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PART I Preliminaries

1 Markov chains and Markov processes

This section serves several purposes. To prepare the reader for the construction issues of

the exclusion process that will be addressed in Section 2, we discuss here the construction of

countable state Markov chains, first in discrete and then in continuous time. The treatment

is far from complete, so prior familiarity with these topics is necessary. Motivated by these

examples, in Section 1.3 we discuss the general definition of a Markov process as a family

of probability measures {P x} on path space, indexed by initial states x. A brief section

introduces Poisson processes which are a key building block of interacting Markov processes.

The last section on harmonic functions discusses the coupling technique for Markov chains

and proves some results for later use.

1.1 Discrete-time Markov chains

A stochastic process in most general terms is a collection of random variables {Xj : j ∈ J}
defined on a probability space (Ω,F , P ), indexed by some index set J . If the stochastic

process represents the temporal evolution of some random system, the index set is a discrete

or continuous set of time points, for example J = Z+ = {0, 1, 2, . . .} or J = R+ = [0,∞).

However, much more exotic index sets are quite natural. For example, for a point process

on the Euclidean space Rd, J would be the collection of all Borel subsets of Rd.

The key feature of the definition is that the random variables Xj are defined on a common

probability space. This enables us to talk about probabilities of events that involve several

or even infinitely many variables simultaneously. This is what the theory is all about.

Among the first stochastic processes one meets is the discrete-time, countable state space

Markov chain with time-homogeneous transition probabilities. Let S be a finite or count-

able set, the state space of the process. A stochastic matrix is a matrix (p(x, y))x,y∈S of

nonnegative numbers that satisfy∑
y∈S

p(x, y) = 1 for all x ∈ S. (1.1)

If S is infinite, the matrix p(x, y) is an infinite matrix. Suppose {Xn : n ∈ Z+} are random

variables defined on a probability space (Ω,F , P ). ThenXn is a Markov chain with transition

probability p(x, y) if, for all n ≥ 0 and all choices of states x0, x1, . . . , xn−1, x, y ∈ S,

P [Xn+1 = y |Xn = x,Xn−1 = xn−1, Xn−2 = xn−2, . . . , X0 = x0] = p(x, y). (1.2)
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This condition makes sense for all x0, x1, . . . , xn−1, x for which the conditioning event has

positive probability. Condition (1.2) expresses the idea that, given the present state x, the

future evolution is entirely independent of the past evolution x0, x1, . . . , xn−1. This notion

is called the Markov property. Time homogeneity is the property that the right-hand side of

(1.2) does not depend on n.

Sometimes one may be faced with the task of using definition (1.2) to check that a given

process is Markovian. But the more natural question goes the other way around. Given a

stochastic matrix p(x, y) and an initial state x0 ∈ S, does there exist a Markov chain Xn

with transition probability p(x, y) and such that X0 = x0 almost surely? This question is

nontrivial because we are asked to construct an infinite collection of random variables Xn

that are in a special relationship with each other.

To get finitely many random variables (X0, . . . , Xm) with the required relationship, we

answer immediately as follows. Let Ω = Sm+1 be the space of (m+1)-vectors with entries in

S, and let F be the collection of all subsets of Ω. For each ω = (s0, s1, . . . , sm) ∈ Ω, define

its probability by

P (ω) = 1{x0}(s0)p(s0, s1)p(s1, s2) · · · p(sm−1, sm). (1.3)

Define the random variables by Xi(ω) = si for 0 ≤ i ≤ m. The Markov property (1.2) for

0 ≤ n < m is built into the model.

Analogously, it is natural to construct the infinite process (Xn)0≤n<∞ on the sequence

space Ω = SZ+ , whose elements are infinite sequences ω = (s0, s1, s2, . . .) from S, and

take again the coordinate random variables Xn(ω) = sn. The product σ-algebra F on Ω

is generated by cylinder sets. Cylinder sets are events that constrain only finitely many

coordinates. With a countable state space it suffices to consider sets of the type

{ω : (s0, . . . , sm) = (u0, . . . , um)} = {ω : X0(ω) = u0, . . . , Xm(ω) = um}.

Let F0 be the class of such sets obtained by letting (u0, . . . , um) vary over all finite vectors

with S-valued entries.

But now it is impossible to explicitly write down the probability of every event in F .

Extending formula (1.3) to an infinite sequence ω = (sn)0≤n<∞ is useless because the answer

would be 0 in most cases. Ω is now an uncountable space so we cannot expect to define a

measure on it by giving the values of singletons P{ω}.
We can write down probabilities of cylinder events, and this is the first step towards a

solution of the construction problem. Define a function P x on F0 by

P x{X0 = u0, X1 = u1, . . . , Xm = um} = 1{x}(u0)p(u0, u1)p(u1, u2) · · · p(um−1, um). (1.4)

The second step comes from an extension theorem, which says that consistent finite-dimen-

sional distributions always come from a measure on the infinite-dimensional space. We state

Kolmogorov’s extension theorem in a form sufficiently general for our needs.
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Theorem 1.1 Kolmogorov’s Extension Theorem. Suppose S is a complete separable

metric space, I = {i1, i2, i3, . . .} a countable index set, and Ω = SI the space of functions

ω from I into S. Let F be the product σ-algebra on Ω, which is by definition the smallest

σ-algebra that contains all sets of the type {ω : ω(i) ∈ B} for Borel sets B ⊆ S and i ∈ I.
Suppose that for each n we are given a probability measure µn on the space Sn. Assume

that the collection {µn} is consistent in this sense: for each n and Borel set A ⊆ Sn,

µn+1{(s1, . . . , sn+1) ∈ Sn+1 : (s1, . . . , sn) ∈ A} = µn(A).

Then there exists a probability measure P on (Ω,F) such that for all finite n,

µn(A) = P{ω ∈ Ω : (ω(i1), . . . , ω(in)) ∈ A}.

Kolmogorov’s theorem guarantees that for each starting state x, a probability measure

P x exists on the infinite product space such that cylinder probabilities are given by (1.4). If

we want the initial state X0 to be random with a distribution µ, we put on Ω the measure

P µ defined by P µ(A) =
∑

x µ(x)P x(A) for events A ∈ F . Thus a Markov process with

transition probability p(x, y) exists for every choice of intial distribution µ.

1.2 Continuous-time Markov chains

Next we construct a Markov chain Xt in continuous time 0 ≤ t <∞, but still on a countable

state space S. Since S is countable, the chain has to move in jumps, it cannot move contin-

uously. Thus the evolution must be of the following form: a random amount of time spent

in a state x, a jump to a new randomly chosen state y, a random amount of time spent in

state y, a jump to a randomly chosen state z, and so on. Given an initial state, a description

of the process has to provide (1) the probability distributions of the random holding times

at different states; and (2) the mechanism for choosing the next state when a jump occurs.

(1) The Markov property stipulates that the distribution of the time till the next jump

can only depend on the current location x. It cannot depend on the time already spent at x.

This memoryless property forces the waiting time at x to be exponentially distributed, and

we let c(x)−1 be its mean. Then c(x) is the rate of jumping from state x. Whenever the chain

is at x, the remaining time T before the next jump has exponential tail P [T > t] = e−c(x)t.

(2) When the chain jumps, the Markov property dictates that the choice of next state

depends only on the current state x. Thus the jumps are described by a stochastic matrix

p(x, y) where p(x, y) is the probability that the next state after x is y.

This suggests that to construct a continuous-time Markov chain Xt with parameters c(x)

and p(x, y), we take a discrete-time Markov chain Yn with transition matrix p(x, y), and
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adjust the holding times to produce the correct exponentially distributed times with means

c(x)−1.

Let x ∈ S be a given initial state. Let (Ω,H,Px) be a probability space on which

are defined a discrete-time Markov chain Yn with transition matrix p(u, v) and initial state

x, and independently of (Yn), a sequence of exponentially distributed i.i.d. random vari-

ables (τj)0≤j<∞ with common mean Eτj = 1. To construct such a probability space, let

(Ω1,H1, P
x
1 ) be a probability space for (Yn) and (Ω2,H2, P2) a probability space for (τj), and

take (Ω,H,Px) to be the product probability space:

(Ω,H,Px) = (Ω1 × Ω2,H1 ⊗H2, P
x
1 ⊗ P2).

The sequence of states that the continuous-time chain Xt visits is x = Y0, Y1, Y2, Y3, . . .

Define the holding times by σn = c(Yn)−1τn. Given Yn, the variable σn is independent of

(σk, Yk)0≤k≤n−1 and has exponential distribution with mean c(Yn)−1. Now define T0 = 0 and

Tn = σ0 + · · ·+ σn−1 for n ≥ 1, and then

Xt = Yn for Tn ≤ t < Tn+1, for n = 0, 1, 2, . . . (1.5)

In words, Xt spends time σn at state Yn, and then jumps to state Yn+1. Xt is defined for all

times 0 ≤ t <∞ if Tn ↗∞ as n↗∞. This happens almost surely if for example there is

a constant C0 such that c(x) ≤ C0 for all x ∈ S. We assume this throughout our discussion.

Note that in (1.5) we specifically chose the path t 7→ Xt to be right-continuous.

This construction can be repeated for each starting state x. Define the transition prob-

ability by pt(x, y) = Px[Xt ∈ y]. One can prove the following property for all time points

0 ≤ t0 < t1 < t2 < · · · < tn and states x0, x1, x2, . . . , xn:

Px[Xt0 = x0, Xt1 = x1, . . . , Xtn−1 = xn−1, Xtn = xn]

= pt0(x, x0)pt1−t0(x0, x1) · · · ptn−tn−1(xn−1, xn).
(1.6)

See Chapter 5 in [29] for a proof. (1.6) implies the Markov property, namely that

Px[Xtn = xn |Xtn−1 = xn−1, Xtn−2 = xn−2, . . . , Xt0 = x0] = ptn−tn−1(xn−1, xn) (1.7)

whenever the conditioning makes sense.

In Section 1.1 the discrete-time chainXn was constructed on the sequence space Ω = SZ+ ,

whose sample points are the paths of the process. We do the same for the continuous-time

chain. Let DS be the space of functions ξ from [0,∞) into S with the property that at each

t ∈ [0,∞), ξ is continuous from the right, and has a limit from the left. Precisely, at each

t ∈ [0,∞),

ξ(t) = lim
s↘t

ξ(s), and the limit ξ(t−) = lim
s↗t

ξ(s) exists. (1.8)
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Such functions are called RCLL functions, and also cadlag functions (the corresponding

French acronym).

Let F be the σ-algebra on DS generated by the coordinate mappings ξ 7→ ξ(t), t ≥ 0. We

can think of X· = (Xt : 0 ≤ t < ∞) as a DS-valued random variable defined on (Ω,H,Px),

and let P x be its distribution. Then P x is the probability measure on (DS,F) defined by

P x(A) = Px{X· ∈ A}

for events A ∈ F . This defines a family {P x} of probability measures on DS, indexed by

states x ∈ S. Ex stands for expectation under the measure P x. The transition probability

can be expressed as

pt(x, y) = P x[ξ(t) = y]. (1.9)

We wish to express the simple Markov property (1.7) in a more abstract and powerful

form. Let {θt : t ≥ 0} be the shift maps on the path space DS, defined by θtξ(s) = ξ(t+ s).

The effect of the map θt is to restart the path at time t. For an event A ∈ F , the inverse

image

θ−1
t A = {ξ ∈ DS : θtξ ∈ A}

is the event “A happens from time t onwards.” Let Ft = σ{ξ(s) : 0 ≤ s ≤ t} be the σ-algebra

on DS generated by coordinates up to time t. Then for all events A ∈ F and all x ∈ S,

P x[ θ−1
t A | Ft ](ξ) = P ξ(t)(A) (1.10)

for P x-almost every ξ. The object on the left-hand side is the conditional probability of

an event that concerns the future from time t onwards, conditioned on the past up to time

t. It is a random variable on the space DS, in other words a measurable function of a

path ξ which we indicated explicitly. Measurability of x 7→ P x(A) on the right-hand side is

automatic because on a countable space, all functions are measurable. To derive (1.10) from

(1.6), check Ex[1B · 1A ◦ θt] = Ex[1B · P ξ(t)(A)] first for cylinder events A ∈ F and B ∈ Ft,

and then extend to all events by the π-λ-theorem A.1.

Markov property (1.10) expresses the idea that conditioning on the entire past and looking

forward from time t onwards amounts to restarting the process, with the current state ξ(t)

as the new initial state.

As the last issue, we look at the infinitesimal behavior of the process. In countable state

spaces one can express everything in terms of point probabilities [as in (1.9) for example], but

in more general spaces this is no longer possible. The alternative is to look at expectations

of functions on the state space, so we adopt this practice now.

Define a linear operator L on bounded functions f on S by

Lf(x) = c(x)
∑
y∈S

p(x, y)[f(y)− f(x)]. (1.11)
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This operator encodes the jump rules of the chain, and reads as follows: starting from state

x, the next jump arrives at rate c(x), and when the jump happens, the new state y is

selected with probability p(x, y). This jump causes the value of f to change by f(y)− f(x).

Rigorously speaking, Lf(x) is the infinitesimal expected change in f(ξ(t)), in the sense of

the next theorem. L is called the generator, or the infinitesimal generator, of the Markov

chain.

Theorem 1.2 Assume c(x) ≤ C0 for all x ∈ S and let f be a bounded function on S. First,

we have the strong continuity at t = 0,

lim
t→0

sup
x∈S

|Ex[f(ξ(t))]− f(x)| = 0. (1.12)

Second, the expectation Ex[f(ξ(t))] can be differentiated with respect to t at t = 0, uniformly

in x ∈ S. Precisely,

lim
t→0

sup
x∈S

∣∣∣∣Ex[f(ξ(t))]− f(x)

t
− Lf(x)

∣∣∣∣ = 0. (1.13)

We leave the proof of Theorem 1.2 as an exercise, because in Section 2.3 we go through

the details of the same result for the more complicated case of the exclusion process. This is

a valuable exercise, because it requires some basic estimation in the simplest of situations.

The infinitesimal rates can be expressed in terms of a matrix Q = (q(x, y))x,y∈S defined by

q(x, y) = c(x)p(x, y) for x 6= y and q(x, x) = −
∑

y:y 6=x q(x, y). Even if originally p(x, x) > 0

so that jumps from x to x are permitted, Q ignores this possibility and records only the

rates of jumps to genuinely new states. The generator can be equivalently expressed as

Lf(x) =
∑
y∈S

q(x, y)[f(y)− f(x)]. (1.14)

Combining c(x)p(x, y) into a single factor q(x, y) represents a change in perspective. Earlier

the chain moved in two stages: first the random clock rings at rate c(x), and then a new

state y is selected with probability p(x, y). We can equivalently attach to each possible move

x y y (y 6= x) a Poisson clock with rate q(x, y), and undertake that jump whose clock rings

first. After the jump all clocks are reset. The equivalence of these descriptions follows from

properties of Poisson point processes (see Proposition 1.5 below).

We can also write Lf = Qf when we think of f = (f(x))x∈S as a column vector, and

interpret Qf as matrix multiplication. In particular, taking f = 1{y} in (1.13) gives

d

dt
pt(x, y)

∣∣∣∣
t=0

= q(x, y).

9



1.3 General definitions for Markov processes

Motivated by the continuous-time Markov chain example, we now state some general defini-

tions. Let Y be a metric space, and DY the space of RCLL functions ω from [0,∞) into Y .

Measurability on Y will mean Borel measurability, and on DY with respect to the coordinate

σ-algebra F . In case Y is separable, F is the Borel σ-algebra of a separable metric on DY

(see Section A.2.2). On the space DY , let X· = (Xt : t ≥ 0) be the coordinate process defined

by Xt(ω) = ω(t), and Ft = σ{Xs : 0 ≤ s ≤ t} the σ-algebra generated by coordinates up to

time t. The shift maps θt : DY → DY are defined by θtω(s) = ω(s+ t).

Definition 1.3 A Markov process is a collection {P x : x ∈ Y } of probability measures on

DY with these properties:

(a) P x{ω ∈ DY : ω(0) = x} = 1.

(b) For each A ∈ F , the function x 7→ P x(A) is measurable on Y .

(c) P x[θ−1
t A|Ft](ω) = P ω(t)(A) for P x-almost every ω, for every x ∈ Y and A ∈ F .

Requirement (a) in the definition says that x is the initial state under the measure P x.

Requirement (b) is for technical purposes. Requirement (c) is the Markov property. We

write Ex for expectation under the measure P x.

To start the process with a distribution µ other than a point mass δx, put on DY the

measure P µ defined by

P µ(A) =

∫
Y

P x(A)µ(dx) for A ∈ F .

The transition probability p(t, x, dy) is defined for t ≥ 0, x ∈ Y , and Borel sets B ⊆ Y by

p(t, x, B) = P x{Xt ∈ B}. (1.15)

The Chapman-Kolmogorov equations

p(s+ t, x, B) =

∫
Y

p(s, y, B) p(t, x, dy) (1.16)

are a consequence of the Markov property.

For bounded measurable functions f on Y and t ≥ 0, define a new function S(t)f on Y

by

S(t)f(x) = Ex[f(Xt)] =

∫
Y

f(y) p(t, x, dy). (1.17)

Measurability of S(t)f follows from part (b) of Definition 1.3. Define the supremum norm

on functions by

‖f‖∞ = sup
x∈Y

|f(x)|. (1.18)
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Then

‖S(t)f‖∞ ≤ ‖f‖∞, (1.19)

so S(t) maps bounded measurable functions into bounded measurable functions. By the

linearity of integration,

S(t)(αf + βg) = αS(t)f + βS(t)g (1.20)

for scalars α, β and functions f , g. This says that S(t) is a linear operator on bounded

measurable functions. Finally, by the Markov property,

S(s+ t)f(x) = Ex[f(Xs+t)] = Ex[Ex{f(Xs+t) | Fs} ]

= Ex[EXs{f(Xt)} ] = Ex[S(t)f(Xs)] = S(s)S(t)f(x).

Thus the operators {S(t) : t ≥ 0} form a semigroup, which means that S(0) = I and

S(s+ t) = S(s)S(t). Property (1.19) says that the operators S(t) contract distances among

functions, so we call {S(t)} a contraction semigroup.

Note that the probability measures {P x} are uniquely determined by the semigroup

{S(t)}. First, the semigroup {S(t)} determines the transition probabilities p(t, x, dy) via

(1.17). Second, finite dimensional distributions under P x are computed as iterated integrals

of the transition probabilities:

Ex[Φ(Xt1 , Xt2 , . . . , Xtn)]

=

∫
Y

∫
Y

· · ·
∫

Y

Φ(x1, x2, . . . , xn)

p(tn − tn−1, xn−1, dxn) · · · p(t2 − t1, x1, dx2) p(t1, x, dx1)

for any time points 0 ≤ t1 < t2 < · · · < tn and any bounded function Φ product measurable

on Y n. Finally, the measure P x is uniquely determined by its finite dimensional distributions,

by the π-λ-theorem A.1.

There is a convenient freedom of language in the theory. Depending on which point of

view is fruitful for the occasion, one can talk about a Markov process in terms of random

variables Xt, in terms of a semigroup {S(t)} on a function space, or in terms of probability

measures {P x} on a path space.

Let Cb(Y ) be the space of bounded continuous functions on Y . The Markov process

{P x} is a Feller process if Cb(Y ) is closed under the semigroup action. In other words, if

S(t)f ∈ Cb(Y ) for all f ∈ Cb(Y ) and t ≥ 0. Equivalently, if the transition probability

p(t, x, dy) is weakly continuous as a function of x for each fixed t ≥ 0.

All our examples will be Feller processes. Since a probability measure on a metric space

is uniquely determined by the integrals of bounded continuous functions, (1.17) shows that

for a Feller process, the semigroup action on Cb(Y ) is sufficient to determine transition
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probabilities, and thereby the whole process. Thus for Feller processes it is convenient to

consider the semigroup on the space Cb(Y ), which is what we shall do.

A strengthening of the Markov property concerns the admission of certain random times

t in property (c) of Definition 1.3. A random variable τ : DY → [0,∞] is a stopping time if

{τ ≤ t} ∈ Ft for each t <∞. The σ-algebra of events known at time τ is

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft for all t <∞}. (1.21)

The random shift θτ on DY is defined by θτω(s) = ω(τ(ω) + s).

Proposition 1.4 (Strong Markov property) Suppose {P x} is a Feller process on DY , and τ

is a stopping time. Then

P x[ θ−1
τ A | Fτ ](ω) = P ω(τ)(A)

for P x-almost every ω such that τ(ω) <∞, for every x ∈ Y and A ∈ F .

Proof. We outline the somewhat lengthy proof. Check first that the result holds in case

the values of τ can be arranged in an increasing sequence. This argument is the same as

the proof of the strong Markov property for discrete-time Markov chains, see for example

Section 5.2 in [11].

To handle the general case, we prove that

Ex[1B1{τ<∞} · f ◦ θτ ] = Ex[1B1{τ<∞}E
Xτ (f)] (1.22)

for an arbitrary event B ∈ Fτ , and for a function f on DY of the form f(ω) =
∏m

i=1 fi(ω(ti))

where f1, . . . , fm ∈ Cb(Y ) and 0 ≤ t1 < · · · < tm. Let us argue why this suffices for the

conclusion. By taking bounded limits of the functions fi we can extend the validity of (1.22)

to f = 1A for cylinder events of the type

A = {ω ∈ DY : ω(t1) ∈ A1, . . . , ω(tm) ∈ Am}

for closed sets Ai ⊆ Y . Such events form a π-system and generate F . The class of events A

such that (1.22) is valid for f = 1A is a λ-system. Thus by the π-λ-theorem (Theorem A.1),

(1.22) is valid for f = 1A for all A ∈ F .

Now to prove (1.22). Use the Feller continuity of the transition probability to check, by

induction on m, that Ex(f) is a bounded continuous function of x. Set τn = 2−n([2nτ ] + 1).

Check that τn is a stopping time, {τn < ∞} = {τ < ∞}, that τn ↘ τ as n → ∞, and

Fτ ⊆ Fτn . We already know the conclusion for discrete stopping times, hence (1.22) is valid

for τn:

Ex[1B1{τ<∞} f ◦ θτn ] = Ex[1B1{τ<∞}E
Xτn (f)]. (1.23)

Let n → ∞ and check that (1.23) becomes (1.22) in the limit. This follows from the right-

continuity of the paths ω.

12



1.4 Poisson processes

Poisson processes on [0,∞) are central examples of continuous-time Markov chains, and also

a building block of the interacting processes we construct in Section 2.

A homogeneous Poisson process with rate r ∈ (0,∞) is a Markov chain Nt on the state

space Z+ = {0, 1, 2, 3, . . .} of nonnegative integers, whose rate matrix Q is given by q(j, j +

1) = r and q(j, j) = −r for all j ∈ Z+. In words, Nt marches upward one step at a time,

and the waiting time between each step is exponentially distributed with mean r−1.

To construct Nt by the method of the previous section, introduce a deterministic, discrete

time chain Yj = j, and holding times {σj} which are now i.i.d. exponential with mean r−1.

Set again Tn = σ0 + · · ·+ σn−1. With initial state N0 = 0, (1.5) becomes

Nt =
∞∑

n=0

n · 1[Tn,Tn+1)(t) =
∞∑

n=1

n∑
j=1

1[Tn,Tn+1)(t) =
∞∑

j=1

∞∑
n=j

1[Tn,Tn+1)(t)

=
∞∑

j=1

1[Tj ,∞)(t) =
∞∑

j=1

1(0,t](Tj).

The last formulation suggests a different point of view. Regard the {Tj} as random points on

(0,∞), and letNt be the number of these points in the interval (0, t]. A natural generalization

is to define the random counting measure N(·) by

N(B) =
∞∑

j=1

1B(Tj) (1.24)

for Borel sets B ⊆ (0,∞). Then Nt = N(0, t] is the special case where B = (0, t]. The

process {N(B) : B ∈ B(0,∞)} is uniquely determined by these two properties:

(a) Let |B| denote the Lebesgue measure of B. If |B| <∞, N(B) is Poisson distributed

with mean r|B|, in other words

P [N(B) = k] =
e−r|B|(r|B|)k

k!
, k = 0, 1, 2, . . .

While if |B| = ∞, P [N(B) = ∞] = 1.

(b) For pairwise disjoint Borel sets B1, B2, . . . , Bm, the random variables N(B1), N(B2),

. . . , N(Bm) are independent.

For a proof that {N(B)} defined by (1.24) has the above properties, see Section 4.8 in

[29]. This makes N(·) into a Poisson random measure with mean measure r times Lebesgue

measure.
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We give an alternative construction of {N(B)} that is useful for many proofs. This

construction satisfies immediately properties (a)–(b) above. It works for arbitrary σ-finite

mean measures on general spaces, which the “renewal definition” (1.24) does not do.

Let (0,∞) = ∪∞i=1Ui be a decomposition of (0,∞) as a union of pairwise disjoint, bounded

intervals. For each i, let {wi
k}1≤k<∞ be i.i.d. random variables, uniformly distributed in the

interval Ui, and such that all the random variables {wi
k}1≤i,k<∞ are independent. Let {Ki}

be independent Poisson distributed random variables, independent of the {wi
k}, with means

EKi = r|Ui|. The random point set that gives the Poisson process is the set

T = {wi
k : i = 1, 2, 3, . . . , 1 ≤ k ≤ Ki},

or in terms of the random counting measure,

N(B) =
∞∑
i=1

Ki∑
k=1

1B(wi
k). (1.25)

We shall alternate freely between different points of view of the Poisson process on (0,∞):

as an ordered sequence of jump times 0 < T1 < T2 < T3 < · · · , as the random set T =

{T1, T2, T3, . . .}, or as the counting function Nt = |T ∩ (0, t] |. In Section 2 Poisson processes

on (0,∞) serve as the random clocks in the construction of the exclusion process. These

basic properties will be needed.

Proposition 1.5 (a) Suppose {Tj} is a family of mutually independent Poisson point pro-

cesses on (0,∞) with rates rj, respectively, and r =
∑
rj <∞. Let T = ∪jTj. Then T is a

Poisson point process with rate r. For any time point 0 < s <∞, the first point of T after

s comes from Tj with probability rj/r.

(b) Let T be a Poisson point process with rate r, and let {pi} be a probability distribution

on N. To each point t ∈ T , assign independently a mark Yt ∈ N with probabilities P [Yt =

i] = pi. Set Ti = {t ∈ T : Yt = i}. Then {Ti} are mutually independent Poisson point

processes with rates {pir}.

The proof of Proposition 1.5 as left as an exercise. The Feller continuity of a single

Poisson process N(t) is immediate because its state space Z+ has the discrete topology.

Later we need to consider a countably infinite family N̄(t) = {Ni(t) : i ∈ I} of Poisson

processes, indexed by a subset I of a some square lattice Zd. The state space of N̄(·) is ZI
+,

which is a Polish space with its product metric. Feller continuity is true again, and so in

particular the strong Markov property holds.

We conclude this section with an alternative construction of the continuous-time Markov

chain Xt of Section 1.2. This construction is better because it simultaneously constructs

14



the chains from all initial states on a single probability space. Such a simultaneous con-

struction of several processes is a coupling. This construction is the same as the graphical

representation of the exclusion process in Section 2, except that here there is no interaction.

The probability space is (Ω,H,P) on which are defined independent Poisson point pro-

cesses {T(x,y) : (x, y) ∈ S2, x 6= y} on (0,∞). The rate of T(x,y) is q(x, y) = c(x)p(x, y).

Perform the following mental construction. To each x ∈ S attach a time axis [0,∞), to

create the product space S × [0,∞). For each t ∈ T(x,y), create an arrow ((x, t), (y, t)) that

emanates from (x, t) and points to (y, t). For each initial state x, we define a path (t,Xx
t )

for 0 ≤ t < ∞ through the space S × [0,∞) that moves at rate 1 along a time axis, and

instantaneously jumps along any arrow it encounters (but only in the correct direction).

Given an initial state x, define the path Xx
t explicitly as follows: Set T0 = 0, y0 = x, and

Xx
0 = y0. Let T1 be the first time t when an arrow emanates from (y0, t), and suppose this

arrow points to (y1, t). Then define

Xx
t = y0 for T0 < t < T1, and Xx

T1
= y1.

Now repeat the same step. Let T2 be the first time t after T1 that an arrow emanates from

(y1, t), and suppose this arrow points to (y2, t). Then continue defining the evolution:

Xx
t = y1 for T1 < t < T2, and Xx

T2
= y2.

Continuing in this manner, we obtain a sequence of times 0 = T0 < T1 < T2 < T3 < · · ·
and states x = y0, y1, y2, y3, . . . with the property that no arrows emanate from (yi, t) for

Ti ≤ t < Ti+1, and ((yi, Ti+1), (yi+1, Ti+1)) is an arrow for each i. The path is defined by

Xx
t = yi for Ti ≤ t < Ti+1.

Proposition 1.6 The path Xx
t defined above is a Markov process. It has the following

property: After a jump to a state (say) x, the holding time in x is exponentially distributed

with mean c(x)−1 and independent of the past, and the next state y is selected with probability

p(x, y), independently of everything else.

Proof. We first prove that Xx
t is a Markov process. Let T = {T(x,y)} represent the entire

family of Poisson point processes. Let Ht be the σ-algebra of the Poisson processes on the

time interval (0, t]. Time shifts θs act on Poisson processes as they did on the path space

in Section 1.3. In terms of the counting function, θsNt = Ns+t. The effect on the random

measure or the random set is to restart the counting from time s:

θsN(t, u] = θsNu − θsNt = N(s+ t, s+ u], and θsT = {t− s : t ∈ T , t > s}.

Think of the construction of Xx
t as a family of maps Gt, so that Xx

t = Gt(x, T ) constructs

the state Xx
t from the inputs x (the initial state) and T . Let

pt(x, y) = P[Xx
t = y] = P[Gt(x, T ) = y].
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The construction of Xx
s+t can be done in two stages, first from time 0 to s, and then from s

to s+ t. This restarting of the construction can be expressed as Xx
s+t = Gt(X

x
s , θsT ). Hence

P[Xx
s+t = y |Hs](ω) = P[Gt(X

x
s , θsT ) = y |Hs](ω) = pt(X

x
s (ω), y).

The last step is a consequence of several points. Xx
s is Hs-measurable while θsT is inde-

pendent of Hs, because θsT depends only on Poisson points in (s,∞) and Poisson points

in disjoint sets are independent. We can apply a basic property of conditional expecta-

tions: if Y is B-measurable and σ(Z) is independent of B, then E[ϕ(Y, Z) | B] = g(Y ) where

g(y) = E[ϕ(y, Z)]. Then note that θsT has the same distribution as T .

The equation above implies that Xx
t is Markovian with transition probability pt(x, y),

because the past {Xx
u : 0 ≤ u ≤ s} is Hs-measurable.

Next we check by induction the second part of the statement of the Proposition. As in

the construction, suppose Xx
Tn

= yn. The construction from time Tn onwards is given by

Xx
Tn+t = Gt(yn, θTnT ). Tn is a stopping time for the Poisson processes, so by the strong

Markov property, θTnT is independent of HTn and distributed as T . This is because T is

a function of (Nt − N0 : t > 0), and hence independent of N0 by the Poisson construction.

The state yn is HTn-measurable, so the restarted Poisson processes θTnT are independent of

that too.

Let z = yn. Apply Proposition 1.5(a) to the Poisson processes {θTnT(z,y) : y ∈ S} and

θTnTz = ∪yθTnT(z,y) restarted at time Tn. θTnTz has rate c(z), so Tn+1 − Tn has exponential

distribution with mean c(z)−1. The arrow that emanates from (z, Tn+1) points to (y, Tn+1)

if the first jump time came from θTnT(z,y), which happens with probability p(z, y).

1.5 Harmonic functions for Markov chains

This section introduces the important coupling technique for Markov chains, and collects

results about harmonic functions needed later. For a stochastic matrix p(x, y), the m-step

transition probabilities p(m)(x, y) are obtained from the mth power of the matrix, inductively

by

p(m)(x, y) =
∑
z∈S

p(m−1)(x, z)p(z, y).

A function h on S is harmonic for the transition p(x, y) if h(x) =
∑

y p(x, y)h(y) for all

x, and the sum on the right is defined. Then by induction on n,

h(x) = Ex[h(X1)] = Ex[h(Xn)]

for the discrete-time chain Xn with transition p(x, y).
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In general, a coupling of two stochastic processes Xn and Yn is a realization of the two

processes on the same probability space. One studies the joint process (Xn, Yn) to learn

something about the marginal processes. A coupling is successful if with probability 1 the

processes Xn and Yn eventually stay together. In other words, there exists an almost surely

finite random N such that Xn = Yn for all n ≥ N .

Lemma 1.7 Suppose that two copies of the Markov chain with transition p(x, y) can be

coupled successfully for any pair of starting states (x, y). Then every bounded harmonic

function for this transition is constant.

Proof. Let h be bounded harmonic, and fix two states x, y. We shall couple two versions of

the Markov chain, one started at x and the other at y, to show that h(x) = h(y). Let (Xn, Yn)

be a successful coupling with starting state (X0, Y0) = (x, y), defined on some probability

space (Ω,F ,P). Let N(ω) be the a.s. finite random time such that Xn(ω) = Yn(ω) for

n ≥ N(ω). Since both Xn and Yn are Markov chains with transition p(u, v),

|h(x)− h(y)| = |Ex[h(Xn)]− Ey[h(Xn)]|
= |E[h(Xn)]− E[h(Yn)]| = |E[h(Xn)− h(Yn)]| ≤ E|h(Xn)− h(Yn)|
≤ 2‖h‖∞P(Xn 6= Yn) ≤ 2‖h‖∞P(N > n).

Since N <∞ a.s., letting n↗∞ shows h(x) = h(y).

According to the standard Markov chain definition, a transition probability p(x, y) is

irreducible if for all states x and y there exists an m so that p(m)(x, y) > 0. For interacting

systems, the following more inclusive definitions of irreducibility are sometimes useful. The

first way to relax the definition is to require that for some m,

p(m)(x, y) + p(m)(y, x) > 0.

We can relax this further by permitting each step of the path from x to y to be traversed in

either direction.

For every pair of states x and y there exists a finite sequence

of states x = x(1), x(2), . . . , x(k) = y such that

p(x(j), x(j+1)) + p(x(j+1), x(j)) > 0 for j = 0, . . . , k − 1.

(1.26)

A discrete time random walk on the countable state space S = Zd is a Markov chain

Xn that can be represented as a sum Xn = x + ξ1 + · · · + ξn for i.i.d. step variables ξk.

Equivalently, the transition probability is translation invariant in the sense

p(x, y) = p(0, y − x), (1.27)

and then {p(0, x) : x ∈ S} is the step distribution.
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Theorem 1.8 Constants are the only bounded harmonic functions for a random walk on Zd

that is irreducible in the sense (1.26).

Proof. It suffices to construct a successful coupling started from (X0, Y0) = (x, y) for

each pair x 6= y such that p(x, y) > 0. Then h(x) = h(y) if p(x, y) + p(y, x) > 0, and

by the irreducibility assumption (1.26) any pair x, y can be connected by a finite sequence

x = x(1), x(2), . . . , x(k) = y such that h(x(j)) = h(x(j+1)). We may assume that p(0, 0) > 0,

for otherwise the original transition can be replaced by p̃(x, y) = 1
2
p(x, y) + 1

2
1{x=y} which

has the same harmonic functions as p(x, y).

Fix x 6= y such that p(x, y) > 0. The joint process (Xn, Yn) will be a Markov chain on

the state space

X = {(u, v) ∈ Zd × Zd : v − u is an integer multiple of y − x}

started from (x, y). Let β = p(0, 0)∧ p(x, y) ∈ (0, 1/2]. The upper bound of 1/2 comes from

p(0, 0) + p(0, y − x) ≤ 1.

Define the joint transition for u 6= v by

p((u, v), (u+ w, v + w)) = p(0, w) for w 6= 0, y − x,

p((u, v), (u, v + y − x)) = β,

p((u, v), (u+ y − x, v)) = β,

p((u, v), (u, v)) = p(0, 0)− β,

p((u, v), (u+ y − x, v + y − x)) = p(x, y)− β,

and for u = v by p((u, u), (u + w, u + w)) = p(0, w). The chain with these transitions stays

in X .

Let Bn be the integer defined by Yn − Xn = Bn(y − x). Then Bn is a Markov chain

on Z with transitions p(k, k ± 1) = β and p(k, k) = 1 − 2β for k 6= 0, and p(0, 0) = 1.

By the recurrence of one-dimensional simple symmetric random walk, eventually Bn will be

absorbed at 0, which is the same as saying that eventually Xn = Yn.

For a continuous-time Markov chain Xt, a function h is harmonic if h(x) = Exh(Xt) for

all starting states x and t ≥ 0. In the special case where all clocks ring at the same rate c, and

the new state is chosen according to a probability kernel p(x, y), the transition probability

pt(x, y) = P x[Xt = y] of the continuous-time chain can be written down explicitly:

pt(x, y) =
∞∑

n=0

e−ct(ct)n

n!
p(n)(x, y). (1.28)
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The index n in the sum represents the number of jumps that the chain has experienced up

to time t.

Exercise 1.1 Suppose Xt has transition probabilities given by (1.28). Show that a function

h is harmonic for Xt iff it is harmonic for the discrete-time transition p(x, y).

Theorem 1.8 and the above exercise give the following corollary.

Corollary 1.9 Suppose Xt has transition probabilities given by (1.28), and p(x, y) is trans-

lation invariant in the sense of (1.27) and irreducible in the sense of (1.26). Then every

bounded harmonic function for Xt is constant.

Finally, we check that certain limits are harmonic functions.

Lemma 1.10 Let Xt be a continuous-time Markov chain on a countable state space S, and

assume jump rates are uniformly bounded. Suppose there is a sequence of times tj ↗∞ and

a bounded function g such that the limit h(x) = limj→∞Exg(Xtj) exists for all x ∈ S. Then

h is a harmonic function, in other words h(x) = Exh(Xt) for all x ∈ S and t ≥ 0.

Proof. The generator of Xt is of the form

Lf(x) =
∑

y

c(x)r(x, y)[f(y)− f(x)]

where c(x) is the rate at which Xt jumps from state x, and r(x, y) is the probability of

choosing y as the next state. Assume r is a Markov transition, in other words
∑

y r(x, y) = 1

for each fixed x. The assumption is that c(x) ≤ c for a constant c. By introducing additional

“dummy” jumps from x to x, we can make all clocks ring at uniform rate c. Then the new

jump probabilities are

p(x, y) =

{
c−1c(x)r(x, y) if y 6= x

1− c−1c(x)(1− r(x, x)) if y = x.

The transition probability pt(x, y) of Xt can then be expressed as

pt(x, y) =
∞∑

n=0

e−ct(ct)n

n!
p(n)(x, y).

To show h(x) =
∑

y ps(x, y)h(y), first by boundedness and Chapman-Kolmogorov,∑
z

ps(x, z)h(z) = lim
j→∞

∑
z,y

ps(x, z)ptj(z, y)g(y)

= lim
j→∞

∑
y

ps+tj(x, y)g(y).
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Then ∣∣∣∣∣∑
y

ps(x, y)h(y)− h(x)

∣∣∣∣∣
≤ lim

j→∞

∑
y

|ps+tj(x, y)− ptj(x, y)| · |g(y)|

≤ lim
j→∞

‖g‖∞
∞∑

n=0

∣∣∣∣e−cs−ctj(cs+ ctj)
n

n!
− e−ctj(ctj)

n

n!

∣∣∣∣∑
y

p(n)(x, y)

≤ lim
j→∞

‖g‖∞
∞∑

n=0

e−ctj(ctj)
n

n!

∣∣∣∣e−cs

(
1 +

s

tj

)n

− 1

∣∣∣∣ .
To see that this last line tends to 0 as j ↗ ∞, think of the sum as Eφ(tj, Yj) where Yj is

Poisson(ctj) distributed, and φ(t, n) = |e−cs(1 + s/t)n − 1|. First check that φ(tj, Yj) → 0 in

probability by showing that

lim
j→∞

P{|Yj − ctj| ≥ δtj} = 0

for every δ > 0, and that, given ε > 0, there exists δ > 0 such that φ(t, n) ≤ ε if t >

δ−1 and |n − ct| ≤ δt. Second, since φ(t, n) ≤ ens/t + 1, direct computation shows that

supj E[φ(tj, Yj)
2] <∞. These suffice for Eφ(tj, Yj) → 0. We leave the details as exercise.

Exercise 1.2 Prove Theorem 1.2. The key is to decompose Ex[f(Xt)] according to how

many jumps the Markov chain experienced in (0, t].

Exercise 1.3 Prove Proposition 1.5 for Poisson processes.

Exercise 1.4 Fill in the details for the proof of Lemma 1.10. Look at a periodic example

to show that Lemma 1.10 is not necessarily true for a discrete-time Markov chain.

Exercise 1.5 Suppose p(x, y) is symmetric and translation invariant, in other words p(x, y) =

p(y, x) = p(0, y − x). Let Xt and Yt be independent copies of the continuous time Markov

chain with jump rates p(x, y). Let Zt = Xt − Yt. Prove that the process (Zt : t ≥ 0) has the

same distribution as the process (X2t : t ≥ 0). In other words, the difference Xt − Yt is the

same as the original process, run at twice the speed.

Hint: Let pt(x, y) be the common transition probability of Xt and Yt. Show that

P x,y [Zt1 = z1, Zt2 = z2, . . . , Ztn = zn]

= p2t1(x− y, z1) p2(t2−t1)(z1, z2) · · · p2(tn−tn−1)(zn−1, zn)

for any 0 ≤ t1 < t2 < · · · < tn, using induction on n.
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Notes

It is not possible to rigorously define models of stochastic processes without some measure

theory. Product measure spaces are especially important for probability theory because

the product construction corresponds to the probabilistic notion of independence. Sources

for the measure theory needed here are for example the appendix of [11], or any of the

standard real analysis textbooks, such as [17]. A proof of Kolmogorov’s Extension Theorem

for an arbitrary index set can be found in Chapter 12 of [10]. Section 1.5 is from Liggett’s

monograph [27]. The reader is referred to [6] for a comprehensive treatment of Poisson point

processes.
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2 Construction of the exclusion process

Assume given a transition probability p(x, y) on the lattice S = Zd, in other words nonneg-

ative numbers that satisfy
∑

y∈S p(x, y) = 1 for each x. Our standing assumptions are that

p(x, y) is

translation invariant: p(x, y) = p(0, y − x) (2.1)

and

finite range: there exists a finite set Bp ⊆ S such that p(0, x) = 0 for x /∈ Bp. (2.2)

We wish to construct a Markov process that corresponds to the following idea. Particles

are distributed on the points of S (we call these points sites) subject to the restriction that

no two particles occupy the same site. Each particle waits an exponentially distributed

random time with mean 1, independently of the other particles, and then attempts to jump.

If the particle is at x, it chooses a new site y with probability p(x, y). If site y is vacant,

this particle moves to y and site x becomes empty. If site y was already occupied, the jump

is cancelled and the particle remains at x. In either case, the particle resumes waiting for

another exponentially distributed random time, independent of the past and the rest of the

system, after which it attempts a new jump to a new randomly chosen target site y. All

particles are going through this cycle of waits and jump attempts. The random waiting

times and choices of target site are mutually independent and independent of the rest of

the system. The interaction between the particles happens through the exclusion rule which

stipulates that jumps to already occupied sites are not permitted. Without this rule all

the particles would be simply moving as independent Markov chains on S with jump rates

p(x, y).

Note that because the waiting time distribution is continuous, with probability one no

two particles ever attempt to jump at the same time, so no conflicts arise between two

particles attempting to jump to the same vacant site.

We can assume that p(0, 0) = 0. Otherwise we could define a new kernel by p̃(0, 0) = 0

and p̃(0, x) = p(0, x)/(1−p(0, 0)) for x 6= 0. This eliminates jump attempts from x to x that

have no effect on the configuration, and runs the process faster by a factor of (1− p(0, 0))−1.

We define the state of the system to keep track of the occupied and vacant sites. For

each x ∈ S, let η(x) = 1 if x is occupied, and η(x) = 0 if x is empty. Thus the state

is a configuration η = (η(x) : x ∈ S) of 0’s and 1’s, and the state space is the product

space X = {0, 1}S. The goal of this section is to rigorously construct a Markov process

ηt = (ηt(x))x∈S that operates according to the description given above. The state space X

is uncountable, so existence of this process does not follow from our earlier construction of

countable state Markov chains.
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2.1 Graphical representation of the exclusion process

Let S2
p = {(x, y) ∈ S2 : p(x, y) > 0} be the set of pairs of sites between which jump

attempts can happen. Let (Ω,H,P) be a probability space on which is defined a family

{T(x,y) : (x, y) ∈ S2
p} of mutually independent Poisson point processes on the time line

[0,∞). Poisson process T(x,y) is homogeneous with rate p(x, y). The jump times of T(x,y) are

the random times at which we will attempt to move a particle from x to y.

As explained in Section 1.4, we can switch freely between representing a Poisson process

as the random set T(x,y), as the random measure N(x,y)(B) = |T(x,y) ∩ B| for Borel sets

B ⊆ [0,∞), or as the counting function N(x,y)(t) = N(x,y)((0, t]).

Let

Tx =
⋃
y

T(x,y) and T ′
x =

⋃
y

(
T(x,y) ∪ T(y,x)

)
. (2.3)

Tx is the set of times when a particle attempts to jump out of x, if x is occupied. Tx is a

Poisson process of rate
∑

y p(x, y) = 1. T ′
x is the set of all times when a jump either in or

out of x can happen. T ′
x is a Poisson process of rate∑

y

(p(x, y) + p(y, x)) =
∑

y

p(x, y) +
∑

y

p(0, x− y) = 2,

where we used the translation invariance assumption.

