q2 + · · · = 1

1− q
, iff |q| < 1. (11)

Note that we have two different functions of q: (1) the series
∑∞

n=0 q
n which only exists when

|q| < 1, (2) the function 1/(1− q) which is defined and smooth everywhere except at q = 1. These
two expressions, the geometric series and the function 1/(1 − q) are identical in the disk |q| < 1,
but they are not at all identical outside of that disk since the series does not make any sense (i.e.
it diverges) outside of it. What happens on the unit circle |q| = 1? (consider for example q = 1,
q = −1, q = i, . . . )

|q| = 1

<(q)

=(q)

diverges

converges

Exercises:

1. Derive formula (10) and absorb the idea of the proof. What is Sn when q = 1?

2. Calculate qN + qN+2 + qN+4 + qN+6 + .... with |q| < 1.

1.4 Ratio test

The geometric series leads to a useful test for convergence of the general series

∞∑
n=0

an = a0 + a1 + a2 + · · · (12)

We can make sense of this series again as the limit of the partial sums Sn = a0 + a1 + · · · + an
as n → ∞. Any one of these finite partial sums exists but the infinite sum does not necessarily
converge. Example: take an = 1 ∀n, then Sn = n+ 1 and Sn →∞ as n→∞.
A necessary condition for convergence is that an → 0 as n → ∞ as you learned in Math 222 and
can explain why, but that is not sufficient. A sufficient condition for convergence is obtained by
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comparison to a geometric series. This leads to the Ratio Test : the series (12) converges if

lim
n→∞

|an+1|
|an|

= L < 1 (13)

Why does the ratio test work? If L < 1, then pick any q such that L < q < 1 and one can find a
(sufficiently large) N such that |an+1|/|an| < q for all n ≥ N so we can write

|aN |+ |aN+1|+ |aN+2|+ |aN+3|+ · · · = |aN |
(

1 +
|aN+1|
|aN |

+
|aN+2|
|aN+1|

|aN+1|
|aN |

+ · · ·
)

< |aN |
(
1 + q + q2 + · · ·

)
=
|aN |
1− q

<∞.
(14)

If L > 1, then we can reverse the proof (i.e. pick q with 1 < q < L and N such that |an+1|/|an| > q
∀n ≥ N) to show that the series diverges. If L = 1, you’re out of luck. Go home and take a nap.

1.5 Power series

A power series has the form

∞∑
n=0

cn(z − a)n = c0 + c1(z − a) + c2(z − a)2 + · · · (15)

where the cn’s are complex coefficients and z and a are complex numbers. It is a series in powers
of (z − a). By the ratio test, the power series converges if

lim
n→∞

∣∣∣∣cn+1(z − a)n+1

cn(z − a)n

∣∣∣∣ = |z − a| lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ ≡ |z − a|R
< 1, (16)

where we have defined

lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ =
1

R
. (17)

R

a

|z − a| < R

<(z)

=(z) The power series converges if |z−a| < R. It diverges |z−a| >
R. |z − a| = R is a circle of radius R centered at a, hence
R is called the radius of convergence of the power series. R
can be 0, ∞ or anything in between. But the key point is
that power series always converge in a disk |z − a| < R and
diverge outside of that disk.

This geometric convergence inside a disk implies that power series can be differentiated (and in-
tegrated) term-by-term inside their disk of convergence (why?). The disk of convergence of the
derivative or integral series is the same as that of the original series. For instance, the geometric
series

∑∞
n=0 z

n converges in |z| < 1 and its term-by-term derivative
∑∞

n=0 nz
n−1 does also, as you

can verify by the ratio test.

Taylor Series

The Taylor Series of a function f(z) about z = a is

f(z) = f(a) + f ′(a)(z − a) +
1

2
f ′′(a)(z − a)2 + · · · =

∞∑
n=0

f (n)(a)

n!
(z − a)n, (18)
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where f (n)(a) = dnf/dzn(a) is the nth derivative of f(z) at a and n! = n(n−1) · · · 1 is the factorial
of n, with 0! = 1 by convenient definition. The equality between f(z) and its Taylor series is only
valid if the series converges. The geometric series

1

1− z
= 1 + z + z2 + · · · =

∞∑
n=0

zn (19)

is the Taylor series of f(z) = 1/(1− z) about z = 0. As mentioned earlier, the function 1/(1− z)
exists and is infinitely differentiable everywhere except at z = 1 while the series

∑∞
n=0 z

n only exists
in the unit circle |z| < 1.
Several useful Taylor series are more easily derived from the geometric series (11), (19) than from
the general formula (18) (even if you really like calculating lots of derivatives!). For instance

1

1− z2
= 1 + z2 + z4 + · · · =

∞∑
n=0

z2n (20)

1

1 + z
= 1− z + z2 − · · · =

∞∑
n=0

(−z)n (21)

ln(1 + z) = z − z2

2
+ · · · =

∞∑
n=0

(−1)nzn+1

n+ 1
(22)

The last series is obtained by integrating both sides of the previous equation and matching at z = 0
to determine the constant of integration. These series converge only in |z| < 1 while the functions
on the left hand side exist for (much) larger domains of z.
Exercises:

1. Explain why the domain of convergence of a power series is always a disk (possibly infinitely
large), not an ellipse or a square or any other shape [Hint: read the notes carefully]. (Any-
thing can happen on the boundary of the disk: weak (algebraic) divergence or convergence,
perpetual oscillations, etc., recall the geometric series).

2. Show that if a function f(z) =
∑∞

n=0 cn(z − a)n for all z’s within the (non-zero) disk of
convergence of the power series, then the cn’s must have the form provided by formula (18).

3. What is the Taylor series of 1/(1− z) about z = 0? what is its radius of convergence? does
the series converge at z = −2? why not?

4. What is the Taylor series of the function 1/(1 + z2) about z = 0? what is its radius of
convergence? Use a computer or calculator to test the convergence of the series inside and
outside its disk of convergence.

5. What is the Taylor series of 1/z about z = 2? what is its radius of convergence? [Hint:
z = a+ (z − a)]

6. What is the Taylor series of 1/(1 + z)2 about z = 0?

7. Look back at all the places in these notes and exercises (including earlier subsections) where
we have used the geometric series for theoretical or computational reasons.
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1.6 Complex transcendentals

The complex versions of the Taylor series for the exponential, cosine and sine functions

exp(z) = 1 + z +
z2

2
+ · · · =

∞∑
n=0

zn

n!
(23)

cos z = 1− z2

2
+
z4

4!
· · · =

∞∑
n=0

(−1)n
z2n

(2n)!
(24)

sin z = z − z3

3!
+
z5

5!
· · · =

∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
(25)

converge in the entire complex plane for any z with |z| < ∞ as is readily checked from the ratio
test. These series can now serve as the definition of these functions for complex arguments. We
can verify all the usual properties of these functions from the series expansion. In general we can
integrate and differentiate series term by term inside the disk of convergence of the power series.
Doing so for exp(z) shows that the function is still equal to its derivative

d

dz
exp(z) =

d

dz

( ∞∑
n=0

zn

n!

)
=
∞∑
n=1

zn−1

(n− 1)!
= exp(z), (26)

meaning that exp(z) is the solution of the complex differential equation df/dz = f with f(0) = 1.
Likewise the series (24) for cos z and (25) for sin z imply

d

dz
cos z = − sin z,

d

dz
sin z = cos z. (27)

Another slight tour de force with the series for exp(z) is to use the binomial formula (6) to obtain

exp(z + a) =

∞∑
n=0

(z + a)n

n!
=

∞∑
n=0

n∑
k=0

(
n

k

)
zkan−k

n!
=

∞∑
n=0

n∑
k=0

zkan−k

k!(n− k)!
. (28)

The double sum is over the triangular region 0 ≤ n ≤ ∞, 0 ≤ k ≤ n in n, k space. If we interchange
the order of summation, we’d have to sum over k = 0→∞ and n = k →∞ (sketch it!). Changing
variables to k, m = n− k the range of m is 0 to ∞ as that of k and the double sum reads

exp(z + a) =

∞∑
k=0

∞∑
m=0

zkam

k!m!
=

( ∞∑
k=0

zk

k!

)( ∞∑
m=0

am

m!

)
= exp(z) exp(a). (29)

This is a major property of the exponential function and we verified it from its series expansion
(23) for general complex arguments z and a. It implies that if we define as before

e = exp(1) = 1 + 1 +
1

2
+

1

6
+

1

24
+

1

120
+ · · · = 2.71828... (30)

then exp(n) = [exp(1)]n = en and exp(1) = [exp(1/2)]2 thus exp(1/2) = e1/2 etc. so we can still
identify exp(z) as the number e to the complex power z and (29) is the regular algebraic rule for
exponents: ez+a = ezea. In particular

exp(z) = ez = ex+iy = exeiy, (31)
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ex is our regular real exponential but eiy is the exponential of a pure imaginary number. We can
make sense of this from the series (23), (24) and (25) to obtain

eiz = cos z + i sin z, e−iz = cos z − i sin z, (32)

or

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
. (33)

These hold for any complex number z. [Exercise: Show that e−iz is not the conjugate of eiz unless
z is real]. For z real, this is Euler’s formula usually written in terms of a real angle θ

eiθ = cos θ + i sin θ. (34)

This is arguably one of the most important formula in all of mathematics! It reduces all of trigonom-
etry to algebra among other things. For instance ei(α+β) = eiαeiβ implies

cos(α+ β) + i sin(α+ β) =(cosα+ i sinα)(cosβ + i sinβ)

=(cosα cosβ − sinα sinβ) + i(sinα cosβ + sinβ cosα) (35)

which yields two trigonometric identities in one swoop.
Exercises:

1. Use series to compute the number e to 4 digits. How many terms do you need?

2. Use series to compute exp(i), cos(i) and sin(i) to 4 digits.

3. Express cos(1 + 3i) in terms of real expressions and factors of i that a 221 student might
understand and be able to calculate.

