
Markov Chain lecture notes
Math331, Fall 2008

Instructor: David Anderson

Markov Chains: lecture 2.

Ergodic Markov Chains

Defn: A Markov chain is called an ergodic or irreducible Markov chain if it is possible to
eventually get from every state to every other state with positive probability.

Ex: The wandering mathematician in previous example is an ergodic Markov chain.

Ex: Consider 8 coffee shops divided into four groups. Suppose that each group of four has
same geometry as wandering mathematician. Then this is not an ergodic Markov chain.
Note, could have initial distribution with “weight” on all shops.

Defn: A Markov chain with finite state space is regular if some power of its transition matrix
has only positive entries.

Regular Markov Chains

Ergodic Markov Chains

Remark: The above picture shows how the two classes of Markov chains are related. If P n

has all positive entries then

P (going from x to y in n steps) > 0,

so a regular chain is ergodic.

To see that regular chains are a strict subclass of the ergodic chains, consider a walker
going between two shops:

1 ⇆ 2.

The transition matrix is given by

P =

[

0 1
1 0

]

.

Then,

P 2 = P 4 = P 6 =

[

1 0
0 1

]

, P = P 3 = P 5 =

[

0 1
1 0

]

Hence P is ergodic, but not regular.

1



Fundamental Limit Theorem: Let P denote the transition matrix for a regular Markov
chain with finite state space. To simplify notation assume S = {1, 2, ..., r}. Then

lim
n→∞

P n = W,

where W is an r by r matrix, all rows of which are the same strictly positive probability
vector

w = [p(1), . . . , p(r)].

That is, p(x) > 0 for x ∈ {1, . . . , r} and
∑r

x=1
p(x) = 1. In particular, for all y we have

lim
n→∞

P n(x, y) = p(y)

independent of x. We actually have the estimate

max{|P n(x, y)) − p(y)| : x, y ∈ S} ≤ Ce−Dn,

where C,D are positive finite constants independent of n.

Example: Consider the “coffee shop walker” from first lecture. The transition matrix was

P =









0 1 0 0
1/3 0 1/3 1/3
0 1/2 0 1/2
0 1/2 1/2 0









.

We have that

P 2 =













1/3 0 1/3 1/3

0 2/3 1/6 1/6

1/6 1/4 5

12
1/6

1/6 1/4 1/6 5

12













, P 3 =













0 2/3 1/6 1/6

2/9 1/6 11

36

11

36

1/12 11

24
1/6 7

24

1/12 11

24

7

24
1/6













,

lim
n→∞

P n =









1/8 3/8 1/4 1/4
1/8 3/8 1/4 1/4
1/8 3/8 1/4 1/4
1/8 3/8 1/4 1/4









.

HOW DO WE FIND THESE LIMITS WHEN THEY EXIST?

Once we know limn→∞
P n = W , where W has all rows the same, we can use this fact to

actually compute W and provide an interpretation for the common row vector of W . This
is taken up in the next theorem.

Theorem: Let P be a regular transition matrix for a finite state space Markov chain with
state space S = {1, 2, 3, ..., r} and assume that limn→∞

P n = W, with common row w. Then
the r-by-r system of linear equations given by xP = x has a unique probability row vector
solution, and this solution is the common row w. Furthermore, if v is an arbitrary probability
row vector of length r, then

lim
n→∞

vP n = w,
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where w is the common row vector of W . Hence the long run probability of being in state
y, namely

r
∑

x=1

vxP
n(x, y),

is approximately wy for all y = 1, 2, ..., r no matter what initial probability distribution
v = [v1, ..., vr] we use. In addition, if w is the common row vector of W , then we also have

wP n = w,

for any n ≥ 0. Since the probability of being in x is wx for all times n = 0, 1, 2, ..., the chain
is in equilibrium if we start with initial distribution w.