According to Proposition 1.5, attaching the independent Poisson processes {T(x,y)} to

edges is equivalent to attaching a single Poisson point process Tx of rate 1 to each site x,

and then assigning each t ∈ Tx to a particular edge (x, y) with probability p(x, y). For our

discussion it is convenient to have the Poisson processes {T(x,y)} given at the outset. So

informally, instead of having one alarm clock at x and then flipping a p(x, y)-coin after the

clock rings, we attach clocks to all edges (x, y) and react whenever one of them rings.

Fix a sample point ω ∈ Ω, in other words a realization {T(x,y)} of the Poisson processes.

By discarding a set of P-probability zero, we may assume that

each T ′
x has only finitely many jump times in every bounded interval (0, T ], and

no two distinct processes T(x,y) and T(x′,y′) have a jump time in common.
(2.4)

Assume given an initial state η ∈ X.

The term “graphical representation” refers to the following space-time picture. Put the

lattice S = Zd on the horizontal axis. (It may be necessary to take d = 1 to make drawing

feasible!) To each x ∈ S attach a vertical time axis oriented upward. At each jump time

t of T(x,y), draw an arrow from (x, t) to (y, t). Put the initial particle configuration at level

t = 0 on the sites of S. After the process starts, all particles move vertically upward at

a steady rate 1. When a particle encounters an arrow at (x, t) pointing to (y, t), it moves
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instantaneously along the arrow from (x, t) to (y, t) in case y is vacant at time t (in other

words, if there is no particle at (y, t) blocking the arrow). This way each particle traces a

trajectory in the space-time picture, moving vertically upward at rate 1 and occasionally

sideways along an arrow.

A problem arises. Suppose we compute the value ηt(0) for some t > 0. This value is

potentially influenced by ηs(x), 0 ≤ s ≤ t, from all sites x that interacted with 0 during

the time interval (0, t]. This means those x for which T(x,0) or T(0,x) had a jump time during

(0, t]. But to know ηs(x), 0 ≤ s ≤ t, for these x, we have to consider what happened at all

sites y that interacted with any one of these x-sites. And so on. How does the construction

ever get off the ground? For the Markov chain we could wait for the first jump time before

anything happened. But now, if the initial state η has infinitely many particles, infinitely

many of them attempt to jump in every nontrivial time interval (0, ε).

The percolation argument

To get around this difficulty we use a percolation argument due to T. Harris. This guarantees

that for a short, but positive, deterministic time interval [0, t0], the entire set S decomposes

into disjoint finite components that do not interact during [0, t0]. In each finite component

the evolution ηt (0 ≤ t ≤ t0) can be constructed because only finitely many jump times need

to be considered.

For 0 ≤ s < t, let Gs,t be the undirected random graph with vertex set S and edge set

Es,t defined by

{x, y} ∈ Es,t iff T(x,y) or T(y,x) has a jump time in (s, t]. (2.5)

Each edge {x, y} is present in Gs,t with probability 1− e−(t−s)(p(x,y)+p(y,x)), independently of

the other edges. Quite obviously, as s is fixed and t increases edges are only added to the

graph, never removed.

The connection with the exclusion evolution is that in order to compute the evolution

ηs(x) for 0 ≤ s ≤ t, only those sites that lie in the same connected component as x in the

graph G0,t are relevant.

Lemma 2.1 If t0 is small enough, the random graph G0,t0 has almost surely only finite

connected components.

Proof. Let B∗ = Bp ∪ (−Bp), the symmetrized version of the set Bp in the finite range

assumption (2.2), R = maxx∈B∗ |x|∞ the radius and k∗ = |B∗| the cardinality of the set B∗.

By (2.2), T(x,y) cannot have any jump times unless y − x ∈ Bp. Hence if {x, y} ∈ E0,t then

necessarily y − x and x− y lie in B∗, and so |y − x|∞ ≤ R.
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We first show that if t0 > 0 is fixed small enough, then with probability 1 the connected

component containing the origin is finite.

Suppose a site y with |y|∞ ≥ L lies in the same connected component as 0. Then there

must exist an open path 0 = x0, x1, . . . , xm = y in the graph, and since each edge {xi, xi+1}
can span distance at most R, m ≥ L/R. A given sequence of sites 0 = x0, x1, . . . , xm such

that xi+1 − xi ∈ B∗ is an open path in the graph G0,t0 with probability

m−1∏
i=0

(
1− e−t0(p(xi,xi+1)+p(xi+1,xi))

)
≤ (1− e−2t0)m.

The number of possible paths 0 = x0, x1, . . . , xm starting at the origin is km
∗ , as each suc-

cessive vertex xi+1 must be chosen from among the k∗ elements of the set xi + B∗. Pick t0
small enough so that k∗(1− e−2t0) < 1. This choice is deterministic and positive. Then

∞∑
m=1

P[there is an open path of length m in the graph starting at 0]

≤
∞∑

m=1

km
∗ (1− e−2t0)m <∞.

By Borel-Cantelli, almost surely there is a finite upper bound on the length of the longest

open path starting at 0. And consequently there is a finite L such that 0 is not connected

to any vertex y such that |y|∞ ≥ L.

Finally, by the assumption (2.1) of translation invariance, the joint distribution of the

edge indicator variables 1[{x, y} ∈ E0,t0 ] is translation invariant. Consequently the probabil-

ity that a vertex x lies in an infinite connected component is the same for each x. By the

above proof, this probability is zero.

To construct the process ηt for 0 ≤ t ≤ t0, we imagine doing it separately in each finite

connected component of the graph G0,t0 . Ignoring everything outside a particular connected

component and considering only the time interval [0, t0] is by assumption (2.4) the same as

having only finitely many edges in the entire graph G0,t0 .

Construction with finitely many jump times

Suppose the finitely many jump attempts happen at times 0 < τ1 < τ2 < · · · < τn. Let

(x1, y1), (x2, y2), . . . , (xn, yn) be the pairs of sites such that τk ∈ T(xk,yk) for k = 1, . . . , n.

Recall that the initial state is η. Set

ηt = η0 for 0 ≤ t < τ1.
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If x1 is occupied and y1 is vacant at τ1− (this means: immediately before time τ1), move a

particle from x1 to y1 at time τ1, and so set

ητ1 = ηx1,y1
τ1− .

We introduced this notation: ηx,y is the state that results from η after interchanging η(x)

and η(y), in other words

ηx,y(z) =


η(y), z = x

η(x), z = y

η(z), z 6= x, y.

(2.6)

If x1 is vacant or y1 is occupied at τ1−, no change happens, and we set

ητ1 = ητ1−.

We have defined the process on the time interval [0, τ1].

The general step: Suppose the state ηt has been defined for 0 ≤ t ≤ τk. Define

ηt = ητk
for τk < t < τk+1.

If ητk+1−(xk+1) = 1 and ητk+1−(yk+1) = 0, set

ητk+1
= η

xk+1,yk+1

τk+1−

while if ητk+1−(xk+1) = 0 or ητk+1−(yk+1) = 1, set

ητk+1
= ητk+1−.

This step is repeated until the construction is done on the time interval [0, t0] for a

particular connected component. Since the connected component is finite, by assumption

(2.4) we reach time t0 after finitely many updating steps. Then this construction is repeated

for each connected component.

Construction for all time

Given an arbitrary initial configuration η, we can now construct the evolution ηt for 0 ≤
t ≤ t0, for almost every realization of the Poisson processes {T(x,y)}. Once the evolution is

constructed up to time t0, take the state ηt0 as the new starting state, and use the Poisson

processes restricted to the time interval (t0, 2t0]. Lemma 2.1 guarantees again that with

probability one, the connected components are finite for the random graph Gt0,2t0 , and thus

the construction can be extended from time t0 to 2t0. Continue this way, and conclude
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that the evolution ηt can be constructed for all time (0 ≤ t < ∞), for an arbitrary initial

configuration η, and for all but an exceptional P-null set of jump time processes {T(x,y)}.

We seem to have deviated from the description at the very beginning of this section. There

we specified that each particle waits an exponentially distributed time, and then attempts to

jump. However, in our construction the Poisson clocks T(x,y) are attached to directed edges

(x, y) between sites. This apparent difference can be cleared by the memoryless property of

the exponential distribution. Let 0 < T1 < T2 < T3 < · · · be the times of the jump attempts

experienced by a particle initially located at x0. Let xk be its location at time Tk, either the

new location after a successful jump, or the old location after a suppressed jump. The Tk’s

are stopping times for the Poisson processes. By the strong Markov property, the Poisson

processes start anew at time Tk independently of the past. The past includes the choices

of states x1, . . . , xk. So from the perspective of this particle, after time Tk the clocks T(xk,y)

ring at rates p(xk, y) independently of everything in the past. So it is as if the particle were

carrying his own clocks.

2.2 Stirring particle construction for the symmetric case

Suppose the jump probabilities are symmetric: p(x, y) = p(y, x). Then instead of arrows

in the graphical construction, we can use undirected edges. Start again by putting in the

vertical time axes {x} × [0,∞) for x ∈ S. Take a realization of mutually independent

Poisson processes {T{x,y}} indexed by unordered pairs {x, y} of distinct sites, with rate

p(x, y) = p(y, x) for T{x,y}. For each jump time t of T{x,y}, connect the space-time points

(x, t) and (y, t) with a horizontal undirected edge.

Let us say there is a path between (x, 0) and (y, t) in the space-time graph if there is a

sequence of times 0 = s0 < s1 < · · · < sk < sk+1 = t and sites x = x0, x1, . . . , xk = y such

that

(a) no horizontal edges touch the open vertical segments {xi} × (si, si+1) for 0 ≤ i ≤ k

and

(b) each {(xi, si+1), (xi+1, si+1)} for 0 ≤ i ≤ k − 1 is a horizontal edge.

The rules for a path leave no choices. Starting from (x, 0) = (x0, 0), the path proceeds

forward in time until it encounters the first horizontal edge {(x0, s1), (x1, s1)}, which forces

the path to jump to (x1, s1). Subsequently the path proceeds forward in time along the

segment {x1}× (s1, s2), until the edge {(x1, s2), (x2, s2)} forces the path to jump to (x2, s2).

And so on. Hence starting from (x, 0) and proceeding to level S ×{t}, the endpoint (y, t) is

uniquely determined, because there is only one path from (x, 0) to level S × {t}. Similarly

one can traverse the same path backwards in time, from (y, t) to (x, 0). These paths define

bijective maps between S × {0} and S × {t}.
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To construct the exclusion process ηs for 0 ≤ s ≤ t, place the initial particle configuration

on level S×{0}, and let the particles follow the paths to the level S×{t}. This has the effect

of swapping the contents of sites x and y at each jump time of T{x,y}. If x and y were both

empty, nothing happened. If x and y were both occupied, the particles at x and y traded

places, but no change occurred in the occupation variables η(x) and η(y). If x was occupied

and y empty, then the particle at x jumped to y. Or vice versa. This jump happened at

rate p(x, y) = p(y, x), as it should have. Since this representation swaps particles when both

sites are occupied, we call it the stirring representation.

We introduce notation for the backward paths. Xy
s ∈ S is the position after time s of a

walker who starts at (y, t) and follows the path from (y, t) down to level S×{0}. The walker

proceeds backward in time at rate 1, but jumps instantaneously across horizontal edges. He

reads his own time forward, so Xy
0 = y and his location in the space-time graph is actually

(Xy
s , t − s) for 0 ≤ s ≤ t. If the path connects (y, t) and (x, 0), then Xy

t = x. The stirring

representation can now be expressed as

ηt(y) = η0(X
y
t ). (2.7)

Notice for later use that the backward paths also represent the exclusion process with

rates p(x, y) = p(y, x). If we start an exclusion process with finitely many occupied sites

{y1, . . . , yn}, then the occupied set at time t is {Xy1
t , . . . , X

yn
t }.

2.3 Properties of the construction

To prove necessary measurability and continuity properties of the construction, we need to

be specific about the metrics on the various spaces. The state space X = {0, 1}S of the

exclusion process is metrized with the product metric

d(η, ζ) =
∑
x∈S

2−|x|∞ |η(x)− ζ(x)|. (2.8)

Convergence d(ηj, η) → 0 is equivalent to saying that, for any finite set A ⊆ S, there exists

j0 such that ηj(x) = η(x) for all x ∈ A and j ≥ j0. Under this metric X is a compact space.

DX is the space of X-valued right-continuous functions η· on [0,∞) with left limits. Let F
be the σ-algebra on DX generated by coordinate mappings. This is the same as the Borel

σ-algebra of the Skorokhod topology (Section A.2.2).

Think of the Poisson processes in terms of right-continuous counting functions ω =

(N(x,y)(·))(x,y)∈S2
p

where N(x,y)(t) = |T(x,y) ∩ (0, t]| counts the number of Poisson jump times.

The path N(x,y)(·) is an element of DZ+ . The value ω(t) = (N(x,y)(t))(x,y)∈S2
p

is an element of
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the product space U = Z
S2

p

+ . U is a Polish space under the product metric

dU(m,n) =
∑

(x,y)∈S2
p

2−|x|∞−|y|∞ |m(x,y) − n(x,y)| ∧ 1

where m = (m(x,y))(x,y)∈S2
p
, and similarly n, denote elements of U . The path ω = (ω(t) :

t ≥ 0) is an element of the space DU , metrized by the Skorokhod metric. This is defined

as in (A.4) with dU in place of ρ. The probability space of the Poisson processes is thus

(Ω,H,P) = (DU ,B(DU),P).

Let Ω0 be the set of paths ω that satisfy (2.4) and for which the random graphs Gkt0,(k+1)t0 ,

k = 0, 1, 2, . . . , have finite connected components. Ω0 is a Borel subset of DU and has

probability 1 (exercise).

In the previous section we constructed the exclusion process as a function of an initial

state η ∈ X and a sample point ω ∈ Ω0. We express this dependence on (η, ω) by writing

ηη
t (ω) for the state of the process at time t ≥ 0, and ηη

t (x;ω) for the occupation variable at

site x. The process with initial state η is denoted by ηη
· . The first item to check is that ηη

· (ω)

is an element of the path space DX .

Lemma 2.2 For (η, ω) ∈ X × Ω0, the function t 7→ ηη
t (ω) is right-continuous and has left

limits at all time points.

Proof. Fix a radius r > 0, and consider the cube B = {x ∈ S : |x|∞ ≤ r}. By (2.4), the

Poisson process ∪x∈BT ′
x contains only finitely many points in (t, T ) for any 0 ≤ t < T <∞.

Fix t, and pick δ > 0 so that ∪x∈BT ′
x has no jump times in (t, t + δ). Then no changes

happen in the cube B during time interval (t, t + δ), whence ηη
t (x;ω) = ηη

s (x;ω) for x ∈ B

and t ≤ s < t+ δ, and so

d(ηη
t (ω), ηη

s (ω)) ≤
∑

x:|x|∞>r

2−|x|∞ ≤
∞∑

n=r+1

2−n |{x : |x|∞ = n}|

≤
∞∑

n=r+1

2−n2d(2n+ 1)d−1.

The last expression can be made less than ε by fixing r large enough at the outset. This

shows that d(ηη
t (ω), ηη

s (ω)) → 0 as s↘ t.

Considering left limits, we cannot rule out the possibility of a jump time t ∈ T ′
x at some

site x. Then ηη
t−δ(x;ω) can differ from ηη

t (x;ω) for all small δ > 0. But for any site x, there

is a δx > 0 such that T ′
x has no jump times in (t − δx, t). Consequently ηη

s (x;ω) = ηη
u(x;ω)

29



for s, u ∈ (t− δx, t), and the limit ηη
t−(x;ω) = lims↗t η

η
s (x;ω) exists. Since convergence in X

is coordinatewise, this implies that the limit ηη
t−(ω) = lims↗t η

η
s (ω) exists.

Now that we know ηη
· (ω) is an element of DX , we need to check that it is continuous in

η and measurable in ω. Both will follow from the next lemma.

Lemma 2.3 The path ηη
· (ω) is a continuous DX-valued function of (η, ω) ∈ X × Ω0.

Proof. We sketch the proof and leave details as an exercise. We use the notation estab-

lished in Section A.2.2.

Fix (η, ω) ∈ X × Ω0. Fix an arbitrary cube A ⊆ S and T < ∞. Let k be such that

(k − 1)t0 < T ≤ kt0 where t0 is the number given by Lemma 2.1. There exists a finite set

B ⊆ S such that, if ζ = η on B, then ηζ
t (x;ω) = ηη

t (x;ω) for all x ∈ A and 0 ≤ t ≤ T .

Existence of such a B can be shown inductively on k. Let C(k−1)t0,kt0(x) denote the connected

component containing x in the graph G(k−1)t0,kt0 . If k = 1, take

B =
⋃
x∈A

C0,t0(x).

Suppose a finite B exists for k = n and any finite A. Set

A′ =
⋃
x∈A

Cnt0,(n+1)t0(x),

and take the set B corresponding to A′ and k = n. Thus a finite set B exists for A and

k = n + 1. The point of the inductive argument is that, if a state ηnt0 at time nt0 is

given, the evolution {ηt(x) : nt0 ≤ t ≤ (n + 1)t0} depends on ηnt0 only through the values

{ηnt0(y) : y ∈ Cnt0,(n+1)t0(x)}.
Let ε > 0. Let ω′ = (N ′

(x,y)(·)) be another element of Ω0. If δ > 0 is chosen small enough,

then s(ω, ω′) < δ guarantees that for some λ ∈ Λ, γ(λ) < ε and for all edges (x, y) incident

to the set B,

N(x,y)(t) = N ′
(x,y)(λ(t)) for 0 ≤ t ≤ T .

Shrink δ further if necessary so that d(η, ζ) < δ forces η = ζ on the set B.

Now we have, for (ζ, ω′) ∈ X × Ω0 such that d(η, ζ) + s(ω, ω′) < δ, for x ∈ A and

0 ≤ t ≤ T ,

ηη
t (x;ω) = ηζ

t (x;ω) = ηζ
t (x;ω

′ ◦ λ) = ηζ
λ(t)(x;ω

′).

In the first step we can replace η by ζ because only the initial values on B matter for the

state at time t on the set A. Next we can replace ω by ω′◦λ because these two paths agree on
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all jumps that influence the set B up to time T . The last step follows because the number of

jumps the path ω′(λ(·)) has in time interval (s, t] is the same as ω′ has in (λ(s), λ(t)]. Then

sup
0≤t≤T

d(ηη
t (ω), ηζ

λ(t)(ω
′)) = sup

0≤t≤T

∑
x

2−|x|∞ |ηη
t (x;ω)− ηζ

λ(t)(x;ω
′)| ≤

∑
x/∈A

2−|x|∞ .

This last quantity can be made arbitrarily small by choosing A large enough. By Lemma

A.2, we have shown that if d(η, η(n)) + s(ω, ω(n)) → 0, then

s(ηη(n)

· (ω(n)), ηη
· (ω)) → 0

as n→∞.

The lemma above implies that ηη
· is a measurable mapping from Ω0 into DX . Let P η be

the probability measure on (DX ,F) defined by

P η(A) = P{ω : ηη
· (ω) ∈ A} (2.9)

for events A ∈ F . Let Ft = σ{ηs : 0 ≤ s ≤ t} be the σ-algebra generated by the coordinates

over time interval [0, t].

Theorem 2.4 The collection {P η : η ∈ X} of probability measures on DX is a Markov

process, in other words

(a) P η[η0 = η] = 1.

(b) For each A ∈ F , the function η 7→ P η(A) is measurable.

(c) P η[ηt+· ∈ A|Ft] = P ηt(A) P η-almost surely, for every η ∈ X and A ∈ F .

Proof. (a) is clear since by definition ηη
0(ω) = η.

(b) Let L be the class of sets A ∈ F for which η 7→ P η(A) is measurable. It is a λ-system.

Let P be the class of finite product sets A = {η· ∈ DX : ηt1 ∈ H1, ηt2 ∈ H2, . . . , ηtk ∈ Hk}
for finite k and Borel subsets H1, H2, . . . , Hk of X. P is closed under intersections, and

generates the σ-algebra F of DX . By the π-λ-theorem, it suffices to show that η 7→ P η(A)

is measurable for A ∈ P .

The function

F (η, ω) = 1H1(η
η
t1(ω))1H2(η

η
t2(ω)) · · ·1Hk

(ηη
tk

(ω))

is jointly measurable, because (η, ω) 7→ ηη
· (ω) is measurable by Lemma 2.3, and the coordi-

nate projections η· 7→ ηt are measurable on DX . Hence by Fubini’s theorem, the function∫
Ω

F (η, ω)P(dω) =

∫
Ω

1H1(η
η
t1(ω))1H2(η

η
t2(ω)) · · ·1Hk

(ηη
tk

(ω))P(dω) = P η(A)

is a measurable function of η.
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(c) Let us write η[0,t] to denote the function η· ∈ DX restricted to the time interval [0, t].

DX [0, t] is the space of right-continuous functions on [0, t] with left limits, again with the

σ-algebra generated by coordinate projections. We need to show that, for any measurable

set B ⊆ DX [0, t],

Eη[1A(ηt+·)1B(η[0,t])] = Eη[P ηt(A)1B(η[0,t])].

The argument returns to the construction. Write G : (η, ω) 7→ ηη
· (ω) for the measurable map

from X × Ω0 into DX that constructs the process from an initial state η and the Poisson

processes ω = {T(x,y)}. Let θt denote time shift of the Poisson processes: θtω is obtained by

restarting ω at time t. To clarify, if T(x,y) has jump times

0 < s1 < s2 < · · · < sk < sk+1 < · · · ,

and sm−1 ≤ t < sm, then θtT(x,y) has jump times

0 < sm − t < sm+1 − t < sm+2 − t < · · ·

The restriction ω[0,t] is independent of θtω, because Poisson processes on disjoint sets are

independent.

The evolution ηη
t+·(ω) from time t onwards can be constructed by evolving the state ηη

t

with the restarted Poisson processes θtω. In other words, ηη
t+·(ω) = G(ηη

t , θtω). Now

Eη[1A(ηt+·)1B(η[0,t])] =

∫
1A(ηη

t+·(ω))1B(ηη
[0,t](ω))P(dω)

=

∫
1A(G(ηη

t (ω), θtω))1B(ηη
[0,t](ω))P(dω)

=

∫
P(dω)1B(ηη

[0,t](ω))

∫
P(dω̃)1A(G(ηη

t (ω), θtω̃))

=

∫
P(dω)1B(ηη

[0,t](ω))

∫
P(dω̃)1A(G(ηη

t (ω), ω̃))

=

∫
P(dω)1B(ηη

[0,t](ω))P ηη
t (ω)(A)

= Eη[1B(η[0,t])P
ηt(A)].

By the independence of ω[0,t] and θtω, we integrated separately over them above, and empha-

sized this by writing ω̃ for the second integration variable. Note that the restricted evolution

ηη
[0,t](ω) depends only on ω[0,t]. And also that θtω̃ has the same distribution as ω̃, hence the

shift could be dropped in the inside integral.

Let C(X) be the space of continuous functions on X. Since X is compact, all continuous

functions on it are bounded.
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Lemma 2.5 The exclusion process is a Feller process, in other words for any f ∈ C(X)

and t > 0, Eη[f(ηt)] is a continuous function of the initial state η.

Proof. Eη[f(ηt)] = E[f(ηη
t )]. By Lemma 2.3 the integrand is a continuous function of η.

The expectation is then continuous in η by the bounded convergence theorem.

A consequence of this lemma is that the strong Markov property is valid for the exclusion

process. The operators S(t) are defined on the space C(X) by S(t)f(η) = Eη[f(ηt)]. The

previous lemma guarantees that S(t)f ∈ C(X) for f ∈ C(X).

Finally we look at the infinitesimal evolution of the process. For Markov chains, the

infinitesimal expected evolution was described by the generator L defined by (1.11), in the

sense of the time derivative given in (1.13). Our goal is to find a similar description for the

exclusion process.

Suppose f is a cylinder function on X. This means that there exists a finite set Af =

{x1, . . . , xm} ⊆ S and a function f̃ on {0, 1}m such that f(η) = f̃(η(x1), . . . , η(xm)). Another

term for a cylinder function is local function. Let G0,t be the random graph defined by (2.5),

and t0 given by Lemma 2.1. Let Ct be the union of the connected components in G0,t that

intersect Af . By Lemma 2.1 Ct is almost surely finite for 0 ≤ t ≤ t0. To compute f(η(t))

for 0 ≤ t ≤ t0, only the initial values {η(x) : x ∈ Ct0} and the finitely many Poisson jump

times in ∪x∈Ct0
T ′

x ∩ [0, t0] need to be inspected.

Fix a cube A in S that contains Af , and is large enough so that the distance from every

point of Af to any point outside A is at least 3R. Here R is the upper bound on the distance

|x−y|∞ between the endpoints of an edge {x, y} ∈ E0,t, as introduced in the proof of Lemma

2.1. Define the event

Ht = {Ct ⊆ A}. (2.10)

Let Nt be the number of jump times in ∪x∈AT ′
x ∩ [0, t].

In the first step, we decompose the probability space Ω four ways into Ht ∩ {Nt = 0},
Ht∩{Nt = 1}, Ht∩{Nt > 1}, and Hc

t . Then we note that {Nt = 0} and {Nt = 1} are subsets

of Ht, because with only one edge in G0,t incident to the set A, Af cannot be connected to

anything outside A. Fix 0 ≤ t ≤ t0 and a starting state η.

S(t)f(η)− f(η) = Eη[f(ηt)− f(η0)]

= E[(f(ηη
t )− f(η))1{Nt=0}] + E[(f(ηη

t )− f(η))1{Nt=1}]

+ E[(f(ηη
t )− f(η))1Ht1{Nt>1}] + E[(f(ηη

t )− f(η))1Hc
t
].

(2.11)

The first term after the equality sign is zero because ηη
t = η when no jumps happen in A.

On the event {Nt = 1}, there is a single jump time which can influence f(ηη
t )− f(η). Let

β =
∑

x∈A, y∈S

p(x, y) +
∑

x∈S\A, y∈A

p(x, y),
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the finite rate of the Poisson process ∪x∈AT ′
x . Then P[Nt = 1] = βte−βt. Given that

Nt = 1, the unique jump time occurred in T(x,y) with probability β−1p(x, y) for (x, y) ∈
[A× S] ∪ [(S \ A)× A]. Given that the unique jump time occurred in T(x,y),

f(ηη
t )− f(η) = η(x)(1− η(y))[f(ηx,y)− f(η)]

because the (x, y)-jump has no effect unless η(x) is occupied and η(y) vacant. Recall the

definition of ηx,y from (2.6). Thus the second term of (2.11) equals

te−βt
∑

x,y∈S

p(x, y)η(x)(1− η(y))[f(ηx,y)− f(η)].

We summed over all pairs (x, y) because f(ηx,y)−f(η) is zero for (x, y) /∈ [A×S]∪[(S\A)×A].

The last two terms in (2.11) are treated as error terms. The absolute value of the third

term is bounded by

2‖f‖∞ P[Nt > 1] = 2‖f‖∞(1− e−βt − βte−βt) ≤ 2‖f‖∞ β2t2.

The fourth term we estimate as we did in the proof of Lemma 2.1. On the complement of Ht

there must exist an open path in G0,t of length at least 3 edges, starting from some x ∈ Af .

Recall that k∗ is the cardinality of the symmetrized set Bp∪(−Bp) where Bp = {x : p(0, x) >

0} is the finite support of the jump probability. Fix t1 ∈ (0, t0) so that k∗(1 − e−2t) ≤ 1/2

for t ≤ t1. Then for t ≤ t1, the fourth term in (2.11) is bounded above by

2‖f‖∞ P[Ct /∈ A] ≤ 2‖f‖∞ |Af |
∑
n≥3

kn
∗ (1− e−2t)n ≤ 4‖f‖∞ |Af |k3

∗(1− e−2t)3

≤ 32‖f‖∞ |Af |k3
∗t

3.

Define an operation L on cylinder functions f on X by

Lf(η) =
∑
x,y

p(x, y)η(x)(1− η(y))[f(ηx,y)− f(η)]. (2.12)

We call L the generator of the exclusion process. The sum has only finitely many nonzero

terms, and so Lf ∈ C(X) for cylinder functions f . We have the bound

‖Lf‖∞ ≤ 2‖f‖∞
( ∑

x∈Af , y∈S

p(x, y) +
∑

x∈S\Af , y∈Af

p(x, y)

)
≤ 4|Af | · ‖f‖∞. (2.13)

We can summarize the estimation made thus far.

sup
η∈X

|S(t)f(η)− f(η)− tLf(η)|

≤ t(1− e−βt) · 4|Af | · ‖f‖∞ + 2‖f‖∞ β2t2 + 32‖f‖∞ |Af |k3
∗t

3

≤ C(f)t2,

(2.14)

where C(f) is a constant that depends only on f . Two conclusions from this.

34



Proposition 2.6 (a) For cylinder functions f , the function t 7→ S(t)f(η) is differentiable

at t = 0,
d

dt
S(t)f(η)

∣∣∣∣
t=0

= Lf(η),

and the limit holds uniformly in η:

lim
t→0

sup
η∈X

∣∣∣∣S(t)f(η)− f(η)

t
− Lf(η)

∣∣∣∣ = 0. (2.15)

(b) For all f ∈ C(X) we have this uniform continuity at t = 0:

lim
t→0

sup
η∈X

|S(t)f(η)− f(η)| = 0. (2.16)

Proof. (a) is immediate from (2.14). For cylinder functions f , (b) follows from (2.13) and

(2.14). To complete the proof of (b), we argue that cylinder functions are dense in C(X),

in other words for any f ∈ C(X) and ε > 0 there exists a cylinder function g such that

supη |f(η)− g(η)| < ε.

As a continuous function on a compact space, f is uniformly continuous. Pick δ > 0 so

that |f(η)− f(ζ)| < ε for all η, ζ ∈ X such that d(η, ζ) < δ. Fix a finite set V ⊆ S such that∑
x/∈V 2−|x|∞ < δ. For each η, define η0 ∈ X by

η0(x) =

{
η(x) for x ∈ V ,

0 for x /∈ V .

By the choice of V , d(η, η0) < δ for all η ∈ X. Now g(η) = f(η0) defines a cylinder function

that is uniformly within ε of f .

For continuous time, countable state Markov chains, and for the exclusion process, we

have naturally arrived at semigroups S(t) of operators on bounded continuous functions, and

an infinitesimal description of S(t) given by an operator L. In the next section we turn to

study these notions in an abstract setting. This yields results that are applicable to a wide

range of Markov processes.

Exercise 2.1 Extend the construction to more general transition probabilities p(x, y). For

example, drop the translation invariance assumption. Replace the finite range assumption

with a bound on the tail of p(x, y). Chapter I of Liggett’s monograph [27] constructs the

process for a general countable index set S under the assumption

sup
y

∑
x

p(x, y) <∞.

The construction in [27] is based on semigroup theory, and is analytic rather than proba-

bilistic. Can you show that the graphical representation is well-defined in this case?
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Exercise 2.2 Show that the event Ω0 defined above Lemma 2.2 is measurable and has

probability 1.

Exercise 2.3 Show by example that Lf is not defined for all continuous functions f ∈ C(X).

Show that as a mapping of functions, L is not continuous even among cylinder functions.

For example, it is possible to define a sequence of cylinder functions fn such that ‖fn‖∞ → 0,

but yet ‖Lfn‖∞ →∞.

Exercise 2.4 Derive the generator of the symmetric exclusion process from the stirring

particle representation of Section 2.2, repeating the steps that led to (2.14). You should

arrive at

Lf(η) =
∑
{x,y}

p(x, y)[f(ηx,y)− f(η)] (2.17)

where the sum is over unordered pairs {x, y} of sites. Check that this is the same as L

defined by (2.12). In Exercise 4.5 below you use martingales to check that this equality of

generators guarantees that the two constructions produce the same Markov process.

Exercise 2.5 Let f be a cylinder function on X. Use (2.14) to show that

Mt = f(ηt)−
∫ t

0

Lf(ηs) ds

is a martingale with respect to the filtration Ft.

Here is a way to carry this out. The goal is to show

E

[
f(ηt)− f(ηs)−

∫ t

s

Lf(ηu) du

∣∣∣∣Fs

]
= 0.

Partition [s, t] into m subintervals [si, si+1] of common length δ = si+1−si. The goal becomes

E

[∑
i

{
E
[
f(ηsi+1

)
∣∣Fsi

]
− f(ηsi

)−
∫ si+1

si

Lf(ηu) du

}∣∣∣∣Fs

]
= 0.

Rewrite each innermost term as

E
[
f(ηsi+1

)
∣∣Fsi

]
− f(ηsi

)−
∫ si+1

si

Lf(ηu) du

= Eηsi

[
f(ηδ)

]
− f(ηsi

)− δLf(ηsi
)− δ

(
Lf(ηsi+1

)− Lf(ηsi
)
)

+

∫ si+1

si

(
Lf(ηsi+1

)− Lf(ηu)
)
du.
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Sum over i. Apply (2.14). Let δ → 0, and use the right-continuity of the paths ηs in the

time variable.

After this exercise the reader will appreciate the ease with which the conclusion follows

from semigroup theory (Exercise 3.1 in Section 3.2).
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3 Semigroups and generators

We cover here a minimum of semigroup theory. The goal is to have the
∫
Lf dν = 0 criterion

for equilibrium distributions, and to prove some technical lemmas needed in later sections.

3.1 Some generalities about Banach spaces

A norm on a real vector space X is a function ‖ · ‖ from X into nonnegative reals that

satisfies these properties, for vectors f, g ∈ X and real numbers α:

(a) ‖f + g‖ ≤ ‖f‖+ ‖g‖ (the triangle inequality)

(b) ‖αf‖ = α‖f‖
(c) ‖f‖ > 0 iff f 6= 0.

A vector space with a norm is called a normed vector space. Such a space is a metric space

with distance d(f, g) = ‖f − g‖. A Banach space is a normed vector space in which the

metric is complete. This means that every Cauchy sequence converges. In other words, if

{fn} is a sequence in X such that

lim
n→∞

sup
m>n

‖fn − fm‖ = 0

then there exists a vector f ∈ X such that ‖fn − f‖ → 0 as n→∞.

Example 3.1 The space Rd of real d-vectors x = (x1, . . . , xd) is a Banach space with any

norm |x|p = (|x1|p + · · ·+ |xd|p)1/p for 1 ≤ p <∞, and also with the norm |x|∞ = maxi |xi|.
The case p = 2 is the Euclidean norm.

Example 3.2 For any metric space S, the space Cb(S) of bounded continuous functions on

S with the supremum norm ‖f‖∞ = supx∈S |f(x)| is a Banach space. The completeness of

Cb(S) follows from the fact that a uniform limit of continuous functions is continuous. Note

that in case S is compact, then all continuous functions are bounded and Cb(S) = C(S), the

space of all continuous functions.

The dual space X ∗ of a Banach space X is by definition the space of all continuous linear

functions from X into R. (Or into C, if one works with complex scalars.) Elements of X ∗

are also called functionals, and the value of v∗ ∈ X ∗ applied to f ∈ X can be denoted by

v∗(f) or 〈v∗, f〉. X ∗ is also a Banach space, with norm

‖v∗‖ = sup{〈v∗, f〉 : f ∈ X , ‖f‖ ≤ 1}. (3.1)
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This gives the useful inequality

|〈v∗, f〉| ≤ ‖v∗‖ ‖f‖.

A fundamental fact is that X ∗ is sufficiently rich to separate points on X , namely if f, g ∈ X
and 〈v∗, f〉 = 〈v∗, g〉 for all v∗ ∈ X ∗, then necessarily f = g.

A linear operator on X is a linear map A whose domain

D(A) = {f ∈ X : Af is defined }

and range

R(A) = {Af : f ∈ D(A)}

are linear subspaces of X . The graph

G(A) = {(f, Af) : f ∈ D(A)}

is a linear subspace of the product space X × X . X × X is also a Banach space with norm

‖(f, g)‖ = ‖f‖ + ‖g‖. A is a closed linear operator if G(A) is a closed subspace of X × X .

Equivalently, if fn → f and Afn → g, then f ∈ D(A) and g = Af .

A is a bounded linear operator on X if its domain is all of X , and its operator norm

‖A‖ = sup{‖Af‖ : f ∈ X , ‖f‖ ≤ 1} (3.2)

is finite. As above, then ‖Af‖ ≤ ‖A‖ ‖f‖ for all f . An operator defined on all of X is

bounded iff it is continuous. A is a contraction if ‖A‖ ≤ 1.

Example 3.3 Linear transformations defined on finite-dimensional spaces are given by ma-

trices, and always have finite operator norm and so are bounded linear transformations.

Note the different notions of boundedness: a linear map cannot be bounded in the sense

that supf ‖Af‖ is finite, unless it is trivial.

On infinite dimensional spaces it becomes natural to consider unbounded operators that

are defined only on a subspace. For example, on Cb(R) differentiation Df = f ′ is an un-

bounded linear operator whose domain is the subspace of functions with bounded continuous

derivatives. It is a closed operator, because if fn → f and f ′n → g boundedly and uniformly,

then passing to the limit in fn(x)− fn(0) =
∫ x

0
f ′n(y) dy shows that f ′ = g.

An example of a bounded linear operator on Cb(R) is

Af(x) =

∫
R

p(t, x, y)f(y)dy

where p(t, x, y) = (2πt)−1/2 exp(−(x−y)2/2t) is the transition probability function for Brow-

nian motion, or the Gaussian kernel. Since
∫
p(t, x, y)dy = 1, A is a contraction.
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Parts of calculus work fine for Banach space valued functions. Let u : [a, b] → X . Say u

is (Riemann) integrable if the limit

lim
‖∆‖→0

n∑
i=1

u(si)(ti − ti−1) (3.3)

exists, where

∆ = {a = t0 < t1 < · · · < tn = b}

is a partition of [a, b], ‖∆‖ = max(ti − ti−1) is the mesh of the partition, and the {si}
are arbitrary points such that si ∈ [ti−1, ti] for each i. The limit is denoted by

∫ b

a
u(t)dt.

Differentiability has to be interpreted in the Banach space norm. To say that u′(t) = g for

some g ∈ X means that

lim
h→0

∥∥∥∥u(t+ h)− u(t)

h
− g

∥∥∥∥ = 0.

At the endpoints u′(a) and u′(b) are defined as one-sided derivatives in the obvious way. Let

us say the function u(t) is continuously differentiable on [a, b] if the derivative u′(t) exists

and is itself continuous as an X -valued function from [a, b] into X .

Lemma 3.4 (a) The integral
∫ b

a
u(t)dt exists for every continuous function u : [a, b] → X .

It satisfies ∥∥∥∥∫ b

a

u(t)dt

∥∥∥∥ ≤ ∫ b

a

‖u(t)‖ dt. (3.4)

(b) Suppose K is a closed linear operator on X with domain D(K). Let u : [a, b] → X .

Assume that u actually maps [a, b] into D(K), and that both u(t) and Ku(t) are continuous

functions of t. Then
∫ b

a
u(t)dt also lies in D(K), and

K

∫ b

a

u(t)dt =

∫ b

a

Ku(t)dt. (3.5)

(c) Suppose u : [a, b] → X is continuous and continuously differentiable on [a, b]. Then∫ b

a

u′(t)dt = u(b)− u(a). (3.6)

Proof. (a) Existence of the integral can be proved as in calculus. A continuous function u

defined on a compact interval [a, b] is uniformly continuous. So given ε > 0, we may choose

an integer M > 0 so that ‖u(s)− u(t)‖ < ε/(b− a) whenever |s− t| ≤ δ = (b− a)/M . Let
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{ti} be an arbitrary partition with mesh ‖∆‖ ≤ δ and {si} points chosen from the partition

intervals. We shall compare the Riemann sum

S =
∑

i

u(si)(ti − ti−1)

to the sum

R =
∑

k

u(rk)δ

formed with the partition {rk = k(b− a)/M}0≤k≤M . Let {t′j} be the common refinement of

the partitions {ti} and {rk}, in other words, as point sets {t′j} = {ti} ∪ {rk}. Let s′j equal si

for that i which satisfies [ti−1, ti] ⊇ [t′j−1, t
′
j]. Then

S =
∑

j

u(s′j)(t
′
j − t′j−1).

The point s′j may lie outside [t′j−1, t
′
j], but it is within δ of t′j. Hence S is within ε of the sum

S ′ =
∑

j

u(t′j)(t
′
j − t′j−1).

For each j, choose k so that [t′j−1, t
′
j] ⊆ [rk−1, rk]. Then t′j is within δ of rk, and it follows

that S ′ is within ε of R.

To summarize, for any partition ∆ with ‖∆‖ ≤ δ, the Riemann sum S is within 2ε of the

(fixed) Riemann sum R. Consequently any two Riemann sums from partitions with mesh at

most δ differ by at most 4ε. Thus the upper and lower limits in (3.3) differ by at most 4ε.

Since ε > 0 was arbitrary, the upper and lower limits in (3.3) must actually coincide, and so

we have proved that the limit exists.

To show (3.4): by the triangle inequality∥∥∥∥∥∑
i

u(si)(ti − ti−1)

∥∥∥∥∥ ≤∑
i

‖u(si)‖ (ti − ti−1).

As ‖∆‖ → 0, this inequality turns into (3.4).

(b) Fix a sequence of partitions ∆(n) = {ti} whose mesh tends to zero as n → ∞, and

fix points {si} from the partition intervals. Let fn =
∑

i u(si)(ti−1 − ti) be the Riemann

sum for partition ∆(n). By part (a), fn → f =
∫ b

a
u(t)dt as n → ∞. By (a) again and the

assumption that t 7→ Ku(t) is continuous, the integral g =
∫ b

a
Ku(t)dt exists and equals the

limit

g = lim
n→∞

∑
i

Ku(si)(ti−1 − ti) = lim
n→∞

K
∑

i

u(si)(ti−1 − ti) = lim
n→∞

Kfn
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where we used the linearity of K.

To summarize, (fn, Kfn) → (f, g). By the closedness of K, g = Kf which is the

conclusion (3.5).

(c) For this part we rely on the fact that the dual of a Banach space separates points.

Fix v∗ ∈ X ∗, and define a real-valued function ϕ(t) = 〈v∗, u(t)〉. First observe that ϕ′(t) =

〈v∗, u′(t)〉, for

lim sup
h→∞

∣∣∣∣ϕ(t+ h)− ϕ(t)

h
− 〈v∗, u′(t)〉

∣∣∣∣
= lim sup

h→∞

∣∣∣∣〈v∗, u(t+ h)− u(t)

h
− u′(t)

〉∣∣∣∣
≤ lim sup

h→∞
‖v∗‖ ·

∥∥∥∥u(t+ h)− u(t)

h
− u′(t)

∥∥∥∥ = 0

by the assumption of differentiability of u. As a composite of two continuous functions,

namely u′(t) and v∗, ϕ′(t) is continuous. Thus the fundamental theorem of calculus gives∫ b

a

〈v∗, u′(t)〉dt =

∫ b

a

ϕ′(t)dt = ϕ(b)− ϕ(a) = 〈v∗, u(b)− u(a)〉.

Applying part (b) to the first member above gives〈
v∗,

∫ b

a

u′(t)dt

〉
= 〈v∗, u(b)− u(a)〉.

The integral
∫ b

a
u′(t)dt exists because we assumed that u′(t) is continuous on [a, b]. Since the

equality above holds for all v∗ ∈ X ∗, (3.6) follows.

3.2 The generator of a semigroup

Let S(t) be a bounded linear operator on X for each t ≥ 0. {S(t)} is a semigroup if S(0) = I

and S(s + t) = S(s)S(t). {S(t)} is a strongly continuous semigroup if ‖S(t)f − f‖ → 0 as

t→ 0 for every f ∈ X . If each S(t) is a contraction, then {S(t)} is a contraction semigroup.

Lemma 3.5 Suppose {S(t)} is a strongly continuous contraction semigroup on X . Then

for every f ∈ X , S(t)f is a uniformly continuous function of t ∈ [0,∞) into X .

Proof. For t, h ≥ 0,

‖S(t+ h)f − S(t)f‖ = ‖S(t)(S(h)f − f)‖ ≤ ‖S(h)f − f‖
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and for 0 ≤ h ≤ t,

‖S(t− h)f − S(t)f‖ = ‖S(t− h)(S(h)f − f)‖ ≤ ‖S(h)f − f‖.

In both cases the right-hand side vanishes as h→ 0, and the bounds are uniform in t.

The generator (also called the infinitesimal generator) of a semigroup {S(t)} is the op-

erator L defined by

Lf = lim
t→0

S(t)f − f

t
(3.7)

with domain D(L) consisting of those f ∈ X for which this limit exists (convergence has to

be in the norm of X ).

Example 3.6 In Sections 1.2 and 2 we constructed the semigroups for continuous-time

Markov chains on countable state spaces, and for the finite range exclusion process. We

checked that these semigroups were strongly continuous. They are contraction semigroups

by virtue of their definition in terms of integration against probability measures.

For a Markov chain on a countable state space, the generator is a bounded operator given

by (1.11) and its domain is the entire space Cb(S).

For the exclusion process the generator is the unbounded operator given by (2.12), and its

domain is a subspace of C(X). By (2.15) the domain D(L) contains the cylinder functions.

Lemma 3.7 Suppose {S(t)} is a strongly continuous contraction semigroup on X with gen-

erator L.