4. What is the conjugate of exp(iz)?

5. Use Euler’s formula and geometric sums to derive compact formulas for the trigonometric
sums

1 + cosx+ cos 2x+ cos 3x+ · · ·+ cosNx =? (36)

sinx+ sin 2x+ sin 3x+ · · ·+ sinNx =? (37)

6. Generalize the previous results by deriving compact formulas for the geometric trigonometric
series

1 + p cosx+ p2 cos 2x+ p3 cos 3x+ · · ·+ pN cosNx =? (38)

p sinx+ p2 sin 2x+ p3 sin 3x+ · · ·+ pN sinNx =? (39)

where p is an arbitrary real constant.

7. The formula (35) leads to the well-known double angle formula cos 2θ = 2 cos2 θ − 1 and
sin 2θ = 2 sin θ cos θ. They also lead to the triple angle formula cos 3θ = 4 cos3 θ− 3 cos θ and
sin 3θ = sin θ(4 cos2 θ − 1). These formula suggests that cosnθ is a polynomial of degree n
in cos θ and that sinnθ is sin θ times a polynomial of degree n − 1 in cos θ. Derive explicit
formulas for those polynomials. [Hint: use Euler’s formula for einθ and the binomial formula].
The polynomial for cosnθ in powers of cos θ is the Chebyshev polynomial Tn(x) with cosnθ =
Tn(cos θ).
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1.7 Polar representation

Introducing polar coordinates in the complex plane such that x = r cos θ and y = r sin θ, then using
Euler’s formula (34), any complex number can be written

z = x+ iy = reiθ = |z|ei arg(z). (40)

This is the polar form of the complex number z. Its modulus is |z| = r and the angle θ = arg(z)+2kπ
is called the phase of z, where k = 0,±1,±2, . . . is an integer. A key issue is that for a given z,
its phase θ is only defined up to an arbitrary multiple of 2π since replacing θ by θ ± 2π does not
change z. However the argument arg(z) is a function of z and therefore we want it to be uniquely
defined for every z. For instance we can define 0 ≤ arg(z) < 2π, or −π < arg(z) ≤ π. These are
just two among an infinite number of possible definitions. Although computer functions (Fortran,
C, Matlab, ...) make a specific choice (typically the 2nd one), that choice may not be suitable in
some cases. The proper choice is problem dependent. This is because while θ is continuous, arg(z)
is necessarily discontinuous. For example, if we define 0 ≤ arg(z) < 2π, then a point moving about
the unit circle at angular velocity ω will have a phase θ = ωt but arg(z) = ωt mod 2π which is
discontinuous at ωt = 2kπ.
The cartesian representation x+ iy of a complex number z is perfect for addition/subtraction but
the polar representation reiθ is more convenient for multiplication and division since

z1z2 = r1e
iθ1r2e

iθ2 = r1r2e
i(θ1+θ2), (41)

z1

z2
=
r1e

iθ1

r2eiθ2
=
r1

r2
ei(θ1−θ2). (42)

1.8 Logs

The power series expansion of functions is remarkably powerful and closely tied to the theory of
functions of a complex variable. A priori, it doesn’t seem very general, how, for instance, could we
expand f(z) = 1/z into a series in positive powers of z

1

z
= a0 + a1z + a2z

2 + · · · ??

We can in fact do this easily using the geometric series. For any a 6= 0

1

z
=

1

a+ (z − a)
=

1

a

1

1 +

(
z − a
a

) =
∞∑
n=0

(−1)n
(z − a)n

an+1
. (43)

Thus we can expand 1/z in powers of z− a for any a 6= 0. That (geometric) series converges in the
disk |z−a| < |a|. This is the disk of radius |a| centered at a. By taking a sufficiently far away from
0, that disk where the series converges can be made as big as one wants but it can never include
the origin which of course is the sole singular point of the function 1/z. Integrating (43) for a = 1
term by term yields

ln z =

∞∑
n=0

(−1)n
(z − 1)n+1

n+ 1
(44)

as the antiderivative of 1/z that vanishes at z = 1. This looks nice, however that series only
converges for |z−1| < 1. We need a better definition that works for a larger domain in the z-plane.
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The Taylor series definition of the exponential exp(z) =
∑∞

n=0 z
n/n! is very good. It converges

for all z’s, it led us to Euler’s formula eiθ = cos θ + i sin θ and it allowed us to verify the key
property of the exponential, namely exp(a + b) = exp(a) exp(b) (where a and b are any complex
numbers), from which we deduced other goodies: exp(z) ≡ ez with e = exp(1) = 2.71828 . . ., and
ez = ex+iy = exeiy.
What about ln z? As for functions of a single real variable we can introduce ln z as the inverse of
ez or as the integral of 1/z that vanishes at z = 1.

1.8.1 ln z as the inverse of ez

Given z we want to define the function ln z as the inverse of the exponential. This means we want
to find a complex number w such that ew = z. We can solve this equation for w as a function of
z by using the polar representation for z, z = |z|ei arg(z), together with the cartesian form for w,
w = u+ iv, where u = <(w) and v = =(w) are real. We obtain

ew = z ⇔ eu+iv = |z|ei arg(z),

⇔ eu = |z|, eiv = ei arg(z), (why?)

⇔ u = ln |z|, v = arg(z) + 2kπ, (45)

where k = 0,±1,±2, · · · Note that |z| ≥ 0 is a positive real number so ln |z| is our good old natural
log of a positive real number. We have managed to find the inverse of the exponential

ew = z ⇔ w = ln |z|+ i arg(z) + 2ikπ. (46)

The equation ew = z for w, given z, has an infinite number of solutions. This make sense since
ew = eueiv = eu(cos v + i sin v) is periodic of period 2π in v, so if w = u + iv is a solution, so is
u + i(v + 2kπ) for any integer k. We can take any one of those solutions as our definition of ln z,
in particular

ln z = ln
(
|z|ei arg(z)

)
= ln |z|+ i arg(z). (47)

This definition is unique since we assume that arg z is uniquely defined in terms of z. However
different definitions of arg z lead to different definitions of ln z.
Example: If arg(z) is defined by 0 ≤ arg(z) < 2π then ln(−3) = ln 3 + iπ, but if we define instead
−π ≤ arg(z) < π then ln(−3) = ln 3− iπ.
Note that you can now take logs of negative numbers! Note also that the ln z definition fits with
our usual manipulative rules for logs. In particular since ln(ab) = ln a+ ln b then ln z = ln(reiθ) =
ln r + iθ. This is the easy way to remember what ln z is.

1.8.2 Complex powers

As for functions of real variables, we can now define general complex powers in terms of the complex
log and the complex exponential

ab = eb ln a = eb ln |a|eib arg(a), (48)

be careful that b is complex in general, so eb ln |a| is not necessarily real. Once again we need to
define arg(a) and different definitions can actually lead to different values for ab.
In particular, we have the complex power functions

za = ea ln z = ea ln |z|eia arg(z) (49)
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and the complex exponential functions

az = ez ln a = ez ln |a|eiz arg(a). (50)

These functions are well-defined once we have defined a range for arg(z) in the case of za and for
arg(a) in the case of az.
Once again, a peculiar feature of functions of complex variables is that the user is left free to choose
whichever definition is more convenient for the particular problem under consideration. Note that
different definition for the arg(a) provides definitions for ab that do not simply differ by an additive
multiple of 2πi as was the case for ln z. For example

(−1)i = ei ln(−1) = e− arg(−1) = e−π−2kπ

for some k, so the various possible definitions of (−1)i will differ by a multiplicative integer power
of e−2π.

1.8.3 Roots

The fundamental theorem of algebra states that any nth order polynomial equation of the
form cnz

n + cn−1z
n−1 + · · · + c1z + c0 = 0 with cn 6= 0 always has n roots in the complex plane.

