Homework 2

Due: February 16, 2010, beginning of the class. Late homework will not be accepted.

1. (Exercise 2.2) Assume that a sequence of independent events $\{A_i\}$ satisfy $\sum_{n=1}^{\infty} P(A_i) = \infty$.

$$\tau_k = \min\{n : \sum_{i=1}^n 1_{A_i} = k\}.$$

By the (second) Borel-Cantelli lemma with probability one we will have infinitely many of the A_i 's occurring, i.e. $\sum_{k=1}^{\infty} 1_{A_k} = \infty$ and $P(\tau_k < \infty) = 1$ for all k. Prove the slightly stronger statement

$$k = E \sum_{i=1}^{\tau_k} P(A_i).$$

Why is this a stronger statement?

Hint: construct a martingale using the random variables 1_{A_i} and use the fact that τ_k is a stopping time.

- 2. In each of the following cases check if the process is a standard Brownian motion.
 - (a) $X_t = \frac{1}{\sqrt{t}} B_{t^2}$ where B_t is a standard BM.
 - (b) $Y_t = \sin(\alpha)B_t^{(1)} + \cos(\alpha)B_t^{(2)}$ where $B_t^{(1)}$ and $B_t^{(2)}$ are independent standard BM's and $\alpha \in \mathbf{R}$.

(c)

$$Z_t = \begin{cases} B_t & 0 \le t \le 1\\ B_{t+1} - B_2 + B_1 & t \ge 1 \end{cases}$$

where B_t is a standard BM.

- 3. (Exercise 3.1 (b)-(d)) Let U_t be a standard Brownian bridge (see page 41 for the definition).
 - (a) Show that $Cov(U_s, U_t) = s(1-t)$ for $0 \le s \le t \le 1$.
 - (b) Let $X_t = g(t)B_{h(t)}$, and find functions g and h such that X_t has the same covariance as the Brownian bridge. (B_t is a standard BM.)
 - (c) Show that $Y_t = (1+t)U_{t/(1+t)}$ is a BM on $[0,\infty)$.

Hint: (c) should help with (b)...

4. An urn contains a red and b black balls. In each step we draw a ball randomly and replace it with two balls of the same color. (Essentially in each step we add a new ball to the urn whose color is determined randomly.) Let X_n be the ratio of red balls in the urn after the n^{th} step. $(X_0 = a/(a+b).)$

Show that X_n is a martingale and it converges almost surely.

Bonus problem. Assume that X and Y are independent, identically distributed with mean 0 and variance 1. Show that if the random variables X + Y, X - Y are independent then X and Y are standard normals.