(a) For all f ∈ X and t > 0,
∫ t

0
S(s)f ds ∈ D(L) and

S(t)f − f = L

∫ t

0

S(s)f ds. (3.8)

(b) For all f ∈ D(L) and t ≥ 0, S(t)f ∈ D(L) and

d

dt
S(t)f = LS(t)f = S(t)Lf. (3.9)

(c) For all f ∈ D(L) and t ≥ 0,

S(t)f − f =

∫ t

0

LS(s)f ds =

∫ t

0

S(s)Lf ds. (3.10)
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Proof. (a) Note that a bounded linear operator is automatically closed. So applying (3.5)

and easily verified additivity properties of the Banach space valued integral, we get

S(h)− I

h

∫ t

0

S(s)f ds =
1

h

∫ t

0

S(s+ h)f ds− 1

h

∫ t

0

S(s)f ds

=
1

h

∫ t+h

h

S(s)f ds− 1

h

∫ t

0

S(s)f ds =
1

h

∫ t+h

t

S(s)f ds− 1

h

∫ h

0

S(s)f ds

−→ S(t)f − f as h↘ 0,

by Lemma 3.5. This checks that
∫ t

0
S(s)f ds ∈ D(L) and proves (3.8).

(b) Fix t ≥ 0 and let h > 0. Algebraic manipulation gives

S(t+ h)f − S(t)f

h
=
S(h)− I

h
S(t)f = S(t)

S(h)− I

h
f. (3.11)

Let h↘ 0. By assumption h−1(S(h)− I)f → Lf . Since S(t) is a continuous map on X , the

last term of (3.11) converges to S(t)Lf . This forces the middle term to converge too, which

implies that S(t)f ∈ D(L) and LS(t)f = S(t)Lf . Convergence of the leftmost member then

says that S(t)f is differentiable from the right, and the derivative is the one given in (3.9).

It remains to check differentiability from the left. Let still h > 0.

S(t− h)f − S(t)f

−h
− S(t)Lf

= S(t− h)

(
S(h)f − f

h
− Lf

)
+ S(t− h)Lf − S(t)Lf,

from which, using contractivity,∥∥∥∥S(t− h)f − S(t)f

−h
− S(t)Lf

∥∥∥∥
≤

∥∥∥∥S(h)f − f

h
− Lf

∥∥∥∥+ ‖S(t− h)Lf − S(t)Lf‖.

The last line vanishes as h ↘ 0, the first term by the assumption f ∈ D(L), the second by

Lemma 3.5. This proves differentiability of S(t)f from the left.

(c) S(t)Lf is a continuous function of t, and so this follows from (3.6).

Here is a probabilistic application of the foregoing.

Exercise 3.1 Suppose Xt is a Feller continuous Markov process on a metric space Y , and

suppose S(t)f(x) = Ex[f(Xt)] is a strongly continuous semigroup on Cb(Y ). Let L be the

generator and f ∈ D(L). Show that

Mt = f(Xt)− f(X0)−
∫ t

0

Lf(Xs) ds
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is a right-continuous mean zero martingale. See Exercise A.2 for the measurability of the

integral term on the path space.

Corollary 3.8 If L is the generator of a strongly continuous contraction semigroup on X ,

then D(L) is dense in X and L is a closed operator.

Proof. Let f ∈ X . By Lemma 3.7(a), t−1
∫ t

0
S(s)f ds lies in D(L) for each t > 0. By the

strong continuity of the semigroup t−1
∫ t

0
S(s)f ds → f as t ↘ 0, and consequently D(L) is

dense in X .

To show that L is a closed operator, suppose (fj, Lfj) → (f, g) in X × X for some

sequence {fj} of elements of D(L). By (3.10)

S(t)fj − fj =

∫ t

0

S(s)Lfj ds.

Let j →∞. Note that by (3.4) and the contraction property,∥∥∥∥∫ t

0

S(s)Lfj ds−
∫ t

0

S(s)g ds

∥∥∥∥ ≤ ∫ t

0

‖S(s)(Lfj − g)‖ ds ≤ t ‖Lfj − g‖ .

Thus in the limit we obtain

S(t)f − f =

∫ t

0

S(s)g ds.

which implies that f ∈ D(L) and Lf = g.

The above were basic properties of the generator. Next a special formula that we need

in Section 5.3.

Proposition 3.9 Let {S(t)} and {T (t)} be strongly continuous contraction semigroups on

X with generators L and M , respectively. Assume that L and M are bounded operators, so

that in particular, their domains are the whole space X and they are continuous mappings.

Then for any f ∈ X ,

S(t)f − T (t)f =

∫ t

0

T (t− r)(L−M)S(r)f dr. (3.12)

Proof. Note first that, by the continuity of the semigroups (Lemma 3.5) and the assumed

continuity of L and M , the integral is well-defined by Lemma 3.4(a).
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We want to find (d/ds)T (t− s)S(s)f for s ∈ (0, t). First we differentiate from the right.

Let h > 0.

1

h
{T (t− s− h)S(s+ h)f − T (t− s)S(s)f}

= T (t− s− h)
S(s+ h)f − S(s)f

h
+
T (t− s− h)− T (t− s)

h
S(s)f

= T (t− s− h)
1

h

∫ h

0

S(r)LS(s)fdr +
T (t− s− h)− T (t− s)

h
S(s)f

= T (t− s− h)LS(s)f − T (t− s− h)− T (t− s)

−h
S(s)f

+T (t− s− h)
1

h

∫ h

0

(S(r)LS(s)f − LS(s)f) dr

Let h ↘ 0, and consider the three last terms. The first one converges to T (t − s)LS(s)f

by the continuity of the semigroup. The second one converges to T (t− s)MS(s)f by (3.9),

since by assumption all elements of X are in D(M). By contractivity and (3.4), the norm of

the last term is bounded above by

1

h

∫ h

0

‖S(r)LS(s)f − LS(s)f‖ dr

which vanishes as h↘ 0 by the continuity of the semigroup.

We have differentiated from the right and obtained (d/ds+)T (t−s)S(s)f = T (t−s)(L−
M)S(s)f . We leave the similar calculation for the left derivative as an exercise, and consider

d

ds
T (t− s)S(s)f = T (t− s)(L−M)S(s)f (3.13)

proved.

Finally we check that this derivative is a continuous function of s:

‖T (t− s− h)(L−M)S(s+ h)f − T (t− s)(L−M)S(s)f‖
≤ ‖T (t− s− h)(L−M)(S(s+ h)f − S(s)f)‖+ ‖[T (t− s− h)− T (t− s)](L−M)S(s)f‖
≤ ‖(L−M)(S(s+ h)f − S(s)f)‖+ ‖[T (t− s− h)− T (t− s)](L−M)S(s)f‖

where in the last step we used contractivity. Both terms vanish as h→ 0, by the continuity

of the semigroups. The first term also needs the continuity of the mapping L −M . Now

(3.12) follows from (3.6).
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3.3 The resolvent and cores

Recall that for a matrix A, a scalar λ is an eigenvalue iff the matrix λ − A is singular.

(When we mean a matrix or an operator, a scalar λ stands for λI.) The set of eigenvalues

is the spectrum σ(A) of the matrix. The resolvent set ρ(A) is the set of λ for which λ− A

is invertible. The resolvent set is an important concept also in operator theory on infinite

dimensional spaces. The complement of the resolvent set is still called the spectrum, but

eigenvalues alone do not account for the entire spectrum.

For any closed linear operator L on X , we say that λ ∈ ρ(L) if λ−L is a one-to-one map

on D(L), its range R(λ− L) is the entire space X , and the inverse operator (λ− L)−1 is a

bounded linear operator on X . The bounded operator Rλ = (λ−L)−1 is called the resolvent

of L.

Proposition 3.10 Let L be the generator of a strongly continuous contraction semigroup

{S(t)} on X . Then (0,∞) ⊆ ρ(L), and for all f ∈ X and λ > 0,

(λ− L)−1f =

∫ ∞

0

e−λtS(t)f dt. (3.14)

Remark. To make sense of the right-hand side of (3.14), extend the Banach space valued

integral to infinite intervals by ∫ ∞

0

u(t) dt = lim
b→∞

∫ b

0

u(t) dt (3.15)

provided the limit exists. To see that the required limit in (3.14) exists, note that for

0 < a < b, by the contraction property,∥∥∥∥∫ a

0

e−λtS(t)f dt−
∫ b

0

e−λtS(t)f dt

∥∥∥∥ ≤ ∫ b

a

e−λt‖S(t)f‖ dt ≤ ‖f‖e
−λa

λ

which vanishes as a↗∞. Thus by the completeness of X , the limit limb→∞
∫ b

0
e−λtS(t)f dt

exists. Lemma 3.4(a)–(b) extend to integrals over an infinite interval.

Proof of Proposition 3.10. Define the operator Bλ on X by

Bλf =

∫ ∞

0

e−λtS(t)f dt.

B is well-defined for all f ∈ X by the remark above, and by the linearity of the integral it

is a linear operator. Since

‖Bλf‖ ≤
∫ ∞

0

e−λt‖S(t)f‖ dt ≤ λ−1‖f‖, (3.16)
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we see that Bλ is a bounded linear operator on X .

Using (3.5) extended to the infinite interval, and linearity, we can see that Bλf ∈ D(L):

S(h)− I

h
Bλf =

1

h

∫ ∞

0

e−λt[S(t+ h)f − S(t)f ] dt

=
eλh − 1

h

∫ ∞

0

e−λtS(t)f dt− eλh 1

h

∫ h

0

e−λtS(t)f dt

−→ λBλf − f as h→ 0.

This gives LBλf = λBλf − f , or equivalently

(λ− L)Bλf = f for all f ∈ X . (3.17)

This says that Bλ is a right inverse for λ−L. To get the other half, take f ∈ D(L). By (3.9)

L commutes with the semigroup, so applying (3.5) again, we see that Bλ and L commute:

BλLf =

∫ ∞

0

e−λtS(t)Lf dt =

∫ ∞

0

L[e−λtS(t)f ] dt

= L

∫ ∞

0

e−λtS(t)f dt = LBλf.

Thus (3.17) gives also

Bλ(λ− L)f = f for all f ∈ X . (3.18)

It remains to oberve that we have checked everything. (3.17) implies that R(λ − L) = X ,

(3.18) that λ− L is one-to-one, and together that (λ− L)−1 = Bλ, a bounded operator.

Corollary 3.11 The generator L of a strongly continuous contraction semigroup has the

following property called dissipativity: for all f ∈ D(L) and λ > 0,

‖λf − Lf‖ ≥ λ‖f‖. (3.19)

Proof. By (3.16), ‖(λ− L)−1g‖ ≤ λ−1‖g‖ for all g ∈ X . Take g = (λ− L)f .

The definition of the domain D(L) in terms of the existence of the limit in (3.7) is not

very useful, because for complicated Markov processes verification of this limit is not easy.

Fortunately the precise domain need not be often known. Instead, it is sufficient to identify

a suitable smaller subspace of X which carries all the relevant information. For a closed

linear operator L, a linear subspace Y of D(L) is a core if the graph of L is the closure of the

graph of L restricted to Y . We express this by saying that L is the closure of its restriction

to Y . Explicitly, the requirement is that for each f ∈ D(L) there exists a sequence gn ∈ Y
such that gn → f and Lgn → Lf .
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Proposition 3.12 Let L be the generator of a strongly continuous contraction semigroup

{S(t)} on X . Let Y0 and Y1 be dense subspaces of X such that Y0 ⊆ Y1 ⊆ D(L), and

S(t)f ∈ Y1 for each f ∈ Y0 and t ≥ 0. Then Y1 is a core for L.

Proof. Fix λ > 0. First we show that {(λ−L)f : f ∈ Y1} is dense in X , by showing that

each f ∈ Y0 is the limit of (λ− L)fn for a sequence {fn} ⊆ Y1. So fix f ∈ Y0, and define

fn =
1

n

n2−1∑
k=0

e−λk/nS(k/n)f ∈ Y1.

We leave it to the reader to check that for any g ∈ X ,

lim
n→∞

1

n

n2−1∑
k=0

e−λk/nS(k/n)g =

∫ ∞

0

e−λtS(t)g dt = (λ− L)−1g. (3.20)

Apply this to g = (λ− L)f to get

lim
n→∞

(λ− L)fn = (λ− L)−1(λ− L)f = f.

We have shown that {(λ− L)f : f ∈ Y1} is dense in X .

Next we show that L is the closure of its restriction to Y1. Let f ∈ D(L). Let g = λf−Lf .

Find fn ∈ Y1 such that (λ − L)fn → g. Since it converges, the sequence {(λ − L)fn} must

be a Cauchy sequence. By dissipativity

‖fn − fm‖ ≤ λ−1‖(λ− L)fn − (λ− L)fm‖,

and so {fn} is also a Cauchy sequence in X . By completeness, fn converges to some h ∈ X .

And then

Lfn = λfn − (λ− L)fn → λh− g.

Now we have (fn, Lfn) → (h, λh − g), so by the closedness of L, h ∈ D(L) and Lh =

λh− g = λh− λf +Lf . The latter gives (λ−L)f = (λ−L)h. But by dissipativity λ−L is

one-to-one, and so we conclude h = f . To summarize, we have shown (fn, Lfn) → (f, Lf).

Since f ∈ D(L) was arbitrary and {fn} ⊆ Y1, we have shown that L is the closure of its

restriction to Y1, and thereby that Y1 is a core for L.

We present here a lemma useful for uniqueness questions, and whose proof utilizes the

resolvent. If L and M are two operators on X , we say that M is an extension of L if the

graph of L is a subset of the graph of M . In other words, D(L) ⊆ D(M) and M = L on

D(L).
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Proposition 3.13 Suppose L and M are generators of strongly continuous contraction

semigroups S(t) and T (t), respectively, and M is an extension of L. Then M = L and

S(t) = T (t) for all t ≥ 0.

Proof. To show M = L, it suffices to show that D(M) ⊆ D(L). Let f ∈ D(M). Since the

range of λ− L is the entire space X , we can find g ∈ D(L) such that (λ−M)f = (λ− L)g.

But since M extends L, Mg = Lg, and we get (λ−M)f = (λ−M)g. By dissipativity λ−M
is one-to-one, and so f = g. This implies that f ∈ D(L).

Since M = L, also (λ−M)−1 = (λ− L)−1, and we get for all λ > 0 and f ∈ X that∫ ∞

0

e−λtT (t)f dt = (λ−M)−1f = (λ− L)−1f =

∫ ∞

0

e−λtS(t)f dt.

Consequently, for any bounded linear functional v∗ ∈ X ∗,∫ ∞

0

e−λt〈v∗, T (t)f − S(t)f〉 dt = 0

for all λ > 0. By Lemma A.19 in the appendix, a bounded continuous function is uniquely

determined by its Laplace transform, hence it follows that 〈v∗, T (t)f − S(t)f〉 = 0 for all t.

Since v∗ is arbitrary, we can conclude that T (t)f = S(t)f for all t.

Exercise 3.2 Provide the argument for the left derivative for (3.13).

Exercise 3.3 Extend Lemma 3.4(a)–(b) to integrals over an infinite interval.

Exercise 3.4 Prove (3.20).

Exercise 3.5 To develop intuition for the semigroup material, here are deterministic exam-

ples simple enough so that everything can be explicitly calculated.

(a) Fix a ∈ R, and consider the ordinary differential equation x′(t) = a on R. Its

solutions are x(t) = x(0) + at. The natural semigroup on functions is

S(t)f(x) = f(x+ at).

On what Banach space is this semigroup strongly continuous? The generator is Lf = af ′.

Given a suitable function g and λ > 0, consider the linear o.d.e.

−af ′ + λf = g.
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There is no initial condition, but you can show that there is a unique bounded solution,

given by

f(x) =

∫ ∞

0

e−λtg(x+ at) dt.

You have discovered the resolvent formula (λ− L)−1g =
∫∞

0
e−λtS(t)g dt.

(b) An easier case to consider is S(t)x = xe−at for x ∈ R, where a > 0 is fixed.

Notes

Most of this section is from Ethier and Kurtz [13], Chapter 1. We omitted the main result

of semigroup theory, namely the Hille-Yosida theorem, because we have no need for it.
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4 Applications of semigroups

4.1 Invariant probability measures

4.1.1 The general situation

Let {P x} be a Feller continuous Markov process as defined in Section 1.3. Assume S(t)f(x) =

Ex[f(Xt)] defines a strongly continuous, contraction semigroup {S(t)} on the Banach space

Cb(Y ). The space M1(Y ) of probability measures on Y is also a metric space under the

Prohorov metric. Convergence in M1(Y ) is the familiar notion of weak convergence of

probability distributions, characterized by

µn → µ iff

∫
f dµn →

∫
f dµ for all f ∈ Cb(Y ). (4.1)

The semigroup S(t) acts naturally on the space M1(Y ), in a way that is dual to the

action on functions. For µ ∈M1(Y ) and t ≥ 0, define µS(t) ∈M1(Y ) by∫
f d[µS(t)] =

∫
S(t)f dµ for all f ∈ Cb(Y ). (4.2)

A little more explicitly, for Borel subsets B of Y ,

µS(t)(B) =

∫
P x[Xt ∈ B]µ(dx). (4.3)

Probabilistically speaking, µS(t) is the probability distribution of Xt, when the initial dis-

tribution of the process is µ.

We say that µ is invariant for the process Xt if

µS(t) = µ for all t ≥ 0. (4.4)

We write I for the set of invariant probability measures when it is clear from the context

which process is under discussion. Alternative terms for invariant probability measures are

invariant distributions and equilibrium distributions.

Invariance implies that if the initial state X0 has probability distribution µ, then so does

Xt at all later times t ≥ 0. And furthermore, the process (Xt)0≤t<∞ is stationary, which

means that the distribution of the shifted process (Xs+t)0≤t<∞ is the same as the distribution

of the original process. Invariant measures are a key component in a description of the long

term behavior of a Markov process. This we know well from the theory of discrete-time

Markov chains.
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We want a convenient way of checking whether a given measure is invariant. For a

discrete-time Markov chain on a countable state space S the requirement (4.4) reduces to a

single equation

µ{y} =
∑
x∈S

µ{x}p(x, y) for all y ∈ S, (4.5)

or µ = µP , if we think of µ as a row vector, P = (p(x, y))x,y∈S is the transition matrix, and

µP is matrix multiplication. For a continuous-time process it would not suffice to check (4.4)

for any finite set of time points. But we can use the generator to obtain a single equation.

Theorem 4.1 Let L be the generator of the strongly continuous contraction semigroup S(t)

on Cb(Y ) defined by a Markov process Xt. Let µ be a probability measure on Y . Let Y be

any core for L. Then µ is invariant for Xt iff∫
Lf dµ = 0 for all f ∈ Y. (4.6)

One possible choice for the core Y is of course the domain D(L) itself.

Proof. Suppose first that µ is invariant and f ∈ D(L). Since t−1(S(t)f − f) → Lf

boundedly and uniformly as t → 0 [this is what convergence in Cb(Y ) means], we can take

the limit of integrals and get∫
Lf dµ = lim

t→0

∫
S(t)f − f

t
dµ = lim

t→0

1

t

{∫
f d[S(t)µ]−

∫
f dµ

}
= lim

t→0

1

t

{∫
f dµ−

∫
f dµ

}
= 0.

Conversely, assume
∫
Lg dµ = 0 for all g in a core Y . By the definition of a core, for any

f ∈ D(L) there are gn ∈ Y such that Lgn → Lf boundedly and uniformly. Consequently∫
Lf dµ = 0 for all f ∈ D(L).

Fix f ∈ D(L). By Lemma 3.7(b), S(t)f ∈ D(L) for all t ≥ 0. Integrate the equality

S(t)f − f =
∫ t

0
LS(s)f ds against µ and use Fubini’s theorem to get∫

S(t)f dµ−
∫
f dµ =

∫ t

0

{∫
L[S(s)f ] dµ

}
ds = 0. (4.7)

Consequently ∫
f d[µS(t)] =

∫
f dµ (4.8)

for all f ∈ D(L). By Corollary 3.8 D(L) is dense in Cb(Y ), so (4.8) holds for all f ∈ Cb(Y ).

This implies that µS(t) = µ.
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Example 4.2 This criterion works well for a continuous-time Markov chain on a countable

state space S. As for the discrete-time chain, we get a single matrix equation: µ is invariant

iff

µQ = 0 (4.9)

where Q is the rate matrix defined in Section 1.2.

I is a convex set, which means that βµ + (1 − β)ν ∈ I for all µ, ν ∈ I and 0 < β < 1.

In case of a Feller process, I is closed in the weak topology of M1(Y ), because the map

µ 7→ µS(t) is continuous. A measure µ ∈ I is an extremal invariant measure, or an extreme

point of I, if it cannot be expressed as a convex combination of two distinct measures in I.

This means that if µ = βν ′ + (1− β)ν ′′ for some ν ′, ν ′′ ∈ I and 0 < β < 1, then necessarily

ν ′ = ν ′′ = µ. Ie denotes the set of extreme points of I.

Consider the special case of a Feller process on a compact state space. Then by Corollary

A.14 of Choquet’s theorem, µ ∈ I iff there exists a probability measure Γ on Ie such that

µ =

∫
Ie

ν Γ(dν). (4.10)

Thus knowing Ie is equivalent to knowing the entire collection I. This result is applicable

to exclusion processes.

Before turning to the exclusion process, we insert here a general lemma for later use. Let

us say a measurable subset A of the state space is closed for the process Xt if P x[Xt ∈ A] = 1

for all x ∈ A. Note that this does not require any topological closedness.

Lemma 4.3 Suppose A is a closed set for the Markov process Xt, and µ is an invariant

measure. Suppose 0 < µ(A) < 1. Then both µ1 = µ(· |A) and µ2 = µ(· |Ac) are invariant

measures for Xt.

An extremal invariant measure µ must have µ(A) = 0 or 1 for every set A that is closed

for Xt.

Proof. Consider a function f ≥ 0. Observe first that, by the assumption on A,

1A(x)S(t)f(x) = 1A(x)Ex[f(Xt)] = 1A(x)Ex[1A(Xt)f(Xt)]

≤ Ex[1A(Xt)f(Xt)] = S(t)(1Af)(x).

Using this and the invariance of µ,∫
S(t)f dµ1 =

1

µ(A)

∫
1AS(t)f dµ

≤ 1

µ(A)

∫
S(t)(1Af) dµ =

1

µ(A)

∫
1Af dµ =

∫
f dµ1.
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Supposing now that 0 ≤ f ≤ 1, we can apply this to both f and 1− f to get∫
S(t)f dµ1 ≤

∫
f dµ1 and

∫
S(t)(1− f) dµ1 ≤

∫
(1− f) dµ1.

This implies, since S(t)1 = 1, that∫
S(t)f dµ1 =

∫
f dµ1

and thereby the invariance of µ1. The invariance of µ2 now follows from noting first that

µ = βµ1 + (1− β)µ2 for β = µ(A), (4.11)

and then by the invariance of µ and µ1:

(1− β)

∫
S(t)f dµ2 =

∫
S(t)f dµ− β

∫
S(t)f dµ1

=

∫
f dµ− β

∫
f dµ1 = (1− β)

∫
f dµ2.

Since µ1 and µ2 are invariant, (4.11) shows that µ cannot be extremal. The last statement

of the lemma follows.

4.1.2 Checking invariance for the exclusion process

Let I be the set of probability measures on X = {0, 1}S, S = Zd, that are invariant for

the exclusion process. In this section we improve Theorem 4.1 for the exclusion process, by

showing that it suffices to check condition (4.6) for cylinder functions. Let C be the class

of cylinder functions on X, in other words, functions that depend on only finitely many

coordinates.

Theorem 4.4 Let L be the generator of the exclusion process ηt, defined by (2.12). Let µ

be a probability measure on X. Then µ ∈ I iff∫
Lf dµ = 0 for all cylinder functions f ∈ C. (4.12)

By Theorem 4.1, this will follow from showing that

Proposition 4.5 C is a core for the generator L of the exclusion process.
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To prove Proposition 4.5, we introduce a class of functions larger than the cylinder

functions, and with the property that this class is closed under the semigroup evolution. Let

∆f (x) = sup{|f(η)− f(ζ)| : η(y) = ζ(y) for all y 6= x}. (4.13)

Let D(X) be the class of functions f ∈ C(X) for which
∑

x ∆f (x) <∞. Note that if η and

ζ agree outside a finite or countably infinite set A, then

|f(η)− f(ζ)| ≤
∑
x∈A

∆f (x).

Lemma 4.6 S(t)f ∈ D(X) for all f ∈ D(X).

Proof. By iterating the semigroup S(t), it suffices to show that S(t)f ∈ D(X) for

0 < t ≤ t0. Let C0,t(x) be the connected component that contains x in the random graph

G0,t. By Lemma 2.1, C0,t(x) is almost surely finite for every x and t ≤ t0. Suppose η and ζ

are two configurations that differ only at site x. Using the original construction of Section

2.1 performed on the probability space (Ω,H,P) of the Poisson processes {T(x,y)}, construct

two processes ηη
t and ηζ

t , the first one started from η and the second from ζ. Both ηη
t and ηζ

t

are exclusion processes in their own right, and they are coupled so that they use the same

Poisson jump time processes. Note that ηη
t (y) = ηζ

t (y) for y outside C0,t(x).

|S(t)f(η)− S(t)f(ζ)| = |Ef(ηη
t )− Ef(ηζ

t )| ≤ E|f(ηη
t )− f(ηζ

t )|

≤ E

 ∑
y∈C0,t(x)

∆f (y)

 =
∑

y

∆f (y)P[y ∈ C0,t(x)].

The bound above is uniform over η and ζ that agree outside {x}, and hence is a bound on

∆S(t)f (x). Since y ∈ C0,t(x) iff x ∈ C0,t(y),∑
x

∆S(t)f (x) ≤
∑

y

∆f (y)
∑

x

P[x ∈ C0,t(y)] = E|C0,t(0)| ·
∑

y

∆f (y),

where we used translation invariance to say that the expected size E|C0,t(x)| is independent

of x. It remains to observe that E|C0,t(0)| is finite. This follows by the type of estimation

used in the proof of Lemma 2.1. For |C0,t(0)| > (2k+1)d to be possible, 0 must be connected

to a site y such that |y|∞ > k. Then there must be an open path in the graph G0,t starting

at 0 and with at least k/R edges. We get the estimate

P[ |C0,t(0)| > (2k + 1)d] ≤
∑

m≥k/R

θm ≤ bθk/R
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where θ = k∗(1 − e−2t) < 1 and b = (1 − θ)−1. The reader can check that this is strong

enough to give

E|C0,t(0)| =
∞∑

n=0

P[ |C0,t(0)| > n] <∞.

Note that for f ∈ D(X), the function

Lf(η) =
∑
x,y

p(x, y)η(x)(1− η(y))[f(ηx,y)− f(η)]

exists, since the sum on the right converges uniformly in η. This alone does not imply that

f ∈ D(L) because membership in the domain is defined by the existence of the limit in (3.7).

To get this, we approximate f with a cylinder function.

Lemma 4.7 Suppose f ∈ D(X). There exist cylinder functions fn such that fn → f and

Lfn → Lf uniformly. Consequently f ∈ D(L).

Proof. Once we have the convergence statements, f ∈ D(L) follows from the closedness

of the operator L (proved in Corollary 3.8), because we have shown that cylinder functions

lie in the domain of L.

Recall the definition of R as the maximal distance |x − y|∞ between two sites with

p(x, y) > 0. For a cube A ⊆ S, let

Ac(R) = {x ∈ S : |x− y|∞ ≤ R for some y ∈ Ac}.

Let ε > 0. Fix a cube A such that ∑
x∈Ac(R)

∆f (x) < ε.

Note that then also |f(η)− f(ζ)| < ε for all η and ζ that agree on A. Pick a larger cube B

such that B ⊇ A. Define a cylinder function g by g(η) = f(η0) where η0 ∈ X is defined by

η0(x) =

{
η(x), x ∈ B
0, x /∈ B. (4.14)

Abbreviate c(x, y, η) = p(x, y)η(x)(1− η(y)).

Lg(η) =
∑

x,y∈S

c(x, y, η)[g(ηx,y)− g(η)]

=
∑

x,y∈A

c(x, y, η)[g(ηx,y)− g(η)]

+

 ∑
x∈A, y∈S\A

+
∑

x∈S\A, y∈S

 c(x, y, η)[g(ηx,y)− g(η)].
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Decompose Lf(η) in exactly the same way. Note that

|f(ηx,y)− f(η)| ∨ |g(ηx,y)− g(η)| ≤ ∆f (x) + ∆f (y).

Then we can bound as follows:

‖Lf − Lg‖∞ ≤ sup
η

∣∣∣∣∣∑
x,y∈A

c(x, y, η)[f(ηx,y)− g(ηx,y)− f(η) + g(η)]

∣∣∣∣∣
+ 2

 ∑
x∈A, y∈S\A

+
∑

x∈S\A, y∈S

 p(x, y) (∆f (x) + ∆f (y))

≤ 2
∑

x,y∈A

p(x, y) ‖f − g‖∞ + 8
∑

x∈Ac(R)

∆f (x)

≤ 2|A| · ‖f − g‖∞ + 8ε.

We used the fact that p(x, y) = 0 unless x and y are at most distance R apart, and the

translation invariance p(x, y) = p(0, y − x). Keep cube A fixed, and choose cube B large

enough so that ‖f − g‖∞ < ε/|A|.
Since ε > 0 was arbitrary, we have shown that (f, Lf) can be uniformly approximated

by (g, Lg) for cylinder functions g.

Proof of Proposition 4.5. D(X) is dense in C(X) because C is dense and C ⊆ D(X). By

the lemmas above, D(X) lies in the domain D(L) and is closed under the semigroup action.

Thus by Proposition 3.12, D(X) is a core for L. But then Lemma 4.7 implies that C is also

a core, because now an arbitrary (f, Lf) for f ∈ D(L) can be uniformly approximated by

(g, Lg) for some g ∈ D(X), which in turn by Lemma 4.7 can be uniformly approximated by

(h, Lh) for some h ∈ C.

For 0 ≤ ρ ≤ 1, let νρ denote the Bernoulli measure on X with density ρ, defined by

νρ{η : η(x) = 1 for all x ∈ A, η(y) = 0 for all y ∈ B} = ρ|A|(1− ρ)|B| (4.15)

for any two disjoint finite sets of sites A and B. Equivalently, under νρ the occupation

variables {η(x)} are i.i.d. with mean ρ.

Exercise 4.1 Check that Bernoulli measures νρ are invariant for the translation invariant,

finite range exclusion process. This will be established as part of Theorem 6.1 below.

Exercise 4.2 Equilibrium distributions for independent random walks. Let initial occupa-

tion variables {η0(x) : x ∈ Zd} be given, with values in Z+. At site x, put η0(x) particles.
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Let all particles execute independent random walks, so that each particle jumps at rate

one and new sites are chosen according to a fixed translation-invariant jump probability

p(x, y) = p(0, y−x). Let ηt(x) denote the number of particles at site x at time t. Show that

if {η0(x)} are i.i.d Poisson distributed, then so are {ηt(x)}.
Hint. Do not try to use advanced machinery. Just compute a joint Laplace transform

E[exp{−λ1ηt(x1)− λ2ηt(x2)− · · · − λmηt(xm)}].

Count how many particles have moved from site y to site xi during [0, t], and use indepen-

dence.

4.2 Uniqueness results

Return again to the general setting of a Feller process {P x} on the path space DY , with a

strongly continuous contraction semigroup S(t)f(x) = Ex[f(Xt)] and generator L on Cb(Y ).

It is a consequence of Lemma 3.7(c) that for any f in the domain of L,

Mt = f(Xt)−
∫ t

0

Lf(Xs) ds (4.16)

is a martingale with respect to the filtration Ft = σ{Xs : 0 ≤ s ≤ t} (Exercise 3.1). It is

useful to know that these martingales actually characterize the Markov process. Recall that

P µ =
∫
P x µ(dx) denotes the probability measure on DY under which the Markov process

X· has initial distribution µ.

Theorem 4.8 Let µ be a probability measure on Y . Let Y be any core for the generator L.

Suppose P is a probability measure on DY with these properties:

(a) P [X0 ∈ B] = µ(B) for all Borel sets B ⊆ Y .

(b) Mt is a martingale under the measure P , for all f ∈ Y.

Then P = P µ.

Proof. We write E for expectation under measure P , and as before, Eµ for expectation

under measure P µ.

First we observe that (b) can be strengthened to work for all f in the domain of L. For

given f ∈ D(L), s < t, and an event A ∈ Fs, find gn ∈ Y such that gn → f and Lgn → Lf

boundedly and uniformly. That this is possible is the definition of a core. By (b),

E

[
1A

(
gn(Xt)−

∫ t

0

Lgn(Xu) du

)]
= E

[
1A

(
gn(Xs)−

∫ s

0

Lgn(Xu) du

)]
.
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Let n→∞. Bounded convergence replaces gn by f so that

E

[
1A

(
f(Xt)−

∫ t

0

Lf(Xu) du

)]
= E

[
1A

(
f(Xs)−

∫ s

0

Lf(Xu) du

)]
.

Since A ∈ Fs is arbitrary and since Ms = f(Xs)−
∫ s

0
Lf(Xu) du is Fs-measurable, this says

that E[Mt|Fs] = Ms. In other words that Mt is a martingale.

Let g ∈ Cb(Y ) and λ > 0. By Proposition 3.10 there exists f ∈ D(L) such that

(λ− L)f = g.

By the martingale property, for 0 ≤ s < t,

E

[
f(Xt)−

∫ t

s

Lf(Xu) du

∣∣∣∣Fs

]
= f(Xs). (4.17)

Multiply this by λe−λt and integrate over t ∈ [s,∞):

E

[∫ ∞

s

e−λtλf(Xt) dt−
∫ ∞

s

e−λtLf(Xt) dt

∣∣∣∣Fs

]
= e−λsf(Xs)

which gives

E

[∫ ∞

s

e−λtg(Xt) dt

∣∣∣∣Fs

]
= e−λsf(Xs). (4.18)

Measure P µ also satisfies hypotheses (a)–(b), so (4.18) is valid also when E is replaced

by Eµ.

We prove by induction on n that P and P µ have the same finite-dimensional distributions

on n variables (Xs1 , . . . , Xsn) for any 0 ≤ s1 < · · · < sn. This suffices for P = P µ as measures

on DY .

First set s = 0 in (4.18) and take expectations of both sides with respect to P . This and

assumption (a) give ∫ ∞

0

e−λtE[g(Xt)] dt = E[f(X0)] =

∫
f dµ.

The same step applies to P µ too, and we have∫ ∞

0

e−λtE[g(Xt)] dt =

∫ ∞

0

e−λtEµ[g(Xt)] dt.

Both measures P and P µ live on the path space DY and so both expectations E[g(Xt)]

and Eµ[g(Xt)] are right-continuous functions of t. By the uniqueness of Laplace transforms

(Lemma A.19),

E[g(Xt)] = Eµ[g(Xt)]
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for all t. This is valid for all g ∈ Cb(Y ), and so we have shown that Xt has the same

distribution under P and P µ, for any t ≥ 0.

Now assume that the vector (Xs1 , . . . , Xsn) has the same distribution under P and P µ,

for any n time points 0 ≤ s1 < · · · < sn. Take s = sn in (4.18), let h1, . . . , hn be arbitrary

bounded continuous functions on Y , and multiply (4.18) by

n∏
i=1

h(Xsi
).

Notice that this product is Fsn-measurable and so can be taken inside the conditional ex-

pectation on the left-hand side of (4.18). Take expectation under P . Take the expectation

inside the t-integral. This gives∫ ∞

sn

e−λtE

[
g(Xt)

n∏
i=1

h(Xsi
)

]
dt = e−λsnE

[
f(Xsn)

n∏
i=1

h(Xsi
)

]
. (4.19)

The same step applies to P µ too, and we have∫ ∞

sn

e−λtEµ

[
g(Xt)

n∏
i=1

h(Xsi
)

]
dt = e−λsnEµ

[
f(Xsn)

n∏
i=1

h(Xsi
)

]
. (4.20)

By the induction assumption, the right-hand sides of (4.19) and (4.20) agree. Hence so do

the left-hand sides. Use again the uniqueness of Laplace transforms. Note that having∫ ∞

sn

e−λtu(t) dt =

∫ ∞

sn

e−λtv(t) dt

for all λ > 0 guarantees that u = v on [sn,∞) which is what we need here. So we have

E

[
g(Xt)

n∏
i=1

h(Xsi
)

]
= Eµ

[
g(Xt)

n∏
i=1

h(Xsi
)

]

for any set 0 ≤ s1 < · · · < sn < t of n+ 1 time points.

Let us emphasize two things: The measure P in the theorem was not even assumed to

represent a Markov process. This is useful because checking the Markov property of a given

process may be tricky. Second, the core Y can of course be the entire domain of L.

Next we show that the action of the generator on cylinder functions uniquely specifies the

exclusion process among Feller processes on X with strongly continuous semigroups. This

point is worth making because we defined the exclusion process by directly constructing the
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probability measures {P η} on the path space. This construction alone does not rule out the

possibility that some other Markov process {P̃ η} has the same generator.

So let L be the exclusion generator (2.12). Suppose a Markov process {P̃ η} exists on

the path space DX with these properties: the semigroup T (t)f(η) = Ẽη[f(ηt)] is a strongly

continuous contraction semigroup on C(X) with generator M , cylinder functions lie in the

domain of M , and Mf = Lf for cylinder functions f .

Proposition 4.9 P η = P̃ η for all η ∈ X.

Proof. This can be viewed as a corollary of Theorem 4.8. Here is an alternative argument

from semigroup theory.

First observe that, since both L and M are closed, D(L) ⊆ D(M). For if f ∈ D(L), we

can find a sequence fn from the core C (for L) such that (fn, Lfn) → (f, Lf). And then

f ∈ D(M) and Mf = Lf . Thus we know M must be an extension of L, and by Proposition

3.13 the semigroups agree. Then, as explained in Section 1.3, the transition probabilities

agree, and consequently the probability measures P η and P̃ η on path space must agree.

Exercise 4.3 Equation (4.17) is valid almost surely, for any fixed s < t. To obtain (4.18)

from it through the integration step we in principle involve uncountably many t-values. Give

a rigorous justification for the almost sure validity of (4.18) for any fixed s.

Exercise 4.4 Solve Exercise 1.5 using Theorem 4.8.

Exercise 4.5 Check that the graphical representation of Section 2.1 and the stirring particle

construction of Section 2.2 produce the same process, when the jump kernel is symmetric.
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PART II Convergence to equilibrium

5 Symmetric exclusion processes

We have constructed the exclusion process under the assumptions of translation invariance

and finite range of the jump probability. These meant that p(x, y) = p(0, y − x) for all

x, y ∈ S = Zd, and that the set {x : p(0, x) > 0} is finite. In this chapter we make two

additional assumptions, namely

symmetry: p(x, y) = p(y, x) for all x, y ∈ S,

and

irreducibility: for all x, y ∈ S there exists n > 0 such that p(n)(x, y) > 0.

Note that by symmetry we are actually not assuming anything more than the relaxed ir-

reducibility condition (1.26). The finite range condition will not be explicitly used in this

chapter. We write M1 for the space of probability measures on the state space X = {0, 1}S

of the exclusion process.

This chapter proves the following two theorems under the assumptions mentioned above.

Theorem 5.1 The class I of invariant measures is precisely the class of exchangeable mea-

sures on X = {0, 1}S.

Recall the definition of the Bernoulli measure νρ for 0 ≤ ρ ≤ 1. Under νρ the coordinates

{η(x)} are independent with common distribution

νρ{η : η(x) = 1} = ρ and νρ{η : η(x) = 0} = 1− ρ.

By de Finetti’s Theorem A.16 the exchangeable measures are exactly the mixtures of Bernoulli

measures. So Theorem 5.1 can be equivalently stated by saying that the extreme points of

I are the Bernoulli measures, or Ie = {νρ : 0 ≤ ρ ≤ 1}.
The second theorem concerns convergence to equilibrium from a special class of initial

distributions, namely the translation invariant ergodic ones. The spatial translations, or

shifts, are bijective maps θx defined on X by θxη(y) = η(x + y) for all x, y ∈ S. They

are continuous, hence measurable. As usual, maps on a space act on measures through

composition with inverses, so for any µ ∈M1, the measure µ ◦ θ−1
x is defined by

µ ◦ θ−1
x (A) = µ(θ−1

x A) = µ{η : θxη ∈ A} (5.1)
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for measurable sets A ⊆ X. A measure µ is translation invariant if µ = µ ◦ θ−1
x for all

x ∈ S. Let S denote the set of translation invariant probability measures on X. An event

A is translation invariant if θ−1
x A = A for all x. A measure µ ∈ S is ergodic if µ(A) = 0

or 1 for every translation invariant event A. The Bernoulli measures are a basic example of

ergodic measures in S.

If µ is the initial distribution of the process, let µt = µS(t) be the distribution of ηt, the

state at time t.

Theorem 5.2 Suppose µ is a translation invariant and ergodic probability measure on X

with density ρ = µ{η(x) = 1}. Then µt converges weakly to νρ as t→∞.

The proof of Theorem 5.1 splits into two parts, depending on whether the jump kernel

p(x, y) is recurrent or transient. For an irreducible discrete-time Markov chain Xn with

transition p(x, y), recurrence is equivalent to

P x[Xn = y for infinitely many n ≥ 1] = 1 for all states x and y,

while transience is equivalent to

P x[Xn = y for only finitely many n ≥ 1] = 1 for all states x and y.

We begin with the key notion of duality.

5.1 Duality

In general, two Markov processes zt and wt with state spaces Z and W are in duality with

respect to a bounded measurable function H on Z ×W , if for all states z ∈ Z and w ∈ W ,

EzH(zt, w) = EwH(z, wt).

On the left the w-argument is fixed while Ez denotes expectation over the random zt with

initial state z. And similarly on the right. For symmetric exclusion we obtain this type of

relationship between two versions of the same process. The second member of the duality

is taken to be an exclusion process with finitely many particles. The benefit of the duality

is that questions about the general process can be converted into questions about the finite

exclusion process. This is an improvement because the latter is a countable state Markov

chain.

Let Y denote the set of all finite subsets of S. It is a countable set. Equation

A = {x ∈ S : η(x) = 1}
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maps bijectively between configurations η ∈ X with finitely many particles [meaning that∑
x η(x) < ∞] and sets A ∈ Y . So we can regard an exclusion process with finitely many

particles as a countable state Markov chain with state space Y . Let At denote the process,

in other words the set of occupied sites at time t.

The next theorem expresses the self-duality of symmetric exclusion, a key tool for its

analysis.

Theorem 5.3 For η ∈ X and A ∈ Y ,

P η{ηt(x) = 1 for all x ∈ A} = PA{η(x) = 1 for all x ∈ At}. (5.2)

Proof. Fix a realization of the Poisson clocks {T{x,y}} for the graphical construction for the

time interval [0, t] used in Section 2.2. Let Xy
s be the stirring particles that march backward

in time, as defined in Section 2.2. According to (2.7) we can construct ηt by ηt(x) = η(Xx
t ).

Let us construct the evolution As (0 ≤ s ≤ t) backwards in time as suggested in the last

paragraph of Section 2.2, so that At = {Xx
t : x ∈ A}. Then ηt(x) = 1 for all x ∈ A iff

η(Xx
t ) = 1 for all x ∈ A iff η(x) = 1 for all x ∈ At.

For a probability measure µ on X, define a function µ̂ on Y by

µ̂(A) = µ{η : η(x) = 1 for all x ∈ A}. (5.3)

Note that two probability measures µ and ν on X are equal if

µ{η = 1 on A} = ν{η = 1 on A}

for all A ∈ Y . In other words, µ = ν iff µ̂ = ν̂. The function µ̂ can be used to conveniently

express the duality.

Corollary 5.4 For µ ∈ M1, let µt = µS(t) be the distribution of ηt when the initial distri-

bution is µ. Then for A ∈ Y ,

µ̂t(A) = EAµ̂(At). (5.4)

Proof. Integrate (5.2) against µ:

µ̂t(A) = µt{η = 1 on A} =

∫
X

P η{ηt = 1 on A}µ(dη) =

∫
X

PA{η = 1 on At}µ(dη)

= EA

∫
X

1{η = 1 on At}µ(dη) = EAµ̂(At).
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Duality converts the question about invariant measures of ηt into a question about har-

monic functions of the finite exclusion process At. For ν ∈ M1, ν is invariant for the

exclusion process ηt iff ν = νt iff ν̂ = ν̂t. By (5.4) this last statement is equivalent to having

ν̂(A) = EAν̂(At) for all A ∈ Y . We conclude that

ν is invariant for ηt iff ν̂ is harmonic for At. (5.5)

We get the following intermediate results toward a characterization of I.

Proposition 5.5 All exchangeable measures lie in I.

Proof. According to Exercise A.6 in Section A.6, if ν is exchangeable, then ν̂(A) depends

only on |A|. Since |At| = |A| (particles are neither created nor destroyed in an exclusion

process), ν̂(At) = ν̂(A). So ν̂ is not only harmonic for At but even almost surely constant

in time.

Proposition 5.6 In order to prove that I is exactly the class of exchangeable measures,

it suffices to prove this statement: If f is a bounded harmonic function for At, then f(A)

depends only on |A|.

Proof. It only remains to show that all invariant measures are necessarily exchange-

able. So let ν be invariant. Then by (5.5) ν̂ is harmonic for At. If the statement about

harmonic functions of At is proved, then we know ν{η = 1 on A} = ν̂(A) depends only on

|A|. According to Exercise A.6 this property characterizes exchangeability. Thus ν must be

exchangeable.

5.2 Proof of Theorem 5.1 in the recurrent case

By Propositions 5.5 and 5.6, Theorem 5.1 will follow from proving this proposition:

Proposition 5.7 Suppose the transition probability p(x, y) is recurrent. Let f be a bounded

function on the space Y of finite subsets of S. If f is harmonic for the finite exclusion process

At, then f(A) depends only on |A|, the size of the set.

Proof. It suffices to show that, for any two n-sets A and B that have n − 1 points in

common, the processes At and Bt started from A and B can be coupled successfully. For

then, as in Chapter 1,

|f(A)− f(B)| = |EAf(At)− EBf(Bt)| ≤ E|f(At)− f(Bt)| ≤ 2‖f‖∞P (At 6= Bt) → 0.
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Since any two n-sets can be transformed into each other by replacing one point at a time,

and since n is arbitrary, it follows that f(A) = f(B) for any two sets A and B with the same

number of points.

The constructions used in this proof do not utilize the graphical representation. They

are more basic and require only construction of certain countable state Markov chains.