This can be stated as saying that there always exist n complex numbers z1, . . ., zn such that

cnz
n + cn−1z

n−1 + · · ·+ c0 = cn(z − z1) · · · (z − zn). (51)

The numbers z1, . . ., zn are the roots or zeros of the polynomial. These roots can be repeated as
for the polynomial 2z2 − 4z + 2 = 2(z − 1)2. This expansion is called factoring the polynomial.
The equation 2z2 − 2 = 0 has two real roots z = ±1 and 2z2 − 2 = 2(z − 1)(z + 1). The equation
3z2+3 = 0 has no real roots, however it has two imaginary roots z = ±i and 3z2+3 = 3(z−i)(z+i).
The equation zn−a = 0, with a complex and n a positive integer, therefore has n roots. We might
be tempted to write the solution as z = a1/n but what does that mean? According to our definition
of ab above, we have a1/n = e(ln a)/n which depends on the argument of a since ln a = ln |a|+i arg(a).
When we define a function we need to make the definition unique, but here we are looking for all
the roots. This means that we have to consider all possible definitions of arg(a). Here’s a correct
way to think about this. Using the polar representation z = reiθ

zn = rneinθ = a = |a|ei(arg(a)+2kπ) ⇒ r = |a|1/n, θ =
arg(a)

n
+ k

2π

n
(52)

where k = 0,±1,±2, . . . The moduli |z| = r and |a| are positive real numbers, so |a|1/n is our good
old root function giving a positive real value, but θ = arg(z) has many possible values that differ
by a multiple of 2π/n. When n is a positive integer, this yields n distinct values of θ modulo 2π,
yielding n distinct values for z. It is useful to visualize these roots. They are all equispaced on the
circle of radius |a|1/n in the complex plane.

Exercises:

1. Find all the roots, visualize and locate them in the complex plane and factor the corresponding
polynomial (i) z4 = 1, (ii) z4 + 1 = 0, (iii) z2 = i, (iv) 2z2 + 5z + 2 = 0.

2. Investigate the solutions of the equation zb = 1 when (i) b is a rational number, i.e. b = p/q
with p, q integers, (ii) when b is irrational e.g. b = π, (iii) when b is complex, e.g. b = 1 + i.
Visualize the solutions in the complex plane if possible.

3. If a and b are complex numbers, what’s wrong with saying that if w = ea+ib = eaeib then
|w| = ea and arg(w) = b+ 2kπ? Isn’t that what we did in (45)?
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2 Functions of a complex variable

2.1 Visualization of complex functions

A function w = f(z) of a complex variable z = x + iy has complex values w = u + iv, where u, v
are real. The real and imaginary parts of w = f(z) are functions of the real variables x and y

f(z) = u(x, y) + i v(x, y). (53)

For example, w = z2 = (x+ iy)2 is

z2 = (x2 − y2) + i 2xy (54)

with a real part u(x, y) = x2 − y2 and an imaginary part v(x, y) = 2xy. How do we visualize
complex functions? In calc I, for real functions of one real variable, y = f(x), we made an xy plot.
Here x and y are independent variables and w = f(z) corresponds to two real functions of two real
variables <(f(z)) = u(x, y) and =(f(z)) = v(x, y). One way to visualize f(z) is to make a 3D plot
with u as the height above the (x, y) plane. We could do the same for v(x, y), however a prettier
idea is to color the surface u = u(x, y) in the 3D space (x, y, u) by the value of v(x, y). Here is such
a plot for w = z2:
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Note the nice saddle-structure, u = x2 − y2 is the parabola u = x2 along the real axis y = 0, but
u = −y2 along the imaginary axis, x = 0. Again the color of the surface is the value of v(x, y) at
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that point, as given by the colorbar on the right. This visualization leads to pretty pictures but
they quickly become too complicated to handle, in large part because of the 2D projection on the
screen or page. It is often more useful to make 2D contour plots of u(x, y) and v(x, y):

x

y

contours of u=Real(z
2
)
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showing the isocurves (or isolines or level sets) of the function, u(x, y) on the left and v(x, y) on the
right, enhanced by constant coloring between contours. Note that the v(x, y) colors indeed match
the colors on the earlier 3D picture. The saddle-structure of both u(x, y) and v(x, y) is quite clear.

2.2 Cauchy-Riemann equations

We reviewed fundamental examples of complex functions: zn, ez, cos z, sin z, ln z, z1/n, za, az,
etc. as well as special complex functions such as <(z), =(z), z∗. We showed that <(z) is not
z-differentiable (9), and =(z) and z∗ are not either. For instance,

dz∗

dz
= lim

a→0

(z∗ + a∗)− z∗

a
= lim

a→0

a∗

a
= e−2iα (55)

where a = |a|eiα, so the limit is different for every α. If a is real, then α = 0 and the limit is 1,
but if a is imaginary then α = π/2 and the limit is −1. If |a| = e−α then a → 0 in a logarithmic
spiral as α→∞, but there is no limit in that case since e−2iα keeps spinning around the unit circle
without ever converging to anything. We cannot define a limit as a→ 0, so z∗ is not differentiable
with respect to z. It is special for a function to be z-differentiable.
The statement that the complex derivative of f(z) exists in a neighborhood of a point z has powerful
consequences. That’s because the limit in the definition of the derivative (7) can be taken in many
different ways. If we take a ≡ ∆z = ∆x real, we find that

df

dz
= lim

∆z→0

f(z + ∆z)− f(z)

∆z
= lim

∆x→0

u(x+ ∆x, y)− u(x, y)

∆x
+ i lim

∆x→0

v(x+ ∆x, y)− v(x, y)

∆x

=
∂u

∂x
+ i

∂v

∂x
, (56)
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but if we pick a ≡ ∆z = i∆y pure imaginary, we obtain

df

dz
= lim

∆z→0

f(z + ∆z)− f(z)

∆z
= lim

∆y→0

u(x, y + ∆y)− u(x, y)

i∆y
+ i lim

∆y→0

v(x, y + ∆y)− v(x, y)

i∆y

=− i∂u
∂y

+
∂v

∂y
. (57)

If the df/dz exists, the limit should be the same no matter how ∆z → 0, hence (56) and (57) must
be identical implying that

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (58)

These are the Cauchy-Riemann equations relating the partial derivatives of the real and imaginary
part of a function of a complex variable f(z) = u(x, y) + i v(x, y). This derivation shows that the
Cauchy-Riemann equations are necessary conditions on u(x, y) and v(x, y) if f(z) is differentiable
in a neighborhood of z. If df/dz exists then the Cauchy-Riemann equations (58) necessarily hold.

Example 1: The function f(z) = z2 has u = x2 − y2 and v = 2xy. Its z-derivative dz2/dz = 2z
exists everywhere and the Cauchy-Riemann equations (58) are satisfied everywhere since ∂u/∂x =
2x = ∂v/∂y and ∂u/∂y = −2y = −∂v/∂x.

Example 2: The function f(z) = z∗ = x − iy has u = x, v = −y. Its z-derivative dz∗/dz =?!
does not exist anywhere as we showed earlier and the Cauchy-Riemann equations (58) do not hold
anywhere since ∂u/∂x = 1 6= ∂v/∂y = −1.

B The converse is also true, if the Cauchy-Riemann equations are satisfied in a neighborhood of a
point (x, y) then the functions u(x, y) and v(x, y) are called conjugate functions and they in fact
consitute the real and imaginary part of a differentiable function of a complex variable f(z). To
prove this we need to show that the z-derivative of the function f(z) ≡ u(x, y) + iv(x, y) exists
independently of how the limit is taken. Writing a = α+ iβ with α and β real, we have

df

dz
= lim
a→0

f(z + a)− f(z)

a

= lim
a→0

(
u(x+ α, y + β) + iv(x+ α, y + β)

)
−
(
u(x, y) + iv(x, y)

)
α+ iβ

= lim
a→0

[
u(x+ α, y + β)− u(x, y)

]
+ i
[
v(x+ α, y + β)− v(x, y)

]
α+ iβ

. (59)

Now the functions u(x, y) and v(x, y) being differentiable in the neigborhood of (x, y) implies that
locally we can write

u(x+ α, y + β)− u(x, y) = α
∂u

∂x
+ β

∂u

∂y
+ o(a),

v(x+ α, y + β)− v(x, y) = α
∂v

∂x
+ β

∂v

∂y
+ o(a)

(60)

where the derivatives are evaluated at the point (x, y) and o(a) (“little oh of a”) is a remainder
that goes to zero faster than a, so lima→0 o(a)/a = 0. (The notation O(a) (‘big Oh of a’) denotes
an expression that goes to zero as fast as a so lima→0O(a)/a = C for some complex constant C.)
Using these local expansions and the Cauchy-Riemann equations (58) to replace the y-derivatives
by x-derivatives, we can rewrite (59) as(

∂u

∂x
+ i

∂v

∂x

)
lim
a→0

(
α+ iβ

α+ iβ

)
=

(
∂u

∂x
+ i

∂v

∂x

)
, (61)
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hence the limit is indeed independent of how a = α+ iβ tends to zero. �

A function f(z) that is differentiable in a neighborhood of z is said to be analytic (or ‘holomorphic’ )
in that neighborhood. A function f(z) = u(x, y) + iv(x, y) is analytic in a neighborhood of z if and
only if the Cauchy-Riemann equations (58) are satisfied in that neighborhood.
Another important consequence of z-differentiability and the Cauchy-Riemann equations (58) is
that the real and imaginary parts of a differentiable function f(z) = u(x, y) + i v(x, y) both satisfy
Laplace’s equation

∂2u

∂x2
+
∂2u

∂y2
= 0 =

∂2v

∂x2
+
∂2v

∂y2
. (62)

Exercises:

1. Deduce (62) from the Cauchy-Riemann equations (58). Verify these results (58) and (62), for
f(z) = z2, ez, ln z, etc.

2. Is the function |z| analytic? Why? What about the functions <(z) and f(|z|)?

3. Given u(x, y) find its conjugate function v(x, y), if possible, such that u(x, y)+iv(x, y) ≡ f(z),
for (i) u = y; (ii) u = x+ y; (iii) u = cosx cosh y, (iv) u = ln

√
x2 + y2.