Important Fact: Since w is the unique probability vector satisfying x = xP where P is
regular and finite, we can use this to solve for w, and hence compute

lim
n→∞

P n(u, v)

for all u, v = 1, 2, ..., r, since this limit equals wv = vth term in w. That is, x = xP is an r
by r system of linear equations in the variables x1, ..., xr and the solution is the probability
vector w.

Example: Consider the Markov chain with transition matrix

P =





1/2 1/4 1/4
1/2 0 1/2
1/4 1/4 1/2





and state space S = {1, 2, 3}. Then

P 2 =





7/16 3/16 3/8
3/8 1/4 3/8
3/8 3/16 7/16





so P is regular and limn→∞
P n = W exists. To find w we solve xP = x subject to x being a

probability vector, i.e. x1 + x2 + x3 = 1 and all xi ≥ 0. Then

x1/2 + x2/2 + x3/4 = x1

x1/4 + 0 × x2 + x3/4 = x2

x1/4 + x2/2 + x3/2 = x3.

Solving this 3 by 3 linear system we get w = x = [2/5, 1/5, 2/5] and hence limn→∞
P n(x, y) =

2/5 for y = 1 and 3, and limn→∞
P n(x, y) = 1/5 for y = 2.

Remark: For nonnegative ergodic chains, the fundamental limit theorem may fail, as can
be seen when

P =

[

0 1
1 0

]

.

Then the chain is ergodic, but

P n =

[

1 0
0 1

]

for n even and P n =

[

0 1
1 0

]

for n odd.

However, for ergodic Markov chains with finite state space there is a unique stationary
probability vector w such that wP = w. That is, we have the following theorem.
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Theorem 1. Let P be the transition matrix for an ergodic Markov chain. Then there is a

unique probability vector w such that w = wP .

Hence, using w as the initial distribution of the chain, the chain has the same distribution
for all times since w = wP n for any n ≥ 1. For the example we’ve been using of a chain that
is ergodic but not regular, w = [1/2, 1/2].

For a regular Markov chain, the initial distribution w which satisfies

wP n = w

can be interpreted as the long run probability vector for being in the various states, i.e.

lim
n→∞

pn(i, j) = wj for j = 1, 2, ..., r

when w = [w1, . . . , wr]. However, the limits of the individual n step probabilities do not
necessarily exist for ergodic chains. However, the following averages do hold:

lim
n→∞

n
∑

k=0

pk(i, j)

n + 1
= wj for i, j = 1, 2, ..., r,

where w = [w1, . . . , wr] is the stationary probability vector for P . This follows by using the
following result, which is a weak law of large numbers for Markov chains.

Theorem 2. Let w be the stationary initial distribution of an ergodic Markov chain. For

m = 0, 1, 2, . . . , let Ym = 1 if the mth step is in state j and zero otherwise. Let

Hn
j = (Y0 + · · · + Yn)/(n + 1) = average # of times in state j in the first n + 1 steps .

Then, for every ǫ > 0
lim

n→∞

P (|Hn
j − wj | > ǫ) = 0,

independent of the starting distribution.

Exercises:

1. Consider a Markov chain transition matrix

P =





1/2 1/3 1/6
3/4 0 1/4
0 1 0



 .

(a) Show the this is a regular Markov chain.

(b) If the process is started in state 1, find the probability that it is in state 3 after
two steps.

(c) Find the limiting probability vector w.

(d) Find limn→∞
pn(x, y) for all x, y ∈ S. Why do you know these limits exist?

2. Find the fixed stationary probability vector for

P =





3/4 1/4 0
0 2/3 1/3

1/4 1/4 1/2



 .

3. Consider the Markov chain on S = {0, 1, 2, 3, 4} which moves a step to the right with
probability 1/2 and to the left with probability 1/2 when it starts at 1, 2, 3. If it is at
0, then assume it moves to 1 with probability 1 and if it as at 4 it moves to 3 with
probability 1. Is this chain ergodic? Is it regular?
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