A single particle exclusion process is simply a random walk. So in the case n = 1, we can

write At = {Xt} and Bt = {Yt} where Xt and Yt are random walks with jump rates p(x, y).

Define the coupled process (Xt, Yt) so that Xt and Yt move independently until they meet for

the first time, and after that they move together. By symmetry, Zt = Xt − Yt is a random

walk with twice the rate but the same jump probability p(x, y) (Exercise 1.5). Hence Zt

is recurrent and therefore almost surely eventually hits 0. This is the same as saying that

almost surely there is a time t ≥ 0 at which Xt = Yt, so the coupling is successful. We leave

as an exercise the precise definition of the coupled process.

Now for the case n > 1. We shall describe a process (Ct, Xt, Yt) where Ct is an (n−1)-set

of points in S, and Xt and Yt are S-valued but outside Ct. The state space of this process is

Z = {(C, x, y) ∈ Y × S × S : |C| = n− 1, x /∈ C, y /∈ C}.

This process will realize a coupling (At, Bt) through the formulas At = Ct ∪ {Xt} and

Bt = Ct ∪ {Yt}. In particular, this coupling of At and Bt will be successful if eventually

Xt = Yt.

The process (Ct, Xt, Yt) is a countable state Markov chain with generator G of the stan-

dard form

Gf(z) =
∑
w∈Z

r(z,w)[f(w)− f(z)].

Here we denoted generic elements of Z by z and w, and r(z,w) is the rate of jumping from

state z to w. Below we describe these jump rates case by case. For u ∈ C and v /∈ C, write

Cu,v = (C \ {u}) ∪ {v} for the effect of removing point u and adding v to the set C.

Case 1. Suppose the current state is z = (C, x, y) with x 6= y. In each case below, u ∈ C
and v /∈ C ∪ {x, y}. Then

the jump to state w = (Cu,v, x, y) happens at rate r(z,w) = p(u, v)

(C, v, y) p(x, v)

(C, y, y) p(x, y)

(C, x, v) p(y, v)

(C, x, x) p(y, x)

(Cu,x, u, y) p(u, x) = p(x, u)

(Cu,y, x, u) p(u, y) = p(y, u).
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Case 2. Suppose the current state is z = (C, x, x). Let u ∈ C and v, y /∈ C ∪ {x}. Then

the jump to state w = (Cu,v, x, x) happens at rate r(z,w) = p(u, v)

(Cu,x, u, u) p(u, x) = p(x, u)

(C, y, y) p(x, y).

Reading off the rates of the marginal processes, we see that Xt and Yt are random walks

with jump rates p(x, y) that evolve independently until they meet, after which they stay

together. Hence again Zt = Xt − Yt is a random walk with twice the rates until it is

absorbed at the origin. Eventually Zt = Xt − Yt = 0 by the recurrence assumption, so the

coupling is successful.

To make this reasoning rigorous, we apply the martingale characterization Theorem 4.8

along the following lines. By Exercise 3.1 the process

Mt = f(Ct, Xt, Yt)−
∫ t

0

Gf(Cs, Xs, Ys) ds (5.6)

is a martingale for any f ∈ Cb(Z). Let φ be a bounded continuous function on S, and take

f(C, x, y) = φ(x− y). Check that for this f , Gf(C, x, y) = Hφ(x− y) where

Hφ(z) = 1{z 6= 0} ·
∑

v∈S:v 6=z

2p(z, v)[φ(v)− φ(z)].

Define the process Zt = Xt − Yt. Eq. (5.6) becomes

Mt = φ(Zt)−
∫ t

0

Hφ(Zs) ds. (5.7)

Now observe that H is precisely the generator of a random walk on S that jumps with rates

2p(x, y) until it is absorbed at the origin. We could construct such a random walk as was

done in Section 1.2, and then derive the generator H from this construction as in Theorem

1.2. Since we have shown that (5.7) is a martingale for every φ ∈ Cb(S), Zt is exactly this

random walk by Theorem 4.8.

Using the same argument one checks that At = Ct ∪ {Xt} behaves exactly as a finite

exclusion process, jumping from A to Aa,b with rate p(a, b) for any a ∈ A and b /∈ A. Similarly

for Bt = Ct ∪ {Yt}. To summarize, we have constructed a successful coupling of At and Bt

and thereby completed the proof.

5.3 Comparison with independent walks

In the transient case we cannot hope to couple successfully as we did in the proof of Propo-

sition 5.7. Instead, we approach the finite exclusion process by comparing it with a system

where the walks are independent and not subject to the exclusion rule.
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Let X(t) = (X1(t), . . . , Xn(t)) be a vector of independent random walks on S = Zd

with jump rates 1 and jump probabilities p(x, y). Let U(t) denote the semigroup for X(t),

explicitly given by

U(t)f(x) =
∑
y∈Sn

n∏
i=1

pt(xi, yi)f(y) (5.8)

where we wrote x = (x1, . . . , xn) for an n-vector of sites from S, and similarly for y. The

transition probabilities of the individual walks Xi(t) that appear in the formula above are

given by

pt(x, y) =
∞∑

n=0

e−ttn

n!
p(n)(x, y). (5.9)

The generator of U(t) is the bounded operator U on Cb(S
n) given by

Uf(x) =
n∑

i=1

∑
y∈S

p(xi, y)[f(x1, . . . , xi−1, y, xi+1, . . . , xn)− f(x)]. (5.10)

For the comparison with U(t), it is convenient to encode a finite exclusion process with

n particles by keeping track of the vector x of particle locations. The state space for this

process is

T = {x ∈ Sn : xi 6= xj for i 6= j } (5.11)

and the generator

V f(x) =
n∑

i=1

∑
y∈S\{x1,...,xn}

p(xi, y)[f(x1, . . . , xi−1, y, xi+1, . . . , xn)− f(x)]. (5.12)

We write V (t) for the semigroup of the n particle exclusion on the space T .

The connection between V (t) and our earlier notation At is the natural one, as can be

seen by constructing them together with the graphical representation. Let

w(t) = (w1(t), . . . , wn(t))

denote the process on T with generator V and initial state w = (w1, . . . , wn). Let At be

the finite exclusion process with initial set A = {w1, . . . , wn}. If both processes follow

the same Poisson clocks in the graphical representation, At = {w1(t), . . . , wn(t)} for all

t ≥ 0. In particular, given a bounded function h defined on n-sets A ∈ Y , define f(x) =

h({x1, . . . , xn}). If A and w are as above, then

EAh(At) = V (t)f(w). (5.13)
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The comparison of V (t) and U(t) will come in the following somewhat abstract form.

Let us say a bounded, symmetric function f(x, y) on S2 is positive definite if∑
x,y

f(x, y)ψ(x)ψ(y) ≥ 0 (5.14)

for absolutely summable real functions ψ on S. Absolute summability means that
∑
|ψ(x)| <

∞ and guarantees that the sum in (5.14) is well-defined. A bounded symmetric function of

n variables is positive definite if the condition is satisfied for any two variables, holding the

other n− 2 variables fixed.

Proposition 5.8 For every bounded symmetric positive definite function f on Sn and every

x ∈ T , V (t)f(x) ≤ U(t)f(x).

Proof. Directly from (5.10) and (5.12) for x ∈ T

Uf(x) − V f(x)

=
∑

1≤i,j≤n

p(xi, xj)[f(x1, . . . , xi−1, xj, xi+1, . . . , xn)− f(x)]

=
1

2

∑
1≤i,j≤n

p(xi, xj)[f(x1, . . . , xi−1, xj, xi+1, . . . , xn)

+f(x1, . . . , xj−1, xi, xj+1, . . . , xn)− 2f(x)].

To get the last form, take 1/2 times the middle expression, and another 1/2 times the

middle expression after first interchanging i and j in the sum and then using symmetry to

replace p(xj, xi) by p(xi, xj). The last expression in brackets is as in (5.14) with ψ(x) =

δxi
(x)− δxj

(x). Thus Uf − V f ≥ 0 on T for bounded symmetric positive definite f .

Next we show that operating with U(t) preserves the property of positive definiteness of

a function f .

∑
xj ,xk∈S

ψ(xj)ψ(xk)U(t)f(x) =
∑

xj ,xk∈S

ψ(xj)ψ(xk)
∑
y∈Sn

{
n∏

i=1

pt(xi, yi)

}
f(y)

=
∑
i6=j,k

∑
yi∈S

{∏
i6=j,k

pt(xi, yi)

} ∑
yj ,yk∈S

∑
xj

ψ(xj)pt(xj, yj)

(∑
xk

ψ(xk)pt(xk, yk)

)
f(y).

Let ϕ(y) =
∑

x ψ(x)pt(x, y). Then the last line above is a positive linear combination of

terms
∑

yj ,yk∈S ϕ(yj)ϕ(yk)f(y), each nonnegative by the positive definiteness of f . Thus

the entire last line is nonnegative, and so U(t)f is positive definite. That U(t) preserves
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symmetry is evident from (5.8), and boundedness is preserved because U(t) is a contraction

semigroup.

Now we may apply the first conclusion to the function U(s)f , and claim that (U −
V )U(s)f ≥ 0 on T . The semigroup V (t) preserves nonegativity of functions, and so

V (t− s)(U − V )U(s)f ≥ 0

on T . Finally, by Proposition 3.9,

U(t)f − V (t)f =

∫ t

0

V (t− s)(U − V )U(s)f ds ≥ 0

on T .

Corollary 5.9 Let x = (x1, . . . , xn) ∈ T be an n-vector with distinct entries, and consider

also the n-set A = {x1, . . . , xn} ∈ Y . Then for µ ∈M1 with µt = µS(t),

µ̂t(A) ≤ Exµ̂{X1(t), . . . , Xn(t)}.

Proof. For all vectors x ∈ Sn, let

f(x) = µ{η(x1) = · · · = η(xn) = 1} = µ̂{x1, . . . , xn}.

Note that this definition is not problematic even if some of the points xi coincide. The

function f is bounded, symmetric, and positive definite as can be seen from this calculation:

∑
x,y

f(x, y, x3, . . . , xn)ψ(x)ψ(y) =

∫ ∑
x,y

η(x)η(y)ψ(x)ψ(y)

{
n∏

i=3

η(xi)

}
µ(dη)

=

∫ (∑
x,y

η(x)ψ(x)

)2{ n∏
i=3

η(xi)

}
µ(dη) ≥ 0.

By duality (5.4), (5.13), and Proposition 5.8,

µ̂t(A) = EAµ̂(At) = V (t)f(x) ≤ U(t)f(x)

= Exf(X1(t), . . . , Xn(t)) = Exµ̂{X1(t), . . . , Xn(t)}.
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5.4 Proof of Theorem 5.1 in the transient case

Again our goal is to prove that bounded harmonic functions for the finite exclusion process

depend only on the size of the set. The transition probability p(x, y) is transient, in addition

to the assumptions of translation invariance and irreducibility.

As before, X(t) = (X1(t), . . . , Xn(t)) denotes a vector of independent random walks on

S = Zd, each with jump rates p(x, y). Recall that T defined by (5.11) is the set of n-vectors

with distinct entries, and serves as the state space for n particle exclusion. U(t) denotes the

semigroup of X(t), and V (t) the semigroup of n particle exclusion. For x = (x1, . . . , xn) ∈ Sn,

let
g(x) = P x[X(t) /∈ T for some t ≥ 0]

= P x[Xi(t) = Xj(t) for some 1 ≤ i < j ≤ n and t ≥ 0].
(5.15)

Lemma 5.10 (a) For x ∈ Sn, U(t)g(x) → 0 as t→∞.

(b) For x ∈ T , V (t)g(x) → 0 as t→∞.

Proof. For x, y ∈ S, define

w(x, y) = P (x,y)[X1(t) = X2(t) for some t > 0].

We check that w(x, y) is positive definite in the sense of definition (5.14). First fix 0 < t1 <

t2 < · · · < tm, and consider the function

w̃(x, y) = P (x,y)[X1(ti) = X2(ti) for some 1 ≤ i ≤ m].

If we can show
∑

x,y w̃(x, y)ψ(x)ψ(y) ≥ 0, then by letting {ti} increase into a countable

dense subset of (0,∞), in the limit we recover
∑

x,y w(x, y)ψ(x)ψ(y) ≥ 0.∑
x,y

ψ(x)ψ(y)P (x,y)[X1(ti) = X2(ti) for some 1 ≤ i ≤ m]

=
∑
x,y

ψ(x)ψ(y)
m∑

i=1

P (x,y)[X1(ti) = X2(ti),X1(tj) 6= X2(tj) for j = i+ 1, . . . ,m]

=
∑
x,y

ψ(x)ψ(y)
m∑

i=1

∑
w

P x[X1(ti) = w]P y[X2(ti) = w]

×P (w,w)[X1(tj − ti) 6= X2(tj − ti) for j = i+ 1, . . . ,m]

=
m∑

i=1

∑
w

(∑
x

ψ(x)P x[X1(ti) = w]

)2

×P (w,w)[X1(tj − ti) 6= X2(tj − ti) for j = i+ 1, . . . ,m]

≥ 0.
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We have shown that w(x, y) is positive definite. It is also bounded and symmetric. For

x ∈ Sn, let

G(x) =
∑

1≤i<j≤n

w(xi, xj).

G inherits the properties of boundedness, symmetry and positive definiteness from w.

Again use the fact that by the symmetry of p(x, y), Z(t) = X1(t) − X2(t) is a random

walk with twice the rates of X1(t) (Exercise 1.5). By the transience assumption Z(t) has a

last visit to the origin almost surely, and so for all x, y ∈ S,

lim
t→∞

P (x,y)[X1(s) = X2(s) for some s > t] = 0. (5.16)

Recalling that U(t) represented the semigroup of X(t),

U(t)G(x) = ExG(X(t))

=
∑

1≤i<j≤n

Exw(Xi(t), Xj(t))

=
∑

1≤i<j≤n

Ex[P (Xi(t),Xj(t)){Xi(s) = Xj(s) for some s > 0}]

=
∑

1≤i<j≤n

P (xi,xj){Xi(s) = Xj(s) for some s > t}.

By (5.16) we conclude that

lim
t→∞

U(t)G(x) = 0 for x ∈ Sn. (5.17)

By Proposition 5.8 V (t)G ≤ U(t)G on T , so

lim
t→∞

V (t)G(x) = 0 for x ∈ T . (5.18)

The conclusions of the lemma now follow from (5.17), (5.18) and the observation that g(x) ≤
G(x).

Proposition 5.11 Suppose f is a bounded function on T such that V (t)f = f for all t ≥ 0.

Then f must be constant.

Proof. For n = 1 the exclusion is just the irreducible random walk, and we already know

bounded harmonic functions of an irreducible random walk are constant. So assume n ≥ 2.

Multiplication by a constant and adding a constant do not change boundedness or being

harmonic, so we may assume 0 ≤ f ≤ 1. We may couple X(t) and the exclusion process so
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that they agree until the first time X(t) leaves T . (Detailed specification of this coupling

left as an exercise.) Consequently

|V (t)f(x)− U(t)f(x)| ≤ g(x) for x ∈ T . (5.19)

By assumption V (t)f = f on T , and so

|f(x)− U(t)f(x)| ≤ g(x) for x ∈ T . (5.20)

Extend f to Sn by setting f = 0 on Sn \ T . Since g = 1 on Sn \ T , the above inequality

extends:

|f(x)− U(t)f(x)| ≤ g(x) for x ∈ Sn. (5.21)

Next, for s, t ≥ 0,

|U(s)f(x)− U(s+ t)f(x)| ≤ U(s)|f − U(t)f |(x) ≤ U(s)g(x), x ∈ Sn.

Letting s → ∞ and using Lemma 5.10(a) shows that the limit of U(s)f(x) exists as s →
∞, for all x ∈ Sn. This limit is harmonic for the random walk by Lemma 1.10, hence

constant because X(t) is an irreducible random walk on Zdn. So for some constant b ∈ [0, 1],

U(t)f(x) → b as t→∞. Pass to this limit in (5.21) to get

|f(x)− b| ≤ g(x) for x ∈ Sn. (5.22)

Again since f is assumed harmonic for V (t), for x ∈ T we have

|f(x)− b| = |V (t)f(x)− b| = |V (t)(f − b)(x)| ≤ V (t)|f − b|(x) ≤ V (t)g(x).

Finally, let t→∞ and apply Lemma 5.10(b) to conclude that f = b on T .

Corollary 5.12 Suppose h is a bounded function on Y , and harmonic for the finite exclusion

process At. Then h(A) depends only on |A|.

Proof. Let A,B ∈ Y be such that |A| = |B| = n. We want to show that h(A) = h(B).

For x = (x1, . . . , xn) ∈ T , define f(x) = h({x1, . . . , xn}). By the harmonicity of h and (5.13),

V (t)f = f , and by Proposition 5.11 f must be constant.

We have proved that a bounded harmonic function for the finite exclusion can depend

only on the number of particles. By Proposition 5.6, we have proved Theorem 5.1 for the

transient case.
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5.5 Proof of Theorem 5.2

In the proof of Theorem 5.2 we can now handle both the recurrent and the transient case

simultaneously.

Let µ be a spatially invariant and ergodic probability measure onX, and ρ = µ{η(x) = 1}
the density of µ. To prove µt → νρ as t→∞, it suffices to show that an arbitrary sequence

tj ↗ ∞ has a subsequence tjk
such that µtjk

→ νρ. This suffices because if µt were not to

converge to νρ weakly, there would have to exist a bounded continuous function ψ on X, a

sequence of times tj ↗∞, and δ > 0 such that for all j,∣∣∣∣∫
X

ψ dµtj −
∫

X

ψ dνρ

∣∣∣∣ > δ.

However, this would be contradicted along {jk} if µtjk
→ νρ.

So let tj ↗ ∞ be an arbitrary sequence of times. By the compactness of the space M1

of probability measures on X, we can pick a subsequence, which we denote by {tk}, such

that a weak limit µtk → ν exists. We need to show that ν = νρ.

For any A ∈ Y ,

ν̂(A) = ν{η = 1 on A} = lim
k→∞

µtk{η = 1 on A} = lim
k→∞

µ̂tk(A) = lim
k→∞

EAµ̂(Atk)

where the last equality follows from duality (5.4). By Lemma 1.10, ν̂ is harmonic for At.

Consequently ν̂(A) depends only on |A|. For the recurrent case this comes from Proposition

5.7, and for the transient case from Corollary 5.12. By Exercise A.6 in Section A.6, ν is an

exchangeable measure. By de Finetti’s theorem A.16, there exists a probability measure γ

on [0, 1] such that

ν =

∫
[0,1]

να γ(dα).

It remains to show that γ = δρ, the point mass at ρ. Cylinder functions are continuous on

X, hence their expectations converge under weak convergence.

ν{η(0) = 1} = lim
k→∞

µtk{η(0) = 1} = lim
k→∞

µ̂tk({0})

= lim
k→∞

E{0}µ̂(Atk) = lim
k→∞

E0µ̂{X(tk)} = ρ,

where we used duality, represented the one-particle exclusion started from A0 = {0} by the

random walk X(t), and noted that µ̂{x} = ρ for any singleton {x}. This implies∫
[0,1]

α γ(dα) = ρ. (5.23)
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Similarly for x 6= 0, by duality, Corollary 5.9, Fubini’s theorem, and Corollary A.23,

ν{η(0) = η(x) = 1} = lim
k→∞

µ̂tk({0, x})

≤ lim
k→∞

E(0,x)µ̂{X1(tk), X2(tk)} = lim
k→∞

E(0,x)µ{η(X1(tk)) = η(X2(tk)) = 1}

= lim
k→∞

∫
E(0,x)[η(X1(tk))η(X2(tk))]µ(dη) = ρ2.

This says ∫
[0,1]

α2 γ(dα) ≤ ρ2. (5.24)

By (5.23), (5.24), and Schwarz inequality,

ρ =

∫
α γ(dα) ≤

(∫
α2 γ(dα)

)1/2

≤ ρ.

Equality in the Schwarz inequality forces the function to be almost surely constant. Thus γ

is concentrated on the point ρ. The proof of Theorem 5.2 is complete.

Exercise 5.1 Construct explicitly the coupling used in the proof of Proposition 5.11 between

the random walk X(t) and the finite exclusion process.

Notes

This chapter came from section VIII.1 in Liggett’s monograph [27] and from Chapter 3 in

Liggett’s lectures [26].
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6 Equilibrium distributions without symmetry assump-

tions

6.1 Equilibrium product distributions

In this section we drop the symmetry assumption, and p(x, y) satisfies the assumptions we

used for constructing the exclusion process, namely translation invariance p(x, y) = p(0, y−x)
and finite range.

For a function α : S → [0, 1], let να be the product probability measure on X defined by

να{η : η(x) = 1 for all x ∈ A, η(y) = 0 for all y ∈ B} =
∏
x∈A

α(x)
∏
y∈B

(1− α(y)) (6.1)

for any two disjoint finite sets of sites A and B. The case of constant α(x) = ρ is the

Bernoulli measure νρ defined earlier in (4.15).

Theorem 6.1 (a) Suppose π(x) is a positive function on S that satisfies π(x)p(x, y) =

π(y)p(y, x) for all x, y ∈ S. Let α(x) = π(x)/(1 + π(x)). Then να ∈ I.

(b) The Bernoulli measures are invariant for the exclusion process with any translation

invariant p(x, y).

Proof. By Theorem 4.4, we need to check that
∫
Lf dνα = 0 for an arbitrary cylinder

function f . By the finite range assumption on p(x, y), we can fix a finite set A ⊆ S such

that

Lf(η) =
∑

x,y∈A

p(x, y)η(x)(1− η(y))[f(ηx,y)− f(η)],

and then ∫
Lf dνα =

∑
x,y∈A

p(x, y)

∫
η(x)(1− η(y))f(ηx,y) να(dη)

−
∑

x,y∈A

p(x, y)

∫
η(x)(1− η(y))f(η) να(dη).

Separate one (x, y)-term from the first sum above. To manipulate the coordinates explicitly,

introduce the notation η = (η′, η(x), η(y)) where η′ contains all the coordinates outside

{x, y}. Write ν ′α for the marginal distribution of η′, and νx
α for the marginal distribution of

η(x). Since να is a product measure, we can integrate separately over distinct coordinates,
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and reason as follows.∫
να(dη) η(x)(1− η(y))f(ηx,y)

=

∫
ν ′α(dη′)

∫
νx

α(dη(x))

∫
νy

α(dη(y)) η(x)(1− η(y))f(η′, η(y), η(x))

=

∫
ν ′α(dη′)α(x)(1− α(y)) f(η′, 0, 1)

=
α(x)(1− α(y))

α(y)(1− α(x))

∫
ν ′α(dη′)α(y)(1− α(x)) f(η′, 0, 1)

=
α(x)(1− α(y))

α(y)(1− α(x))

∫
να(dη) η(y)(1− η(x))f(η).

Substitute this back above, combine the sums and rearrange terms to get∫
Lf dνα =

∫
να(dη) f(η)

∑
x,y∈A

p(x, y)

×
{
α(x)(1− α(y))

α(y)(1− α(x))
η(y)(1− η(x)) − η(x)(1− η(y))

}
. (6.2)

In case (a) the sum inside the integral equals∑
x,y∈A

p(x, y)
π(x)

π(y)
η(y)(1− η(x)) −

∑
x,y∈A

p(x, y)η(x)(1− η(y))

=
∑

x,y∈A

p(y, x)η(y)(1− η(x)) −
∑

x,y∈A

p(x, y)η(x)(1− η(y)) = 0

where the last equality follows because the sums differ only by a relabeling of the summation

indices. This proves case (a).

For case (b) we have to do someting different to get the sum in (6.2) to vanish. We

restrict the process to a finite cube in S with periodic boundary conditions. This means that

jumps of particles out of the cube are directed to a site inside the cube, and jumps from

outside the cube are completely eliminated. Fix a positive integer k, and let A be the cube

A = [−k, k]d ∩ Zd. Define the new jump probability for x, y ∈ A by

pA(x, y) =
∑
w∈Zd

p(x, y + (2k + 1)w).

Note that {y+(2k+1)Zd : y ∈ A} partitions Zd into disjoint subsets. This gives
∑

y∈A pA(x, y) =

1 so that pA(x, y) is a well-defined jump probability on A. Using translation invariance, for

78



any z ∈ A,∑
x∈A

pA(x, z) =
∑
x∈A

∑
w∈Zd

p(x, z + (2k + 1)w) =
∑
x∈A

∑
w∈Zd

p(0, z − x+ (2k + 1)w) = 1.

The last equality follows because, by the symmetry A = −A, {−x + (2k + 1)Zd : x ∈ A} is

also a partition of Zd, and this is not changed by translating each set by z.

Fix the cube A large enough so that pA(x, y) = p(x, y) for any x, y such that f(ηx,y) 6=
f(η), so that

Lf(η) =
∑

x,y∈A

pA(x, y)η(x)(1− η(y))[f(ηx,y)− f(η)].

We can repeat the earlier calculations down to (6.2) with p(x, y) replaced by pA(x, y). Now

α(x) = ρ, and we get∫
Lf dνα

=

∫
να(dη) f(η)

∑
x,y∈A

pA(x, y)

{
α(x)(1− α(y))

α(y)(1− α(x))
η(y)(1− η(x)) − η(x)(1− η(y))

}
=

∫
να(dη) f(η)

∑
x,y∈A

pA(x, y) {η(y)− η(x)}

=

∫
να(dη) f(η)

{∑
y∈A

η(y)
∑
x∈A

pA(x, y) −
∑
x∈A

η(x)
∑
y∈A

pA(x, y)

}
= 0.

This proves part (b).

The condition π(x)p(x, y) = π(y)p(y, x) says that π is reversible for the transition prob-

ability p(x, y). Suppose π is a probability measure on S. Then π is invariant for the Markov

chain with transition p(x, y), and furthermore the process with marginal distribution π is

reversible, meaning that {X−n} has the same distribution as {Xn}.
A transition matrix that satisfies

∑
x p(x, y) = 1 for all y is called doubly stochastic.

This is the hypothesis needed for part (b) of the above theorem. Translation invariance is

stronger.

Example 6.2 Consider the one-dimensional nearest-neighbor exclusion process with jump

kernel p(x, x + 1) = p, p(x, x − 1) = q = 1 − p, and p(x, y) = 0 for y 6= x ± 1. If p = 1/2

this process is symmetric, and we already know that the Bernoulli measures are all the

extremal invariant measures. If p 6= 1/2 this is an asymmetric process. By part (b) of
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the above theorem, the Bernoulli measures are again invariant. But now part (a) also gives

something nontrivial. One can check that π(x) = c(p/q)x is reversible for p(x, y), where

c is any constant. By the theorem, the product measure να with α(x) = cpx/(cpx + qx)

is invariant. Thus interestingly, even though the transition mechanism for this exclusion

process is translation invariant, it has invariant measures that are not translation invariant,

because under να the distribution of the coordinate η(x) varies with x.

6.2 Translation invariant equilibrium distributions

In Theorem 5.1 we characterized the entire set I of invariant distributions for symmetric

exclusion processes. In this section we shall do less for the general translation invariant

finite range exclusion process. Namely, we characterize the set I ∩S of translation invariant

equilibrium distributions. The example of the p, q-asymmetric exclusion above shows that

there can be nonstationary equilibrium distributions, so the result is incomplete.

The duality arguments of the symmetric case are not applicable now. The main technique

in this section is coupling of two exclusion processes. We already encountered this briefly in

the proof of Lemma 4.6. The basic coupling means that two exclusion processes ηt and ζt are

constructed as explained in Section 2.1, with one set of Poisson processes {T(x,y)} that govern

the jump attempts of both processes. The effect of this is that individually ηt and ζt are both

exclusion processes, but their jump attempts are synchronized. At a jump time in Poisson

process T(x,y), the state (η, ζ) transforms into (ηx,y, ζ), (η, ζx,y), or (ηx,y, ζx,y), depending on

whether an η-particle, a ζ-particle, or both can jump from x to y at time t. By considering

the different possibilities, one sees that in this coupling an η-particle and a ζ-particle jump

together whenever possible.

This construction defines a process (ηt, ζt) with state space X2, path space DX2 , and all

the properties proved in Section 2.3. Its generator is

L̃f(η, ζ) =
∑

x,y∈S

p(x, y) η(x)(1− η(y))ζ(x)(1− ζ(y)) [f(ηx,y, ζx,y)− f(η, ζ)]

+
∑

x,y∈S

p(x, y) η(x)(1− η(y))1{ζ(x) = 0 or ζ(y) = 1} [f(ηx,y, ζ)− f(η, ζ)]

+
∑

x,y∈S

p(x, y) ζ(x)(1− ζ(y))1{η(x) = 0 or η(y) = 1} [f(η, ζx,y)− f(η, ζ)].

(6.3)

Write S̃(t) for the semigroup of the process (ηt, ζt).

We define a partial order on X in a coordinatewise fashion, by η ≥ ζ iff η(x) ≥ ζ(x) for

all x ∈ S. Relative to this order, the basic coupling has an important monotonicity property:

if initially η0 ≥ ζ0, then ηt ≥ ζt holds with probability one for all time t ≥ 0. (Proof by
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considering the possible effects of a jump.) This property is expressed by saying that the

exclusion process is attractive. See Section A.3 for discussion of this order relation and its

definition for measures on X.

Let us write Ĩ for the set of invariant probability measures of the process (ηt, ζt) con-

structed by the basic coupling. And similarly, Ĩe for the extremal members of Ĩ, and S̃ for

the translation-invariant measures on the space X2 = ({0, 1} × {0, 1})Zd
.

It is instructive to consider how discrepancies behave in the basic coupling. Let us say

there is a positive discrepancy at site x at time t if ηt(x) > ζt(x), and a negative discrepancy

if ηt(x) < ζt(x). As the processes evolve under the coupling, discrepancies move around but

are never created. Discrepancies of the opposite type annihilate each other when they land

on the same site. To see this, consider the effect of a jump time t ∈ T(x,y) on a state (ηt−, ζt−)

such that (ηt−(x), ηt−(y)) = (1, 0), (ζt−(x), ζt−(y)) = (0, 1). After the jump the processes

agree on {x, y}.
Suppose we make an irreducibility assumption which enables the discrepancies to mix

around. Then it is reasonable to expect that in the long run discrepancies of the opposite

type cannot coexist. In particular, an invariant measure should not give such an occurrence

positive probability. This we prove now.

Assume that p(x, y) is translation invariant, finite range, and has this irreducibility prop-

erty:

for all (x, y) there exists n such that p(n)(x, y) + p(n)(y, x) > 0. (6.4)

This property includes examples such as p(x, x+ 1) = 1 where not all spatial directions are

permitted for jumps.

Proposition 6.3 Let ν̃ ∈ Ĩ ∩ S̃. Then for all sites x, y ∈ S,

ν̃{(η, ζ) : η(x) = ζ(y) = 0, η(y) = ζ(x) = 1} = 0.

Proof. Fix x, and apply the generator L̃ to the cylinder function f(η, ζ) = 1{η(x) 6=

81



ζ(x)}.

L̃f(η, ζ) =
∑

y

p(x, y)1{η(x) = ζ(x) = 1, η(y) 6= ζ(y)}

+
∑

y

p(y, x)1{η(x) = ζ(x) = 0, η(y) 6= ζ(y)}

−
∑

y

p(x, y)1{η(x) 6= ζ(x), η(y) = ζ(y) = 0}

−
∑

y

p(y, x)1{η(x) 6= ζ(x), η(y) = ζ(y) = 1}

−
∑

y

(p(x, y) + p(y, x))1{η(x) = ζ(y) 6= η(y) = ζ(x)}.

The plus terms contain the ways in which a discrepancy can be moved to x. For example,

in the first sum x is occupied for both η and ζ before the jump, and then at rate p(x, y) a

particle is moved from x to y in either η or ζ but not in both. The two first minus terms

count the ways a discrepancy can be moved out of x. The last term counts the ways a

discrepancy at x can be annihilated.

Now take expectation under ν̃. Since ν̃ ∈ Ĩ,
∫
L̃f dν̃ = 0, so the expectation of the

left-hand side vanishes. On the right-hand side, use the translation invariance of p(x, y) and

ν̃. Then the expectation of the first term equals∑
y

p(x, y)ν̃{η(x) = ζ(x) = 1, η(y) 6= ζ(y)}

=
∑

y

p(0, y − x)ν̃{η(0) = ζ(0) = 1, η(y − x) 6= ζ(y − x)}

=
∑

z

p(0, z)ν̃{η(0) = ζ(0) = 1, η(z) 6= ζ(z)}.

Similarly, the expectation of the fourth term equals∑
y

p(y, x)ν̃{η(x) 6= ζ(x), η(y) = ζ(y) = 1}

=
∑

y

p(0, x− y)ν̃{η(x− y) 6= ζ(x− y), η(0) = ζ(0) = 1}

=
∑

z

p(0, z)ν̃{η(z) 6= ζ(z), η(0) = ζ(0) = 1}.

We see that the expectations of the first and fourth term cancel each other on the right-hand

side. Similarly, the expectations of the second and third term cancel each other.
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We conclude from all this that for every pair (x, y) such that p(x, y) + p(y, x) > 0,

ν̃{η(x) = ζ(y) 6= η(y) = ζ(x)} = 0. (6.5)

By the assumption (6.4), to finish the proof we show by induction the following statement:

(6.5) holds for any pair (x, y) such that p(m)(x, y) + p(m)(y, x) > 0 for some 1 ≤ m ≤ n. We

have already proved the n = 1 case. Let us assume that the result is true for n − 1, and

prove it for n.

Let us employ the following shorthand for events involving η and ζ. For any sites

x1, . . . , xm, and any vectors (a1, . . . , am) and (b1, . . . , bm) of 0’s and 1’s, x1 x2 · · · xm

a1 a2 · · · am

b1 b2 · · · bm


= [ x1 x2 · · · xm | a1 a2 · · · am | b1 b2 · · · bm ]

= {(η, ζ) : η(x1) = a1, η(x2) = a2, . . . , η(xm) = am,

ζ(x1) = b1, ζ(x2) = b2, . . . , ζ(xm) = bm}.

In this notation, the induction assumption is that

ν̃

 x y

1 0

0 1

+ ν̃

 x y

0 1

1 0

 = 0

for any pair (x, y) such that p(m)(x, y) + p(m)(y, x) > 0 for some 1 ≤ m ≤ n− 1.

Now for the induction step. Suppose p(n)(x, y)+p(n)(y, x) > 0. Let us suppose p(n)(x, y) >

0. Otherwise exchange x and y, which is permissible because the event in (6.5) is not affected

by such an exchange.

We shall show ν̃[ x y | 1 0 | 0 1 ] = 0 and leave the analogous argument for ν̃[ x y | 0 1 | 1 0 ] =

0 as an exercise. Find states x = x0, x1, . . . , xn = y such that p(xi, xi+1) > 0 for i =

0, . . . , n−1. Let a = (a1, . . . , an−1) and b = (b1, . . . , bn−1) represent (n−1)-tuples of 0’s and

1’s. Decompose the event [ x y | 1 0 | 0 1 ] as x y

1 0

0 1

 =
⋃
a,b

 x0 x1 · · · xn−1 xn

1 a1 · · · an−1 0

0 b1 · · · bn−1 1

 .
By the induction assumption, any term with some (ai, bi) = (1, 0) or (0, 1) will have zero ν̃

measure. Let V be the set of pairs (a,b) such that (ai, bi) = (0, 0) or (1, 1) for each i. Then

ν̃

 x y

1 0

0 1

 =
∑

(a,b)∈V

ν̃

 x0 x1 · · · xn−1 xn

1 a1 · · · an−1 0

0 b1 · · · bn−1 1

 .
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It remains to show that each term on the right is zero. Consider first the case where

(a1, b1) = (0, 0). Abbreviate

A =

 x0 x1 x2 · · · xn−1 xn

1 0 a2 · · · an−1 0

0 0 b2 · · · bn−1 1

 and B =

 x0 x1 x2 · · · xn−1 xn

0 1 a2 · · · an−1 0

0 0 b2 · · · bn−1 1

 .
Event B results from A after a jump from x0 to x1. Let G be the event that in time (0, t],

there is one jump time in T(x0,x1), and no jump times in any other T(u,v) such that either u

or v is among x0, . . . , xn. Note two things:

{(η0, ζ0) ∈ A} ∩G ⊆ {(ηt, ζt) ∈ B},

and

P(G) = p(x0, x1)te
−p(x0,x1)t · e−βt > 0

where

β =
n∑

i=0

∑
y

p(xi, y) +
∑

y/∈{xi}

n∑
j=0

p(y, xj)− p(x0, x1).

Now estimate

ν̃(B) = ν̃S̃(t)(B) ≥ Peν({(η0, ζ0) ∈ A} ∩G) = ν̃(A)P(G).

Above we used first the invariance of ν̃. Then we wrote Peν for the probability measure

on the probability space where the processes (ηt, ζt) and the Poisson processes are defined.

Finally, it is a property of the construction that the Poisson jump time processes {T(u,v)} are

independent of the initial condition (η0, ζ0).

By induction ν̃(B) = 0. Since P(G) > 0, we must have ν̃(A) = 0.

The remaining case is of the type

A =

 x0 x1 · · · xk−1 xk xk+1 · · · xn−1 xn

1 a1 · · · ak−1 1 0 · · · 0 0

0 b1 · · · bk−1 1 0 · · · 0 1


for some k < n. Let

B =

 x0 x1 · · · xk−1 xk xk+1 · · · xn−1 xn

1 a1 · · · ak−1 0 0 · · · 0 1

0 b1 · · · bk−1 0 0 · · · 1 1

 .
To turn A into B, let G be the event that clocks T(xk,xk+1), T(xk+1,xk+2), . . . , T(xn−1,xn) ring

in order, and no other clocks that affect x0, . . . , xn ring during a fixed time interval (0, t].

Repeat the earlier argument.
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Corollary 6.4 Let ν̃ ∈ Ĩ ∩ S̃. Then ν̃({η ≥ ζ} ∪ {ζ ≥ η}) = 1.

Proof. A configuration (η, ζ) outside {η ≥ ζ} ∪ {ζ ≥ η} has discrepancies of both types.

But

ν̃{discrepancies of both type coexist}
≤
∑

x,y∈S

ν̃{η(x) = ζ(y) = 0, η(y) = ζ(x) = 1} = 0

by Proposition 6.3.

Next we consider starting the joint process (ηt, ζt) with a translation invariant initial

probability distribution γ̃ on the space X2. It is important that the distribution γ̃S̃(t) at

later times retains this translation invariance.

Lemma 6.5 Suppose γ̃ is a translation invariant probability measure on X2. Then γ̃S̃(t) is

translation invariant for each t ≥ 0.

Proof. Think of the initial configurations and the Poisson point processes together as a

process indexed by x ∈ Zd in this sense:

(η0, ζ0, ω) = {η0(x), ζ0(x), (T(x,y) : y ∈ S, p(x, y) > 0) : x ∈ Zd}.

The distribution of this process is invariant under translations of x.

Let g be the map that constructs the occupation numbers at the origin at time t from

the initial configurations and the Poisson point processes: (ηt(0), ζt(0)) = g(η, ζ, ω). Then

(ηt(x), ζt(x)) = g(θxη, θxζ, θxω). By Lemma A.10 the process {ηt(x), ζt(x) : x ∈ Zd} is

stationary.

Lemma 6.6 Let µ, ν ∈ (I ∩ S)e. Then there exists ν̃ ∈ (Ĩ ∩ S̃)e with marginals µ and ν.

Proof. Let γ̃ = µ ⊗ ν, a translation invariant probability measure on X2. The space of

probability measures on X2 is compact, by the compactness of X2. Hence there is a sequence

tn ↗∞ along which the probability measures

t−1
n

∫ tn

0

γ̃S̃(t) dt

converge weakly to a measure µ̃.

Since µ and ν are invariant for the exclusion process, γ̃S̃(t) has marginals µ and ν for all

t ≥ 0. By Lemma 6.5 above γ̃S̃(t) is translation invariant for all t ≥ 0. Both these properties

are preserved by time averaging and weak convergence, so µ̃ has them also.
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The invariance of µ̃ under the semigroup comes from the fact that the process is Feller

continuous. For then the operation S̃(s) is weakly continuous on measures, and we get

µ̃S̃(s) =

(
lim

n→∞
t−1
n

∫ tn

0

γ̃S̃(t) dt

)
S̃(s) = lim

n→∞

{(
t−1
n

∫ tn

0

γ̃S̃(t) dt

)
S̃(s)

}
= lim

n→∞
t−1
n

∫ tn

0

γ̃S̃(s+ t) dt = lim
n→∞

t−1
n

∫ s+tn

s

γ̃S̃(t) dt

= lim
n→∞

t−1
n

∫ tn

0

γ̃S̃(t) dt = µ̃.

Thus µ̃ is an invariant probability measure for the joint process.

We now know µ̃ ∈ Ĩ ∩ S̃. If µ̃ is an extreme point of this set, we are done and we can

take ν̃ = µ̃. Otherwise by Corollary A.14 there is a probability measure Γ on (Ĩ ∩ S̃)e such

that

µ̃ =

∫
(eI∩ eS)e

ν̃ Γ(dν̃).

Let ν̃1, ν̃2 be the marginals of ν̃. They lie in I ∩ S. The integral gives

µ =

∫
(eI∩ eS)e

ν̃1 Γ(dν̃) and ν =

∫
(eI∩ eS)e

ν̃2 Γ(dν̃).

By assumption µ and ν are extreme points of I ∩ S, hence we must have ν̃1 = µ and ν̃2 = ν

for Γ-almost every ν̃. Now we can pick any ν̃ in the support of Γ.

We are ready for the main theorem, which says that the exchangeable measures make up

all the translation invariant equilibrium distributions for the class of processes considered.

Theorem 6.7 For a finite range, translation invariant exclusion process with irreducibility

property (6.4), (I ∩ S)e = {νρ : 0 ≤ ρ ≤ 1}.

Proof. Each νρ lies in I ∩ S. Also, νρ is ergodic, so it cannot be a convex combination

of two distinct translation invariant measures. In particular, it must be an extreme point of

the set I ∩ S.

Let ν ∈ (I ∩ S)e. Let ρ ∈ [0, 1]. By Lemma 6.6, we can find ν̃ ∈ (Ĩ ∩ S̃)e with marginals

ν̃1 = ν and ν̃2 = νρ. Consider these two events in the space X2:

A = {η ≤ ζ} and B = {η ≥ ζ}.

Suppose 0 < ν̃(A) < 1. Since A is closed for the process (ηt, ζt), ν̃(· |A) and ν̃(· |Ac) are

equilibrium distributions by Lemma 4.3. Also, events A and Ac are translation invariant, so
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ν̃(· |A) and ν̃(· |Ac) are translation invariant measures. Since ν̃ is a convex combination of

ν̃(· |A) and ν̃(· |Ac), this contradicts the extremality of ν̃.

This same reasoning works for B also, and we conclude that both events A and B have

measure 0 or 1 under ν̃. By Corollary 6.4 one of these events must have probability 1.

Depending on which set has full measure, we conclude that either ν ≤ νρ or ν ≥ νρ.

To summarize: for each 0 ≤ ρ ≤ 1, either ν ≤ νρ or ν ≥ νρ. Since νρ1 ≤ νρ2 for ρ1 ≤ ρ2,

the number ρ0 = inf{ρ : ν ≤ νρ} satisfies νρ ≤ ν ≤ νλ for ρ < ρ0 < λ. Thus by Lemma A.7,

ν = νρ0 .

In the next chapter we address the question of convergence towards an equilibrium νρ

from a spatially ergodic initial distribution. We can solve this question only for the one-

dimensional lattice S = Z. We generalize the treatment in a different direction, by permitting

more than one particle per site. This introduces new problems. For example we cannot

explicitly describe even the translation invariant equilibrium distributions in all cases.

Notes

This chapter is from Section 4 in Liggett’s lectures [26].
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7 Asymmetric K-exclusion processes in one dimension

7.1 The K-exclusion process

In this chapter we generalize the exclusion process to allow more than one particle per site.

The bound on the number of particles a site can hold is a fixed positive integer K. As

before, jumps are governed by mutually independent Poisson jump time processes {T(x,y)}
with given rates p(x, y). The new jump rule is that if t ∈ T(x,y), then at time t one particle

is moved from site x to site y provided that, after this move, site y has at most K particles.

The occupation variables η(x) now take values 0, 1, . . . , K, and the state space of the process

is X = {0, 1, . . . , K}S with S = Zd as before. The generator of the process is

Lf(η) =
∑
x,y

p(x, y)1{η(x) ≥ 1, η(y) ≤ K − 1}[f(ηx,y)− f(η)] (7.1)

where

ηx,y(z) =


η(x)− 1, z = x

η(y) + 1, z = y

η(z), z /∈ {x, y}
(7.2)

is the configuration that results from moving a single particle from x to y. The process

described by this generator is the K-exclusion process.

The construction of Section 2.1 and the properties proved in Sections 2.3 and 4.1.2 can

all be repeated for a translation invariant finite range transition probability p(x, y). We

leave these as an extended exercise for the reader. For the case K = 1 Theorem 6.1 showed

that Bernoulli measures are equilibrium measures for the translation invariant process. When

K > 1 we cannot explicitly write down translation invariant equilibrium distributions, except

in the symmetric case. See Exercises 7.1 and 7.2 at the end of this section.

The assumptions for the results of this section include the standing assumptions of trans-

lation invariance

p(x, y) = p(0, y − x),

and finite range:

p(0, x) = 0 for |x|∞ > R.

The new assumptions are that the lattice is one dimensional, so S = Z, and for convenience

the assumption

p(0, 1) > 0 (7.3)

that gives us the irreducibility we need. Of course, we could just as well assume p(0,−1) > 0

and then switch left and right in the proof.
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Let I be the set of equilibrium probability measures of the process, and S the set of

translation invariant probability measures on X = {0, 1, . . . , K}Z. Our objective is to say as

much as we can about the set (I ∩ S)e, and to prove that if started from a spatially ergodic

initial distribution, the distribution of the state converges weakly as t→∞.