4. Substituting (60) into (59) we obtain(
∂u

∂x
+ i

∂v

∂x

)
lim
a→0

(
α

α+ iβ

)
+

(
∂u

∂y
+ i

∂v

∂y

)
lim
a→0

(
β

α+ iβ

)
+ lim
a→0

o(a)

a

=

(
∂u

∂x
+ i

∂v

∂x

)
+

1

i

(
∂u

∂y
+ i

∂v

∂y

)
since

lim
a→0

(
α

α+ iβ

)
= 1, lim

a→0

(
β

α+ iβ

)
=

1

i
.

But this does not agree with (61). Why not?

5. Explain why we can write (60).

2.3 Geometry of Cauchy-Riemann, Conformal Mapping

x

y The Cauchy-Riemann equations (58) connecting the real and
imaginary part of a z-differentiable function f(z) = u(x, y) +
i v(x, y) have remarkable geometric implications.

For f(z) = z2 = (x2 − y2) + i 2xy, the figure on the left
shows the contours u(x, y) = x2 − y2 = 0,±1,±4,±9 (blue)
which are hyperbolas with asymptotes y = ±x. The contours
v(x, y) = 2xy = 0,±1,±4,±9 (red) are also hyperbolas but
now with asymptotes x = 0 and y = 0. Solid is positive,
dashed is negative. The u and v contours intersect every-
where at 90 degrees, except at z = 0.

The orthogonality of the contours of u = <(f(z)) and v = =(f(z)) wherever df/dz exists but does
not vanish, is general and follows directly from the Cauchy-Riemann equations. Indeed, the gradient
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~∇u = (∂u/∂x, ∂u/∂y) at a point (x, y) is perpendicular to the contour of u(x, y) through that point
(x, y). Likewise the gradient ~∇v = (∂v/∂x, ∂v/∂y) at that same point (x, y) is perpendicular to
the isocontour of v(x, y) through that point. The Cauchy-Riemann equations (58) imply that these
two gradients are perpendicular to each other

~∇u · ~∇v =
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y
=
∂v

∂y

∂v

∂x
− ∂v

∂x

∂v

∂y
= 0. (63)

Since gradients are always perpendicular to their respective isocontours, and here ~∇u ⊥ ~∇v, the
isocontours of u and v are also orthogonal to each other. Therefore if f(z) = u(x, y) + iv(x, y) is
z-differentiable (analytic) then the isocontours of u(x, y) and v(x, y) are orthogonal to each other
wherever they intersect. This is one application of analytic functions: their real and imaginary
parts u(x, y) and v(x, y) provide orthogonal coordinates in the (x, y) plane.
Orthogonality of the u = <(f(z)) and v = =(f(z)) contours holds wherever df/dz exists except
possibly at critical points where df/dz = 0 and ~∇u = ~∇v = 0. For the example w = z2 plotted
above, the contours are orthogonal everywhere except at z = 0 where dz2/dz = 2z = 0.

Conformal Mapping

We can visualize the function w = f(z) = u(x, y) + iv(x, y) as a mapping from the complex plane
z = x+ iy to the complex plane w = u+ iv. For example, f(z) = z2 is the mapping z → w = z2,
or equivalently from (x, y)→ (u, v) = (x2 − y2, 2xy).

w = z2

z = ±w1/2

w

z

−z
u

v

x

y

The vertical line u = u0 in the w-plane is the image of the hyperbola x2 − y2 = u0 in the z-plane.
The horizontal line v = v0 in the w-plane is the image of the hyperbola 2xy = v0 in the z-plane.
Every point z in the z-plane has a single image w in the w-plane, however the latter has two
pre-images z and −z in the z-plane, indeed the inverse functions are z = ±w1/2.
In polar form z = reiθ → w = r2ei2θ. This means that every radial line from the origin with angle
θ from the x-axis in the z-plane is mapped to a radial line from the origin with angle 2θ from the
u-axis in the w-plane.
The blue and red curves intersect at 90 degrees in both planes. That is the orthogonality of u and
v, but the dotted radial line intersects the blue and red curves at 45 degrees in both planes, for
example. In fact any angle between any two curves in the z-plane is preserved in the w-plane except
at z = w = 0 where they are doubled from the z to the w-plane.
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This is another general property of z-differentiable complex functions f(z). If f(z) is z-differentiable
(analytic) then the mapping w = f(z) preserves all angles at all z’s such that f ′(z) 6= 0 when
mapping from the z-plane to the w-plane.
To show this in general, consider three neighboring points in the z-plane: z, z+dz1 and z+dz2. We
are interested in seeing what happens to the angle between the two infinitesimal ‘vectors’ dz1 and
dz2. If dz1 = |dz1|eiθ1 and dz2 = |dz2|eiθ2 then the angle between those two vectors is α = θ2 − θ1

and this is the phase of dz2/dz1 = |dz2|/|dz1|ei(θ2−θ1).

w = f(z)

z w
dz1

dz2
dw1

dw2α

α The point z is mapped to the point w = f(z), the point z + dz1

is mapped to w + dw1 = f(z + dz1) ' f(z) + f ′(z)dz1 and
z + dz2 is mapped to w + dw2 = f(z + dz2) ' f(z) + f ′(z)dz2.
The angle between the infinitesimal vectors dw1 = f ′(z)dz1 and
dw2 = f ′(z)dz2 at w is the phase of dw2/dw1 = dz2/dz1, hence
it is identical to the angle α between dz1 and dz2.

All angles are preserved by the mapping w = f(z) except where f ′(z) = 0 and dw1 = dw2 = 0 at first
order. The dw’s would be 2nd order in dz if f ′(z) = 0 but f ′′(z) 6= 0 yielding dw1 = f ′′(z)dz2

1/2 and
dw2 = f ′′(z)dz2

2/2 hence dw2/dw1 = (dz2/dz1)2 = (|dz2|/|dz1|)2ei2(θ2−θ1) and angles are doubled at
such points. Likewise angles at points where f ′(z) = f ′′(z) = 0 but f ′′′(z) 6= 0 would be tripled,
and so on. For example, the mapping w = z2 preserves all angles except at the origin z = 0 where
angles are doubled by this mapping z = reiθ → z2 = r2ei2θ. The mapping w = z3 preserves all
angles except at z = 0 where angles are tripled since z = reiθ becomes z3 = r3ei3θ.
A mapping that preserves all angles is called conformal. Analytic functions f(z) provide conformal
mappings between z and w = f(z) at all points where f ′(z) 6= 0.

Examples of conformal mappings

w = z2

z = w1/2

w

z

u

v

x

y

w = z2 The (magenta) vertical line x = x0 maps to the parabola u = x2
0−y2, v = 2x0y in the (u, v)

plane and the (green) horizontal lime y = y0 becomes the (green) parabola u = x2 − y2
0, v = 2xy0

in the (u, v) plane. The green and magenta curves intersect at 90 degrees in both planes. Angles
between the dotted line and the green and magenta curves are the same in both planes, except at
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z = w = 0. What happens there? The definition of the inverse function is w1/2 = |w|1/2ei arg(w)/2

with −π < arg(w) ≤ π. What would the map look like if we defined 0 ≤ arg(w) < 2π?

w = ez

z = lnw

w

z

u

v

x

y
y = π

y = −π

w = ez = exeiy Maps the strip −∞ < x <∞, −π < y ≤ π to the entire w-plane. z = x0 + iy →
w = ex0eiy ≡ circles of radius ex0 in the w-plane (magenta). z = x + iy0 → w = exeiy0 ≡ radial
lines with polar angle arg(w) = y0 in w-plane (green). z = x + iax → w = exeiax ≡ radial lines
out of the origin in z-plane mapped to logarithmic spirals in w-plane since z = x+ iax with a fixed
(and real) becomes w = exeiax ≡ reiθ so r = ex, θ = ax and r = eθ/a in the w-plane (blue). Notes:
z = 0 → w = 1. ez+2iπ = ez, periodic of complex period 2iπ, so ez maps an infinite number of z’s
to the same w. The inverse function z = lnw = ln |w|+ i arg(w) showed in this picture corresponds
to the definition −π < arg(w) ≤ π. All angles are preserved e.g. the angles between green and
magenta curves, as well as between blue and colored curves, except at w = 0. What z’s correspond
to w = 0?

w = cosh(z)

z = ln(w +
√
w2 − 1)

u

v

x

y

π

−π

0

w = cosh(z) = (ez + e−z)/2 = (exeiy + e−xe−iy)/2 = coshx cos y + i sinhx sin y ≡ u + iv. Maps

the semi-infinite strip 0 ≤ x < ∞, −π < y ≤ π to the entire w-plane. cosh(z) = cosh(−z) and
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cosh(z+ 2iπ) = cosh(z), even in z and periodic of period 2iπ. x = x0 ≥ 0 → u = coshx0 cos y, v =
sinhx0 sin y, ≡ ellipses in the w-plane (magenta). y = y0 ≥ 0→ u = coshx cos y0, v = sinhx sin y0,
≡ hyperbolas in the w-plane (green). This mapping gives orthogonal, confocal elliptic coordinates.
The inverse map is z = ln(w +

√
w2 − 1), but for what definition of

√
w2 − 1? (not Matlab!). The

line from w = −∞ to w = 1 is a branch cut, our definition for ln(w +
√
w2 − 1) is discontinuous

across that line.

Exercises:

1. Consider the mapping w = z2. Determine precisely where the triangle (i) (1, 0), (1, 1), (0, 1)
in the z-plane gets mapped to in the w = u+ iv plane; (ii) same but for triangle (0, 0), (1, 0),
(1, 1). Do not simply map the vertices, determine precisely what happens to each edge of the
triangles.

2. Analyze the mapping w = 1/z. Determine what isocontours of u and v look like in the z-
plane. Determine where radial lines (θ = constant) and circles (r = constant) in the z-plane
get mapped to in the w-plane.

3. Analyze the mappings w = ez and w = cosh z = (ez + e−z)/2.

4. Determine what happens to circles and radial lines in the z-plane under the Joukowski map-
ping w = (z + 1/z).

3 Integration of Complex Functions

What do we mean by
∫ b
a f(z)dz when f(z) is a complex function of the complex variable z and the

bounds a and b are complex numbers in the z-plane?
In general we need to specify the path C in the complex plane to go from a to b and we need to
write the integral as

∫
C f(z)dz. Then if z0 = a, z1, z2, . . . , zN = b are successive points on the path

from a to b we can define the integral as usual as∫
C
f(z)dz = lim

∆zn→0

N∑
n=1

f(z̃n)∆zn (64)

where ∆zn = zn − zn−1 and z̃n is a point on the path (or the line segment) between zn−1 and zn.
This definition also provides a practical way to estimate the integral. In particular if |f(z)| ≤ M
along the curve then |

∫
C f(z)dz| ≤ ML where L ≥ 0 is the length of the curve from a to b. Note

also that the integral from a to b along C is minus that from b to a along the same curve since all
the ∆zn change sign for that curve. If C is from a to b, we’ll use −C to denote the same path but
with the opposite orientation, from b to a. If we have a parametrization for the curve, say z(t) with
t real and z(ta) = a, z(tb) = b then the integral can be expressed as∫

C
f(z)dz =

∫ tb

ta

f
(
z(t)

)dz
dt
dt. (65)
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Examples: To compute the integral of 1/z along the path C1 that
consists of the unit circle counterclockwise from a = 1 to b = i, we
can parametrize the circle using the polar angle θ as z(θ) = eiθ then
dz = ieiθdθ and ∫

C1

1

z
dz =

∫ π/2

0

1

eiθ
ieiθdθ = i

π

2
,

1

i C1

1

i

C2

but along the path C2 which consists of the unit circle clockwise
between the same endpoints a = 1 to b = i∫

C2

1

z
dz =

∫ −3π/2

0

1

eiθ
ieiθdθ = −i3π

2
.

Clearly the integral of 1/z from a = 1 to b = i depends on the path.

However for the function z2 over the same two paths with z = eiθ, z2 = ei2θ and dz = ieiθdθ, we
find ∫

C1
z2dz =

∫ π/2

0
iei3θdθ =

1

3

(
ei3π/2 − 1

)
=
−i− 1

3
=
b3 − a3

3
,

∫
C2
z2dz =

∫ −3π/2

0
iei3θdθ =

1

3

(
e−i9π/2 − 1

)
=
−i− 1

3
=
b3 − a3

3
.

Thus for z2 it appears that we obtain the expected result
∫ b
a z

2dz = (b3 − a3)/3, independently of
the path. We’ve only checked two special paths, so we do not know for sure but, clearly, a key issue
is to determine when an integral depends on the path of integration or not.

3.1 Cauchy’s theorem

The integral of a complex function is independent of the path of integration if and only if the
integral over a closed contour always vanishes. Indeed if C1 and C2 are two distinct paths from a
to b then the curve C = C1 − C2 which goes from a to b along C1 then back from b to a along −C2

is closed. The integral along that close curve is zero if and only if the integral along C1 and C2 are
equal.
Writing z = x+ iy and f(z) = u(x, y) + iv(x, y) the complex integral around a closed curve C can
be written as ∮

C
f(z)dz =

∮
C
(u+ iv)(dx+ idy) =

∮
C
(udx− vdy) + i

∮
C
(vdx+ udy) (66)

hence the real and imaginary parts of the integral are real line integrals. These line integrals can
be turned into area integrals using the curl form of Green’s theorem:∮

C
f(z)dz =

∮
C
(udx− vdy) + i

∮
C
(vdx+ udy)

=

∫
A

(
−∂v
∂x
− ∂u

∂y

)
dA+ i

∫
A

(
∂u

∂x
− ∂v

∂y

)
dA, (67)

where A is the interior domain bounded by the closed curve C. But the Cauchy-Riemann equations
(58) give

∂u

∂x
− ∂v

∂y
= 0,

∂v

∂x
+
∂u

∂y
= 0 (68)
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whenever the function f(z) is analytic in the neighborhood of the point z = x + iy. Thus both
integrals vanish if f(z) is analytic at all points of A. This is Cauchy’s theorem,∮

C
f(z)dz = 0 (69)

if df/dz exists everywhere inside (and on) the closed curve C.
Functions like ez, cos z, sin z and zn with n ≥ 0 are differentiable for all z, hence the integral of such
functions around any closed contour C vanishes. But what about the integral of simple functions
such as z−n with n > 0? Those functions are analytic everywhere except at z = 0 so the integral of
1/zn around any closed contour that does not include the origin will still vanish. Let’s figure out
what happens when the contour circles the origin. Consider the circle z = Reiθ, which is of radius
R and centered at the origin, oriented counter-clockwise, then as before dz = iReiθdθ and∮

|z|=R

dz

zn
=

∫ 2π

0

iReiθ

Rneinθ
dθ = iR1−n

∫ 2π

0
ei(1−n)θdθ =

{
2πi if n = 1,
0 if n 6= 1.

This result in fact holds for any closed counter-clockwise curve C around the origin.

A

C

−C0

To show this we simply need to isolate the origin by considering
a small circle C0 of radius ε > 0 as small as needed to be inside
the outer closed curve C. Now, the function 1/zn is analytic ev-
erywhere inside the domain A bounded by the counter-clockwise
outer boundary C and the inner circle boundary −C0 oriented
clockwise (emphasized here by the minus sign) so the interior A is
always to the left of the boundary, as required by convention for
the curl-form of Green’s theorem in vector calculus.

By Cauchy’s theorem, this implies that the integral over the closed contour, which consists of the
sum of the outer counter-clockwise curve C and the inner clockwise small circle about the origin
−C0, vanishes ∮

C+(−C0)

1

zn
dz = 0 ⇔

∮
C

1

zn
dz =

∮
C0

1

zn
dz.

In other words the integral about the closed contour C equals the integral about the closed inner
circle C0, both of which have the same orientation, counter-clockwise in this case. 1

This result can be slightly generalized to the functions (z − a)n, n < 0 for any a (consider a small
circle about a: z = a + εeiθ, etc.) so, combining with Cauchy’s theorem when n ≥ 0 we get the
important result that for integer n = 0,±1,±2, . . . and a closed contour C oriented counter-clockwise
then ∮

C
(z − a)ndz =

{
2πi if n = −1 and C encloses a,
0 otherwise.

(70)

1Recall that we used this singularity isolation technique in conjunction with the divergence theorem to evaluate
the flux of r̂/r2 = ~r/r3 (the inverse square law of gravity and electrostatics) through any closed surface enclosing the
origin, as well as in conjunction with Stokes’ theorem for the circulation of a line current ~B = (ẑ × ~r)/|ẑ × ~r|2 =
ϕ̂/ρ = ~∇ϕ around a loop enclosing the z-axis.
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Connection with ln z

The integral of 1/z is of course directly related to ln z, the natural log of z which can be defined as
the antiderivative of 1/z that vanishes at z = 1, that is

ln z ≡
∫ z

1

1

ζ
dζ.