As already indicated above, in general we do not know what extreme elements of I ∩ S
look like. So our goal is an existence theorem that says (I ∩ S)e is indexed by density. Let

H =
{∫

η(0) ν(dη) : ν ∈ (I ∩ S)e

}
(7.4)

be the set of densities of the extreme measures in I ∩ S. Here is the main result, proved

for the one dimensional, translation invariant, finite range K-exclusion process that satisfies

assumption (7.3). K is an arbitrary positive integer.

Theorem 7.1 The set H is a closed subset of [0, K], and for each ρ ∈ H there is a unique

measure νρ ∈ (I ∩ S)e such that
∫
η(0) dνρ = ρ. Dependence on ρ is monotone: νρ1 ≤ νρ2

for ρ1 < ρ2 in H. The measures in (I ∩ S)e = {νρ : ρ ∈ H} are spatially ergodic.

Suppose the process is started with an initial distribution µ that is translation invariant

and ergodic, and has density ρ =
∫
η(0) dµ. Let µt = µS(t) be the distribution of the state

of the process at time t. The measures µt converge weakly as t→∞, and the limit depends

on ρ as follows.

(i) If ρ ∈ H, then µt → νρ as t→∞.

(ii) If ρ /∈ H, let ρ∗ and ρ∗ be the closest densities below and above ρ in H. Precisely,

ρ∗ = sup{h ∈ H : h < ρ} and ρ∗ = inf{h ∈ H : h > ρ}.

Let α = (ρ∗ − ρ)/(ρ∗ − ρ∗). Then µt → ανρ∗ + (1− α)νρ∗ as t→∞.

For two special cases we can give a complete result.

Theorem 7.2 Suppose K = 1, so we are discussing a one-dimensional exclusion process.

Then (I ∩ S)e is the set of Bernoulli measures {νρ : 0 ≤ ρ ≤ 1} defined by (4.15). For a

spatially ergodic initial distribution µ with density ρ =
∫
η(0) dµ, µt → νρ as t→∞.

Proof. The characterization of (I ∩S)e is a special case of Theorem 6.7. Thus H = [0, 1],

and the convergence follows from case (i) of Theorem 7.1.

The other special case is the symmetric case p(x, y) = p(y, x). For b > 0 let λb be the

product measure on X with single coordinate marginal distribution

λb{η(x) = j} = c−1bj, j = 0, 1, . . . , K, x ∈ Z, (7.5)
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where c = 1 + b+ b2 + · · ·+ bK is the normalization constant that makes this a probability

measure. The family {λb : b > 0} forms the extremal translation invariant equilibria for the

symmetric K-exclusion. The parameter b does not correspond to density, so we change the

notation to be consistent with our earlier statements. For ρ ∈ [0, K], define b = b(ρ) by

ρ =
b+ 2b2 + 3b3 + · · ·+KbK

1 + b+ b2 + b3 + · · ·+ bK
=

∫
η(0)λb(dη).

Let νρ = λb(ρ). Then
∫
η(0) dνρ = ρ.

Theorem 7.3 Suppose K is arbitrary and p(x, y) is symmetric. Then (I ∩ S)e = {νρ : 0 ≤
ρ ≤ K}, with νρ as defined above. For a spatially ergodic initial distribution µ with density

ρ =
∫
η(0) dµ, µt → νρ as t→∞.

Proof. According to Exercise 7.1, the measures νρ are equilibrium measures. Since they

are translation invariant, they are members of I ∩ S. Being i.i.d. they are ergodic, and so

extreme points of the set S. Thus no νρ can be a nontrivial convex combination of any

translation invariant measures, in particular not of elements of I ∩ S. So the νρ’s must be

extreme elements of I ∩ S. The densities of these νρ’s cover the entire interval [0, K], and

so H = [0, K]. By the uniqueness statement in Theorem 7.1, there are no other extreme

measures in I ∩ S. The convergence follows from case (i) of Theorem 7.1.

The main open problem left here in one dimension is the existence of spatially ergodic

equilibrium distributions for all densities, in the general nonsymmetric case. In higher di-

mension there is nothing like Theorem 7.1 for the nonsymmetric case. The remainder of this

chapter proves Theorem 7.1.

Exercise 7.1 Suppose p(x, y) is finite range, translation invariant, and symmetric. Check

that the i.i.d. product measure λb with marginals defined by (7.5) is invariant for the Markov

process with generator (7.1). This result does not require dimension d = 1.

Exercise 7.2 Show that if p(x, y) is not symmetric, no i.i.d. product measure can be in-

variant. Here is a suggestion: Suppose an i.i.d. product measure µ is invariant. First let

f(η) = f0(η(0)) be an arbitrary function of a single coordinate, and show that
∫
Lf dµ = 0

forces µ to be of the type λb for some b. Next take

f(η) = 1{η(u) = 1, η(v) = K}

for two sites u and v, and show that
∫
Lf dµ = 0 forces p(0, u− v) = p(0, v − u).
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7.2 Proof of Theorem 7.1

This section utilizes the basic coupling of two copies of the K-exclusion process, and it works

in principle exactly as in Section 6.2. The state space for the coupled process (ηt, ζt) is X2.

Their jumps are governed by the same Poisson clocks {T(x,y)}. We leave the explicit formula

for the generator of the joint process as an exercise, in the style of (6.3). The semigroup for

the coupled process is S̃(t).

Fix a translation invariant and ergodic probability measure µ̃ on X2. This is the initial

distribution of the coupled process (ηt, ζt). The coupled process is constructed as a function

of the µ̃-distributed initial configuration (η0, ζ0) and the Poisson jump time processes, as

explained in Section 2.1. The Poisson processes are represented by a sample point ω =

(T(x,y) : (x, y) ∈ S2
p) from a probability space (Ω,H,P). Recall that S2

p = {(x, y) : p(x, y) >

0}. The Poisson processes are independent of the initial configuration. So the process (η·, ζ·)

is constructed on the product space (X2 × Ω,B(X2)⊗H, µ̃⊗P).

For expectations on this probability space we write P and E instead of the longer µ̃⊗P.

P and E are also used to refer to the distribution of the coupled process (η·, ζ·) on its path

space DX2 . The distribution of the state (ηt, ζt) at time t is µ̃t = µ̃S̃(t).

Lemma 7.4 The probability measure µ̃t is translation invariant and ergodic for each t ≥ 0.

Proof. Think of the initial configurations and the Poisson point processes together as a

process indexed by x ∈ Z in this sense:

(η0, ζ0, ω) = {η0(x), ζ0(x), (T(x,y) : y ∈ Z, p(x, y) > 0) : x ∈ Z}.

The distribution of this process is the measure µ̃⊗P on the space X2 ×Ω. As x varies, the

collections of Poisson processes (T(x,y) : y ∈ Z, p(x, y) > 0) form an i.i.d. sequence. Thus by

Lemma A.9 (η0, ζ0, ω) is an ergodic process indexed by Z.

Let g be the map that constructs the occupation numbers at the origin at time t from

the initial configurations and the Poisson point processes: (ηt(0), ζt(0)) = g(η0, ζ0, ω). Then

(ηt(x), ζt(x)) = g(θxη0, θxζ0, θxω). By Lemma A.10 the process {ηt(x), ζt(x) : x ∈ Z} is

ergodic.

Define positive and negative discrepancies by

β+
t (x) = (ηt(x)− ζt(x))

+ and β−t (x) = (ηt(x)− ζt(x))
−,

and denote discrepancies of both kinds by ξt(x) = β+
t (x) + β−t (x). Put γt(x) = ηt(x)∧ ζt(x).

The joint process (ηt, ζt) can be recovered from the process (γt, β
+
t , β

−
t ) by

ηt = γt + β+
t and ζt = γt + β−t .
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The dynamics can be described entirely in terms of (γt, β
+
t , β

−
t ) without any reference to

(ηt, ζt), as follows.

(a) The γ-particles jump according to the K-exclusion rules, obeying the Poisson clocks

{T(x,y)}.
(b) If two discrepancy particles of opposite sign are on the same site, they immediately

merge and produce one γ-particle.

(c) The discrepancy particles are invisible to the γ-particles, and behave as second class

particles relative to the γ-particles, which means two things:

(c.i) When a jump time t ∈ T(x,y) happens, if a γ-particle is present at x at time t−, only

a γ-particle attempts to jump. A discrepancy particle at x may attempt the x y y jump

only if no γ-particle is present at x at time t−.

(c.ii) If a γ-particle jumps to y, and after the jump there are K + 1 particles at y, a

discrepancy particle is moved from y to x. There must be a discrepancy particle at y,

because otherwise y already had K γ-particles at time t−, and no jump x y y could have

happened.

By (b) each site contains discrepancy particles of at most one type, so there is no ambi-

guity about which type of discrepancy particle might move from x to y in (c.i) or from y to

x in (c.ii).

A consequence of Lemma 7.4 is that E[ηt(x)] = E[ηt(0)] for all x ∈ Z, and similarly for

the densities of the other particles and discrepancies.

Lemma 7.5 The densities E[ηt(0)] and E[ζt(0)] are constant in time. The discrepancy

densities E[β±t (0)] and E[ξt(0)] are nonincreasing functions of t.

Proof. Fix s < t, and imagine restarting the process at time s, from state (ηs, ζs). Find

sites

0 < z1 < z2 < z3 < · · · < z` ↗∞

with this property: if T(x,y) has a jump time during (s, t], then for each ` either both x

and y lie in the interval {−z`, . . . , z`}, or neither does. Such a sequence of sites exists with

probability 1. Here is a way to see this. Recall definition (2.3) of T ′
x and the definition of R

as the maximal range of a single jump. For each k > 0, there is a fixed positive probability

that the Poisson process ⋃
Rk≤x<R(k+1)

T ′
x ∪ T ′

−x

has no jump times in (s, t]. Consequently this happens for infinitely many k > 0, say for 0 <

k1 < k2 < k3 < · · · . For such k there can be no jump across the interval {Rk, . . . , Rk+R−1}
or across the interval {−Rk − R + 1, . . . ,−Rk}, because the maximum range of a jump is

R. Take z` = Rk`.
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By the ergodic theorem,

E[ξt(0)] = lim
n→∞

1

2n+ 1

n∑
x=−n

ξt(x) almost surely, (7.6)

and similarly at time s. Since discrepancies are not created and possibly only annihilated,

and since the interval {−z`, . . . , z`} does not exchange discrepancies with the rest of the

system during (s, t],
z∑̀

x=−z`

ξt(x) ≤
z∑̀

x=−z`

ξs(x). (7.7)

Divide by 2z` + 1 and let `↗∞. Passing to the limit in (7.6) along a random subsequence

n = z` does not alter the conclusion, and hence in the limit E[ξt(0)] ≤ E[ξs(0)]. Same

argument applies to β±t as well.

For ηt and ζt there is equality in (7.7) because particles are neither created nor annihilated.

The ergodic limit shows that their densities are constant in time.

Let I be a finite interval of sites in Z, and B ⊆ X2 the event that I contains discrepancies

of opposite sign. The proof of the next lemma uses the assumption p(0, 1) > 0.

Lemma 7.6 µ̃t(B) → 0 as t→∞.

Proof. The probability µ̃t(B) is not altered by translating I, so we may assume that

I = {0, 1, . . . ,m − 1} for some m. Fix 0 < T < ∞. For any time point s, let As be the

following event on the Poisson jump time processes: during (s, s+T ], this sequence of jump

times happens, and no other clock rings that involves any site in I:

Round 1: K jump times in T(m−2,m−1).

Round 2: K jump times in T(m−3,m−2), followed by K jump times in T(m−2,m−1).

Round 3: K jump times in T(m−4,m−3), followed by K jump times in T(m−3,m−2), followed

by K jump times in T(m−2,m−1).

. . . And so on, until in the last round:

Round m − 1: K jump times in T0,1, followed by K jump times in T1,2, followed by K

jump times in T2,3, . . . , followed by K jump times in Tm−2,m−1.

After round k in this scheme, particles initially at sites {m−k−1, . . . ,m−1} are packed

to the right end of the interval I, and after the last round m− 1, all particles initially in I

are packed to the right end of the interval I. In particular, after the last round there cannot

be discrepancies of opposite types in I. Let δ0 = P(As) > 0. By the temporal invariance

of the Poisson processes, this quantity is the same for all s. The assumption p(0, 1) > 0 in

(7.3) was made to facilitate the definition of As.
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Let

Ix = I + x = {x, x+ 1, . . . , x+m− 1} for x ∈ Z.

The spatially shifted event As,x = θ−1
x As has the same effect on the interval Ix as As has

on I described above, and the same probability δ0 = P(As,x). θ−1
x B is the the event that

interval Ix contains discrepancies of opposite sign.

To get a contradiction, suppose there exists a sequence tn ↗∞ and δ1 > 0 such that

µ̃tn(B) ≥ δ1. (7.8)

We may assume that tn+1 > tn+T for all n, by dropping terms from the sequence if necessary.

Fix tn for the moment. As in the proof of the previous lemma, find sites z` ↗ ∞ such

that the system in {−z`, . . . , z`} does not interact with the outside during time interval

(tn, tn + T ].

To explain the next inequality, note that if interval Ix ⊆ {−z`, . . . , z`} contains opposite

discrepancies at time tn, and if event Atn,x happens, then at least two discrepancies were

annihilated in Ix during (tn, tn + T ]. Event Atn,x contains the requirement that Ix does

not interact with the outside during (tn, tn + T ]. So for disjoint Ix and Iy the annihilated

discrepancies were distinct, and can be counted separately. No discrepancies migrate to

{−z`, . . . , z`} from the outside during (tn, tn + T ]. Let J = [(2z` + 1)/m]− 1 be the number

of disjoint m-length intervals that fit in {−z`, . . . , z` −m}. Let x ∈ {0, . . . ,m − 1}. Let us

write A(s, x) for As,x to cut down on subscripts. The discrepancy balance from time tn to

tn + T satisfies this inequality.

z∑̀
y=−z`

ξtn+T (y) ≤
z∑̀

y=−z`

ξtn(y)− 2
∑

0≤j<J

1B (θ−z`+x+jm(ηtn , ζtn))1A(tn,−z`+x+jm).

As j varies through 0, . . . , J−1, the intervals I−z`+x+jm are disjoint and lie inside {−z`, . . . , z`−
m + x}, so annihilated discrepancies are not counted more than once. Next, average over

x ∈ {0, . . . ,m− 1} to get

z∑̀
y=−z`

ξtn+T (y) ≤
z∑̀

y=−z`

ξtn(y)− 2

m

m−1∑
x=0

∑
0≤j<J

1B (θ−z`+x+jm(ηtn , ζtn))1A(tn,−z`+x+jm)

≤
z∑̀

y=−z`

ξtn(y)− 2

m

z`−m∑
y=−z`

1B(θyηtn , θyζtn)1A(tn,y).

Divide by 2z` + 1 and let ` ↗ ∞. Ergodicity applies to all terms. Note in particular that

the events {(θyηtn , θyζtn) ∈ B} are independent of the events Atn,y, because the latter only
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depend on Poisson clocks in time interval (tn, tn + T ]. So here is another application of

Lemma A.9. In the limit

E[ξtn+T (0)] ≤ E[ξtn(0)]− 2

m
µ̃tn(B)P(Atn) ≤ E[ξtn(0)]− 2δ0δ1

m

where we used (7.8) and δ0 = P(Atn). By Lemma 7.5 and the assumption tn+1 > tn + T we

get

E[ξtn+1(0)] ≤ E[ξtn+T (0)] ≤ E[ξtn(0)]− 2δ0δ1
m

.

However, E[ξtn(0)] is obviously bounded by 0 and K so we cannot subtract from it a fixed

constant 2δ0δ1/m infinitely many times along the sequence tn, which the above inequality

suggests. This contradiction indicates that (7.8) must be false, and so µ̃t(B) → 0.

Let Ht,x be the event that at time t there is a discrepancy at x, and the next discrepancy

to the right of site x is of the opposite sign. By spatial invariance, P (Ht,x) = P (Ht,0) for all

x.

Corollary 7.7 P (Ht,0) → 0 as t→∞.

Proof. Suppose there exist a subsequence tn ↗∞ and δ > 0 such that P (Htn,0) ≥ δ. Fix

t = tn for the moment. Let Yt be the nearest site to the right of 0 that contains a discrepancy

at time t. Then

E[1Ht,0Yt] ≤ 1

by Lemma A.11 applied to the spatially stationary process

{1[there is a discrepancy at x at time t] : x ∈ Z} .

Pick N > 2/δ. Let Gt be the event that there is at least one discrepancy in the interval

{1, . . . , N} at time t. Then

1 ≥ E[1Ht,01Gc
t
Yt] ≥ N · E[1Ht,01Gc

t
]

from which

P (Ht,0 ∩Gt) = P (Ht,0)− P (Ht,0 ∩Gc
t) ≥ δ − 1

N
≥ δ/2.

This bound is valid for all t = tn. However,

Ht,0 ∩Gt ⊆ {the interval {0, . . . , N} contains discrepancies of opposite type},

and for a fixed N the probability of the latter event vanishes as t→∞ by Lemma 7.6. This

contradiction shows that P (Ht,0) → 0 as t→∞.

We come to the main step of the proof which says that, in the presence of sufficiently many

positive discrepancies, all negative discrepancies will be annihilated. The initial distribution

of the coupled process is still a fixed, spatially ergodic probability measure µ̃ on X2.
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Proposition 7.8 Suppose E[η0(x)] = ρ1, E[ζ0(x)] = ρ2, and ρ1 ≥ ρ2. Then

lim
t→∞

E[(ηt(x)− ζt(x))
−] = 0. (7.9)

Proof. By Lemma 7.5 the densities of discrepancies are nonincreasing functions of t.

Thus to get a contradiction, we may assume that for some δ > 0, E[(ηt(x)− ζt(x))−] ≥ δ for

all t ≥ 0. But then, since

0 ≤ ρ1 − ρ2 = E[ηt(x)− ζt(x)] = E[(ηt(x)− ζt(x))
+]− E[(ηt(x)− ζt(x))

−],

it follows that

E[(ηt(x)− ζt(x))
+] ≥ δ and E[(ηt(x)− ζt(x))

−] ≥ δ for all t ≥ 0. (7.10)

We shall derive a contradiction from (7.10).

We track individual discrepancies. At time 0 assign integer labels separately to the pos-

itive and negative discrepancies. Each discrepancy retains its label throughout its lifetime.

Let w+
j (t) denote the location of the positive discrepancy with label j at time t, and similarly

for w−
j (t). Assume the initial labeling is nondecreasing, in other words w±

i (0) ≤ w±
j (0) for

i < j.

The life of a discrepancy ends when it merges with a discrepancy of opposite sign to

create a γ-particle. Let

τ+
j = inf{t ≥ 0 : w+

j (t) meets a discrepancy of the opposite type}

be the time when positive discrepancy w+
j ceases to exist. Of course, w+

j may never meet a

negative discrepancy, and lives forever. Then τ+
j = ∞ and w+

j is immortal. Same conventions

for negative discrepancies, with expiration time τ−j for discrepancy w−
j .

We need to be specific about which discrepancy at a site is affected by a jump if more

than one discrepancy is present. We stipulate that if the interaction is to the left of x,

then it involves the discrepancy at x with the smallest index. If the interaction is to the

right, then the discrepancy at x with the largest index is affected. For example, suppose

t ∈ T(x,y), x < y, and at time t− we have γt−(x) = 0, β+
t−(x) > 0, and β−t−(y) > 0. Then at

time t the positive discrepancy with the largest index at x jumps to y, and merges with the

negative discrepancy with the smallest index at y to create a γ-particle. Note that a positive

discrepancy was allowed to jump because there were no γ-particles at x at time t−.

Despite this rule, discrepancies do not stay ordered, unless only nearest-neighbor jumps

are permitted, which means that p(x, y) = 0 for y 6= x± 1.
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Let

β±0,t(x) =
∑

j

1{w±
j (0) = x, τ±j > t}

denote the occupation variables at time 0 of those discrepancies that are still alive at time

t. For fixed t, the spatial process

{β+
0,t(x), β

−
0,t(x) : x ∈ Z}

is translation invariant and ergodic. This follows by the argument of Lemma 7.4. The

labeling of the discrepancies may appear to confound the issue. But again we can write

(β+
0,t(x), β

−
0,t(x)) = Ft,x(η0, ζ0, ω),

where the map Ft,x first labels the discrepancies, then constructs the evolution up to time

t from the graphical representation, following the conventions on discrepancies enunciated

above, and returns the occupation numbers at site x. Whatever the details of this map, if

the entire picture (η0, ζ0, ω) is translated so that x becomes the origin, then the discrepancies

at x are moved to the origin, and the entire evolution is similarly translated. This just says

that

Ft,x(η0, ζ0, ω) = Ft,0(θxη0, θxζ0, θxω). (7.11)

Translation invariance and ergodicity now follow from Lemma A.10.

Let

g±(t) = Eβ±0,t(0)

be the density of these discrepancies at time 0. By the ergodic theorem, also

g±(t) = lim
n→∞

1

n

n∑
x=1

β±0,t(x) almost surely. (7.12)

Assumption (7.10) implies that g±(t) ≥ δ. We can see this by repeating the argument

used in the proof of Lemma 7.5 above. Suppose {−z`, . . . , z`} is a portion of the lattice that

does not interact with the outside during time interval (0, t]. Since discrepancies alive at

time t were also alive at time 0,

z∑̀
x=−z`

β±0,t(x) =

z∑̀
x=−z`

β±t (x).

Dividing by 2z` + 1 and letting `→∞ gives

g±(t) = E[β±t (x)] = E[(ηt(x)− ζt(x))
±] ≥ δ
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by assumption (7.10).

Define the initial occupation numbers of immortal discrepancies by

β±0,∞(x) = lim
t→∞

β±0,t(x).

The limit exists by monotonicity. The translation property (7.11) is preserved to the limit

and becomes

(β+
0,∞(x), β−0,∞(x)) = F∞,x(η0, ζ0, ω) = F∞,0(θxη0, θxζ0, θxω),

so the process

{β+
0,∞(x), β−0,∞(x) : x ∈ Z}

is spatially translation invariant and ergodic. The ergodic theorem gives the almost sure

limits

g±(∞) = Eβ±0,∞(0) = lim
n→∞

1

n

n∑
x=1

β±0,∞(x) = lim
n→∞

1

n

−1∑
x=−n

β±0,∞(x). (7.13)

The equality of the left and right limits is a special case of (A.9) in the appendix.

By monotone convergence,

g±(∞) = Eβ±0,∞(0) = lim
t→∞

Eβ±0,t(0) = lim
t→∞

g±(t) ≥ δ. (7.14)

From (7.13) and (7.14) we conclude that at time 0, with probability one there are infinitely

many immortal discrepancies of both sign on both sides of the origin. We are now ready

to complete the proof of the proposition for the case of a nearest-neighbor process, where

discrepancies of opposite sign cannot jump over each other.

Completion of the proof of Proposition 7.8 for a nearest-neighbor process.

The assumption is that p(x, y) = 0 for y 6= x ± 1. Then a pair of immortal discrepancies

is never switched around. Intuitively speaking, by (7.13) and (7.14) there must be a fixed

positive density of immortal negative discrepancies followed by a positive discrepancy. This

contradicts Corollary 7.7. Here is the rigorous argument.

For 0 ≤ t ≤ ∞, let

Lt,x = inf

{
n ≥ 1 :

x+n−1∑
y=x

β+
0,t(y) ≥ 1

}
be the smallest n such that at time 0 the interval {x, . . . , x + n − 1} contains a positive

discrepancy that survives up to time t, or is immortal in case t = ∞. By (7.13) and (7.14),

L∞,x is an almost surely finite random variable. By the bound Lt,x ≤ L∞,x and by translation

98



invariance, it is possible to fix an integer 0 < u < ∞ so that P [Lt,x > u] < δ/2K for all

x ∈ Z and t ≥ 0. Note also that

P{β−0,t(0) ≥ 1} ≥ 1

K
Eβ−0,t(0) ≥ δ/K.

By spatial ergodicity,

lim
n→∞

1

n

n∑
x=1

1{β−0,t(x) ≥ 1}1{Lt,x ≤ u} = P ({β−0,t(0) ≥ 1} ∩ {Lt,0 ≤ u}) ≥ δ

2K
(7.15)

almost surely.

Fix a sample point of the underlying probability space for which the limit (7.15) holds.

Let 1 ≤ x0 < x1 < x2 < x3 < · · · be the points x for which

1{β−0,t(x) ≥ 1}1{Lt,x ≤ u} = 1.

Let w−
i(r)(0) = xr, r = 0, 1, 2, 3, . . . , be negative discrepancies that live past time t. If there is

more than one such negative discrepancy at some xr, pick the one with the smallest index.

Consider every uth such discrepancy:

w−
i(0), w

−
i(u), w

−
i(2u), w

−
i(3u), . . .

Since

xku + u = w−
i(ku)(0) + u ≤ w−

i((k+1)u)(0)

and Lxku,t ≤ u, at time 0 there must be a positive discrepancy between w−
i(ku)(0) and

w−
i((k+1)u)(0) that survives past time t. Since the order of discrepancies is preserved un-

der nearest-neighbor jumps, in the interval {w−
i(ku)(t), . . . , w

−
i((k+1)u)(t) − 1} is at least one

negative discrepancy for which the next discrepancy to the right is positive.

The limit (7.15) translates into

lim
n→∞

1

n
max{r : xr ≤ n} ≥ δ/(2K),

and this in turn into

lim
n→∞

1

n
max{k : xku ≤ n} ≥ δ/(2Ku). (7.16)

Let H−
t,x be the event that at time t there is a negative discrepancy at x, and the next

discrepancy to the right is positive. By ergodicity

P (H−
t,0) = lim

n→∞

1

n

n∑
x=1

1{H−
t,x} almost surely. (7.17)
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Choose again sites z` ↗ ∞ with the property that no particles or discrepancies jump over

z` during time (0, t]. The limit (7.17) is valid also along the subsequence n = z`. Let

m = inf{k ≥ 0 : w−
i(ku)(t) ≥ 1}. (7.18)

Since the event H−
t,x happens at least once between each pair w−

i(ku)(t) and w−
i((k+1)u)(t),

z∑̀
x=1

1{H−
t,x} ≥ max{k : w−

i(ku)(t) ≤ z`} −m = max{k : w−
i(ku)(0) ≤ z`} −m

= max{k : xku ≤ z`} −m.

(7.19)

Divide by z` and let `↗∞. Combining with (7.16) and (7.17) gives P (H−
t,0) ≥ δ/(2Ku).

This bound is valid for all t ≥ 0. We have contradicted Corollary 7.7. This concludes

the proof of Proposition 7.8 for the nearest-neighbor case.

Completion of the proof of Proposition 7.8 for the general case.

Now we deal with the possibility that the ordering of discrepancies is not preserved. Say

that a jump time t is a switching time if at time t the order of two discrepancies of opposite

sign is reversed and neither one is annihilated. In other words, t is a switching time if for

some indices i and j, either

w−
j (t−) < w+

i (t−) and w−
j (t) > w+

i (t),

or same statement holds with reversed inequalities, and τ−j ∧ τ+
i > t. Let us say that

discrepancies w−
j and w+

i are involved in a switch when the above event happens. Note that

as many as K(R − 1) negative discrepancies may be involved in a switch at a particular

switching time, if a positive discrepancy jumps over R − 1 sites all filled with negative

discrepancies. Let k−j (t) be the number of switches experienced by discrepancy w−
j during

time interval (0, t].

For M ∈ N, x ∈ Z and t <∞, define the event

GM
t,x =

⋃
j

{w−
j (0) = x, τ−j > t, k−j (t) ≤M}.

GM
t,x is the event that at time 0 there is a negative discrepancy at site x which is alive at time

t and has experienced at most M switches by time t. As discrepancies can be annihilated and

switches only accumulate, GM
t,x decreases with t. By translation invariance P (GM

t,x) = P (GM
t,0)

for all x. We prove an intermediate lemma.
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Lemma 7.9 P (GM
t,0) → 0 as t→∞.

Proof. To get a contradiction, assume there exists a δ1 > 0 such that P (GM
t,0) ≥ δ1 for all

t ≥ 0. This proof essentially repeats the argument given above in the nearest-neighbor case.

For 0 ≤ t ≤ ∞, set

L′t,x = inf

{
n ≥ 1 :

x+n−1∑
y=x

β+
0,t(y) ≥ 2M + 1

}
.

By (7.13) and (7.14), L′∞,x is an almost surely finite random variable. By the bound L′t,x ≤
L′∞,x and by translation invariance, it is possible to fix an integer 0 < u < ∞ so that

P [L′t,x > u] < δ1/2 for all x ∈ Z and t ≥ 0. By spatial ergodicity,

lim
n→∞

1

n

n∑
x=1

1{GM
t,x}1{L′t,x ≤ u} = P (GM

t,0 ∩ {L′t,0 ≤ u}) ≥ δ1/2 almost surely. (7.20)

Fix a sample point of the underlying probability space for which the limit (7.20) holds.

Let 1 ≤ x0 < x1 < x2 < x3 < · · · be the points x for which 1{GM
t,x}1{L′t,x ≤ u} = 1. Let

w−
i(r)(0) = xr, r = 0, 1, 2, 3, . . . , be negative discrepancies that live past time t but experience

at most M switches up to time t. (If there is more than one such negative discrepancy at

some xr, pick the one with the smallest index.) Again, consider the subsequence

w−
i(0), w

−
i(u), w

−
i(2u), w

−
i(3u), . . .

Since

xku + u = w−
i(ku)(0) + u ≤ w−

i((k+1)u)(0)

and L′xku,t ≤ u, at time 0 there are at least 2M + 1 positive discrepancies between w−
i(ku)(0)

and w−
i((k+1)u)(0) that survive past time t. Discrepancies w−

i(ku) and w−
i((k+1)u) experience

together at most 2M switches. So at least one positive discrepancy remains between them

at time t. In particular, their order must have been preserved up to time t, meaning that

w−
i(ku)(t) < w−

i((k+1)u)(t). Consequently, in the interval {w−
i(ku)(t), . . . , w

−
i((k+1)u)(t) − 1} is at

least one negative discrepancy for which the next discrepancy to the right is positive.

(7.16) now becomes

lim
n→∞

1

n
max{k : xku ≤ n} ≥ δ1/(2u).

Equations (7.17)–(7.19) can be repeated verbatim. The conclusion is

P (H−
t,0) = lim

`→∞

1

z`

z∑̀
x=1

1{H−
t,x} ≥ δ1/(2u).
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This bound is valid for all t ≥ 0 and contradicts Corollary 7.7. Lemma 7.9 is proved.

We conclude the proof of Proposition 7.8. The idea is this. By the lemma above, a positive

density of immortal negative discrepancies forces the density of switches to increase without

bound. But after each switch there is an opportunity to annihilate a pair of discrepancies.

These two points contradict each other.

Fix 0 < T <∞. Define the event As,x as in the beginning of the proof of Lemma 7.6 for

the interval Ix = {x, . . . , x+R}. As,x is an event that involves only the Poisson processes⋃
y:x≤y≤x+R

T ′
y ∩ (s, s+ T ]

and its probability δ1 = P(As,x) > 0 is independent of (s, x). When As,x occurs, the process

in Ix does not interact with the rest of the process during (s, s+T ], and at time s+T there

are discrepancies of only one type in Ix.

For m > 0, let N∗
m(t) be the total number of jump times that cross either site m or −m

during (0, t]. In terms of counting functions,

N∗
m(t) =

∑
{N(x,y)(t) : x ≤ −m ≤ y, y ≤ −m ≤ x, x ≤ m ≤ y, or y ≤ m ≤ x}.

N∗
m(·) is a Poisson process with rate bounded by 4R. N∗

m(t) is an upper bound on the number

of discrepancies that migrate into the interval {−m, . . . ,m} during (0, t].

Let

T ′′
x =

⋃
y:x<y≤x+R

T(x,y) ∪ T(y,x)

be the Poisson process of jump times at which x interacts with a site y to its right. Each

jump time in the entire system lies in exactly one T ′′
x . Define the random variable

Qx(t) =
∑

s∈T ′′x :s≤t

1{s is a switching time}1{As,x}.

The key observation is that if s ∈ T ′′
x is a switching time, at time s the interval Ix contains

at least one pair of discrepancies of opposite sign. If As,x happens, this pair is annihilated.

The jumps that happen in Ix during (s, s + T ] in the event As,x are all nearest-neighbor

jumps, hence no switches happen in Ix during (s, s+T ]. This implies that no annihilation is

counted twice in the sum that defines Qx. Thus 2Qx(t− T ) is a lower bound on the number

of discrepancies that have been annihilated during (0, t] following a switching time in T ′′
x .

Next we observe that for distinct x < x′ the sums for Qx and Qx′ do not count the same

annihilation. Suppose that for s ∈ T ′′
x and s′ ∈ T ′′

x′

1{s is a switching time}1{As,x} = 1 and 1{s′ is a switching time}1{As′,x′} = 1.
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There is potential interference only if x < x′ ≤ x + R and |s − s′| < T . If s < s′ ≤ s + T

then in fact s′ cannot be a switching time because x′ is only involved in nearest-neighbor

jumps during [s′, s + T ]. If s′ < s ≤ s′ + T then the switching jump at time s happened in

{x, . . . , x′−1} because during event As′,x′ the interval Ix′ does not interact with the outside.

Consequently event As,x annihilates a pair of discrepancies in {x, . . . , x′− 1} which must be

distinct from those annihilated by As′,x′ . The case s = s′ need not be considered because we

use only those realizations of the random clocks that have no simultaneous jump times.

We get this inequality for the discrepancy balance in the interval {−m, . . . ,m}.

m∑
x=−m

ξt(x) ≤
m∑

x=−m

ξ0(x)− 2
m−R∑
x=−m

Qx(t− T ) +N∗
m(t). (7.21)

Let κ(t) be the expected number of switching times among jump times in T ′′
x ∩ (0, t]. It

is independent of x by spatial invariance. Let 0 < σ1 < σ2 < σ3 < · · · be the jump times in

T ′′
x . Let Ft denote the filtration of the coupled process (ηt, ζt) and the Poisson clocks. The

σk’s are stopping times for the filtration Ft. The event {σk is a switching time} lies in the

σ-algebra Fσk
of events that are known by time σk. The event Aσk,x is a future event. By

the strong Markov property the Poisson processes restart independently of the past, and so

P (Aσk,x|Fσk
) = P(A0,x) = δ1 almost surely.

We get

EQx(t− T ) =
∞∑

k=1

E [1{σk ≤ t− T}1{σk is a switching time}1{Aσk,x}]

=
∞∑

k=1

E [1{σk ≤ t− T}1{σk is a switching time}P (Aσk,x|Fσk
)]

= δ1κ(t− T ).

Take expectations in (7.21), divide by 2m+ 1 and let m↗∞ to get

E[ξt(0)] ≤ E[ξ0(0)]− 2δ1κ(t− T ). (7.22)

We show that Lemma 7.9 together with the positive density of immortal negative dis-

crepancies leads to κ(t) ↗∞, which contradicts (7.22). Let K∗(x, y, t) be the total number

of switching times that happen within the space interval {x, . . . , y} during (0, t]. By spatial

ergodicity,

κ(t) = lim
m→∞

1

2m+ 1
K∗(−m,m, t) almost surely.
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Recall that k−j (t) is the number of switches experienced by discrepancy w−
j during (0, t].

Fix again a sequence of sites z` ↗ ∞ with the property that no exchange of particles

or discrepancies happens across ±z` during time interval (0, t]. Recall that a particular

switching time affects no more than K(R− 1) negative discrepancies. Then

K∗(−z`, z`, t) ≥
1

K(R− 1)

z∑̀
x=−z`

∑
j

k−j (t)1{w−
j (0) = x, τ−j > t}.

The sum on the right above counts the switches experienced by those negative discrepancies

that survive past time t in the interval {−z`, . . . , z`}. Develop this further:

K∗(−z`, z`, t) ≥ M

K(R− 1)

z∑̀
x=−z`

∑
j

1{w−
j (0) = x, τ−j > t, k−j (t) > M}

≥ M

K(R− 1)

z∑̀
x=−z`

(∑
j

1{w−
j (0) = x, τ−j > t}

−
∑

j

1{w−
j (0) = x, τ−j > t, k−j (t) ≤M}

)

≥ M

K(R− 1)

z∑̀
x=−z`

(
β−0,t(x)−K1{GM

t,x}
)
.

Divide by 2z` + 1, let `↗∞ and use ergodicity to get

κ(t) ≥ M

K(R− 1)

(
Eβ−t (0)−KP (GM

t,0)
)
.

Let t↗∞ and use assumption (7.10) and Lemma 7.9 to get

lim inf
t→∞

κ(t) ≥ Mδ

K(R− 1)
.

The quantities δ, K and R are fixed. We may take M and t large enough to contradict

(7.22).

We have reached a contradiction, and thereby disproved (7.10). The proof of Proposition

7.8 is complete.

This proposition was the main technical point of the proof. For the remainder of the

section, µ̃ no longer denotes a fixed initial distribution for the coupled process. Recall that

S(t) is the semigroup of the one-dimensional K-exclusion process, and S̃(t) the semigroup

of the coupled process.
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Corollary 7.10 Let µ1 and µ2 be two translation invariant ergodic probability measures on

X with densities ρ1 =
∫
η(0) dµ1 and ρ2 =

∫
η(0) dµ2.

(a) Suppose ρ1 ≥ ρ2. Suppose tn ↗∞ is a subsequence along which the limits µ1S(tn) →
µ̄1 and µ2S(tn) → µ̄2 exist. Then µ̄1 ≥ µ̄2.

(b) Suppose ρ1 = ρ2, and tn ↗ ∞ is a subsequence along which the limit µ1S(tn) → µ̄1

exists. Then also µ2S(tn) → µ̄1.

Proof. (a) Let µ̃ be a spatially ergodic measure on X2 with η-marginal µ1 and ζ-marginal

µ2. Such a measure exists because the ergodic decomposition of the translation invariant

measure µ1 ⊗ µ2 must be supported on such measures. Let γ̃ be any limit point of the

sequence µ̃S̃(tn). The marginals of γ̃ are µ̄1 and µ̄2, and by Proposition 7.8 γ̃{η ≥ ζ} = 1.

This says µ̄1 ≥ µ̄2.

(b) Let µ̄2 be any limit point of the sequence µ2S̃(tn). By part (a), µ̄1 ≥ µ̄2 and µ̄1 ≤ µ̄2.

By Lemma A.5 µ̄2 = µ̄1. Since this is true for all limit points, and we have compactness, the

convergence follows.

For the next lemma, let

An(η) =
1

2n+ 1

n∑
x=−n

η(x)

denote the average density in the interval {−n, . . . , n}. Let A∞(η) = limn→∞An(η) for

those η ∈ X for which the limit exists. The limit exists almost surely under any translation

invariant measure, and is almost surely constant under any ergodic measure. As a first step

toward proving the ergodicity of extreme elements of I ∩ S, we show that A∞ is constant

under such a measure.

Lemma 7.11 Suppose ν ∈ (I ∩ S)e with density
∫
η(0) dν = ρ. Then ν-almost surely the

limit A∞(η) = ρ.

Proof. Let {−z`, . . . , z`}, z` ↗ ∞, be lattice intervals that do not interact with the

outside during time interval (s, t ]. As in the proof of Lemma 7.5, we can define z` = Rk`,

` = 1, 2, 3, . . . , where 1 ≤ k1 < k2 < k3 < · · · are the indices k at which the event

Uk =

{ ∑
Rk≤x<R(k+1)

∑
y∈Z

(
N(x,y)(s, t ] +N(−x,y)(s, t ]

)
= 0

}

happens. By the i.i.d. property of the Poisson processes,

lim
n→∞

1

n

n∑
k=1

1Uk
= P(U0) > 0.
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By Exercise 7.3 this implies

lim
`→∞

z`+1 − z`

z`

= 0. (7.23)

By particle conservation
z∑̀

x=−z`

ηs(x) =

z∑̀
x=−z`

ηt(x).

Together with (7.23), this implies that the limiting density A∞(ηs) exists iff A∞(ηt) exists,

and the limits coincide. Here is the argument. For any n, define ` = `(n) by z` ≤ n < z`+1.

Then

2z` + 1

2n+ 1
· 1

2z` + 1

z∑̀
x=−z`

ηs(x) ≤
1

2n+ 1

n∑
x=−n

ηs(x) ≤
2z`+1 + 1

2n+ 1
· 1

2z`+1 + 1

z`+1∑
x=−z`+1

ηs(x).

The ratio (2z` + 1)/(2z`+1 + 1) → 1 by (7.23). Consequently the limits

1

2z` + 1

z∑̀
x=−z`

ηs(x) → A∞(ηs) and
1

2n+ 1

n∑
x=−n

ηs(x) → A∞(ηs)

are equivalent. The same holds for ηt.

For 0 ≤ r ≤ K define the event

B = {η ∈ X : A∞(η) exists and A∞(η) ≤ r}.

We have shown that this event is closed for the Markov process ηt in the sense of Lemma

4.3. Also, B is translation invariant. Thus if 0 < ν(B) < 1, the conditioned measures ν(· |B)

and ν(· |Bc) are elements of I ∩ S. Then ν cannot be extreme.

Thus ν(B) = 0 or 1 for any choice of r in the definition of B. It follows that ν-almost

surely A∞ must equal its mean
∫
A∞ dν = ρ.

Recall the definition (7.4) of H, the set of densities of extreme measures of I ∩ S.

Proposition 7.12 (a) Let ρ ∈ H. Then there is a unique measure νρ ∈ (I ∩ S)e with

density
∫
η(0) dνρ = ρ. For every spatially ergodic µ with density

∫
η(0) dµ = ρ, we have the

convergence µS(t) → νρ.

(b) The measure νρ is spatially ergodic.

(c) If ρ1 < ρ2 are in H, then νρ1 ≤ νρ2.

Proof. (a) Fix an ergodic measure µ on X with density
∫
η(0) dµ = ρ. Let µ̄ be any limit

point of µS(t), and {tn} any sequence such that

µS(tn) → µ̄. (7.24)
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Let ν̄ be any measure in (I ∩S)e with density ρ, which exists by the assumption ρ ∈ H. Let

ν̄ =

∫
Se

λΓ(dλ)

be the ergodic decomposition of ν̄. From Lemma 7.11,

1 = ν̄{A∞ = ρ} =

∫
Se

λ{A∞ = ρ}Γ(dλ).

It follows that Γ-almost every λ has density ρ. And then from (7.24) and Corollary 7.10(b)

that λS(tn) → µ̄ for Γ-almost every λ. Take a test function f ∈ C(X). By the invariance of

ν̄, ∫
f dν̄ = lim

n→∞

∫
S(tn)f dν̄ = lim

n→∞

∫
Se

{∫
S(tn)f dλ

}
Γ(dλ)

=

∫
Se

{
lim

n→∞

∫
S(tn)f dλ

}
Γ(dλ) =

∫
f dµ̄.

This tells us two things. First, there can be only one measure in (I ∩ S)e with density ρ,

because an arbitrary such measure turns out to equal µ̄. Let ν̄ = νρ be this unique measure.

Second, µS(t) → νρ because an arbitrary limit point µ̄ is equal to νρ.

(b) By adjusting the argument above, we get the ergodicity of νρ. Let again νρ =∫
Se
λΓ(dλ) be the ergodic decomposition. For an ergodic λ, λS(t) is also ergodic by the

proof of Lemma 7.4. Since νρ is invariant,

νρ = νρS(t) =

∫
Se

λS(t) Γ(dλ).

Thus the distribution of λS(t) under Γ is also an ergodic decomposition for νρ. By the

uniqueness of the ergodic decomposition, λS(t) has the same distribution as λ. And λS(t) →
νρ for Γ-almost every λ by the argument for part (a). All this implies that Γ has to be in

fact supported on the singleton {νρ}, and then νρ itself must be ergodic. To see this last

point, take a bounded continuous function Ψ on the space M1 of probability measures on

X, and pass to the t→∞ limit in this integral:∫
Ψ(λ) Γ(dλ) =

∫
Ψ(λS(t)) Γ(dλ) −−−→

t→∞
Ψ(νρ).

(c) The inequality νρ1 ≤ νρ2 for ρ1 < ρ2 in H follows from Corollary 7.10(a).
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Proposition 7.13 (a) For any ergodic µ, all limit points of µS(t) as t→∞ lie in I ∩ S.

(b) The set H is closed.

(c) Suppose µ is ergodic with density ρ /∈ H. Let

ρ∗ = sup{h ∈ H : h < ρ} and ρ∗ = inf{h ∈ H : h > ρ}.

Let α = (ρ∗ − ρ)/(ρ∗ − ρ∗).Then µS(t) → ανρ∗ + (1− α)νρ∗ as t→∞.

Proof. (a) Let µ̄ be a limit point, realized along the sequence µS(tn) → µ̄. µS(s) is also

an ergodic measure with the same density as µ, so by Corollary 7.10(b) µS(tn + s) → µ̄.

Consequently

µ̄ = lim
n→∞

µS(tn + s) =
{

lim
n→∞

µS(tn)
}
S(s) = µ̄S(s),

where we used the semigroup property S(tn + s) = S(tn)S(s) and the continuity of the

operator S(s) on measures. This says µ̄ ∈ I. The other part µ̄ ∈ S follows because

µS(tn) ∈ S for all tn, and S is a weakly closed set by the continuity of the spatial translations.

(b)–(c) Suppose µ is an ergodic measure with density ρ /∈ H. Let µ̄ be a limit point as

above. By Choquet’s theorem A.13 there exists a probability measure Λ on (I ∩ S)e such

that

µ̄ =

∫
(I∩S)e

λΛ(dλ).

Let M(λ) =
∫
η(0) dλ denote the function that maps a probability measure on X to its

density. Define the probability measure γ on [0, K] by

γ(B) = Λ(M−1(B)) = Λ
{
λ :
∫
η(0) dλ ∈ B

}
.