We use ζ as the dummy variable of integration since z is the upper limit of integration.
But along what path from 1 to z? Here’s the 2πi multiplicity again. We have seen earlier in this
section that the integral of 1/z from a to b depends on how we go around the origin. If we get one
result along one path, we can get the same result + 2πi if we use a path that loops around the
origin one more time counterclockwise than the original path. Or −2πi if it loops clockwise, etc.
Look back at exercise (7) in section (3.1). If we define a range for arg(z), e.g. 0 ≤ arg(z) < 2π, we
find ∫ z

1

1

ζ
dζ = ln |z|+ i arg(z) + 2ikπ (71)

for some specific k that depends on the actual path taken from 1 to z and our definition of arg(z).
The notation

∫ z
1 is not complete for this integral. The integral is path-dependent and it is necessary

to specify that path in more details, however all possible paths give the same answer modulo 2πi.

Exercises: closed paths are oriented counterclockwise unless specified otherwise.

1. Calculate the integral of f(z) = z + 2/z along the path C that goes once around the circle
|z| = R > 0. Discuss result in terms of R.

2. Calculate the integral of f(z) = az+ b/z+ c/(z+ 1), where a, b and c are complex constants,
around (i) the circle of radius R > 0 centered at z = 0, (ii) the circle of radius 2 centered at
z = 0, (iii) the triangle −1/2, −2 + i, −1− 2i.

3. Calculate the integral of f(z) = 1/(z2 − 4) around (i) the unit circle, (ii) the parallelogram
0, 2− i, 4, 2 + i. [Hint: use partial fractions]

4. Calculate the integral of f(z) = 1/(z4 − 1) along the circle of radius 1 centered at i.

5. Calculate the integral of sin(1/(3z)) over the square 1, i, −1, −i. [Hint: use the Taylor series
for sin z].

6. Calculate the integral of 1/z from z = 1 to z = 2eiπ/4 along (i) the path 1→ 2 along the real
line then 2→ 2eiπ/4 along the circle of radius 2, (ii) along 1→ 2 on the real line, followed by
2→ 2eiπ/4 along the circle of radius 2, clockwise.

7. If a is an arbitrary complex number, show that the integral of 1/z along the straight line from
1 to a is equal to the integral of 1/z from 1 to |a| along the real line + the integral of 1/z along
the circle of radius |a| from |a| to a along a certain circular path. Draw a sketch!! Discuss
which circular path and calculate the integral. What happens if a is real but negative?

8. Does the integral of 1/z2 from z = a to z = b (with a and b complex) depend on the path?
Explain.

9. Pause and marvel at the power of (69) combined with (70). Continue.

10. The expansion (43) with a = 1 gives 1/z =
∑∞

n=0(1−z)n. Using this expansion together with
(70) we find that

∮
|z|=1 dz/z =

∑∞
n=0

∮
|z|=1(1− z)ndz = 0. But this does not match with our

explicit calculation that
∮
|z|=1 dz/z = 2πi. What’s wrong?!
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3.2 Cauchy’s formula

The combination of (69) with (70) and partial fraction and/or Taylor series expansions is quite
powerful as we have already seen in the exercises, but there is another fundamental result that can
be derived from them. This is Cauchy’s formula∮

C

f(z)

z − a
dz = 2πif(a) (72)

which holds for any closed counterclockwise contour C that encloses a provided f(z) is analytic
(differentiable) everywhere inside and on C.
The proof of this result follows the approach we used to calculate

∮
C dz/(z−a) in section 3.1. Using

Cauchy’s theorem (69), the integral over C is equal to the integral over a small counterclockwise
circle Ca of radius ε centered at a. That’s because the function f(z)/(z − a) is analytic in the
domain between C and the circle Ca : z = a+ εeiθ with θ = 0→ 2π, so∮

C

f(z)

z − a
dz =

∮
Ca

f(z)

z − a
dz =

∫ 2π

0
f(a+ εeiθ) idθ = 2πif(a). (73)

The final step follows from the fact that the integral has the same value no matter what ε > 0
we pick. Then taking the limit ε → 0+, the function f(a + εeiθ) → f(a) because f(z) is a nice
continuous and differentiable function everywhere inside C, and in particular at z = a.
Cauchy’s formula has major consequences that follows from the fact that it applies to any a inside
C. To emphasize that, let us rewrite it with z in place of a, using ζ has the dummy variable of
integration

2πif(z) =

∮
C

f(ζ)

ζ − z
dζ. (74)

This provides an integral formula for f(z) at any z inside C in terms of its values on C. Thus
knowing f(z) on C completely determines f(z) everywhere inside the contour! This formula is at
the basis of boundary integral methods.

3.2.1 Mean Value Theorem

Since (74) holds for any closed contour C as long as f(z) is continuous and differentiable inside and
on that contour, we can write it for a circle of radius r centered at z, ζ = z+reiθ where dζ = ireiθdθ
and (74) yields

f(z) =
1

2π

∫ 2π

0
f(z + reiθ)dθ (75)

which states that f(z) is equal to its average over a circle centered at z. This is true as long as
f(z) is differentiable at all points inside the circle of radius r. This mean value theorem also applies
to the real and imaginary parts of f(z) = u(x, y) + iv(x, y). It implies that u(x, y), v(x, y) and
|f(z)| do not have extrema inside a domain where f(z) is differentiable. Points where f ′(z) = 0 and
therefore ∂u/∂x = ∂u/∂y = ∂v/∂x = ∂v/∂y = 0 are saddle points, not local maxima or minima.

3.2.2 Generalized Cauchy formula and Taylor Series

Cauchy’s formula also implies that if f ′(z) exists in the neighborhood of a point a then f(z) is
infinitely differentiable in that neighborhood! Furthermore, f(z) can be expanded in a Taylor series
about a that converges inside a disk whose radius is equal to the distance between a and the nearest
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singularity of f(z). That is why we use the special word analytic instead of simply ‘differentiable’.
For a function of a complex variable being differentiable in a neighborhood is a really big deal!

B To show that f(z) is infinitely differentiable, we can show that the derivative of the right-hand
side of (74) with respect to z exists by using the limit definition of the derivative and being careful
to justify existence of the integrals and the limit. The final result is the same as that obtained by
differentiating with respect to z under the integral sign, yielding

2πif ′(z) =

∮
C

f(ζ)

(ζ − z)2
dζ. (76)

Doing this repeatedly we obtain

2πif (n)(z) = n!

∮
C

f(ζ)

(ζ − z)n+1
dζ. (77)

where f (n)(z) is the nth derivative of f(z) and n! = n(n− 1) · · · 1 is the factorial of n. Since all the
integrals exist, all the derivatives exist. Formula (77) is a generalized Cauchy formula. �

B Another derivation of these results that establishes convergence of the Taylor series expansion at
the same time is to use the geometric series (11) and the slick trick that we used in (43) to write

1

ζ − z
=

1

(ζ − a)− (z − a)
=

1

ζ − a
1

1− z − a
ζ − a

=
∞∑
n=0

(z − a)n

(ζ − a)n+1
(78)

where the geometric series converges provided |z−a| < |ζ−a|. Cauchy’s formula (74) then becomes

2πif(z) =

∮
Ca

f(ζ)

ζ − z
dζ =

∮
Ca

∞∑
n=0

f(ζ)
(z − a)n

(ζ − a)n+1
dζ =

∞∑
n=0

(z − a)n
∮
Ca

f(ζ)

(ζ − a)n+1
dζ (79)

where Ca is a circle centered at a whose radius is as large as desired provided f(z) is differentiable
inside and on the circle. For instance if f(z) = 1/z then the radius of the circle must be less
then |a| since f(z) has a singularity at z = 0 but is nice everwhere else. If f(z) = 1/(z + i)
then the radius must be less than |a + i| which is the distance between a and −i since f(z) has
a singularity at −i. In general, the radius of the circle must be less than the distance between a
and the nearest singularity of f(z). To justify interchanging the integral and the series we need to
show that each integral exists and that the series of the integrals converges. If |f(ζ)| ≤ M on Ca
and |z − a|/|ζ − a| ≤ q < 1 since Ca is a circle of radius r centered at a and z is inside that circle
while ζ is on the circle so ζ − a = reiθ, dζ = ireiθdθ and∣∣∣∣∮

Ca

(z − a)nf(ζ)

(ζ − a)n+1
dζ

∣∣∣∣ ≤ 2πMqn (80)

showing that all integrals converge and the series of integrals also converges since q < 1.
The series (79) provides a power series expansion for f(z)

2πif(z) =
∞∑
n=0

(z − a)n
∮
Ca

f(ζ)

(ζ − a)n+1
dζ =

∞∑
n=0

cn(a)(z − a)n (81)

that converges inside a disk centered at a with radius equal to the distance between a and the
nearest singularity of f(z). The series can be differentiated term-by-term and the derivative series
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also converges in the same disk. Hence all derivatives of f(z) exist in that disk. In particular we
find that

cn(a) = 2πi
f (n)(a)

n!
=

∮
Ca

f(ζ)

(ζ − a)n+1
dζ. (82)

which is the generalized Cauchy formula (77) and the series (79) is none other than the familiar
Taylor Series

f(z) = f(a) + f ′(a)(z − a) +
f ′′(a)

2
(z − a)2 + · · · =

∞∑
n=0

f (n)(a)

n!
(z − a)n. (83)

�
Finally, Cauchy’s theorem tells us that the integral on the right of (82) has the same value on
any closed contour (counterclockwise) enclosing a but no other singularities of f(z), so the formula
holds for any such closed contour as written in (77). However convergence of the Taylor series only
occurs inside a disk centered at a and of radius equal to the distance between a and the nearest
singularity of f(z).

Exercises:

1. Why can we take (z − a)n outside of the integrals in (79)?

2. Verify the estimate (80). Why does that estimate implies that the series of integrals converges?

3. Consider the integral of f(z)/(z − a)2 about a small circle Ca of radius ε centered at a:
z = a+ εeiθ, 0 ≤ θ < 2π. Study the limit of the θ-integral as ε→ 0+. Does your limit agree
with the generalized Cauchy formula (77), (82)?

4. Find the Taylor series of 1/(1 + x2) and show that its radius of convergence is |x| < 1 [Hint:
use the geometric series]. Explain why the radius of convergence is one in terms of the
singularities of 1/(1 + z2). Would the Taylor series of 1/(1 + x2) about a = 1 have a smaller
or larger radius of convergence than that about a = 0?

5. Show that since an analytic function f(z) = u(x, y) + iv(x, y) is infinitely differentiable, its
real and imaginary parts are infinitely differentiable with respect to x and y. Show that
∇2u = ∇2v = 0 where ∇2 = ∂2/∂x2 + ∂2/∂y2 is the 2D Laplacian and ∇2ϕ(x, y) = 0 is
Laplace’s equation. Functions that satisfy Laplace’s equations are called harmonic functions.
[Hint: use the Cauchy-Riemann equations repeatedly].

6. Show that ekx cos ky and ekx sin ky are solutions of Laplace’s equation for any real k. [Hint:
consider the complex function f(z) = ekz]. These solutions occur in a variety of applications,
e.g. surface gravity waves with the surface at x = 0.

7. Calculate the integrals of cos(z)/zn and sin(z)/zn over the unit circle, where n is a positive
integer.

4 Applications of complex integration

One application of complex (a.k.a. ‘contour’) integration is to turn difficult real integrals into simple
complex integrals.

Example 1: What is the average of the function F (t) = 3/(5 + 4 cosωt)? Since F (t) is periodic of
period 2π/ω, let θ = ωt and the average of F (t) is the same as the average of f(θ) = 3/(5 + 4 cos θ)
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over one period. That average is (2π)−1
∫ 2π

0 f(θ)dθ. To compute that integral we think integral
over the unit circle in the complex plane! Indeed the unit circle with |z| = 1 has the simple
parametrization

z = eiθ → dz = ieiθdθ ⇔ dθ =
dz

iz
. (84)

Furthermore

cos θ =
eiθ + e−iθ

2
=
z + 1/z

2
,

so we obtain∫ 2π

0

3

5 + 4 cos θ
dθ =

∮
|z|=1

3

5 + 2(z + 1/z)

dz

iz
=

3

2i

∮
|z|=1

dz

(z + 1
2)(z + 2)

=
3

2i

(
2πi

z + 2

)
z=− 1

2

= 2π.

(85)
What magic was that? We turned our integral of a periodic function over its period into an integral
from 0 to 2π (that can always be done), then we turned that integral into a complex integral over
the unit circle (that can always be done too). That led us to the integral over a closed curve of a
relatively nice function (that’s not always the case).

−1/2−2

z = eiθ
Our complex function has two simple poles, at −1/2 and −2.
Since −2 is outside the unit circle, it does not contribute to the
integral, but the simple pole at −1/2 does. So the integrand
has the form g(z)/(z − a) with a = −1/2 inside our domain and
g(z) = 1/(z+2), is a good analytic function inside the unit circle.
So one application of Cauchy’s formula, et voilà. The function
3/(5 + 4 cos θ) which oscillates between 1/3 and 3 has an average
of 1.

Related exercises: calculate ∫ π

0

3 cosnθ

5 + 4 cos θ
dθ (86)

where n is an integer. [Hint: use symmetries to write the integral in [0, 2π], do not use 2 cosnθ =
einθ + e−inθ (why not? try it out to find out the problem), use instead cosnθ = <(einθ) with
n ≥ 0.] An even function f(θ) = f(−θ) periodic of period 2π can be expanded in a Fourier series
f(θ) = a0 +a1 cos θ+a2 cos 2θ+a3 cos 3θ+ · · · . This expansion is useful in all sorts of applications:
numerical calculations, signal processing etc. The coefficient a0 is the average of f(θ). The other
coefficients are given by an = 2π−1

∫ π
0 f(θ) cosnθdθ, i.e. the integrals (86). So what is the Fourier

(cosine) series of 3/(5 + 4 cos θ)? Can you say something about its convergence?

Example 2: ∫ ∞
−∞

dx

1 + x2
= π (87)

This integral is easily done since 1/(1 + x2) = d/dx(arctanx), but we use contour integration
to demonstrate the method. The integral is equal to the integral of 1/(1 + z2) over the real
line z = x with x = −∞ → ∞. That complex function has two simple poles at z = ±i since
z2 + 1 = (z + i)(z − i).
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Cθ

−R RCx

i

−i

So we turn this into a contour integration by considering
the closed path consisting of Cx : z = x with x = −R → R
(real line) + the semi-circle Cθ : z = Reiθ with θ = 0 → π.
Since i is the only simple pole inside our closed contour
C = Cx + Cθ, Cauchy’s formula gives∮

C

dz

z2 + 1
=

∮
C

(z + i)−1

z − i
dz = 2πi

(
1

z + i

)
z=i

= π.

To get the integral we want, we need to take R → ∞ and
figure out the Cθ part. That part goes to zero as R → ∞
since∣∣∣∣∫

Cθ

dz

z2 + 1

∣∣∣∣ =

∣∣∣∣∫ π

0

iReiθdθ

R2e2iθ + 1

∣∣∣∣ < ∫ π

0

Rdθ

R2 − 1
=

πR

R2 − 1
.

Example 3: We use the same technique for∫ ∞
−∞

dx

1 + x4
=

∫
R

dz

1 + z4
(88)

Here the integrand has 4 simple poles at zk = eiπ/4+2i(k−1)π/4, where k = 1, 2, 3, 4. These are the
roots of z4 = −1 = eiπ+2i(k−1)π. They are on the unit circle, equispaced by π/2. Note that z1

and z3 = −z1 are the roots of z2 − i = 0 while z2 and z4 = −z2 are the roots of z2 + i = 0, so
z4 + 1 = (z2 − i)(z2 + i) = (z − z1)(z + z1)(z − z2)(z + z2).

Cx

Cθ

−R R

C1C2

z1z2

z3 z4

We use the same closed contour C = Cx + Cθ as above but
now there are two simple poles inside that contour. We need
to isolate both singularities leading to∮

C
=

∮
C1

+

∮
C2
.

Then Cauchy’s formula gives∮
C1

dz

z4 + 1
= 2πi

(
1

2z1(z2
1 − z2

2)

)
=

π

2z1
.

Likewise ∮
C2

dz

z4 + 1
= 2πi

(
1

2z2(z2
2 − z2

1)

)
=

π

2(−z2)
=

π

2z4
=

π

2z∗1
.

These manipulations are best understood by looking at the figure which shows that −z2 = z4 = z∗1
together with z2

1 = i, z2
2 = −i. Adding both results gives∮

C

dz

z4 + 1
=
π

2

(
1

z1
+

1

z∗1

)
= π

e−iπ/4 + eiπ/4

2
= π cos

π

4
=

π√
2
.

As before we need to take R → ∞ and figure out the Cθ part. That part goes to zero as R → ∞
since ∣∣∣∣∫

C2

dz

z4 + 1

∣∣∣∣ =

∣∣∣∣∫ π

0

iReiθdθ

R4e4iθ + 1

∣∣∣∣ < ∫ π

0

Rdθ

R4 − 1
=

πR

R4 − 1
.
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We could extend the same method to ∫ ∞
−∞

x2

1 + x8
dx (89)

(and the much simpler
∫∞
−∞ x/(1 + x8)dx = 0 ;-) ) We would use the same closed contour again,

but there would be 4 simple poles inside it and therefore 4 separate contributions.

Example 4: ∫ ∞
−∞

dx

(1 + x2)2
=

∫
R

dz

(z2 + 1)2
=

∫
R

dz

(z − i)2(z + i)2
. (90)

We use the same closed contour once more, but now we have a double pole inside the contour at
z = i. We can figure out the contribution from that double pole by using the generalized form of
Cauchy’s formula (77). The integral over Cθ vanishes as R→∞ as before and∫ ∞

−∞

dx

(1 + x2)2
= 2πi

(
d

dz
(z + i)−2

)
z=i

=
π

2
. (91)

A (z − a)n in the denominator, with n a positive integer, is called and n-th order pole.

Warning: Cauchy’s generalized formula is cool but can fail where Taylor coupled with (70) will
succeed. Example: ∮

|z|=1
ez+1/zdz (92)

which has an infinite order pole (a.k.a. “essential singularity”) at z = 0 and for which Cauchy’s
formula is not directly useful, but Taylor series and the simple (70) makes this a relative snap for
the thinking person. This all looks unbelievably mysterious if you do not understand the key ideas
and are just trying to plug into a formula. If you understand, it is pretty magical.