We claim that γ is supported on the two points {ρ∗, ρ∗}, which in particular then have to

be elements of H.

Suppose γ[h2, K] > 0 for some h2 > ρ∗. Recall the definition of A∞ and Lemma 7.11.

µ̄{A∞ ≥ h2} =

∫
λ{A∞ ≥ h2}Λ(dλ) =

∫
M(λ)∈[h2,K]

λ{A∞ ≥ h2}Λ(dλ)

= Λ{λ : M(λ) ∈ [h2, K]} = γ[h2, K] > 0.

Pick h1 ∈ H such that ρ∗ ≤ h1 < h2. By Corollary 7.10(a) µ̄ ≤ νh1 . An(η) is an increasing

cylinder function, converges to A∞(η) µ̄-almost surely, and so for h = (h1 + h2)/2,

µ̄{A∞ ≥ h2} ≤ lim inf
n→∞

µ̄{An ≥ h} ≤ lim inf
n→∞

νh1{An ≥ h} = 0.

This contradicts what we obtained a moment earlier. Consequently γ[h2, K] = 0 for all

h2 > ρ∗, which implies γ(ρ∗, K] = 0. An analogous argument gives γ[0, ρ∗) = 0. And since

by assumption (ρ∗, ρ
∗) ∩H = ∅, we conclude that γ({ρ∗, ρ∗}c) = 0.
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The actual γ-masses on the points {ρ∗, ρ∗} are determined by the density, namely by

ρ =

∫
η(0) dµ̄ =

∫
M(λ) Λ(dλ) =

∫
[0,K]

h γ(dh) = ρ∗γ{ρ∗}+ ρ∗γ{ρ∗}

= αρ∗ + (1− α)ρ∗.

We have proved (b). To see this, suppose ρ is a limit point of H but not in H. Then ρ

must equal either ρ∗ or ρ∗. Find an ergodic measure µ with density ρ (for example, an i.i.d.

measure) and let µ̄ be a limit point of µS(t) (it exists by compactness). The above argument

shows that the measure γ on [0, K] must be supported on {ρ∗, ρ∗}. Thereby ρ must lie in H.

We have also proved (c). Since an arbitrary limit point µ̄ was identified as ανρ∗+(1−α)νρ∗ ,

the measures µS(t) converge to this limit.

Propositions 7.12 and 7.13 complete the proof of Theorem 7.1.

Exercise 7.3 Let 1 ≤ z1 < z2 < z3 < · · · be positive integers, R a positive integer, and

assume
1

n
·max{` : z` ≤ Rn} → c > 0 as n→∞.

Show that `−1z` → R/c.

Notes

The ideas for this section come from the unpublished manuscript of Ekhaus and Gray [12].

For symmetric K-exclusion in arbitrary dimension with an irreducible jump kernel, Keis-

ling [23] proved that (I ∩ S)e = {νρ : 0 ≤ ρ ≤ K} and that the process converges to a

mixture of the νρ’s from a spatially invariant initial distribution. Convergence to an ex-

tremal νρ from a spatially ergodic initial distribution has not been proved. Keisling’s proof

is a generalization of one given by Liggett for K = 1 exclusion, and relies on couplings and

generator calculations.
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PART III Hydrodynamic limits

Hydrodynamic limits describe the behavior of an interacting system over large space and time

scales when the initial particle density varies in space. In Part II we discussed the conver-

gence over time of processes with translation invariant initial distributions. The translation

invariance was preserved under the evolution. The percolation argument showed that the

global particle density was preserved. In other words, the dynamics preserves a constant

density profile. Here we ask what happens over time to a nonconstant density profile.

For the reader who is new to hydrodynamic limits, Exercises 8.2 to 8.5 at the end of

Chapter 8 give useful experience with simple situations.

8 Symmetric exclusion process

In this chapter we look at the large scale behavior of the symmetric exclusion process on

the lattice Zd with jump kernel p(u, v). The assumptions on p(u, v) are those used in the

construction in Chapter 2. Namely, in addition to symmetry

p(u, v) = p(v, u),

we assume translation invariance

p(u, v) = p(0, v − u),

and finite range:

p(0, v) = 0 for |v|1 > R

for some fixed finite number R. Chapter 2 gave two constructions of this symmetric exclusion

process, the graphical representation in Section 2.1 that works for all exclusion processes,

and the stirring particle construction in Section 2.2 that was special for the symmetric case.

Both constructions produce a process ηt = (ηt(u) : u ∈ Zd) with state space X = {0, 1}Zd

and generator

Lf(η) = 1
2

∑
u,v∈Zd

p(u, v)[f(ηu,v)− f(η)] (8.1)

where

ηu,v(w) =


η(v), w = u

η(u), w = v

η(w), w /∈ {u, v}
(8.2)
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is the configuration that results from exchanging the contents at sites u and v. Formula (8.1)

for the generator is not exactly like either of the formulas (2.12) or (2.17) given in Chapter

2, but can be deduced from them.

Assume we have a sequence ηn
t , n = 1, 2, 3, . . . , of these symmetric exclusion processes.

These processes may be defined on separate probability spaces or on one common probability

space. All statements involve only distributions so the exact definition of the processes is

immaterial for the discussion. For each n, we shall use the generic P for the probability

measure on the probability space on which process ηn
t is defined.

The hydrodynamic limit concerns the occupation measure

πn
t = n−d

∑
u∈Zd

ηn
t (u)δu/n (8.3)

of the exclusion process. The symbol δx represents a unit mass placed at the point x in Rd.

In probabilistic terms, δx is the degenerate probability distribution defined for Borel sets A

by

δx(A) =

{
1 if x ∈ A,

0 if x /∈ A.

Thus as a measure πn
t places mass n−d at point u/n in Rd if site u in Zd is occupied by a

particle at time t. Technically speaking πn
t is a random Radon measure on Rd. The term

Radon measure means that πn
t is a nonnegative Borel measure whose total mass may be

infinite but which gives finite mass to bounded sets.

The space of Radon measures on Rd is denoted by M. M is a Polish space with its

so-called vague topology. (See Section A.10 in the appendix.) Convergence in this topology

(vague convergence) is defined in terms of convergence of integrals of compactly supported

continuous functions. The same convergence can also be defined by test functions φ ∈
C∞

c (Rd), the space of compactly supported infinitely differentiable functions. So our goal is

to derive laws of large numbers for averages of the type∫
Rd

φ(x)πn
t (dx) = n−d

∑
u∈Zd

ηn
t (u)φ

(
u
n

)
(8.4)

for test functions φ ∈ C∞
c (Rd). However, as it stands, the average above lacks a crucial

ingredient. Since we shrunk lattice distance to n−1, a symmetric random walk moves only a

distance of order t1/2n−1 in a fixed time t. Thus to see any motion in the limit n→∞, the

space scaling has to be matched with the time scaling n2t. See Exercise 8.6 in this context.

The basic hypothesis for the hydrodynamic limit is the existence of a macroscopic density

profile at time 0. Let 0 ≤ ρ0(x) ≤ 1 be a given bounded measurable function on R. Assume
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that for all φ ∈ C∞
c (Rd) and all ε > 0,

lim
n→∞

P

{ ∣∣∣∣n−d
∑
u∈Zd

ηn
0 (u)φ

(
u
n

)
−
∫

Rd

ρ0(x)φ(x) dx

∣∣∣∣ > ε

}
= 0. (8.5)

We also make an ellipticity hypothesis on the random walk kernel p(u, v). The term

ellipticity is borrowed here from p.d.e. theory (see Exercise 8.8). The assumption is that the

possible jump directions span the d-dimensional space. Precisely,

for every x ∈ Rd such that x 6= 0 there exists a

u ∈ Zd such that u · x 6= 0 and p(0, u) > 0.
(8.6)

Write u = (u1, . . . , ud) to represent a site u ∈ Zd in terms of its coordinates. Define the

covariance matrix Σ = (σi,j)1≤i,j≤d of the jump kernel p(0, u) by

σi,j =
∑
u∈Zd

p(0, u)uiuj.

Assumption (8.6) is equivalent to the requirement that Σ is nonsingular, or equivalently,

that Σ has strictly positive eigenvalues (Exercise 8.7). If assumption (8.6) fails, the additive

subgroup of Zd generated by the support of p(0, u) is isomorphic to Zk for some k < d, and

the problem can be restated in a lower dimensional space. (See Proposition P1 in Section 7

of [43].)

The result we are looking for is a weak law of large numbers for πn
n2t, of the general

type that appears in assumption (8.5). The density function ρ(x, t) that will appear in the

theorem has an explicit formula. Define the function ρ(x, t) on Rd × [0,∞) by

ρ(x, 0) = ρ0(x), (8.7)

and for t > 0 by

ρ(x, t) = (2πt)−d/2(det Σ)−1/2

∫
Rd

ρ0(y) exp
{
− 1

2t
(x− y) · Σ−1(x− y)

}
dy. (8.8)

The function in the exponent is the quadratic form

(x− y) · Σ−1(x− y) =
∑

1≤i,j≤d

(xi − yi)(Σ
−1)i,j(xj − yj).

The function ρ has the following properties. On Rd× (0,∞) it is infinitely differentiable

and satisfies the partial differential equation ρt = 1
2
Aρ, where the differential operator A is

defined by

Aρ =
∑

1≤i,j≤d

σi,jρxi,xj
. (8.9)
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The initial density function ρ0 is the vague limit of ρ(x, t) as t→ 0, meaning that∫
φ(x)ρ(x, t)dx −→

∫
φ(x)ρ0(x)dx as t→ 0, for φ ∈ Cc(R

d).

If ρ0 is assumed continuous to begin with, then ρ(x, t) is continuous all the way to the t = 0

boundary. In either case we regard ρ as a solution of the initial value problem

ρt = 1
2
Aρ on Rd × (0,∞), ρ(x, 0) = ρ0(x) for x ∈ Rd. (8.10)

The point of this chapter is that this partial differential equation gives the macroscopic

description of the dynamics whose particle-level decription is the symmetric exclusion pro-

cess. The mathematically rigorous form of this idea is the next law of large numbers, called

a hydrodynamic limit of the particle system.

Theorem 8.1 Suppose a sequence of symmetric exclusion processes ηn
t satisfies assumption

(8.5). Assume their common jump kernel p(u, v) satisfies (8.6). Define the function ρ by

(8.7)–(8.8). Then for every t ≥ 0, φ ∈ C∞
c (Rd), and ε > 0,

lim
n→∞

P

{ ∣∣∣∣n−d
∑
u∈Zd

ηn
n2t(u)φ

(
u
n

)
−
∫

Rd

ρ(x, t)φ(x) dx

∣∣∣∣ ≥ ε

}
= 0. (8.11)

Behind this theorem is convergence of the entire empirical measure process (πn
n2t : t ≥ 0).

Let DM denote the space of paths α : [0,∞) → M that are right-continuous and have left

limits everywhere, endowed with the Skorokhod topology described in Section A.2.2. Let sM
denote the Skorokhod metric on DM, defined as in recipe (A.4) in terms of the vague metric

dM on M. Define a specific path ᾱ in DM by

ᾱ(t, dx) = ρ(x, t)dx

with ρ as defined by (8.7)–(8.8). This path ᾱ is in fact continuous, not only right-continuous.

Define the time-scaled empirical measure process π̄n
· by π̄n

t = πn
n2t for t ≥ 0. The right-

continuity of t 7→ π̄n
t follows from the right-continuity of integrals of compactly supported

test functions. These integrals are finite sums of the type (8.4), and their right-continuity in

t follows from the right-continuity of the exclusion process ηn
t itself. Consequently the path

π̄n
· is an element of DM.

Theorem 8.2 Under the assumptions of Theorem 8.1, π̄n
· converges to ᾱ in probability, as

n→∞. In other words, for any ε > 0,

lim
n→∞

P
{
sM(π̄n

· , ᾱ) ≥ ε
}

= 0. (8.12)
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Theorem 8.1 will be obtained as a corollary of Theorem 8.2. To prove Theorem 8.2

we show that the process π̄n
· converges weakly in the space DM to a weak solution of the

initial value problem (8.10). This last notion we have not yet defined. Let us call a vaguely

continuous Radon measure-valued path α : [0,∞) → M a weak solution of (8.10) if the

initial condition

α(0, dx) = ρ0(x)dx (8.13)

is satisfied, and if for all φ ∈ C∞
c (Rd),

α(t, φ)− α(0, φ)− 1
2

∫ t

0

α(s, Aφ) ds = 0. (8.14)

The notation α(t, φ) is a shorthand for the integral,

α(t, φ) =

∫
Rd

φ(x)α(t, dx).

In Section A.11 in the appendix we show that ᾱ is the unique weak solution, subject to a

boundedness assumption. Thus π̄n
· converges weakly to a degenerate limit, which implies

convergence in probability.

8.1 Proof of Theorems 8.1 and 8.2

The main technical part of the proof consists in showing that a certain martingale vanishes in

the n→∞ limit. To estimate the mean square E[M2
t ] of a martingale Mt, one seeks to find

and control an increasing process At such that M2
t − At is a martingale. General theorems

about the existence of such processes can be found in Section 1.5 of [22] and in Section 2.6

in [13]. Here we consider only the basic martingales associated with Markov processes.

A martingale lemma for Markov processes

Assume for the moment a general Markov process setting. Y is a Polish space. {P x} is

a Feller process on the path space DY , with a strongly continuous contraction semigroup

S(t)f(x) = Ex[f(Xt)] and generator L on Cb(Y ). Xt is the coordinate process. For any

function f in the domain of L,

Mt = f(Xt)−
∫ t

0

Lf(Xs) ds (8.15)

is a martingale with respect to the filtration Ft = σ{Xs : 0 ≤ s ≤ t} (Exercise 3.1).
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Lemma 8.3 Suppose both f and f 2 lie in the domain of the generator L. Then

Vt = M2
t −

∫ t

0

{
L(f 2)(Xs)− 2f(Xs)Lf(Xs)

}
ds

is a martingale with respect to the filtration Ft.

Proof. The hypothesis implies that f , f 2, Lf and L(f 2) are bounded. So integrability is

not an issue anywhere. Abbreviate

γ(s) = L(f 2)(Xs)− 2f(Xs)Lf(Xs).

Start by considering a small time increment.

E
[
M2

s+δ −M2
s

∣∣Fs

]
= E

[(
Ms+δ −Ms

)2∣∣Fs

]
= E

[(
f(Xs+δ)− f(Xs)−

∫ s+δ

s

Lf(Xr) dr

)2 ∣∣∣∣Fs

]
= E

[(
f(Xs+δ)− f(Xs)

)2∣∣Fs

]
− 2E

[ (
f(Xs+δ)− f(Xs)

) ∫ s+δ

s

Lf(Xr) dr

∣∣∣∣Fs

]
+ E

[(∫ s+δ

s

Lf(Xr) dr

)2∣∣∣∣Fs

]
≡ A1(s, s+ δ)− 2A2(s, s+ δ) + A3(s, s+ δ).

That last identity is the definition of the conditional expectations Ai(s, s + δ), i = 1, 2, 3.

The main term is the first one.

A1(s, s+ δ) = E
[(
f(Xs+δ)− f(Xs)

)2∣∣Fs

]
= E

[
f(Xs+δ)

2
∣∣Fs

]
+ f(Xs)

2 − 2f(Xs)E
[
f(Xs+δ)

∣∣Fs

]
= E

[
f(Xs)

2 +

∫ s+δ

s

L(f 2)(Xr) dr

∣∣∣∣Fs

]
+ f(Xs)

2

− 2f(Xs)E

[
f(Xs) +

∫ s+δ

s

Lf(Xr) dr

∣∣∣∣Fs

]
= E

[ ∫ s+δ

s

L(f 2)(Xr) dr

∣∣∣∣Fs

]
− 2E

[
f(Xs)

∫ s+δ

s

Lf(Xr) dr

∣∣∣∣Fs

]
= E

[ ∫ s+δ

s

{
L(f 2)(Xr)− 2f(Xr)Lf(Xr)

}
dr

∣∣∣∣Fs

]
+ 2E

[ ∫ s+δ

s

(
f(Xr)− f(Xs)

)
Lf(Xr) dr

∣∣∣∣Fs

]
≡ E

[ ∫ s+δ

s

γ(r) dr

∣∣∣∣Fs

]
+ 2A4(s, s+ δ).
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The last line above defines the quantity A4(s, s+ δ). Along the way we used martingales of

the type (8.15) for both f and f 2. The term A4(s, s+ δ) is further expressed as follows:

A4(s, s+ δ) = E

[ ∫ s+δ

s

(
f(Xr)− f(Xs)

)
Lf(Xr) dr

∣∣∣∣Fs

]
= E

[ ∫ s+δ

s

(
f(Xs+δ)− f(Xs)

)
Lf(Xr) dr

∣∣∣∣Fs

]
− E

[ ∫ s+δ

s

(
f(Xs+δ)− f(Xr)

)
Lf(Xr) dr

∣∣∣∣Fs

]
≡ A2(s, s+ δ)− A5(s, s+ δ).

Given s < t, let m be a positive integer, δ = t−s
m

, and si = s + iδ for i = 0, . . . ,m. Use

the estimates from above on each partition interval [si, si+1].

E
[
M2

t −M2
s

∣∣Fs

]
= E

[m−1∑
i=0

E
(
M2

si+1
−M2

si

∣∣Fsi

)∣∣∣∣Fs

]

= E

[ ∫ t

s

γ(r) dr

∣∣∣∣Fs

]
+ E

[m−1∑
i=0

A3(si, si+1)

∣∣∣∣Fs

]
− 2E

[m−1∑
i=0

A5(si, si+1)

∣∣∣∣Fs

]
.

It remains to show that the last two conditional expectations vanish as m → ∞ or equiva-

lently δ → 0. The uniform bound

|A3(si, si+1)| ≤ δ2‖Lf‖2
∞

takes care of the next to last term. And finally,

E

[m−1∑
i=0

A5(si, si+1)

∣∣∣∣Fs

]
= E

[m−1∑
i=0

∫ si+1

si

(
f(Xsi+1

)− f(Xr)
)
Lf(Xr) dr

∣∣∣∣Fs

]

= E

[ ∫ t

0

m−1∑
i=0

1(si,si+1](r)
(
f(Xsi+1

)− f(Xr)
)
Lf(Xr) dr

∣∣∣∣Fs

]
.

The integrand
m−1∑
i=0

1(si,si+1](r)
(
f(Xsi+1

)− f(Xr)
)
Lf(Xr)

is uniformly bounded, also over the index m. As m → ∞ it converges to zero for each

fixed r and path of the process, by the right continuity of the path r 7→ Xr. Consequently

the conditional expectation converges to zero almost surely as m → ∞. Here we need a
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conditional dominated convergence theorem. The reader can derive such a theorem without

too much trouble in the same way that the unconditional dominated convergence theorem is

proved. Start with the conditional monotone convergence theorem (property 1.1c in Section

4.1 of [11]), prove a conditional Fatou Lemma, and from that a conditional dominated

convergence theorem.

We have proved that

E
[
M2

t −M2
s

∣∣Fs

]
= E

[ ∫ t

s

γ(r) dr

∣∣∣∣Fs

]
which is equivalent to the conclusion of the lemma.

Exercise∗ 8.1 Check that the statement of the lemma would not change if we defined the

martingale as

Mt = f(Xt)− f(X0)−
∫ t

0

Lf(Xs) ds. (8.16)

Return to the proof of Theorem 8.1

For the proof we move the discussion to the path space DX of the exclusion process. Let P n

be the distribution of the nth exclusion process (ηn
t : t ≥ 0). En denotes expectation under

measure P n. As before, ηt denotes the coordinate process on the space DX . The empirical

measures πn
t are M-valued measurable functions on DX , defined in terms of test functions

φ by

πn
t (φ) = n−d

∑
u∈Zd

ηt(u)φ
(

u
n

)
.

The distribution of this process πn
· under the measure P n is the same as the distribution of

the process πn
· earlier defined by (8.3) in terms of process ηn

t .

Fix a test function φ ∈ C∞
c (Rd). The average

f(η) = n−d
∑
u∈Zd

η(u)φ
(

u
n

)
. (8.17)

is a cylinder function of η. (Dependence on n will be suppressed from the notation f .) With

this f , define the martingale

Mn(t) = f(ηt)− f(η0)−
∫ t

0

Lf(ηs) ds. (8.18)
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We first find the main contribution to the integrand Lf(ηs). Let η ∈ X be arbitrary.

Lf(η) =
1

2

∑
u,z

p(0, z)[f(ηu,u+z)− f(η)]

=
n−d

2

∑
u,z

p(0, z)
{
η(u+ z)φ

(
u
n

)
+ η(u)φ

(
u+z

n

)
− η(u+ z)φ

(
u+z

n

)
− η(u)φ

(
u
n

)}
=
n−d

2

∑
u,z

p(0, z)η(u)
{
φ
(

u+z
n

)
− φ
(

u
n

)}
+
n−d

2

∑
u,z

p(0, z)η(u+ z)
{
φ
(

u
n

)
− φ
(

u+z
n

)}
=
n−d

2

∑
u,z

p(0, z)η(u)
{
φ
(

u+z
n

)
− φ
(

u
n

)}
+
n−d

2

∑
u,z

p(0, z)η(u)
{
φ
(

u−z
n

)
− φ
(

u
n

)}
=
n−d

2

∑
u

η(u)
∑

z

p(0, z)
{
φ
(

u+z
n

)
+ φ
(

u−z
n

)
− 2φ

(
u
n

)}
. (8.19)

Taylor’s theorem (see for example page 378 in [45]) gives the expansion

φ
(u± z

n

)
= φ

(u
n

)
±∇φ

(u
n

)
· z
n

+
1

2

∑
1≤i,j≤d

φxi,xj

(u
n

)zizj

n2

± 1

6

∑
1≤i,j,k≤d

φxi,xj ,xk

(u± θ±z

n

)zizjzk

n3

for some numbers 0 < θ± < 1. Substitute this into the sum on line (8.19). Cancel the φ
(

u
n

)
and ∇φ

(
u
n

)
terms. The second order terms contribute

n−d−2

2

∑
u

η(u)
∑

1≤i,j≤d

(∑
z

p(0, z)zizj

)
φxi,xj

(
u
n

)
=
n−d−2

2

∑
u

η(u)Aφ
(

u
n

)
.

Hence from above comes

Lf(η) =
n−d−2

2

∑
u

η(u)Aφ
(

u
n

)
+
n−d−3

6

∑
u

η(u)
∑

1≤i,j,k≤d

∑
z

p(0, z)zizjzk

{
φxi,xj ,xk

(u+ θ+z

n

)
− φxi,xj ,xk

(u− θ−z

n

)}
.

Since p(0, z) has finite support in Zd, φ has bounded support in Rd, and θ± ∈ (0, 1), there

is a constant C such that the sum∑
1≤i,j,k≤d

∑
z

p(0, z)zizjzk

{
φxi,xj ,xk

(u+ θ+z

n

)
− φxi,xj ,xk

(u− θ−z

n

)}
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is nonzero for at most Cnd sites u. Furthermore, this sum is uniformly bounded over u be-

cause all derivatives of φ are bounded by the standing assumption φ ∈ C∞
c (Rd). Combining

all this gives the estimate

Lf(η) =
n−d−2

2

∑
u

η(u)Aφ
(

u
n

)
+O(n−3) (8.20)

uniformly over η. Replace η by ηt, and note that f(ηt) is precisely the integral πn
t (φ), while

Lf(ηs) =
n−d−2

2

∑
u

ηs(u)Aφ
(

u
n

)
+O(n−3) =

n−2

2
πn

s (Aφ) +O(n−3). (8.21)

Replace t by n2t in definition (8.18) and substitute in (8.21). Change variables in the time

integral to get

πn
n2t(φ)− πn

0 (φ)− 1
2

∫ t

0

πn
n2s(Aφ) ds = Mn(n2t) +O(tn−1). (8.22)

The error O(tn−1) results from integrating O(n−3) over the time interval [0, n2t], and is

uniform over the path space DX . Note how the change of variable cancelled the powers of n

in front of the time integral.

We come to the point where we show the vanishing of the martingale.

Lemma 8.4 For any 0 < T <∞,

lim
n→∞

En
[

sup
0≤t≤T

M2
n(n2t)

]
= 0. (8.23)

Proof. We estimate

γ(s) = L(f 2)(ηs)− 2f(ηs)Lf(ηs)

for the function f in (8.17). First note that for a general f in the domain of the generator,

L(f 2)(η)− 2f(η)Lf(η)

=
1

2

∑
u,z

p(0, z)
{
f(ηu,u+z)2 − f(η)2 − 2f(η)[f(ηu,u+z)− f(η)]

}
=

1

2

∑
u,z

p(0, z)
(
f(ηu,u+z)− f(η)

)2
.

For the particular f defined by (8.17) and for fixed u and z, Lipscitz continuity of φ gives

f(ηu,u+z)− f(η)

= n−d
{
η(u+ z)φ

(
u
n

)
+ η(u)φ

(
u+z

n

)
− η(u+ z)φ

(
u+z

n

)
− η(u)φ

(
u
n

)}
= n−d

(
η(u)− η(u+ z)

){
φ
(

u+z
n

)
− φ
(

u
n

)}
= O

(
n−d−1|z|1

)
.
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This estimate is applied to those sites u such that either u
n

lies in the support of φ, or u+z
n

lies in the support of φ for some z such that p(0, z) > 0. Let Λn be the set of sites u for

which this happens. For u outside Λn the sum∑
z

p(0, z)
(
f(ηu,u+z)− f(η)

)2
vanishes for all η. |Λn| ≤ Cnd as noted earlier, by the bounded support of φ and the finite

range of p(0, z). Consequently

γ(s) =
1

2

∑
u∈Λn

∑
z

p(0, z)
(
f(ηu,u+z

s )− f(ηs)
)2

≤ Cn−2d−2
∑
u∈Λn

∑
z

p(0, z)|z|21

≤ Cn−d−2.

Above we used the common practice of letting C denote a constant whose actual value

may change from line to line, but which does not depend on the parameter n. The “final C”

incorporates the moment
∑
p(0, z)|z|21, the size of the support of φ, the Lipschitz constant

of φ, and miscellaneous factors such as the 1
2

that was initially at the front of the generator.

Note that γ(s) is nonnegative so we have

|γ(s)| ≤ Cn−d−2 (8.24)

uniformly over time s and over the path space.

Next apply Doob’s maximal inequality to the martingale Mn(t), then the fact that

Vn(t) = M2
n(t)−

∫ t

0

γ(s) ds

is a martingale (Lemma 8.3), and finally the bound (8.24) on γ(s). These steps lead to

En
[

sup
0≤t≤T

M2
n(n2t)

]
≤ 4En

[
M2

n(n2T )
]

= 4En

[ ∫ n2T

0

γ(s) ds

]
≤ CTn−d.

Doob’s maximal inequality for discrete-time martingales is a standard part of probability

texts, see for example Section 4.4 in [11]. From discrete time it extends readily to right-

continuous martingales in continuous time, as we have here. This extension can be found in

Section 1.3 in [22].
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We have proved (8.23).

Let π̄n
t = πn

n2t denote the time-scaled empirical measure. Rewrite (8.22) in the form

π̄n
t (φ)− π̄n

0 (φ)− 1
2

∫ t

0

π̄n
s (Aφ) ds = Mn(n2t) +O(tn−1). (8.25)

By (8.23) the right-hand side of this equation vanishes as n→∞. Comparison with (8.14)

shows that the measure π̄n
t is on its way to becoming a weak solution of the p.d.e. The rest

is technical. We need to find the right context to establish convergence. Weak convergence

at process level comes naturally from the martingale estimate (8.23).

The process π̄n
· = (π̄n

t : t ≥ 0) has its paths in the space DM of RCLL functions from

[0,∞) into M. Let Qn be the distribution of this process, defined for Borel sets B ⊆ DM by

Qn(B) = P n{π̄n
· ∈ B}.

EQn
denotes expectation under Qn. We write α = (α(t) : t ≥ 0) for a generic element of

DM.

Lemma 8.5 The sequence of probability measures {Qn} is tight on DM.

Proof. By Theorem A.3 we need to check two things.

(a) Compact containment: for each time 0 ≤ t < ∞ and ε > 0 there exists a compact

set K ⊆ M such that

inf
n
P n{πn

n2t ∈ K} > 1− ε. (8.26)

(b) Modulus of continuity: for every ε > 0 and 0 < T <∞ there exists a δ > 0 such that

lim sup
n→∞

P n{w′(π̄n
· , δ, T ) ≥ ε} ≤ ε. (8.27)

The modulus of continuity is defined by

w′(α, δ, T ) = inf
{ti}

sup{dM(α(s), α(t)) : s, t ∈ [ti−1, ti) for some i}

where the infimum is over finite partitions 0 = t0 < t1 < · · · < tN−1 < T ≤ tN that satisfy

min1≤i≤N(ti − ti−1) > δ. The metric dM on Radon measures is defined by

dM(µ, ν) =
∞∑

j=1

2−j
(
1 ∧

∣∣∣∫ φj dµ−
∫
φj dν

∣∣∣ )
with an appropriately chosen sequence of functions φj ∈ C∞

c (Rd) (Section A.10).
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Part (a). Compact containment is immediate. Let K be the set of Radon measures µ

such that for each k ∈ N,

µ([−k, k]d) ≤ (2k + 1)d.

K is a compact subset of M by Proposition A.25. (2kn+ 1)d points of n−1Zd lie in the cube

[−k, k]d. With at most n−d mass per point, the empirical measure of the exclusion process

satisfies

πn
n2t([−k, k]d) ≤ n−d(2kn+ 1)d ≤ (2k + 1)d. (8.28)

Thus P n{πn
n2t ∈ K} = 1.

Part (b). We can do with the simpler modulus of continuity

w(α, δ, T ) = sup{dM(α(s), α(t)) : s, t ∈ [0, T ], |s− t| ≤ δ}.

We leave it to the reader to check that

w′(α, δ, T ) ≤ w(α, 2δ, T + 2δ) ≤ w(α, 2δ, T + 1),

the last inequality valid if δ ≤ 1/2. Further, by the definition (A.20) of the metric dM,

w(α, 2δ, T + 1) = sup
|t−s|≤2δ

s,t∈[0,T+1]

∞∑
j=1

2−j
(
1 ∧ |α(s, φj)− α(t, φj)|

)

≤ 2−m +
m∑

j=1

sup
|t−s|≤2δ

s,t∈[0,T+1]

|α(s, φj)− α(t, φj)|.

Combining these inequalities, we have for 0 < δ ≤ 1/2,

En[w′(π̄n
· , δ, T )] ≤ 2−m +

m∑
j=1

En
[

sup
|t−s|≤2δ

s,t∈[0,T+1]

|π̄n
s (φj)− π̄n

t (φj)|2
]1/2

.

We show that each term in the last sum vanishes as first n→∞ and then δ → 0. Then we

have

lim sup
δ↘0

lim sup
n→∞

En[w′(π̄n
· , δ, T )] ≤ 2−m.

Since m can be taken arbitrarily large, (8.27) follows by Chebychev’s inequality.

So it remains to show that for fixed 0 < T <∞ and φ ∈ C∞
c (Rd)

lim
δ↘0

lim sup
n→∞

En
[

sup
|s−t|≤δ
s,t∈[0,T ]

|πn
n2t(φ)− πn

n2s(φ)|2
]

= 0. (8.29)
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From (8.22)

πn
n2t(φ)− πn

n2s(φ) = Mn(n2t)−Mn(n2s) + 1
2

∫ t

s

πn
n2r(Aφ) dr +O(n−1),

and we get the bound

sup
|s−t|≤δ
s,t∈[0,T ]

|πn
n2t(φ)− πn

n2s(φ)|2

≤ sup
|s−t|≤δ
s,t∈[0,T ]

4
(
Mn(n2t)−Mn(n2s)

)2
+ sup

|s−t|≤δ

(∫ t

s

πn
n2r(Aφ) dr

)2

+O(n−2)

≤ sup
0≤t≤T

16M2
n(n2t) + C2δ2 +O(n−2).

The constant C is a uniform bound on πn
n2r(Aφ) which exists because Aφ is bounded and

compactly supported. An application of (8.23) finishes the proof of (8.29).

Since {Qn} is a tight sequence of distributions, to establish weak convergence it is enough

to show that all limit points coincide. Let Q be an arbitrary limit point of {Qn}, and fix

a subsequence nj such that Qnj → Q weakly on the space DM. Let CM be the subset of

continuous paths in the Skorohod space DM.

Lemma 8.6 Q(CM) = 1.

Proof. For paths α ∈ DM, let

G(α) = sup
t≥0

e−tdM(α(t), α(t−)).

G(α) = 0 iff α ∈ CM. Lemma A.2 can be used to show that G is a continuous function on

DM (Exercise 8.9). G is bounded by the definition of the metric dM. Consequently

EQ
[
G
]
= lim

j→∞
EQnj [

G
]
= lim

j→∞
Enj
[
G(π̄

nj
· )
]
. (8.30)

Since the metric dM is bounded by one,

G(π̄n
· ) ≤ sup

0≤t≤T
dM(π̄n

t , π̄
n
t−) + e−T ≤ sup

0≤s,t≤T :|t−s|≤δ

dM(π̄n
t , π̄

n
s ) + e−T .

Reasoning as in the previous proof, limit (8.29) implies that the limit on the right in (8.30)

is zero. Consequently Q{G = 0} = 1, in other words Q-almost every path is continuous.
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Lemma 8.7 Let φ ∈ C∞
c (Rd), δ > 0 and 0 < T <∞. The set

H =

{
α ∈ DM : sup

0≤t<T

∣∣∣∣α(t, φ)− α(0, φ)− 1
2

∫ t

0

α(s, Aφ) ds

∣∣∣∣ ≤ δ

}
(8.31)

is closed in the path space DM.

Proof. The function s 7→ α(s, Aφ) is a real-valued RCLL path, hence bounded on [0, T ]

by property (A.8) of Skorohod space. Consequently the integral
∫ t

0
α(s, Aφ) ds is finite for

any path α ∈ DM.

Now we prove that H is a closed set. Note the strict inequality t < T in the supremum

in the definition of H. Suppose αj ∈ H and αj → α in DM. By Lemma A.2 there exist

strictly increasing Lipschitz bijections λj : [0,∞) → [0,∞) such that γ(λj) → 0 and

sup
0≤t≤T

dM

(
αj(λj(t)), α(t)

)
→ 0. (8.32)

Fix t ∈ [0, T ). The goal is to show∣∣∣∣α(t, φ)− α(0, φ)− 1
2

∫ t

0

α(s, Aφ) ds

∣∣∣∣ ≤ δ. (8.33)

Once this is true for an arbitrary t ∈ [0, T ), α ∈ H has been verified.

The limit γ(λj) → 0 implies that λj converges to the identity function uniformly on

compact intervals. In particular, λj(t) < T for large enough j. Then by the assumption

αj ∈ H, ∣∣∣∣αj(λj(t), φ)− αj(0, φ)− 1
2

∫ λj(t)

0

αj(s, Aφ) ds

∣∣∣∣ ≤ δ. (8.34)

It remains to show that the left-hand side of (8.34) converges to the left-hand side of (8.33).

By limit (8.32), αj(λj(s), φ) → α(s, φ) for both s = 0 and s = t. Note that λj(0) = 0 by

assumption.

To get the convergence∫ λj(t)

0

αj(s, Aφ) ds −−−→
j→∞

∫ t

0

α(s, Aφ) ds, (8.35)

first change variables in the integral:∫ λj(t)

0

αj(s, Aφ) ds =

∫ t

0

αj(λj(s), Aφ)λ′j(s) ds.
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The derivative λ′j is defined Lebesgue a.e. and the change of variable is valid by the Lipschitz

continuity of λj (Exercise 8.10). The limit γ(λj) → 0 implies that λ′j(s) → 1 in L∞[0, T ].

Consequently

αj(λj(s), Aφ)λ′j(s) −−−→
j→∞

α(s, Aφ)

for all 0 ≤ s ≤ t. An application of inequality (A.21) from the appendix and (8.32) give, for

some m and large enough j,

|αj(λj(s), Aφ)| ≤ ‖Aφ‖∞ ·
{
α(s, φm) + 2mdM

(
αj(λj(s)), α(s)

)}
.

This shows that αj(λj(s), Aφ) is uniformly bounded over 0 ≤ s ≤ T and large enough j, and

thus dominated convergence implies (8.35).

We are in a position to complete the proofs of Theorems 8.1 and 8.2. From (8.22) and

(8.23) we get the limit

lim
n→∞

Qn(H) = lim
n→∞

P

{
sup

0≤t<T

∣∣∣∣πn
n2t(φ)− πn

0 (φ)− 1
2

∫ t

0

πn
n2s(Aφ) ds

∣∣∣∣ ≤ δ

}
= 1.

Then by weak convergence and closedness of H,

Q(H) ≥ lim sup
j→∞

Qnj(H) = 1.

This is true for an arbitrarily small δ > 0 and an arbitrarily large T < ∞. So for a fixed

φ ∈ C∞
c (Rd) Q-almost every path α satisfies

α(t, φ)− α(0, φ)− 1
2

∫ t

0

α(s, Aφ) ds = 0 (8.36)

for all 0 < t < ∞. Next, apply this to a countable set of functions φj ∈ C∞
c (Rd) such that

for an arbitrary φ ∈ C∞
c (Rd), φ and Aφ are uniform limits of φjk

and Aφjk
for a subsequence

{φjk
} supported on a common compact set. (Exercise 8.11 shows that a countable set

satisfying this property exists.) By taking these limits in (8.36), we obtain (8.36) Q-almost

surely, simultaneously for all φ ∈ C∞
c (Rd). By hypothesis (8.5), α(0, dx) = ρ0(x)dx for

Q-almost every path α. We conclude that Q-almost every path is continuous and a weak

solution of the initial value problem (8.10).

At this point we apply the uniqueness theorem for the initial value problem (8.10). The

same reasoning that gave (8.28) also implies that the closed set

Lk = {α ∈ DM : α(t, x+ (−k, k)d) ≤ (2k − 1)d for all x ∈ Rd and all t ≥ 0}
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satisfies Qn(Lk)=1 for all n and k. By weak convergence Q(Lk) = 1. (See Exercise 8.12

for the closedness of Lk.) Thus the boundedness assumption of Theorem A.28 is satisfied

Q-almost surely, namely that

α(t, B(x, r)) ≤ Crd

for all balls of sufficiently large radius r. By Theorem A.28, Q is supported by the unique

path ᾱ(t, dx) = ρ(x, t)dx, where ρ(x, t) is defined by (8.7)–(8.8).

Since Q was an arbitrary weak limit point of the tight sequence {Qn}, this sequence

actually converges weakly to the degenerate distribution Q = δᾱ. Weak convergence to

a degenerate distribution implies convergence in probability, so we have the convergence

π̄n
· → ᾱ in probability, in the Skorokhod topology of the space DM. Theorem 8.2 is proved.

Finally, we derive the statement (8.11) which we restate in the following form. Given

φ ∈ C∞
c (Rd), define the Borel set

B = {α ∈ DM : |α(t, φ)− ᾱ(t, φ)| ≥ ε}.

The requirement is then limn→∞Qn(B) = 0. If we can show that Q(∂B) = 0 where ∂B

is the topological boundary of B, then limn→∞Qn(B) = Q(B) and the conclusion follows

from Q(B) = 0. (Here we use again a basic property of weak convergence of probability

measures.) It suffices to show that ᾱ cannot be a limit of a sequence αj /∈ B. For then ᾱ

cannot be a boundary point of B, and consequently Q(∂B) = δᾱ(∂B) = 0. Two facts finish

this. Convergence αj → ᾱ in the Skorokhod topology implies that αj(t) → ᾱ(t) at each

continuity point t of ᾱ (by Lemma A.2). We already know ᾱ is a continuous path. Thus

any sequence αj convergent to ᾱ has αj(t, φ) → ᾱ(t, φ), and consequently such a sequence

cannot lie outside B.

We have proved (8.11) and thereby completed the proof of Theorem 8.1.

8.2 The gradient condition

A key stage in the hydrodynamic limit of the symmetric exclusion process was the appearance

of the difference operator

Anφ
(

u
n

)
≡
∑

z

p(0, z)
{
φ
(

u+z
n

)
+ φ
(

u−z
n

)
− 2φ

(
u
n

)}
on line (8.19) in the calculation for Lf , where f was the empirical average

f(η) = n−d
∑
u∈Zd

η(u)φ
(

u
n

)
. (8.37)

An is the lattice version of the differential operator A defined by (8.9). n2Anφ converges to

Aφ as n→∞. That Anφ is of order n−2 is crucially important for the calculation because it
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can absorb the factor n2 produced by the time scaling. In the previous section this happened

in the passage from (8.21) to (8.22). In (8.21) there is still an extra factor of n−2 in front of

πn
s (Aφ), but in (8.22) this factor has disappeared as a result of scaling time by n2.

Let us abstract the situation to find the property of the exclusion process that made

this happen, so that we might generalize the approach to other processes. Let us consider

a particle system with state space X = {0, 1, . . . , K}Zd
for some finite K, or X = ZZd

+ .

Let c(u, v, η) be the rate of moving one particle from site u to site v when the present

configuration is η. Assume that construction issues of the particle system can be resolved.

The generator on Cb(X) is

Lf(η) =
∑
u,v

c(u, v, η)[f(ηu,v)− f(η)]

where

ηu,v(w) =


η(u)− 1, w = u

η(v) + 1, w = v

η(w), w /∈ {u, v}
is the configuration that results from moving one particle from site u to v. Of course, for

this to make sense, it must be that c(u, v, η) = 0 if a jump from u to v is impossible.

Fix a test function φ ∈ C∞
c (Rd) and define f(η) as in (8.37) above. Let us attempt to

repeat the calculation that led to (8.19) for the symmetric exclusion. For the third equality

below replace the summation index z by −z in the second sum. For the fourth equality

replace u by u+ z in the second sum, for each fixed z.

Lf(η) =
∑
u,z

c(u, u+ z, η)
{
f(ηu,u+z)− f(η)

}
= n−d

∑
u,z

c(u, u+ z, η)
{
φ
(

u+z
n

)
− φ
(

u
n

)}
=
n−d

2

∑
u,z

c(u, u+ z, η)
{
φ
(

u+z
n

)
− φ
(

u
n

)}
− n−d

2

∑
u,z

c(u, u− z, η)
{
φ
(

u
n

)
− φ
(

u−z
n

)}
=
n−d

2

∑
u,z

c(u, u+ z, η)
{
φ
(

u+z
n

)
− φ
(

u
n

)}
− n−d

2

∑
u,z

c(u+ z, u, η)
{
φ
(

u+z
n

)
− φ
(

u
n

)}
=
n−d

2

∑
u,z

(
c(u, u+ z, η)− c(u+ z, u, η)

){
φ
(

u+z
n

)
− φ
(

u
n

)}
. (8.38)

At this point we have only one lattice derivative φ
(

u+z
n

)
− φ

(
u
n

)
which is of order n−1.

We need to take differences for a second time to get another factor of n−1. The factor

j(u, u+ z, η) = c(u, u+ z, η)− c(u+ z, u, η)
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arranged into the sum is the net flux of particles from site u to site u + z, namely, the flux

from u to u+ z minus the flux from u+ z to u. We make the following assumption: there is

a finitely supported function r : Zd → R and a bounded cylinder function h : X → R such

that

j(u, u+ z, η) = r(z)
(
h(θuη)− h(θu+zη)

)
(8.39)

for all u, z ∈ Zd and η ∈ X. This condition is called the gradient condition since it requires

that the microscopic flux be a gradient of some other function. The spatial translations θu on

the space X are defined by θuη(v) = η(u+ v). Let us check (8.39) for symmetric exclusion.

By p(0, z) = p(0,−z),

j(u, u+ z, η) = p(0, z)η(u)(1− η(u+ z))− p(0,−z)η(u+ z)(1− η(u))

= p(0, z)
(
η(u)− η(u+ z)

)
,

(8.40)

clearly of the gradient form.

Continue the calculation from line (8.38) and utilize assumption (8.39).

Lf(η) =
n−d

2

∑
u,z

(
c(u, u+ z, η)− c(u+ z, u, η)

){
φ
(

u+z
n

)
− φ
(

u
n

)}
=
n−d

2

∑
u,z

r(z)
(
h(θuη)− h(θu+zη)

){
φ
(

u+z
n

)
− φ
(

u
n

)}
=
n−d

2

∑
u,z

r(z)h(θuη)
{
φ
(

u+z
n

)
− φ
(

u
n

)}
+
n−d

2

∑
u,z

r(z)h(θu+zη)
{
φ
(

u
n

)
− φ
(

u+z
n

)}
=
n−d

2

∑
u,z

r(z)h(θuη)
{
φ
(

u+z
n

)
− φ
(

u
n

)}
+
n−d

2

∑
u,z

r(z)h(θuη)
{
φ
(

u−z
n

)
− φ
(

u
n

)}
=
n−d

2

∑
u

h(θuη)
∑

z

r(z)
{
φ
(

u+z
n

)
+ φ
(

u−z
n

)
− 2φ

(
u
n

)}
. (8.41)

On the last line we have the second order lattice difference operator

Bnφ
(

u
n

)
=
∑

z

r(z)
{
φ
(

u+z
n

)
+ φ
(

u−z
n

)
− 2φ

(
u
n

)}
which is of order n−2, as required. So we see that the gradient condition guarantees the two

differences in Lf .

A much-studied example of gradient models is the class of zero-range processes. They

have state spaceX = ZZd

+ , and c(u, v, η) = p(u, v)g(η(u)) for a given function g that identifies

the process in question. The gradient condition is trivially satisfied for a symmetric jump
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probability p(u, v). The name zero-range stems from the property that the rate of a jump

from u to v depends only on the state at u, so the range of interaction is zero. The K-

exclusion processes introduced in Chapter 7 do not satisfy the gradient condition (Exercise

8.13).