Example 5: ∫ ∞
−∞

sinx

x
dx = π. (93)

This is a trickier problem. Our impulse is to consider
∫
R(sin z)/z dz but that integrand is a super

good function! Indeed (sin z)/z = 1− z2/3! + z4/5!− · · · is analytic in the entire plane, its Taylor
series converges in the entire plane. For obvious reasons such functions are called entire functions.
But we love singularities now since they actually make our life easier. So we write∫ ∞

−∞

sinx

x
dx = =

∫ ∞
−∞

eix

x
dx = =

∫
R

eiz

z
dz, (94)

where = stands for “imaginary part of”. Now we have a nice simple pole at z = 0. But that’s
another problem since the pole is on the contour! We have to modify our favorite contour a little
bit to avoid the pole by going over or below it. If we go below and close along Cθ as before, then
we’ll have a pole inside our contour. If we go over it, we won’t have any pole inside the closed
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contour. We get the same result either way (luckily!), but the algebra is a tad simpler if we leave
the pole out.

C4

−R R−ε ε
C1 C3

C2

So we consider the closed contour C = C1 + C2 + C3 + C4

where C1 is the real axis from −R to −ε, C2 is the semi-
circle from −ε to ε in the top half-plane, C3 is the real axis
from ε to R and C4 is our good old semi-circle of radius R.
The integrand eiz/z is analytic everywhere except at z = 0
where it has a simple pole, but since that pole is outside
our closed contour, Cauchy’s theorem gives

∮
C = 0 or∫

C1+C3
= −

∫
C2
−
∫
C4

The integral over the semi-circle C2 : z = εeiθ, dz = iεeiθdθ, is

−
∫
C2

eiz

z
dz = i

∫ π

0
eiεe

iθ
dθ → πi as ε→ 0.

As before we’d like to show that the
∫
C4 → 0 as R → ∞. This is trickier than the previous cases

we’ve encountered. On the semi-circle z = Reiθ and dz = iReiθdθ, as we’ve seen so many times,
we don’t even need to think about it anymore (do you?), so∫

C4

eiz

z
dz = i

∫ π

0
eiRe

iθ
dθ = i

∫ π

0
eiR cos θe−R sin θdθ. (95)

This is a pretty scary integral. But with a bit of courage and intelligence it’s not as bad as it
looks. The integrand has two factors, eiR cos θ whose norm is always 1 and e−R sin θ which is real and
exponentially small for all θ in 0 < θ < π, except at 0 and π where it is exactly 1. Sketch e−R sin θ

in 0 ≤ θ ≤ π and it’s pretty clear the integral should go to zero as R→∞. To show this rigorously,
let’s consider its modulus (norm) as we did in the previous cases. Then since (i) the modulus of a
sum is less or equal to the sum of the moduli (triangle inequality), (ii) the modulus of a product is
the product of the moduli and (iii) |eiR cos θ| = 1 when R and θ are real (which they are)

0 ≤
∣∣∣∣∫ π

0
eiR cos θe−R sin θdθ

∣∣∣∣ < ∫ π

0
e−R sin θdθ (96)

we still cannot calculate that last integral but we don’t need to. We just need to show that it
is smaller than something that goes to zero as R → ∞, so our integral will be squeezed to zero.
Plotting sin θ for 0 ≤ θ ≤ π, we see that it is symmetric with
respect to π/2 and that 2θ/π ≤ sin θ when 0 ≤ θ ≤ π/2, or
changing the signs −2θ/π ≥ − sin θ and since ex increases
monotonically with x,

e−R sin θ < e−2Rθ/π

in 0 ≤ θ ≤ π/2. This is Jordan’s Lemma

2θ/π

π/2 π
θ

1

∣∣∣∣∫ π

0
eiRe

iθ
dθ

∣∣∣∣ < ∫ π

0
e−R sin θdθ = 2

∫ π/2

0
e−R sin θdθ < 2

∫ π/2

0
e−2Rθ/πdθ = π

1− e−R

R
(97)

so
∫
C4 → 0 as R→∞ and collecting our results we obtain (93).

Exercises All of the above of course, +
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1. Calculate
∫ 2π

0 1/(a + b sin s)ds where a and b are real numbers. Does the integral exist for
any real values of a and b?

2. Make up and solve an exam question which is basically the same as
∫∞
−∞ dx/(1 +x2) in terms

of the logic and difficulty, but is different in the details.

3. Calculate
∫∞
−∞ dx/(1 + x2 + x4). Can you provide an upper bound for this integral based on

integrals calculated earlier?

4. Given the Poisson integral
∫∞
−∞ e

−x2dx =
√
π, what is

∫∞
−∞ e

−x2/a2dx where a is real? (that

should be easy!). Next, calculate
∫∞
−∞ e

−x2/a2eikxdx where a and k are arbitrary real numbers.

[This is the Fourier transform of the Gaussian e−x
2/a2 . Complete the square. Note that you

can pick a, k > 0 (why?), then integrate over an infinite rectangle that consists of the real
axis and comes back along the line y = ka2/2 (why? justify).

5. The Fresnel integrals come up in optics and quantum mechanics. They are∫ ∞
−∞

cosx2dx, and

∫ ∞
−∞

sinx2dx.

Calculate them both by considering
∫∞

0 eix
2
dx. The goal is to reduce this to a Poisson integral.

This would be the case if x2 → (eiπ/4x)2. So consider the closed path that goes from 0 to R
on the real axis, then on the circle of radius R to Reiπ/4 then back on the diagonal z = seiπ/4

with s real.

Branch cuts

Ok if you’ve made it this far and are still thinking hard, you may have noticed that we’ve only
dealt with integer powers. What about fractional powers? First let’s take a look at the integral of√
z over the unit circle z = eiθ from θ = θ0 to θ0 + 2π∮

|z|=1

√
z dz =

∫ θ0+2π

θ0

eiθ/2ieiθdθ =
2i

3
e3iθ0/2(ei3π − 1) =

−4i

3
e3iθ0/2 (98)

The answer depends on θ0! The integral over the closed circle depends on where we start on
the circle?! This is weird, what’s going on? The problem is with the definition of

√
z. We have

implicitly defined
√
z = |z|1/2ei arg(z)/2 with θ0 ≤ arg(z) < θ0 + 2π or θ0 < arg(z) ≤ θ0 + 2π. But

each θ0 corresponds to a different definition for
√
z.

For real variables the equation y2 = x ≥ 0 had two solutions y = ±
√
x and we defined

√
x ≥ 0.

Can’t we define
√
z in a similar way? The equation w2 = z in the complex plane always has two

solutions. We can say
√
z and −

√
z but we still need to define

√
z since z is complex. Could we

define
√
z to be such that its real part is always positive? yes, and that’s equivalent to defining√

z = |z|1/2ei arg(z)/2 with −π < arg(z) < π (check it). But that’s not complete because the sqrt
of a negative real number is pure imaginary, so what do we do about those numbers? We can
define −π < arg(z) ≤ π, so real negative numbers have arg(z) = π, not −π, by definition. This is
indeed the definition that Matlab chooses. But it may not be appropriate for our problem because
it introduces a discontinuity in

√
z as we cross the negative real axis. If that is not desirable for
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our problem than we could define 0 ≤ arg(z) < 2π. Now
√
z is continuous across the negative real

axis but there is a jump across the positive real axis. Not matter what definition we pick, there
will always be a discontinuity somewhere. We cannot go around z = 0 without encountering such a
jump, z = 0 is called a branch point and the semi-infinite curve emanating from z = 0 across which
arg(z) jumps is called a branch cut.
Here’s a simple example that illustrates the extra subtleties and techniques.∫ ∞

0

√
x

1 + x2
dx

First note that this integral does indeed exist since
√
x/(1 + x2) ∼ x−3/2 as x →∞ and therefore

goes to zero fast enough to be integrable. Our first impulse is to see this as an integral over the real
axis from 0 to ∞ of the complex function

√
z/(z2 + 1). That function has simple poles at z = ±i

as we know well. But there’s a problem:
√
z is not analytic at z = 0 which is on our contour again.

No big deal, we can avoid it as we saw in the (sinx)/x example. So let’s take the same 4-piece
closed contour as in that problem. But we’re not all set yet because we have a

√
z, what do we

mean by that when z is complex? We need to define that function so that it is analytic everywhere
inside and on our contour. Writing z = |z|ei arg(z) then we can define

√
z = |z|1/2ei arg(z)/2. We

need to define arg(z) so
√
z is analytic inside and on our contour. The definitions −π ≤ arg(z) < π

would not work with our decision to close in the upper half place. Why? because arg(z) and thus√
z would not be continuous at the junction between C4 and C1. We could close in the lower half

plane, or we can pick another branch cut for arg(z). The standard definition −π < arg(z) ≤ π
would work. Try it! We’ll take a more exotic choice to illustrate branch cuts more dramatically.
Let’s pick 0 ≤ arg(z) < 2π.

Continued in your own class notes...