Comparison of (8.19) and (8.41), and also (8.40), reveal the miracle that made the proof

of the hydrodynamic limit for symmetric exclusion unnaturally easy. Namely, the function

h in the gradient condition is simply h(η) = η(0). The consequence of this is that n2Lf(ηs)

can be expressed in terms of the empirical measure πn
s as in (8.21). That is why (8.25) is a

closed equation for π̄n
t . (Closed in the sense that no other unknowns appear.)

In the general situation the function h in (8.41) does not disappear, and needs to be dealt

with. We shall not pursue this direction, but here is the idea in a nutshell.

Introduce an intermediate scale εn with small positive ε. For b > 0 real, let Λ(b) =

[−b, b]d∩Zd denote the centered cube with (2[b]+1)d sites. Use the smoothness of φ to write

Lf(ηn2s) =
n−d

2

∑
u

h(θuηn2t)Bnφ
(

u
n

)
=
n−d

2

∑
u

{
|Λ(εn)|−1

∑
v∈u+Λ(εn)

h(θvηn2t)

}
Bnφ

(
u
n

)
+ [an error of order ε].

As n→∞, one seeks to show that the average

|Λ(εn)|−1
∑

v∈u+Λ(εn)

h(θvηn2t)

is approximately
∫
h dνρ, the average of h under an equilibrium measure νρ at density

ρ = |Λ(εn)|−1
∑

v∈u+Λ(εn)

ηn2t(v),

the local empirical density. Informally speaking, the system behaves as if it were in a local

equilibrium in the εn-cube around site u. This expresses Lf(ηn2s) approximately as a function

of the empirical measure, and thereby closes the equation.

Notes

The gradient condition (8.39) can be relaxed by permitting a more complicated linear com-

bination of translates of different functions on the right-hand side. See page 61 in [24].

Hydrodynamic limits for gradient systems appear in the lectures of De Masi and Presutti

[7], the monograph of Spohn [44], in Varadhan’s lectures [46] and in the monograph of Kipnis
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and Landim [24]. Hydrodynamic limits for nongradient systems are discussed in [46] and

[24].

Exercise 8.2 Hydrodynamic limit for independent Brownian Motions. This is an example

where no scaling of space or time is needed. For each n, let xn(t) =
(
xn

1 (t), . . . , xn
Ln

(t)
)

be

a vector of independent Brownian motions in Rd. Assume that Ln ≤ Cnd for some fixed

constant C. Assume that there exists a function ρ0 ∈ L1(Rd) such that the initial locations

of the Brownian motions satisfy

lim
n→∞

E
[
n−d

∑
i

φ
(
xn

i (0)
)]

=

∫
Rd

φ(x)ρ0(x) dx

for all test functions φ ∈ Cc(R
d). Show that for all t > 0 and φ,

lim
n→∞

n−d
∑

i

φ
(
xn

i (t)
)

=

∫
Rd

φ(x)ρ(x, t) dx in L2,

where ρ is solves the heat equation

ρt = 1
2
∆ρ , ρ(x, 0) = ρ0.

Hint: Investigate the mean and variance of n−d
∑
φ
(
xn

i (t)
)
.

For a slightly more interesting exercise, consider the case of infinitely many Brownian

motions {xn
i (t) : i ∈ N} in Rd. Use a hypothesis that prevents the initial particles from

accumulating anywhere in space, for example assume there exists a fixed cube B in Rd and

a constant C such that for all z ∈ Rd,

E
[
n−d

∑
i∈N

1z+B

(
xn

i (0)
)]
≤ C.

A third variant of the exercise is this: to avoid problems of unbounded space, hydrody-

namic limits are often proved on the torus Td = Rd/Zd which can be taken as [0, 1)d with

periodic boundary conditions. You can also repeat the exercise above for Brownian motions

on the torus.

Exercise 8.3 This exercise features the space scaling without any dynamics. Let 0 ≤ u(x) ≤
1 be a continuous function on [0, 1]. Let

{Xn,i : 1 ≤ i ≤ n, 1 ≤ n <∞}
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be a triangular array of Bernoulli variables such that, for each fixed n, Xn,1, . . . , Xn,n are

independent with distributions

P (Xn,i = 1) = u
(

i
n

)
and P (Xn,i = 0) = 1− u

(
i
n

)
.

Prove that, for any continuous function φ on [0, 1],

lim
n→∞

1

n

n∑
i=1

Xn,i φ
(

i
n

)
=

∫ 1

0

u(x)φ(x) dx almost surely.

This exercise illustrates the sense in which the function u is the macroscopic profile of the

random variables Xn,i. The proof requires the standard Strong Law of Large Numbers and

some simple estimation. Some regularity on φ is necessary because the conclusion clearly

fails for the indicator function of rationals.

Exercise 8.4 Hydrodynamic limit for mean zero independent random walks. This exam-

ple has both the space and time scaling, but no interaction. For each n, let xn(t) =(
xn

1 (t), . . . , xn
Ln

(t)
)

be a vector of independent random walks on Zd. Each random walk

jumps at rate 1, and the common translation-invariant jump kernel p(u, v) = p(0, v− u) has

zero mean ∑
v∈Zd

vp(0, v) = 0

and a finite covariance matrix Γ = (γi,j)1≤i,j≤d defined by

γi,j =
∑
v∈Zd

vivjp(0, v).

Assume that Ln ≤ Cnd for some fixed constant C. Assume that there exists a function

ρ0 ∈ L1(Rd) such that the initial locations of the random walks satisfy

lim
n→∞

E
[
n−d

∑
i

φ
(
n−1xn

i (0)
)]

=

∫
Rd

φ(x)ρ0(x) dx (8.42)

for all test functions φ ∈ Cc(R
d). Show that for all t > 0 and φ,

lim
n→∞

n−d
∑

i

φ
(
n−1xn

i (n2t)
)

=

∫
Rd

φ(x)ρ(x, t) dx in L2,

where ρ is defined by ρ(x, t) = Eρ0(x− t1/2Z) for an N (0,Γ)-distributed Gaussian random

vector Z. The function ρ is also the solution of a differential equation, see Theorem A.27 in

the appendix.
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Outline: By the independence of the random walks the variance of

Un = n−d
∑

φ
(
n−1xn

i (n2t)
)

vanishes as n→∞. With E0 denoting expectation over the initial locations {xn
i (0)}, let

gn(ξ) = E0

[
n−d

∑
i

φ
(
n−1xn

i (0) + ξ
)]
.

This defines a uniformly bounded and equicontinuous sequence of functions {gn} on Rd.

Since initial locations are independent of jumps for a random walk, the mean of Un can be

written as

EUn = E
[
gn

(
n−1s(n2t)

)]
where s(·) is a random walk starting at the origin. By hypothesis

gn(ξ) → g(ξ) ≡
∫
φ(x+ ξ)ρ0(x) dx.

By the multivariate central limit theorem and some properties of weak convergence,

E
[
gn

(
n−1s(n2t)

)]
→ Eg(t1/2Z).

The proof shows that the hydrodynamic limit comes from two ingredients: having a large

number of particles, each experiencing central limit behavior.

Exercise 8.5 Hydrodynamic limit for independent random walks with drift. As a prelude

to the asymmetric systems studied in the next chapter, assume that the independent ran-

dom walks xn(t) =
(
xn

1 (t), . . . , xn
Ln

(t)
)

have a drift. Precisely, assume that the common

translation-invariant jump kernel p(u, v) = p(0, v − u) has nonzero mean∑
v∈Zd

vp(0, v) = b 6= 0.

Assume (8.42) again, and derive a scaling limit for the empirical density. Observe that

the correct time scaling now comes from the law of large numbers instead of the central

limit theorem. The details in this exercise are easier than in Exercise 8.4 because weak

convergence is not needed. What is the partial differential equation satisfied by the limiting

density ρ(x, t)?

Exercise 8.6 Let ηn
t be a sequence of symmetric exclusion processes defined on a common

probability space. Consider a time scale nαt with 0 ≤ α < 2. Without assuming anything

further about the processes, show that for any t > 0 and φ ∈ C∞
c (Rd),

lim
n→∞

{
n−d

∑
u∈Zd

ηn
nαt(u)φ

(
u
n

)
− n−d

∑
u∈Zd

ηn
0 (u)φ

(
u
n

)}
= 0 almost surely.
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Exercise 8.7 Show that assumption (8.6) is equivalent to requiring that the covariance

matrix Σ have strictly positive eigenvalues. Hint: Σ is a real symmetric matrix, so it has a

basis of orthonormal eigenvectors. Note that∑
u

p(0, u)(u · x)2 = x · Σx.

Exercise 8.8 Show that assumption (8.6) is equivalent to the usual notion of ellipticity of

the differential operator A defined by (8.9), namely that for some constant θ > 0,∑
1≤i,j≤d

σi,jxixj ≥ θ|x|22 for all x ∈ Rd. (8.43)

Exercise∗ 8.9 For paths α ∈ DM, let

G(α) = sup
t≥0

e−tdM(α(t), α(t−)).

Show that G is a continuous function on DM. Hint: By (A.2), G(α) > 0 implies that the

supremum in the definition of G(α) is attained at some t. Apply Lemma A.2.

Exercise∗ 8.10 Change of variable. Suppose f is a strictly increasing continuous function

from [a, b] onto [α, β], with inverse g. Assume g is absolutely continuous. Show that for any

bounded Borel function H, ∫ b

a

H(f(t)) dt =

∫ β

α

H(s)g′(s) ds.

Hint: First let H be the indicator function of an interval. Use the π–λ Theorem A.1 to

extend to all indicator functions of Borel sets.

Exercise∗ 8.11 Show that there exists a countable set {ψj} ⊆ C∞
c (Rd) with this property:

given any φ ∈ C∞
c (Rd), there exists a compact set K and a subsequence {ψjk

} such that K

supports φ and all ψjk
, and the limits ψjk

→ φ and (ψjk
)xi,xj

→ φxi,xj
hold uniformly for all

1 ≤ i, j ≤ d.

Suggestion. Let H0 = {D2φ : φ ∈ C∞
c (Rd)} be the space of d×d matrix-valued functions

coming from the Hessian matrices

D2φ =

φx1,x1 · · · φx1,xd

...
. . .

...

φxd,x1 · · · φxd,xd


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of C∞
c (Rd) functions. This is a subspace of the space H of all compactly supported, d × d

matrix-valued C∞ functions on Rd. Let KN = [−N,N ]d. First find a countable set {Gk} ⊆
H with the property that for any G ∈ H supported on KN , there is a KN+1-supported

subsequence {Gkm} that converges to G uniformly (in all matrix entries). Next, for each

Gk supported on KM and n ∈ N, find a function φk,n,M+1 supported on KM+1 such that

‖D2φk,n,M+1 − Gk‖∞ ≤ 1/n, if such a function exists. The claim is that the collection

{φk,n,M+1} will do the job.

Exercise∗ 8.12 Let K be a fixed open rectangle in Rd and C a constant. Show that the

set

L = {α ∈ DM : α(t, x+K) ≤ C for all x ∈ Rd and all t ≥ 0}

is closed in Skorokhod topology. Hint: Imitate parts of the proof of Lemma 8.7. If αj ∈ L

and αj(λj(t)) → α(t), consider test functions f ∈ Cc(R
d) such that 0 ≤ f ≤ 1x+K . The

indicator 1x+K is an increasing limit of such functions.

Exercise 8.13 Show that a K-exclusion process with generator (7.1) cannot satisfy the

gradient condition (8.39).

134



9 Variational approach for totally asymmetric systems

In this chapter we address the hydrodynamic limit of a totally asymmetric, nearest-neighbor

K-exclusion in one dimension. The approach will utilize a special pathwise variational

property of the process. To formulate this property we switch from the particle occupation

variables η = (η(u) : u ∈ Z) to a representation in terms of a height function h : Z → Z. The

value h(u) represents the height of an interface over the site u. The occupation variables are

the increments of the height function, namely

η(u) = h(u)− h(u− 1).

The K-exclusion process ηt and the height process ht are coupled through Poisson clocks.

Whenever a particle jumps from site u to u+ 1, height variable h(u) decreases by one.

The height process possesses the variational property, or envelope property, that we uti-

lize for the proof of the hydrodynamic limit. This property generalizes to a multidimensional

totally asymmetric height process ht : Zd → Z. However, the increment process of a multi-

dimensional height process is not a K-exclusion process in multiple dimensions (see Exercise

9.2). The basic theorems in this chapter are proved for the multidimensional height pro-

cess. The hydrodynamic limit for the one-dimensional, totally asymmetric, nearest-neighbor

K-exclusion process is derived as a corollary.

9.1 An interface model with an envelope property

We consider a model of a randomly evolving interface in d+1 space dimensions. The interface

is described by an integer-valued height function h : Zd → Z defined on the d-dimensional

integer lattice Zd. The height function moves downward through random jumps.

Let e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , ed = (0, . . . , 0, 1) be the d standard

basis vectors in Zd. Fix d positive integers K1, K2, . . . , Kd. These determine the maximal

increments in each coordinate direction of an admissible height function. The state space H

of the system is

H = {h : Zd → Z : 0 ≤ h(u+ ei)− h(u) ≤ Ki for u ∈ Zd and 1 ≤ i ≤ d}. (9.1)

The dynamics of the interface is determined by a collection {Tu : u ∈ Zd} of mutually

independent homogeneous Poisson point processes of rate 1 on the time line [0,∞). The

jump rule is that if t ∈ Tu, then

ht(u) = ht−(u)− 1

provided after the jump the inequalities

ht(u) ≥ ht(u− ei) and ht(u) ≥ ht(u+ ei)−Ki for 1 ≤ i ≤ d

135



are true. In other words, whenever Poisson clock Tu rings, height variable h(u) decreases by

one provided this change does not take the state of the system outside the state space H.

The process ht = (ht(u) : u ∈ Zd) can be constructed on the probability space (Ω,H,P)

of the Poisson clocks {Tu : u ∈ Zd} with the percolation argument of Section 2.1, for any

initial height profile h0 ∈ H. Consider only realizations {Tu} of the Poisson clocks such that

each Tu has only finitely many jump times in every bounded interval (0, T ],

and no two distinct processes Tu and Tv have a jump time in common.
(9.2)

Define the random graph G0,t with vertex set Zd by declaring that the nearest-neighbor edge

{u, v} is present iff either Tu or Tv has a jump time in (0, t ]. Sites u and v in Zd are nearest-

neighbor if u− v = ±ei for some 1 ≤ i ≤ d. Adapt the proof of Lemma 2.1 to show that if t0
is fixed small enough but positive, G0,t0 has finite connected components almost surely. Now

the evolution ht can be defined on each connected component of G0,t0 for times 0 ≤ t ≤ t0,

and then for all time by iterating this argument.

To have a random initial height h0 with distribution µ on the state space H, construct the

process ht as a function of the initial height h0 and the Poisson processes ω on the product

space (H × Ω,B(H) ⊗ H, µ ⊗ P). So the clocks are taken independent of the initial state.

The distribution of the process is a probability measure P µ on the path space DH .

The basic coupling works as before. To couple a family of processes {σk
t } through the

Poisson clocks, we need a probability space (Σ,A, Q) on which are defined the initial height

functions {σk
0}. Each process σk

t is then defined on the product space (Σ×Ω,A⊗H, Q⊗P)

as a function of its initial profile σk
0 and the Poisson clocks ω.

Notationally, we use ht to denote a general height process. Height processes with special

properties such as particular initial configurations are denoted by other symbols such as σt

and ξt. Despite differences in notation, processes coupled together have the same state space

defined by fixed parameters K1, . . . , Kd.

Two key properties of the height process come in the next lemmas. A coordinatewise

ordering is defined among height profiles by

h ≤ h̃ iff h(u) ≤ h̃(u) for all u ∈ Zd. (9.3)

Lemma 9.1 (Attractivity.) Suppose the processes ht and h̃t are coupled so that they read

the same Poisson clocks {Tu}. Assume that initially at time zero, h0 ≤ h̃0. Then for almost

every realization of the Poisson clocks, ht ≤ h̃t for all t ≥ 0.

We leave the proof of this first lemma to the reader.

Lemma 9.2 (Envelope property.) Suppose the process ht and a countable family {σk
t : k ∈

K} of height processes are coupled so that they all read the same Poisson clocks {Tu}. Assume
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that initially at time zero,

h0(u) = sup
k∈K

σk
0(u) for all u ∈ Zd. (9.4)

Then for almost every realization of the Poisson clocks,

ht(u) = sup
k∈K

σk
t (u) for all u ∈ Zd and t ≥ 0. (9.5)

Proof. Consider realizations {Tu} of the Poisson clocks that satisfy (9.2) and for which

the random graphs Gkt0,(k+1)t0 have finite connected components for all integers k ≥ 0. Then

the processes under consideration can be constructed for all time. It suffices to show that

(9.5) holds up to time t0. Then the argument can be repeated for the restarted processes

h̃t = ht0+t and σ̃k
t = σk

t0+t that again satisfy the initial assumption (9.4).

By attractivity we already have ht(u) ≥ σk
t (u) for all k ∈ K. It remains to show that for

each (u, t) there is some k such that ht(u) = σk
t (u).

Fix u0 ∈ Zd. Let C be the connected component that contains u0 in the graph G0,t0 .

During time interval (0, t0] the finitely many Poisson processes {Tu : u ∈ C} have only

finitely many jump times. We prove that immediately after each of these jump times,

for all v ∈ C there exists k such that ht(v) = σk
t (v). (9.6)

The proof proceeds by induction on the jump times.

Suppose τ ∈ Tu∩(0, t0] for some u ∈ C, and assume that (9.6) holds for t < τ . Jump time

τ ∈ Tu only affects the height values at u, so (9.6) continues to hold at t = τ for v ∈ Cr{u}.

Case 1: h(u) jumps at time τ , so hτ (u) = hτ−(u) − 1. By the induction assumption

hτ−(u) = σk
τ−(u) for some k. By attractivity hτ (u) ≥ σk

τ (u) must hold after the jump. So

σk(u) must have jumped too, and we have

hτ (u) = hτ−(u)− 1 = σk
τ−(u)− 1 = σk

τ (u).

Case 2: h(u) could not jump at time τ , because for some 1 ≤ j ≤ d,

hτ−(u) = hτ−(u− ej).

The edge {u, u− ej} is present in the graph G0,t0 by virtue of the jump time τ ∈ Tu ∩ (0, t0],

so site u− ej lies in C. By induction,

hτ−(u− ej) = σ`
τ−(u− ej)
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for some ` ∈ K. By definition (9.1) of the state space,

σ`
τ−(u− ej) ≤ σ`

τ−(u).

By attractivity

σ`
τ−(u) ≤ hτ−(u).

All these together give

hτ−(u) = hτ−(u− ej) = σ`
τ−(u− ej) ≤ σ`

τ−(u) ≤ hτ−(u).

So they are all equal. Height σ`(u) could not have jumped at time τ because it was blocked

by σ`
τ−(u− ej) = σ`

τ−(u). We have

hτ (u) = hτ−(u) = σ`
τ−(u) = σ`

τ (u)

and so (9.6) continues to hold after jump time τ .

Case 3: h(u) could not jump at time τ , because for some 1 ≤ j ≤ d,

hτ−(u) = hτ−(u+ ej)−Kj.

This case follows the same reasoning as the previous one. We leave the details to the reader.

We now know (9.6) holds for times 0 ≤ t ≤ t0. We can repeat this for all u0 ∈ Zd, and

thereby have verified (9.5) for 0 ≤ t ≤ t0. This completes the proof of the lemma.

To take advantage of this property we need a suitable family {σk}. Define an element

w ∈ H by

w(u) =
d∑

i=1

Ki(ui ∧ 0) for u = (u1, . . . , ud) ∈ Zd. (9.7)

This wedge profile is the minimal element of H that satisfies w(0) = 0, in the sense that

w ≤ h for any h ∈ H such that h(0) = 0.

Let ht be a height process with deterministic or random initial profile h0. Define a family

{σv
0 : v ∈ Zd} of initial configurations, indexed by sites v, by

σv
0(u) = h0(v) + w(u− v) , u ∈ Zd.

Initial profile σv
0 is the minimal profile that goes through the point (v, h0(v)) in Zd × Z. It

is clear that the property

h0(u) = sup
v∈Zd

σv
0(u)
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holds at time 0. Couple the processes ht and {σv
t : v ∈ Zd} through the Poisson clocks,

so that for each u ∈ Zd, ht(u) and σv
t (u) obey the clock Tu. By Lemma 9.2 the envelope

property is preserved by the coupling, so

ht(u) = sup
v∈Zd

σv
t (u) for all time t. (9.8)

The processes σv
t are functions of both the initial profile h0 and the Poisson clocks. We

normalize them to separate the effect of h0 and the Poisson processes. For each v ∈ Zd,

define process ξv
t by stipulating that initially

ξv
0(u) = w(u) for u ∈ Zd, (9.9)

and dynamically

height variable ξv(u) attempts to jump at the jump times of Tu+v. (9.10)

These processes are related to the earlier ones via

σv
t (u) = h0(v) + ξv

t (u− v). (9.11)

To prove (9.11), note that it is true at t = 0 by construction, and then check that the left

and right-hand sides of the equation always jump together.

The envelope property (9.8) takes the form

ht(u) = sup
v∈Zd

{h0(v) + ξv
t (u− v)}. (9.12)

In (9.12) the family of processes {ξv
t } is identically distributed. The superscript v translates

the index of the Poisson clocks: process ξv
t reads the translated Poisson processes {Tu+v :

u ∈ Zd}.
Convention (9.10) is at odds with our original jump rule since variable ξv(u) obeys Poisson

clock Tu+v instead of Tu. The choice made here matches (9.12) formally with the Hopf-

Lax formula for Hamilton-Jacobi equations [see (9.17) below and Section A.12]. Another

application of processes that transform the indices of the Poisson clocks occurs in the proof

of Proposition 9.20 later in this chapter.

9.2 Hydrodynamic limit for the height process

Now we describe the evolution of the height process on large space and time scales. The

first step is a limit for the process started from the wedge profile. Let ξt = ξ0
t be the process

defined by (9.9) and (9.10) with v = 0, so without translating the Poisson clocks. The `1
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norm on Rd and Zd is denoted by |x|1 = |x1|+ · · ·+ |xd| for x = (x1, . . . , xd). A function g

on Rd is concave if for all x, y ∈ Rd and 0 < α < 1,

g(αx+ (1− α)y) ≥ αg(x) + (1− α)g(y).

Theorem 9.3 There exists a function g : Rd → (−∞, 0] such that the following statement

holds for almost every realization of the Poisson clocks:

lim
n→∞

1

n
ξnt([nx]) = tg

(x
t

)
for all x ∈ Rd and t > 0. (9.13)

The deterministic limiting function g is concave, Lipschitz continuous, and satisfies

g(x) =
d∑

i=1

Ki(xi ∧ 0) (9.14)

for all x ∈ Rd such that |x|1 > 1.

Note that for t = 0 the limit in (9.13) is given by the right-hand side of equation (9.14),

by virtue of the initial height ξ0 defined by (9.9) and (9.7).

Next we consider the general process. Assume that on some probability space is defined

a sequence {hn
0 : n ∈ N} of random initial height profiles. The assumption is that this

sequence has a macroscopic profile in the following sense. There exists a deterministic

function ψ0 : Rd → R such that these limits in probability hold: for each y ∈ Rd and each

ε > 0,

lim
n→∞

P
{ ∣∣n−1hn

0 ([ny])− ψ0(y)
∣∣ ≥ ε

}
= 0. (9.15)

The notation [ny] above means coordinatewise integer parts. For x = (x1, . . . , xd) ∈ Rd,

[x] = ([x1], . . . , [xd]) ∈ Zd where for a real r, [r] = max{k ∈ Z : k ≤ r} is the integer part of

r.

Augment the probability space of the initial profiles {hn
0} so it also supports the Poisson

clocks {Tx}, independent of {hn
0}. For each n, construct the process hn

t with these Poisson

clocks and initial state hn
0 . The objective is to prove that the random evolution hn

t converges

under suitable space and time scaling.

By the restrictions (9.1) on admissible profiles the function ψ0 in (9.15) must satisfy the

Lipschitz property

0 ≤ ψ0(x+ rei)− ψ0(x) ≤ Kir for 1 ≤ i ≤ d and r > 0. (9.16)

Define a function ψ(x, t) for (x, t) ∈ Rd × [0,∞) by ψ(x, 0) = ψ0(x) and for t > 0

ψ(x, t) = sup
y∈Rd

{
ψ0(y) + tg

(
x− y

t

)}
. (9.17)
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The function g inside the braces is the one defined by the limit (9.13). It is determined by

the rules of the process, and does not depend on the particular initial conditions hn
0 or ψ0.

Continuity, (9.16) and (9.14) together imply that the supremum in (9.17) is attained at some

y such that |x − y|1 ≤ t (Lemma 9.14 in Section 9.5.2). As a function of x, ψ(x, t) satisfies

the Lipschitz bounds (9.16) for each fixed t.

Theorem 9.4 Assume (9.15). For each x ∈ Rd and t ≥ 0, we have the following limit in

probability. For any ε > 0,

lim
n→∞

P
{ ∣∣n−1hn

nt([nx])− ψ(x, t)
∣∣ ≥ ε

}
= 0. (9.18)

The pathwise variational formula (9.12) certainly suggests (9.17) as a natural description

of a limiting macroscopic evolution. We can also describe the limit with a partial differential

equation. From Section A.12 in the Appendix, we see that (9.17) is an example of a Hopf-Lax

formula which gives the solution of a Hamilton-Jacobi equation. Let

f(ρ) = inf
x∈Rd

{ρ · x− g(x)} for ρ = (ρ1, . . . , ρd) ∈ Rd (9.19)

be the concave conjugate of g. Let

V =
d∏

i=1

[0, Ki]

be the set of possible gradients of macroscopic height profiles that satisfy Lipschitz condition

(9.16). Partial derivative with respect to time is ψt = ∂ψ/∂t, and the spatial gradient is

∇ψ = (ψx1 , . . . , ψxd
).

Theorem 9.5 The limiting height function ψ is Lipschitz continuous on Rd × [0,∞), and

therefore differentiable Lebesgue almost everywhere. At every point (x, t) of differentiability

in Rd × (0,∞), ∇ψ(x, t) ∈ V and

∂ψ

∂t
(x, t) = −f

(
∇ψ(x, t)

)
. (9.20)

The velocity function f defined by (9.19) is concave and continuous on V . It satisfies f = 0

on the boundary of V , and 0 < f ≤ 1 in the interior of V . Outside V the function f is

identically −∞.

Let I be any subset of {1, . . . , d}. Suppose ρ, ρ̃ ∈ V satisfy

ρ̃i = ρi for i /∈ I, and ρ̃i = Ki − ρi for i ∈ I. (9.21)

Then f(ρ) = f(ρ̃).
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At the current level of generality we cannot say much more about the functions f and

g. Only in the case d = 1 and K1 = 1 do we have an explicit expression: f(ρ) = ρ(1 − ρ)

for 0 ≤ ρ ≤ 1. This case is the totally asymmetric nearest-neighbor exclusion process in

one dimension. In Theorem 9.10 below we calculate f and g explicitly from the equilibrium

Bernoulli measures. A way to calculate f from the distributions of the state of the process

is given in the next theorem.

Define the event

B = {h ∈ H : h(0) ≥ h(−ei) + 1 and h(0) ≥ h(ei)−Ki + 1 for 1 ≤ i ≤ d}. (9.22)

A jump time t ∈ T0 causes a jump ht(0) = ht−(0)− 1 iff ht− ∈ B.

Theorem 9.6 Fix a vector ρ ∈ V , the set of admissible gradients. Let h0 be a deterministic

or random initial height function such that E|h0(0)|2 <∞ and for every x ∈ Rd,

lim
n→∞

n−1h0([nx]) = ρ · x in probability. (9.23)

Let ht be the process constructed from initial condition h0. Then

f(ρ) = lim
t→∞

1

t

∫ t

0

1{hs ∈ B} ds = lim
t→∞

1

t

∫ t

0

P{hs ∈ B} ds, (9.24)

where the first limit is in probability.

Example 9.7 Here is an initial height function h0 that satisfies (9.23) and has spatially

ergodic increments η0(u, i) = h0(u)− h0(u− ei). Let

{ηi(`) : ` ∈ Z, 1 ≤ i ≤ d}

be mutually independent random variables such that for each i, {ηi(`) : ` ∈ Z} are i.i.d.

with values in {0, 1, . . . , Ki} and common mean Eηi(`) = ρi. For each 1 ≤ i ≤ d define a

one-dimensional height function on Z by

σi(m) =


−
∑0

`=m+1 η
i(`), m < 0

0, m = 0∑m
`=1 η

i(`), m > 0.

With these, define the height function h0 by

h0(u) =
d∑

i=1

σi(ui) for u = (u1, . . . , ud) ∈ Zd.
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The convergence in Theorems 9.4 and 9.6 can be made almost sure simply by making

the convergence in the hypotheses almost sure. The additional technical tool needed for the

proof is a summable deviation estimate for the convergence in Theorem 9.3. Such estimates

can be obtained conveniently through the last-passage representation in Section 9.4.

Next we address a point of partial differential equations theory. Equation (9.20) is a

Hamilton-Jacobi equation. Even with smooth initial data, its solutions can develop points

of nondifferentiability, or shocks (Exercise 9.4). Consequently it is not enough to consider

classical solutions that are differentiable everywhere. One is forced to deal with weak solu-

tions. But with weak solutions comes the possibility of nonuniqueness. What is needed then

is the correct definition to capture the physically relevant solution among the many weak

solutions. The appropriate notion of weak solution for a Hamilton-Jacobi equation is the

so-called viscosity solution. Its rather abstract intrinsic definition is the following.

Suppose F is a continuous function defined on Rd. A continuous function u(x, t) on

Rd × [0,∞) is a viscosity solution of

ut + F (∇u) = 0 , u|t=0 = u0

if

(i) u(x, 0) = u0(x) for all x ∈ Rd, and

(ii) if the following holds for all continuously differentiable functions φ on Rd × (0,∞):

if u− φ has a local maximum at (x0, t0), then

φt(x0, t0) + F
(
∇φ(x0, t0)

)
≤ 0 , (9.25)

and if u− φ has a local minimum at (x0, t0), then

φt(x0, t0) + F
(
∇φ(x0, t0)

)
≥ 0 . (9.26)

As always with notions of weak solutions, the point is to move the derivatives onto a

smooth test function so that no differentiability requirements are imposed on the solution

itself. Chapter 10 in Evans’s textbook [14] discusses this notion of viscosity solution and

explains the motivation behind it. See also Section A.12 in the Appendix.

To apply the definition to our setting, first extend f to a continuous function f̄ on all

of Rd. The simplest way to do this is to set f̄ ≡ 0 outside V . The exact nature of the

extension of f turns out not to influence the definition. For as we show later in the proof,

if u = ψ defined by the Hopf-Lax formula (9.17), φ is continuously differentiable, and u− φ

has a local maximum or minimum at (x0, t0), then −1 ≤ φt(x0, t0) ≤ 0 and ∇φ(x0, t0) ∈ V .

Theorem 9.8 Let ψ0 be the initial height function in assumption (9.15), and ψ the limiting

profile in (9.18), defined by the Hopf-Lax formula (9.17). Then for any 0 < T <∞, ψ is the
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unique uniformly continuous viscosity solution of the Hamilton-Jacobi equation

ψt + f̄(∇ψ) = 0 , ψ|t=0 = ψ0 (9.27)

on Rd × [0, T ].

Before turning to the proofs of the theorems we derive as a corollary a hydrodynamic

limit for the K-exclusion process.

9.3 Hydrodynamic limit for totally asymmetric nearest-neighbor

K-exclusion in one dimension

Fix an integer 1 ≤ K < ∞. Consider the special case of the K-exclusion process in one

dimension that permits only nearest-neighbor jumps to the right. The state of the process at

time t is the sequence ηt = (ηt(u) : u ∈ Z) of occupation numbers ηt(u) ∈ {0, 1, . . . , K}, and

the state space is the compact space X = {0, 1, . . . , K}Z. The process is constructed with

an i.i.d. family {Tu : u ∈ Z} of rate one Poisson point processes on the time line [0,∞). The

jump rule is this: at jump times t ∈ Tu one particle is moved from site u to u+ 1, provided

immediately before the jump there is at least one particle present at u and at most K − 1

particles present at u+ 1. The generator given in (7.1) specializes to

Lf(η) =
∑
u∈Z

1{η(u) ≥ 1, η(u+ 1) ≤ K − 1}[f(ηu,u+1)− f(η)] (9.28)

where

ηu,u+1(v) =


η(u)− 1, v = u

η(u+ 1) + 1, v = u+ 1

η(v), v /∈ {u, u+ 1}
(9.29)

is the configuration that results from moving a single particle from u to u+ 1.

One motivation for introducing the interface process ht was that it represents the K-

exclusion process. Specialize the process ht described in Section 9.1 to one dimension, with

state space

H = {h : Z → Z : 0 ≤ h(u)− h(u− 1) ≤ K for u ∈ Z}. (9.30)

Given an initial configuration η0 for the K-exclusion process, define an initial height function

h0 ∈ H by

h0(0) = 0 , h0(u)− h0(u− 1) = η0(u) for all u ∈ Z. (9.31)

When processes ηt and ht read the same Poisson clocks, the relation

ht(u)− ht(u− 1) = ηt(u) for all u ∈ Z (9.32)

144



is preserved for all time. The jumps of ht keep track of particle current for ηt. The number

of particles that have jumped across edge {u, u+1} during time interval (s, t ] equals hs(u)−
ht(u).

We get a hydrodynamic limit for the K-exclusion process as an immediate corollary of

Theorem 9.4. Assume we have a sequence of random or deterministic initial configurations

ηn
0 , n = 1, 2, 3, . . . , defined on some probability space, together with i.i.d. Poisson clocks

{Tu} independent of {ηn
0 }. Construct on this probability space the totally asymmetric,

nearest-neighbor K-exclusion processes ηn
t as described above.

The only hypothesis needed for the hydrodynamic limit is the existence of a macroscopic

density profile at time 0. Let 0 ≤ ρ0(x) ≤ K be a bounded measurable function on R.

Assume that for all −∞ < a < b <∞ and all ε > 0,

lim
n→∞

P

{ ∣∣∣∣n−1

[nb]∑
u=[na]+1

ηn
0 (u)−

∫ b

a

ρ0(x) dx

∣∣∣∣ > ε

}
= 0. (9.33)

To produce the macroscopic limiting density function ρ(x, t) for the K-exclusion process,

first define ψ0 as the antiderivative of ρ0 given by

ψ0(0) = 0 ,

∫ b

a

ρ0(x) dx = ψ0(b)− ψ0(a) for all −∞ < a < b <∞. (9.34)

Let ψ(x, t) be the viscosity solution of the Hamilton-Jacobi equation (9.27), defined by the

Hopf-Lax formula (9.17). The function g in (9.17) is now defined by the limit

g(x) = lim
n→∞

n−1ξn([nx])

of the one-dimensional process started from the wedge

ξ0(u) =

{
0, u ≥ 0

Ku, u < 0

given by Theorem 9.3. The function ψ(x, t) is Lipschitz continuous, and so the partial

x-derivative exists Lebesgue almost everywhere:

ρ(x, t) =
∂

∂x
ψ(x, t). (9.35)

This function ρ(x, t) is a weak solution of the scalar conservation law

ρt + f(ρ)x = 0 , ρ(x, 0) = ρ0(x). (9.36)

The flux f of the conservation law is the concave conjugate of g.
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Theorem 9.9 Under assumption (9.33) this limit in probability holds: for all −∞ < a <

b <∞ and ε > 0,

lim
n→∞

P

{ ∣∣∣∣n−1

[nb]∑
u=[na]+1

ηn
nt(u)−

∫ b

a

ρ(x, t) dx

∣∣∣∣ > ε

}
= 0. (9.37)

To derive this theorem from Theorem 9.4, just observe that by (9.32)

[nb]∑
u=[na]+1

ηn
nt(u) = hn

nt([nb])− hn
nt([na])

and by the Lipschitz property of ψ∫ b

a

ρ(x, t) dx = ψ(b, t)− ψ(a, t).

Now (9.37) follows from (9.18).

When we specialize to the case K = 1, we can finally get an explicit formula for the flux

f .

Theorem 9.10 For the totally asymmetric nearest-neighbor exclusion process in one dimen-

sion (the case K = 1), the flux function is

f(ρ) = ρ(1− ρ) , 0 ≤ ρ ≤ 1. (9.38)

The limiting shape g for the wedge growth is the concave conjugate of f given by

g(x) =


x, x < −1

−1
4
(1− x)2, −1 ≤ x ≤ 1

0, x > 1.

(9.39)

Proof. Now V = [0, 1]. On the boundary f(0) = f(1) = 0, either by considering the

process with no particles for ρ = 0 and the process with no empty sites for ρ = 1, or by

Theorem 9.5.

Let ρ ∈ (0, 1). We apply Theorem 9.6. Let ηt be a process in equilibrium with Bernoulli

distribution νρ. Define the initial height function h0 by (9.31). Then the hypotheses of

Theorem 9.6 are satisfied. The event B defined by (9.22) is the same as

B = {η(0) = 1, η(1) = 0}.
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By stationarity and the definition of the Bernoulli measure,

f(ρ) = lim
t→∞

1

t

∫ t

0

P{ηs(0) = 1, ηs(1) = 0} ds = νρ{η(0) = 1, η(1) = 0} = ρ(1− ρ).

Since g is concave and upper semicontinuous (in fact, continuous by Theorem 9.3), it is its

own double conjugate, so

g(x) = inf
0≤ρ≤1

{xρ− f(ρ)}.

We refer to Section 12 in Rockafellar’s monograph [31] for justification of this, and further

basics of convex (and concave) duality. From this equation formula (9.39) can be derived.

9.4 The last-passage percolation model

In this section we reformulate the process ξt with the wedge initial condition as a last-

passage percolation model. The last-passage approach is convenient for certain tasks such as

probability bounds, large deviations, and distributional limits. See the notes of this chapter

for references.

Recall again the construction of the wedge process. Initially

ξ0(u) =
d∑

i=1

Ki(ui ∧ 0) for u = (u1, . . . , ud) ∈ Zd.

At jump times t ∈ Tu, ξt(u) = ξt−(u)− 1, provided just before time t the inequalities

ξt−(u) ≥ ξt−(u− ei) + 1 and ξt−(u) ≥ ξt−(u+ ei)−Ki + 1 for 1 ≤ i ≤ d

were valid.

As the height function ξt marches downward, the set At between the graphs of ξ0 and ξt
describes a randomly growing finite set of points or cells in Zd+1. To describe this precisely,

define the set

L =

{
(u, h) ∈ Zd × Z : h <

d∑
i=1

Ki(ui ∧ 0)

}
with outer boundary

∂eL =

{
(u, h) ∈ Zd × Z : h =

d∑
i=1

Ki(ui ∧ 0)

}
.
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Note the notation: a cell in Zd+1 is denoted by a pair (u, h) where the first component u is

a site in Zd and the second component h is a Z-valued height.

The boundary ∂eL is the graph of the initial height profile ξ0. The growing set

At = {(u, h) : ξ0(u) > h ≥ ξt(u)}

is a finite subset of L, and adds a new cell whenever ξt experiences a jump. For (u, h) ∈ L

let

T (u, h) = inf{t ≥ 0 : (u, h) ∈ At} = inf{t ≥ 0 : ξt(u) ≤ h}

be the time when cell (u, h) joins the set At. The initial values are T (u, h) = 0 for all

(u, h) /∈ L. The random times T (u, h) are stopping times for the filtration

Ht = σ
{
Nu(s) : u ∈ Zd, 0 ≤ s ≤ t

}
of the Poisson processes.

The rules of the process ξt tell us that before (u, h) can join the growing set At, each of

the 2d + 1 cells (u, h + 1), (u− ei, h), and (u + ei, h +Ki) for 1 ≤ i ≤ d must have already

joined At or must lie outside L. After this (u, h) must wait a mean one exponential random

time to join, and this random time is independent of the past. Let Yu,h denote this waiting

time. It is defined for (u, h) ∈ L by

Yu,h = T (u, h)−max{T (u, h+ 1), T (u− ei, h),

T (u+ ei, h+Ki) : 1 ≤ i ≤ d}. (9.40)

The immediate predecessors of (u, h) are those of the 2d+ 1 cells (u, h+ 1), (u− ei, h), and

(u+ei, h+Ki) that lie in L. Any cell that can be reached from (u, h) by taking successive steps

from a cell to one of its immediate predecessors is called a predecessor of (u, h). Starting with

any (u, h) ∈ L and following backwards any path of immediate predecessors in L ultimately

leads to cell (0,−1).

Lemma 9.11 The random variables {Yu,h : (u, h) ∈ L} are i.i.d. mean one exponentials.

Proof. We can arrange the cells of L in a sequence

L = {(u1, h1), (u2, h2), (u3, h3), . . . }

with the property that for each n the immediate predecessors of (un, hn) are among the

(u1, h1), (u2, h2), . . . , (un−1, hn−1). Necessarily (u1, h1) = (0,−1). After that the sequence

can be constructed through the following inductive steps.

Set Q1 = {(u1, h1)} = {(0,−1)}.
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Assume Qm = {(u1, h1), (u2, h2), . . . , (um, hm)} has been constructed, and that it has the

property mentioned above. Call (v, k) ∈ L a growth cell for Qm if (v, k) /∈ Qm but all the

immediate predecessors of (v, k) are in Qm. Let (um+1, hm+1) be an arbitrary growth cell of

Qm and define

Qm+1 = {(u1, h1), (u2, h2), . . . , (um, hm), (um+1, hm+1)}.

Continue in this manner.

Let (u, h) = (un, hn) and Q = Qn−1. We show that Yu,h is a mean one exponential

independent of {T (v, k) : (v, k) ∈ Q}. The waiting times {Yv,k : (v, k) ∈ Q} are a function of

the passage times {T (v, k) : (v, k) ∈ Q}, so we can conclude inductively that Yu1,h1 , Yu2,h2 ,

. . . , Yun,hn are i.i.d. mean one exponentials for any n.

Set

S(u, h) = max{T (u, h+ 1), T (u− ei, h), T (u+ ei, h+Ki) : 1 ≤ i ≤ d}. (9.41)

S(u, h) is a stopping time for the Poisson processes. It is the time at which the jump of ξ(u)

from h + 1 to h becomes admissible. The remaining time Yu,h till this jump happens is the

first jump time in the restarted Poisson process θS(u,h)Tu.

By the strong Markov property, the restarted Poisson processes {θS(u,h)Tw : w ∈ Zd}
are again i.i.d. rate one Poisson processes, independent of the σ-algebra HS(u,h). Thus we

find that the restarted process θS(u,h)Tu is independent of the past HS(u,h) and of the other

restarted processes {θS(u,h)Tw : w 6= u}.
The passage times {T (v, k) : (v, k) ∈ Q} can be constructed from the information in

HS(u,h) and {θS(u,h)Tw : w 6= u}. This information contains the entire Poisson prosesses Tw

for w 6= u, and Tu up to time S(u, h). Any (v, k) that lies on a backward path of predecessors

started from (u, h) must have T (v, k) ≤ S(u, h). Such a T (v, k) is measurable with respect

to HS(u,h). For any other (v, k) ∈ Q, T (v, k) can be constructed from the passage times of

the predecessors of (u, h) and the Poisson processes Tw, w 6= u.

To summarize, we have shown that Yu,h is the first jump time in the restarted Poisson

process θS(u,h)Tu which is independent of {T (v, k) : (v, k) ∈ Q}. In particular, Yu,h is a mean

one exponential independent of {T (v, k) : (v, k) ∈ Q}.

Let Π(u, h) be the collection of paths

π = {(0,−1) = (v1, k1), (v2, k2), . . . , (vn, kn) = (u, h)} (9.42)

in L that lead from (0,−1) to (u, h), and each step of which is one of 2d+1 admissible steps:

for each 1 ≤ ` < n,

(v`+1, k`+1)− (v`, k`) = (0,−1), (ei, 0), or (−ei,−Ki) for some 1 ≤ i ≤ d. (9.43)
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Write (9.40) in the form

T (u, h) = max{T (u, h+ 1), T (u− ei, h), T (u+ ei, h+Ki) : 1 ≤ i ≤ d}+ Yu,h.

Iterate this backwards until all paths have reached (0,−1). Then we have the last-passage

representation

T (u, h) = max
π∈Π(u,h)

∑
(v,k)∈π

Yv,k. (9.44)

The term “last-passage” is used because the slowest path determines the passage time

T (u, h), in contrast with first-passage percolation where a passage time is determined by

the fastest path.

Generalize the definitions to paths and passage times between arbitrary cells. For (z, `) ∈
L ∪ ∂eL and (u, h) ∈ L, let Π((z, `), (u, h)) be the collection of paths

π = {(v1, k1), (v2, k2), . . . , (vn, kn)}

such that all steps are admissible as in (9.43), (v1, k1)− (z, `) is also an admissible step, and

(vn, kn) = (u, h). Define the passage time between (z, `) and (u, h) by

T ((z, `), (u, h)) = max
π∈Π((z,`),(u,h))

∑
(v,k)∈π

Yv,k. (9.45)

Then we have the superadditivity

T ((z, `), (u, h)) ≥ T ((z, `), (v, k)) + T ((v, k), (u, h)) (9.46)

whenever admissible paths are possible between (z, `) and (v, k) and between (v, k) and

(u, h). The starting cell (z, `) was not included in a path π in Π((z, `), (u, h)) so that the

cost Yv,k would not be counted twice in (9.46), once as the last cell in T ((z, `), (v, k)) and

again as the first cell in T ((v, k), (u, h)). The earlier definition (9.44) relates to (9.45) via

T (u, h) = T ((0, 0), (u, h)).

We finish this section with an estimate for later use.

Lemma 9.12 For (u, h) ∈ L, let M = 2|h| +
∑d

i=1 ui. The definition of L guarantees that

M is a strictly positive integer. Then for s > 1,

P [T (u, h) ≥Ms] ≤ (2d+ 1)M exp
(
−M · I(s)

)
(9.47)

where I(s) = s − 1 − log s is the Cramér rate function for large deviations of mean one

exponential random variables.
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Proof. Estimating in the crudest way,

P
[
T (u, h) ≥Ms

]
≤

∑
π∈Π(u,h)

P
[
S1
|π| ≥Ms

]
where |π| is the number of cells in path π and S1

m represents a sum of m i.i.d. mean one

exponential random variables.

We claim that M is an upper bound on the number of cells in a path π that satisfies

(9.42) and (9.43). If we let (v0, k0) = (0, 0), we can write

(u, h) =

|π|∑
`=1

(
(v`, k`)− (v`−1, k`−1)

)
= a(0,−1) +

d∑
i=1

bi(ei, 0) +
d∑

i=1

ci(−ei,−Ki)

where a, b1, . . . , bd and c1, . . . , cd count how many times the 2d+ 1 different steps appear in

π. From the coordinate by coordinate equations above,

|π| = a+
d∑

i=1

bi +
d∑

i=1

ci

= 2
(
a+

d∑
i=1

ciKi

)
+

d∑
i=1

(bi − ci) +
d∑

i=1

ci (2− 2Ki)− a

= −2h+
d∑

i=1

ui +
d∑

i=1

ci (2− 2Ki)− a

≤ 2|h|+
d∑

i=1

ui = M.

For the last inequality we used h < 0, ci ≥ 0, Ki ≥ 1 and a ≥ 0. From this,

P
[
S1
|π| ≥Ms

]
≤ P

[
S1

M ≥Ms
]
≤ exp

(
−M · I(s)

)
by the large deviation bounds in Proposition A.18. The assumption s > 1 is used here. The

bound would be trivial for s = 1, and not true for s < 1 because then the infimum of I(x)

over [s,∞) would be 0 and not I(s).

It remains to observe that the total number of paths in Π(u, h) cannot exceed (2d+ 1)M

because each path has at most M steps, and each step is chosen from the set of 2d + 1

admissible steps.

9.5 Proofs

We prove the theorems discussed in Section 9.2.
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9.5.1 Proof of Theorem 9.3

To express random variables as functions of the Poisson processes, we write ω = (Tu : u ∈ Zd)

for the entire collection of Poisson clocks, and also ωu = Tu for the Poisson clock at site u.

The proof of the wedge limit is an application of the subadditive ergodic theorem.

We prove the almost sure convergence

lim
n→∞

1

n
ξnτ ([nx]) = τ g

(x
τ

)
(9.48)

for successively more general points x, all τ > 0, and simultaneously develop properties of

the limit. The main tool is the subadditive ergodic theorem stated as Theorem A.12 in the

appendix.

First suppose x = z ∈ Zd in (9.48). Keep (z, τ) fixed for the moment. Define

X0,n = ξnτ (nz).

For positive integers m, define a height process σ
(m)
t by stipulating that initially

σ
(m)
0 (u) = ξmτ (mz) + w(u), u ∈ Zd, (9.49)

and that the height value σ(m)(u) attempts jumps at the jump times of Poisson clock

θmτTmz+u. Here θs is a time-shift on the Poisson process that moves the time origin to

point s. In terms of the set of jump times,

θsTu = {t− s : t ∈ Tu, t > s}.

So σ
(m)
t is a new wedge process, with time origin atmτ and space-height origin at (mz, ξmτ (mz)).

Let us also introduce a space-time shift θu,s, (u, s) ∈ Zd× [0,∞), of the Poisson processes.

θu,s translates the spatial index by u and restarts the clocks at time s, (θu,sω)v = θsTu+v.

The probability measure P on the Poisson processes is stationary and ergodic under these

space-time shifts. In terms of the space-time shift, process σ
(m)
t reads Poisson clocks θmz,mτω.

The process h′t(u) = ξmτ+t(mz + u) reads exactly the same clocks as σ
(m)
t . By the

minimality property of the wedge profile w,

σ
(m)
0 (u) = ξmτ (mz) + w(u) ≤ ξmτ (mz + u) = h′0(u) for all u ∈ Zd.

By attractivity, the inequality σ
(m)
t ≤ h′t is preserved for all time t. In particular for 0 <

m < n,

σ
(m)
(n−m)τ ((n−m)z) ≤ h′(n−m)τ ((n−m)z) = ξnτ (nz), (9.50)

which is the same as

σ
(m)
(n−m)τ ((n−m)z)− σ

(m)
0 (0) + ξmτ (mz) ≤ ξnτ (nz).
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If we define a space-time increment in the σ
(m)
t process by

Xm,n = σ
(m)
(n−m)τ ((n−m)z)− σ

(m)
0 (0),

we get the superadditivity

X0,m +Xm,n ≤ X0,n for 0 ≤ m < n. (9.51)

We check the other conditions of the subadditive ergodic theorem for the variables−Xm,n.

Let X0,n = Fn(ω) represent X0,n = ξnτ (nz) as a function of the Poisson processes ω. Then

Xm,n = Fn−m(θmz,mτω). In particular, it follows that the sequence

{Xn`,(n+1)` : n ≥ 1} = {F`(θn`z,n`τω) : n ≥ 1}

is stationary and ergodic for a fixed `. The distribution of the sequence

{Xm,m+n : n ≥ 1} = {Fn(θmz,mτω) : n ≥ 1}

does not depend on m because θmz,mτω has the same distribution as ω.

Finally, −X0,n is nonnegative, and bounded above by the total number of jump attempts

of ξ(nz) up to time nτ , which is a Poisson random variable with mean nτ . This gives the

moment conditions needed for the Subadditive Ergodic Theorem A.12. We conclude that

for each (z, τ) ∈ Zd × [0,∞), there exists a finite deterministic number g0(z, τ) such that

lim
n→∞

1

n
ξnτ (nz) = g0(z, τ) almost surely. (9.52)

By the time monotonicity of the process, for s < t and fixed n,

ξns(nz) ≥ ξnt(nz) ≥ ξns(nz)−Nnz(ns, nt]. (9.53)

Nnz(ns, nt] = |Tnz ∩ (ns, nt] | is the number of jump attempts height variable ξ(nz) experi-

ences during time interval (ns, nt]. Nnz(ns, nt] has Poisson(n(t−s)) distribution, and so can

be thought of as a sum of n i.i.d. Poisson(t− s) variables. Large deviation estimates such as

those in Proposition A.18 (or in Exercise A.8) and the Borel-Cantelli lemma imply that

lim
n→∞

1

n
Nnz(ns, nt] = t− s almost surely.

Letting n→∞ in (9.53) gives

g0(z, s) ≥ g0(z, t) ≥ g0(z, s)− (t− s) for s < t. (9.54)
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The function g0 has also the following homogeneity property. For any positive integer m,

g0(mz,mt) = lim
n→∞

1

n
ξnmt([nmz]) = lim

N→∞

m

N
ξNt([Nz])

= mg0(z, t).

Let q ∈ Qd be a vector with rational coordinates. The homogeneity implies that we can

unambiguously define

g0(q, t) =
1

m
g0(mq,mt) (9.55)

for any positive integer m such that mq ∈ Zd. And then homogeneity extends: for any

q ∈ Qd, t > 0, and positive rational r,

g0(rq, rt) = rg0(q, t). (9.56)

Now we argue that the almost sure limit

lim
n→∞

1

n
ξnt([nq]) = g0(q, t) (9.57)

holds for any q ∈ Qd and t ≥ 0. Fix m such that mq ∈ Zd. By limit (9.52) and definition

(9.55), limit (9.57) holds along the subsequence n = `m, ` → ∞. To fill in the remaining

terms, note that by (9.1),

|h(u)− h(v)| ≤
d∑

i=1

Ki|ui − vi| for all u, v ∈ Zd (9.58)

for any height profile h ∈ H. Consequently if we write n = `m + j for ` = `(n) and

0 ≤ j < m,∣∣n−1ξnt([nq])− g0(q, t)
∣∣

≤
∣∣n−1ξnt([nq])− n−1ξnt(`mq)

∣∣+ ∣∣n−1ξnt(`mq)− n−1ξ`mt(`mq)
∣∣

+
∣∣n−1ξ`mt(`mq)− g0(q, t)

∣∣
≤ n−1

d∑
i=1

(
Ki|mqi|+ 1

)
+ n−1N`mq(`mt, nt] +

∣∣n−1ξ`mt(`mq)− g0(q, t)
∣∣ .

Letting n→∞ gives (9.57).
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The function g0 thus far defined on Qd × [0,∞) is Lipschitz continuous also in the space

variable. This follows directly from (9.58). For p, q ∈ Qd,

|g0(q, t)− g0(p, t)| = lim
n→∞

∣∣n−1ξnt([np])− n−1ξnt([nq])
∣∣

≤ lim
n→∞

n−1

d∑
i=1

Ki| [npi]− [nqi] |

=
d∑

i=1

Ki|pi − qi|.

(9.59)

Lipschitz continuity on Qd × [0,∞) allows us to extend g0 uniquely to a Lipschitz function

on Rd × [0,∞). This extension satisfies the homogeneity

g0(rx, rt) = rg0(x, t) for all x ∈ Rd, t > 0, and r > 0. (9.60)

Define g(x) = g0(x, 1). Then the limit in (9.57) has the scaling form g0(x, t) = tg(x/t).

The limit in Theorem 9.3 was claimed to hold for all (x, t) ∈ Rd× [0,∞) outside a single

exceptional event of probability zero. To achieve this, let Ω0 be the event on which limit

(9.57) holds for all q ∈ Qd and rational t ≥ 0. Ωc
0 has probability zero. To show that on the

event Ω0 the limit (9.13) holds for all (x, t), approximate x with a rational point q ∈ Qd and

approximate t with a positive rational τ . Use properties (9.53) and (9.58) of the random

height profiles, and the Lipschitz properties (9.54) and (9.59) of the limiting function. We

leave the details of this last step to the reader.

We have verified the limit (9.13) in Theorem 9.3. It remains to check the properties of

g. Lipschitz continuity has already been developed along the way. To see the concavity of

g, return to the restarted processes defined by (9.49). The subadditivity derived there gives

σ(n)
ns (nv)− σ

(n)
0 (0) + ξnt(nz) ≤ ξnt+ns(nz + nv).

The increment σ
(n)
ns (nv)− σ(n)

0 (0) is equal in distribution to ξns(nv). Thus dividing by n and

letting n→∞ gives

g0(v, s) + g0(z, t) ≤ g0(v + z, s+ t) for v, z ∈ Zd and s, t > 0.

This subadditivity of g0 extends first to Qd × [0,∞) by (9.55), and then to Rd × [0,∞) via

the extension by Lipschitz continuity. By subadditivity and homogeneity,

αg0(x, 1) + (1− α)g0(y, 1) = g0(αx, α) + g0((1− α)y, (1− α))

≤ g0(αx+ (1− α)y, 1).
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for x, y ∈ Rd and α ∈ (0, 1). Thus we have concavity for g.

To obtain (9.14) we shall show that, if |x|1 > 1, then almost surely

ξn([nx]) = ξ0([nx]) for all large enough n. (9.61)

This implies (9.14) because then by the definition of the initial height function,

g(x) = lim
n→∞

n−1ξ0([nx]) = lim
n→∞

n−1

d∑
i=1

Ki([nxi] ∧ 0) =
d∑

i=1

Ki(xi ∧ 0).

Without much additional work we prove a stronger result.

Lemma 9.13 For any t > 0 and ε > 0, there exists a constant C = C(t, ε) > 0 such that

P {ξnt(u) < ξ0(u) for some u such that |u|1 ≥ n(t+ ε)} ≤ e−Cn

for all n.

This lemma implies (9.61) because for ε = (|x|1 − 1)/3 > 0,

| [nx] |1 = | [nx1] |+ · · ·+ | [nxd] | ≥ n|x1|+ · · ·+ n|xd| − d

= n(|x|1 − d/n) ≥ n(|x|1 − ε) > n(1 + ε)

for large enough n.

Proof. For u ∈ Zd, let Tu = inf{t > 0 : ξt(u) < ξ0(u)} be the time of first jump for height

variable ξ(u). Let S1
m denote a sum of m i.i.d. exponential mean one random variables. We

show that Tu is a stochastically larger than S1
m with m = |u|1.

Let 0 = z(0), z(1), z(2), . . . , z(m) = u be a non-intersecting nearest-neighbor path from

the origin to u that moves in each coordinate direction in turn, with this property: if ui ≥ 0

then the path is nondecreasing in direction ei, while if ui ≤ 0 then the path is nonincreasing

in direction ei. If ui = 0 then zi(k) = 0 for all 0 ≤ k ≤ m. Due to the restrictions (9.1) on

admissible profiles, ξ(z(k + 1)) cannot jump before ξ(z(k)) has jumped at least once. Define

inductively the following random times.

Let Rz(0) be the time of the first ring in Tz(0). Then Rz(0) = Tz(0) is the time of first jump

for ξ(0).

Let Rz(1) be the time of the first ring in Tz(1) after time Rz(0). Rz(1)−Rz(0) is an exponential

variable with mean one, independent of Rz(0) by the strong Markov property of the Poisson

processes. Rz(1) ≤ Tz(1) because ξ(z(1)) can jump only after ξ(z(0)) has made its first jump.

Inductively, let Rz(k) be the time of the first ring in Tz(k) after time Rz(k−1). Rz(k)−Rz(k−1)

is an exponential variable with mean one, independent of Rz(0), . . . , Rz(k−1). Rz(k) ≤ Tz(k)
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because by induction Rz(k−1) ≤ Tz(k−1), and ξ(z(k)) can jump only after Tz(k−1) when ξ(z(k−
1)) took its first jump.

So we find that

Tz(m) ≥ Rz(m) =
m∑

k=1

(Rz(k) −Rz(k−1)) +Rz(0).

The sum has i.i.d. mean one exponential terms. We can now bound

P {ξnt(u) < ξ0(u) for some u such that |u|1 ≥ n(t+ ε)}
≤

∑
u:|u|1≥n(t+ε)

P {Tu ≤ nt} ≤
∑

m≥n(t+ε)

∑
u:|u|1=m

P {Tu ≤ nt}

≤
∑

m≥n(t+ε)

C0m
d−1P

{
S1

m ≤ nt
}
≤

∑
m≥n(t+ε)

C0m
d−1 exp

{
−mI

(
nt
m

)}
.

Above we first picked a constant C0 so that for all m ≥ 1, C0m
d−1 is an upper bound on the

number of sites u ∈ Zd such that |u|1 = m. I(x) = x− 1− log x is the large deviations rate

function for mean one exponential random variables (Exercise A.9), and we used Proposition

A.18. I ′(x) = 1− x−1 < 0 for 0 < x < 1, so for m ≥ n(t+ ε),

I
(

nt
m

)
≥ I
(

t
t+ε

)
> 0.

The final upper bound is∑
m≥n(t+ε)

C0m
d−1 exp

{
−mI

(
t

t+ε

)}
≤ exp(−Cn)

where the last equality is true for all n, if C > 0 is small enough.

We have verified the properties of g and thereby proved Theorem 9.3.

An alternative approach. A proof of Theorem 9.3 could have been based on (9.46) and

the subadditive ergodic theorem, followed by reasoning similar to that used above. This

would give a (0,∞)-valued, homogeneous, concave function γ, defined on the open set

L =

{
(x, r) ∈ Rd × (−∞, 0) : r <

d∑
i=1

Ki(xi ∧ 0)

}
such that the limit

lim
n→∞

1

n
T ([nx], [nr]) = γ(x, r) (9.62)
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holds for all (x, r) ∈ L, outside an exceptional event of probability zero. The finiteness of

the limit γ(x, r) follows from Lemma 9.12. The limiting height function g in Theorem 9.3

represents the level curve of γ, defined by

g(x) = sup{r : (x, r) ∈ L, γ(x, r) ≥ 1}. (9.63)

This connection follows because

ξnt([nx]) ≤ [nr] iff T ([nx], [nr]) ≤ nt.

We let the reader work out the details of the connection of the limit (9.62) and the properties

of γ with Theorem 9.3.

9.5.2 Proof of Theorem 9.4

The setting is such that the sequence of height processes hn
t and the Poisson clocks {Tu} are

defined on a common probability space. The height processes ξv
t are defined as functions of

the Poisson processes, as described by (9.9) and (9.10).

Without technicalities, we can summarize the proof of Theorem 9.4 in a few lines. Write

the variational equation (9.12) for the nth process in the form

n−1hn
nt([nx]) = sup

y∈Rd

{
n−1hn

0 ([ny]) + n−1ξ
[ny]
nt ([nx]− [ny])

}
. (9.64)

The terms inside the braces on the right converge, the first one by hypothesis (9.15) to ψ0(y),

and the second one by (9.13) to tg((x− y)/t). Assuming we can pass the limit through the

supremum over y, we conclude that

n−1hn
nt([nx]) → sup

y
{ψ0(y) + tg((x− y)/t)}.

Now the details. The paragraph following (9.17) claimed that the supremum is attained

in a certain compact set. We begin by checking this.

Lemma 9.14 Let g be the shape function defined by the limit (9.13) in Theorem 9.3. Suppose

ψ0 satisfies the Lipschitz bounds (9.16). Let (x, t) ∈ Rd × (0,∞). Then in the Hopf-Lax

formula

ψ(x, t) = sup
y∈Rd

{
ψ0(y) + tg

(
x− y

t

)}
(9.65)

the supremum is attained at some y such that |x− y|1 ≤ t.
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Proof. The proof is based on the property

g(x) =
d∑

i=1

Ki(xi ∧ 0) for all x ∈ Rd such that |x|1 > 1,

derived as part of Theorem 9.3. Let

A = {y ∈ Rd : |x− y|1 ≤ t}.

It suffices to show that for any ỹ /∈ A there exists ȳ ∈ A such that

ψ0(ȳ) + tg

(
x− ȳ

t

)
≥ ψ0(ỹ) + tg

(
x− ỹ

t

)
. (9.66)

For then the supremum over the entire space is the same as the supremum over A, and by

continuity and compactness, this supremum is attained at some point.

Given ỹ /∈ A, let I = {1 ≤ i ≤ d : ỹi > xi}. Then

tg

(
x− ỹ

t

)
=
∑
i∈I

Ki(xi − ỹi).

Let β = t · |x − ỹ|−1
1 and set ȳ = x + β(ỹ − x). Then |x − ȳ|1 = t and in particular ȳ ∈ A.

Since 0 < β < 1 and xi − ȳi = β(xi − ỹi),

tg

(
x− ȳ

t

)
= β

∑
i∈I

Ki(xi − ỹi) = tg

(
x− ỹ

t

)
+ (1− β)

∑
i∈I

Ki(ỹi − xi).

On the other hand, by Lipschitz bounds (9.16),

ψ0(ȳ) ≥ ψ0(ỹ)−
d∑

i=1

Ki(ỹi − ȳi)
+ = ψ0(ỹ)− (1− β)

∑
i∈I

Ki(ỹi − xi).

Combining these gives (9.66).

Fix (x, t). One half of Theorem 9.4 is immediate. Pick a point y at which the supremum

in (9.17) is attained. Then by (9.64),

P
{
n−1hn

nt([nx]) ≤ ψ(x, t)− ε
}

≤ P
{
n−1hn

0 ([ny]) ≤ ψ0(y)− ε/2
}

+ P
{
n−1ξ

[ny]
nt ([nx]− [ny]) ≤ tg((x− y)/t)− ε/2

}
. (9.67)
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The first term after the inequality vanishes as n → ∞ by hypothesis (9.15). The last term

equals

P
{
n−1ξnt([nx]− [ny]) ≤ tg((x− y)/t)− ε/2

}
because the random variable ξ

[ny]
nt ([nx] − [ny]) has the same distribution as the random

variable ξnt([nx] − [ny]) without the superscript. This probability vanishes as n → ∞ by

(9.13). The difference between n−1ξnt([nx] − [ny]) and n−1ξnt([n(x − y)]) is controlled by

(9.58) and vanishes as n→∞.

We have shown

lim
n→∞

P
{
n−1hn

nt([nx]) ≤ ψ(x, t)− ε
}

= 0. (9.68)

To prove the other direction, we restrict the potential maximizers that need to be con-

sidered in the variational formula. Let the boundary ∂B of a rectangle B ⊆ Zd be the set of

those sites v ∈ B that have a neighbor outside B.

Lemma 9.15 Let u ∈ Zd lie in a rectangle B ⊆ Zd. Suppose that ξv
t (u− v) = ξv

0(u− v) for

v ∈ ∂B. Then

ht(u) = max
v∈B

{h0(v) + ξv
t (u− v)}.

Proof. For v /∈ B, let v′ be the projection of v to the boundary of B. In other words, if

B = {a1, . . . , b1} × {a2, . . . , b2} × · · · × {ad, . . . , bd}

for two points a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ Zd, then v′ = (v′1, . . . , v
′
d) is defined by

v′i =


ai if vi < ai

vi if ai ≤ vi ≤ bi
bi if vi > bi.

We show that v′ dominates v in the variational formula (9.12).

h0(v) + ξv
t (u− v) ≤ h0(v) + ξv

0(u− v)

≤ h0(v
′) +

d∑
i=1

Ki(vi − v′i)
+ +

d∑
i=1

Ki ((ui − vi) ∧ 0)

= h0(v
′) +

d∑
i=1

Ki ((ui − v′i) ∧ 0)

= h0(v
′) + ξv′

0 (u− v′) = h0(v
′) + ξv′

t (u− v′).
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Height profiles decrease with time. This gives the first inequality above. Then substitute

in the definition of the initial profile ξv
0 . The second inequality comes from the state space

restrictions: for any height profile h ∈ H,

h(v) ≤ h(v ∨ v′) ≤ h(v′) +
d∑

i=1

Ki(vi ∨ v′i − v′i) = h(v′) +
d∑

i=1

Ki(vi − v′i)
+.

Since v′i is between ui and vi,

(vi − v′i)
+ + ((ui − vi) ∧ 0) = ((ui − v′i) ∧ 0) .

Lastly we use the assumption that ξv′(u− v′) has not jumped by time t. This shows that all

v /∈ B can be ignored in (9.12).

Define the cube

A =
d∏

i=1

[xi − t− 1, xi + t+ 1] ⊆ Rd

and set

Yn = max
v∈nA

{hn
0 (v) + ξv

nt([nx]− v)} . (9.69)

Lemma 9.16 There exist finite constants C0, C1 > 0 such that for all n,

P {hn
nt([nx]) 6= Yn} ≤ C0e

−C1n.

Proof. By the previous lemma, it suffices to show that for large enough n there exists a

cube Bn ⊆ Zd centered at [nx] such that Bn ⊆ nA and

P {ξv
nt([nx]− v) < ξv

0([nx]− v) for some v ∈ ∂B} ≤ C0e
−C1n. (9.70)

When n is large enough, we can pick Bn ⊆ nA so that

d∏
i=1

[
n(xi − t− 1/2), n(xi + t+ 1/2)

]
⊆ Bn.

Then for v ∈ ∂Bn and large enough n,

| [nx]− v |1 =
d∑

i=1

| [nxi]− vi | ≥ dn(t+ 1/4).
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The number of sites in ∂Bn is bounded by C2n
d−1 for some constant C2. Each process ξv

t is

distributed as process ξt, so we can apply Lemma 9.13 to each process ξv
t . The probability

in (9.70) is then bounded by C2n
d−1e−Cn. This bound is at most C0e

−C1n for a sufficiently

large C0 <∞ and sufficiently small C1 > 0.

Given the ε > 0 in the statement (9.18) we are working to prove, pick δ > 0 so that

δ

d∑
i=1

Ki <
ε

2
. (9.71)

Partition the cube A into a finite collection of subcubes {Dk : 1 ≤ k ≤ M} with sidelength

at most δ. Let yk be the lower left corner and ỹk the upper right corner of Dk. In other

words, Dk =
∏d

i=1[y
k
i , ỹ

k
i ] with yk

i < ỹk
i ≤ yk

i + δ for 1 ≤ i ≤ d and 1 ≤ k ≤M .

The variation inside a subcube will be controlled by this monotonicity lemma.

Lemma 9.17 For any u, v, w ∈ Zd such that v ≤ w (coordinatewise order),

ξw
t (u− w) ≤ ξv

t (u− v).

Proof. Since ui − wi ≤ ui − vi for each i, at time zero

ξw
0 (u− w) =

d∑
i=1

Ki ((ui − wi) ∧ 0) ≤
d∑

i=1

Ki ((ui − vi) ∧ 0) = ξv
0(u− v).

Use attractivity to compare the processes h′t(u) = ξw
t (u− w) and h′′t (u) = ξv

t (u− v).

Starting with definition (9.69) of Yn, use spatial monotonicity of hn
0 and Lemma 9.17 to

write

Yn = max
1≤k≤M

max
v∈nDk

{hn
0 (v) + ξv

nt([nx]− v)}

≤ max
1≤k≤M

{
hn

0 ([nỹk]) + ξ
[nyk]
nt ([nx]− [nyk])

}
.

We can finish the proof of Theorem 9.4. First observe from the Hopf-Lax formula (9.17),

the Lipschitz property (9.16), and the choice (9.71) of δ,

ψ0(ỹ
k) + tg((x− yk)/t) ≤ ψ0(y

k) + tg((x− yk)/t) + δ

d∑
i=1

Ki ≤ ψ(x, t) +
ε

2
.
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By Lemma 9.16,

P
{
n−1hn

nt([nx]) ≥ ψ(x, t) + ε
}

≤ P {hn
nt([nx]) 6= Yn}+ P

{
n−1Yn ≥ ψ(x, t) + ε

}
≤ C0e

−C1n +
∑

1≤k≤M

P

{
n−1hn

0 ([nỹk]) + n−1ξ
[nyk]
nt ([nx]− [nyk])

≥ ψ0(ỹ
k) + tg

(
x− yk

t

)
+
ε

2

}
≤ C0e

−C1n +
∑

1≤k≤M

P
{
n−1hn

0 ([nỹk]) ≥ ψ0(ỹ
k) + ε/4

}
+

∑
1≤k≤M

P

{
n−1ξ

[nyk]
nt ([nx]− [nyk]) ≥ tg

(
x− yk

t

)
+
ε

4

}
.

In the final bound, all terms vanish as n→∞ by (9.15) and (9.13), and the number of terms

is fixed. We have shown

lim
n→∞

P
{
n−1hn

nt([nx]) ≥ ψ(x, t) + ε
}

= 0. (9.72)

Together with (9.68) this concludes the proof of Theorem 9.4.

9.5.3 Proof of Theorem 9.5

The Lipschitz continuity of the function ψ on Rd× [0,∞) can be seen either from the Hopf-

Lax formula (9.17), or from the properties of the interface process. To take the latter route,

bounds (9.58) on the spatial variation, and the temporal bounds

hs(u) ≥ ht(u) ≥ hs(u)−Nu(s, t ] for s < t and u ∈ Zd (9.73)

imply

|ψ(x, t)− ψ(y, s)| ≤
d∑

i=1

Ki|xi − yi|+ |t− s|. (9.74)

By Rademacher’s Theorem (Section 3.1 in [15]), ψ is differentiable Lebesgue almost ev-

erywhere on Rd × [0,∞). Then by Lemma A.32 the partial differential equation (9.20) is

satisfied at points of differentiability.

To derive properties of the velocity f , we start with an upper bound on the limiting

shape g(x) from Lemma 9.12.
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Lemma 9.18 Let s > 1 be defined by I(s) = log(2d+ 1). Then g(0) ≤ −1/(2s).

Proof. Let s1 > s and r = 1/(2s1). Then n = 2rns1 ≥ 2[rn]s1. Take (u, h) = (0,−[nr])

in Lemma 9.12 so that M = 2[nr]. Then

P {ξn(0) > −[nr]} ≤ P {T (0,−[nr]) > n} ≤ exp {−2[nr] (I(s1)− log(2d+ 1))} .

By Borel-Cantelli n−1ξn(0) ≤ −n−1[nr] for all large enough n, almost surely. Consequently

g(0) ≤ −r. Let r ↗ 1/(2s).

We prove some properties of the concave conjugate of g defined by

f(ρ) = inf
x∈Rd

{ρ · x− g(x)} for ρ = (ρ1, . . . , ρd) ∈ Rd. (9.75)

Recall that V =
∏d

i=1[0, Ki] is the set of admissible gradients of macroscopic, deterministic

height functions.

Proposition 9.19 Outside V , f is identically −∞. On V , f is continuous and concave.

f = 0 on the boundary of V , and 0 < f ≤ 1 in the interior of V .

Proof. Let ρ /∈ V . For some i, either ρi < 0 or ρi > Ki. In the former case take x = αei

in (9.75), in the latter take x = −αei, and let α↗∞. This shows f(ρ) = −∞.

Since g(x) is bounded above by the initial interface,

g(x) ≤
d∑

i=1

Ki(xi ∧ 0) ≤ ρ · x

for all x and any ρ ∈ V . This gives f(ρ) ≥ 0 for ρ ∈ V . To get f = 0 on the boundary of V ,

take x = ei in (9.75) if ρi = 0, and x = −ei if ρi = Ki. In both cases f(ρ) ≤ 0 results.

Concavity of f follows from its definition as an infimum of affine functions.

We argue the continuity of f on V . Suppose ρj → ρ in V . The infimum in (9.75) is

achieved by Lemma 9.14, so we may pick x so that f(ρ) = ρ · x− g(x). Then

lim sup
j→∞

f(ρj) ≤ lim sup
j→∞

{ρj · x− g(x)} = ρ · x− g(x) = f(ρ).

Suppose some sequence ρj → ρ satisfies f(ρj) → f(ρ)− δ for some δ > 0. Then ρ cannot

be on the boundary of V , and neither can ρj for large enough j. Find λj on the boundary

of V such that

ρj = αjρ+ (1− αj)λj
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for some αj ∈ (0, 1). Then ρj−λj = αj(ρ−λj), and by the triangle inequality (for any norm

|·| on Rd)

|ρ− λj| ≤ |ρ− ρj|+ |ρj − λj| = |ρ− ρj|+ αj|ρ− λj|.

As j →∞, |ρ− ρj| → 0 while |ρ− λj| is bounded below by the positive distance of ρ to the

boundary of V . Then necessarily αj → 1. By the concavity of f ,

f(ρj) ≥ αjf(ρ) + (1− αj)f(λj) = αjf(ρ).

From this and αj → 1 follows lim infj→∞ f(ρj) ≥ f(ρ). We have shown that f is continuous

on V .

The height variable ξ(0) advances downward at rate at most 1, hence g(0) ≥ −1. This

gives f(ρ) ≤ −g(0) ≤ 1.

Finally we show f > 0 on the interior of V . It suffices to show the existence of one

point ρ such that f(ρ) > 0. Such a point ρ must lie in the interior of V because elsewhere

f ≤ 0. If ρ′ is any other interior point we can find a point ρ′′ on the boundary of V so that

ρ′ = αρ+ (1− α)ρ′′ for some α ∈ (0, 1). By concavity

f(ρ′) ≥ αf(ρ) + (1− α)f(ρ′′) = αf(ρ) > 0.

For the final argument we use a separation theorem from functional analysis. By the

concavity and continuity of g,

G = {(x, r) ∈ Rd ×R : r < g(x)}

is a convex, open set. The point (0, g(0)) lies outside G, so there exists a separating linear

functional on Rd+1. In other words, there exists a pair (y, c) ∈ Rd ×R such that

y · 0 + cg(0) > y · x+ cr

for all (x, r) ∈ G. (See for example Theorem 3.4 in [32].) Taking x = 0 and r < g(0) shows

that c > 0. Letting r ↗ g(x) gives

cg(0) ≥ y · x+ cg(x)

for all x. Taking x = αei for α > 1 gives 0 > cg(0) ≥ αyi which shows yi < 0. Set ρ = −c−1y.

Then for all x,

ρ · x− g(x) ≥ −g(0),

which gives f(ρ) ≥ −g(0). So in fact for this ρ we have f(ρ) = −g(0) which is strictly

positive by Lemma 9.18.
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We have checked all the properties.

Instead of appealing to a separation theorem in the last proof, we could have appealed

to some convex analysis. By Theorem 23.4 in [31], g possesses at least one subgradient ρ at

x = 0. This means that for all x,

g(x) ≤ g(0) + ρ · x,

which is exactly what we found above.

Next we prove the symmetry property of the velocity. This completes the proof of

Theorem 9.5.

Proposition 9.20 Let I be a subset of {1, . . . , d}, and assume ρ, ρ̃ ∈ V satisfy

ρ̃i = ρi for i /∈ I and ρ̃i = Ki − ρi for i ∈ I.

Then f(ρ) = f(ρ̃).

Proof. Define a bijection S on Zd by

(Su)i =

{
−ui, i ∈ I
ui, i /∈ I.

Define a random initial height function h0 as in Example 9.7 for slope ρ. Define h̃0 by

h̃0(u) = h0(Su) +
∑
j∈I

Kjuj.

Check that h̃0 ∈ H. Let the process h̃t obey Poisson clocks {T̃u} where T̃u = TSu.

We claim that

h̃t(u) = ht(Su) +
∑
j∈I

Kjuj (9.76)

for all t ≥ 0. We have arranged for it to hold at time t = 0. By the percolation argument

mentioned in Section 9.1 it suffices to observe that height variables h̃t(u) and ht(Su) always

jump together. Their jump attempts are synchronized and happen at the jump times of

T̃u = TSu. The claim is then proved by checking that if (9.76) holds, then h(u) is allowed to

jump iff h̃(Su) is allowed to jump. In other words, that

h̃(u) ≥ h̃(u− ei) + 1 and h̃(u) ≥ h̃(u+ ei)−Ki + 1 for 1 ≤ i ≤ d

iff

h(Su) ≥ h(Su− ei) + 1 and h(Su) ≥ h(Su+ ei)−Ki + 1 for 1 ≤ i ≤ d.
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We leave these details for the reader.

The initial heights satisfy

n−1h0([nx]) → ρ · x and n−1h̃0([nx]) → ρ̃ · x.

For ψ0(x) = ρ · x, the Hopf-Lax formula gives

ψ(0, 1) = sup
y
{ρ · y + g(−y)} = − inf

x
{ρ · x− g(x)} = −f(ρ). (9.77)

Similarly for ρ̃. Divide by t in (9.76) and let t→∞. Theorem 9.4 gives the limits

−f(ρ) = lim
t→∞

t−1ht(0) = lim
t→∞

t−1h̃t(0) = −f(ρ̃).

9.5.4 Proof of Theorem 9.6

Recall the definition (9.22) of the event B. Let Ft be the filtration generated by the initial

profile h0 and the Poisson processes up to time t.

Lemma 9.21 Assume h0(0) has finite mean. Then the process

Mt = ht(0) +

∫ t

0

1{hs ∈ B} ds

is a martingale with respect to the filtration Ft.

Proof. Integrability ofMt is guaranteed because |ht(0)−h0(0)| is stochastically dominated

by a mean t Poisson random variable.

As before, Nu(s, t] denotes the number of jump times in Poisson process Tu during time

interval (s, t]. Consider first a small time interval (s, s+ δ]. The height variable h(0) jumps

downward at some time t ∈ (s, s + δ] if t ∈ T0 and ht− ∈ B. If there are no other jumps in

T0 ∪ T±ei
during (s, s+ δ], then ht− ∈ B implies hs ∈ B. Define the event

A =

{ ∑
u∈{0,±ei}

Nu(s, s+ δ] ≥ 2

}
.

Write first

hs+δ(0)− hs(0)

=
(
hs+δ(0)− hs(0)

)
· 1{N0(s, s+ δ] = 1, N±ei

(s, s+ δ] = 0 for 1 ≤ i ≤ d}
+
(
hs+δ(0)− hs(0)

)
· 1A

= −1{hs ∈ B} · 1{N0(s, s+ δ] = 1, N±ei
(s, s+ δ] = 0 for 1 ≤ i ≤ d}

+
(
hs+δ(0)− hs(0)

)
· 1A
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The total number of jumps in the rate 2d + 1 Poisson process T0 ∪ T±ei
during (s, s + δ] is

an upper bound on |hs+δ(0)− hs(0)|, and consequently∣∣∣E[(hs+δ(0)− hs(0)
)
· 1A

∣∣Fs

]∣∣∣
≤

∞∑
k=2

kP

{ ∑
u∈{0,±ei}

Nu(s, s+ δ] = k

}

=
∞∑

k=2

k · e
−(2d+1)δ(2d+ 1)kδk

k!
≤ (2d+ 1)2δ2.

As

P{N0(s, s+ δ] = 1, N±ei
(s, s+ δ] = 0 for 1 ≤ i ≤ d |Fs} = δe−(2d+1)δ,

the random variable

Rs,s+δ = E
[
hs+δ(0)− hs(0)

∣∣Fs

]
+ δe−(2d+1)δ1{hs ∈ B}

satisfies the inequality |Rs,s+δ| ≤ (2d+ 1)2δ2.

Given s < t, let m be a positive integer, δ = t−s
m

, and si = s+ iδ for i = 0, . . . ,m.

E
[
ht(0)− hs(0)

∣∣Fs

]
= E

[m−1∑
i=0

E
(
hsi+1

(0)− hsi
(0)
∣∣Fsi

)∣∣∣∣Fs

]

= E

[
−e−(2d+1)δδ

m−1∑
i=0

1{hsi
∈ B}

∣∣∣∣Fs

]
+ E

[m−1∑
i=0

Rsi,si+1

∣∣∣∣Fs

]

= E

[
−e−(2d+1)δ

∫ t

s

m−1∑
i=0

1{hsi+1
∈ B}1(si,si+1](s) ds

∣∣∣∣Fs

]

− E
[
e−(2d+1)δδ

(
1{hs0 ∈ B} − 1{hsm ∈ B}

)∣∣Fs

]
+ E

[m−1∑
i=0

Rsi,si+1

∣∣∣∣Fs

]
.

The last sum satisfies

m−1∑
i=0

Rsi,si+1
≤ m(2d+ 1)2δ2 = (2d+ 1)2(t− s)2m−1.

Let m ↗ ∞, so that simultaneously δ ↘ 0. The error terms vanish in the limit. By the

right-continuity of paths,∫ t

s

m−1∑
i=0

1{hsi+1
∈ B}1(si,si+1](s) ds→

∫ t

s

1{hs ∈ B} ds

168



almost surely. Thus we obtain

E

[
ht(0)− hs(0) +

∫ t

s

1{hs ∈ B} ds
∣∣∣∣Fs

]
= 0.

This is the same as the conclusion of the lemma.

Lemma 9.22 Assume E[h0(0)2] <∞, and let Mt be the martingale of Lemma 9.21. Then

the process

Lt = M2
t −

∫ t

0

1{hs ∈ B} ds

is a martingale with respect to the filtration Ft.

Proof. The square integrability of Mt is guaranteed by the hypothesis E[h0(0)2] < ∞.

As in the previous proof, we begin by considering a small time increment. Abbreviate

γ(s) = 1{hs ∈ B}.

E
[
M2

s+δ −M2
s

∣∣Fs

]
= E

[(
Ms+δ −Ms

)2∣∣Fs

]
= E

[(
hs+δ(0)− hs(0)−

∫ s+δ

s

γ(r) dr

)2∣∣∣∣Fs

]
= E

[(
hs+δ(0)− hs(0)

)2∣∣Fs

]
− 2E

[ (
hs+δ(0)− hs(0)

) ∫ s+δ

s

γ(r) dr

∣∣∣∣Fs

]
+ E

[(∫ s+δ

s

γ(r) dr

)2∣∣∣∣Fs

]
.

Consider the last three terms. Since 0 ≤ γ(r) ≤ 1, the last term is at most δ2 in absolute

value. Same is true for the second, since h(0) is nonincreasing with time:

0 ≤ −2E

[ (
hs+δ(0)− hs(0)

) ∫ s+δ

s

γ(r) dr

∣∣∣∣Fs

]
≤ −2δE

[
hs+δ(0)− hs(0)

∣∣Fs

]
= 2δE

[∫ s+δ

s

γ(r) dr

∣∣∣∣Fs

]
≤ 2δ2.

All the contribution comes from the first of the three.

E
[(
hs+δ(0)− hs(0)

)2∣∣Fs

]
= E

[(
hs+δ(0)− hs(0)

)2 · 1{N0(s, s+ δ] ≤ 1}
∣∣Fs

]
+ E

[(
hs+δ(0)− hs(0)

)2 · 1{N0(s, s+ δ] ≥ 2}
∣∣Fs

]
= −E

[(
hs+δ(0)− hs(0)

)
· 1{N0(s, s+ δ] ≤ 1}

∣∣Fs

]
(9.78)

+ E
[(
hs+δ(0)− hs(0)

)2 · 1{N0(s, s+ δ] ≥ 2}
∣∣Fs

]
. (9.79)
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In the last equality we simply noted that m2 = −m if m = 0 or −1. Term (9.79) is an error

term, bounded as follows:

E
[(
hs+δ(0)− hs(0)

)2 · 1{N0(s, s+ δ] ≥ 2}
∣∣Fs

]
≤

∞∑
k=2

k2 · e
−δδk

k!
≤ 2δ2.

The main term (9.78) satisfies

− E
[(
hs+δ(0)− hs(0)

)
· 1{N0(s, s+ δ] ≤ 1}

∣∣Fs

]
= −E

[
hs+δ(0)− hs(0)

∣∣Fs

]
+ E

[(
hs+δ(0)− hs(0)

)
· 1{N0(s, s+ δ] ≥ 2}

∣∣Fs

]
= E

[∫ s+δ

s

γ(r) dr

∣∣∣∣Fs

]
+ (a term at most δ2 in absolute value).

Putting all these estimates together gives∣∣∣∣E[M2
s+δ −M2

s −
∫ s+δ

s

γ(r) dr

∣∣∣∣Fs

]∣∣∣∣ ≤ 6δ2.

Given s < t, let again t − s = mδ and add up the error terms over the m subintervals of

length δ, to get the estimate∣∣∣∣E[M2
t −M2

s −
∫ t

s

γ(r) dr

∣∣∣∣Fs

]∣∣∣∣ ≤ 6mδ2 ≤ 6(t− s)2

m
.

Letting m→∞ completes the proof.

Lemma 9.23 Under the assumptions of Lemmas 9.21 and 9.22, t−1Mt → 0 almost surely.

Proof. Let tk = k3/2. First we use Borel-Cantelli to show convergence along the subse-

quence tk. Let ε > 0. As before, γ(s) = 1{hs ∈ B}.

P
(
|Mtk | ≥ εtk

)
≤ ε−2t−2

k E
[
M2

tk

]
= ε−2t−2

k E

[
Ltk +

∫ tk

0

γ(s) ds

]
= ε−2t−2

k EL0 + ε−2t−2
k

∫ tk

0

Eγ(s) ds ≤ Ct−1
k ,

for a constant C. Above we used the martingale property of Lt, and then

EL0 = E[M2
0 ] = E[h0(0)2] <∞.

Since
∑
t−1
k <∞ and this argument works for any ε > 0, Borel-Cantelli implies t−1

k Mtk → 0.
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It remains to fill in the t-values between the points tk. Suppose tk ≤ t ≤ tk+1. By the

monotonicity of t 7→ ht(0) and the bounds 0 ≤ γ(s) ≤ 1,

htk+1
(0) +

∫ tk+1

0

γ(s) ds− (tk+1 − tk) ≤ ht(0) +

∫ t

0

γ(s) ds = Mt

≤ htk(0) +

∫ tk

0

γ(s) ds+ (tk+1 − tk).

The choice tk = k3/2 has the properties tk+1/tk → 1 and (tk+1 − tk)/tk → 0. Hence dividing

by t above and letting t→∞ gives the conclusion.

We complete the proof of Theorem 9.6. For ψ0(x) = ρ · x, the Hopf-Lax formula gives

ψ(0, 1) = −f(ρ) as already seen in (9.77). By Lemma 9.23,

t−1ht(0) + t−1

∫ t

0

1{hs ∈ B} ds→ 0 in probability, as t→∞.

By Theorem 9.4 and the assumptions made in Theorem 9.6,

t−1ht(0) → ψ(0, 1) = −f(ρ)

in probability. Consequently

t−1

∫ t

0

1{hs ∈ B} ds→ f(ρ)

in probability. The random variable t−1
∫ t

0
1{hs ∈ B} ds is bounded uniformly over t, so by

dominated convergence we also have

t−1

∫ t

0

P{hs ∈ B} ds→ f(ρ).

This completes the proof of Theorem 9.6.

9.5.5 Proof of Theorem 9.8

Let u = ψ be the function defined by the Hopf-Lax formula (9.17). Let f̄ be an extension

of f to a continuous function on all of Rd. We apply Ishii’s uniqueness result stated as

Theorem A.33 in Section A.12 in the Appendix. It suffices to show that for any continuously

differentiable φ on Rd × (0,∞), inequality (9.25) holds if u − φ has a local maximum at

(x0, t0), and inequality (9.26) holds if u− φ has a local minimum at (x0, t0), with F = f̄ .

We begin by showing that such a φ has ∇φ(x0, t0) ∈ V , so f̄(∇φ(x0, t0)) = f(∇φ(x0, t0)).
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Lemma 9.24 Suppose u − φ has either a local maximum or a local minimum at (x0, t0) ∈
Rd × (0,∞). Then

−1 ≤ φt(x0, t0) ≤ 0 and ∇φ(x0, t0) ∈ V.

Proof. We go through the case of a local maximum and leave the other case to the reader.

The assumption is that for some neighborhood B of (x0, t0) in Rd × (0,∞),

u(x0, t0)− φ(x0, t0) ≥ u(x, t)− φ(x, t)

for (x, t) ∈ B. We use this in the form

u(x, t)− u(x0, t0) ≤ φ(x, t)− φ(x0, t0).

Thus for small enough h > 0, by the Lipschitz bounds on the increments of u,

0 ≤ u(x0 + hei, t0)− u(x0, t0) ≤ φ(x0 + hei, t0)− φ(x0, t0)

and

−Kih ≤ u(x0 − hei, t0)− u(x0, t0) ≤ φ(x0 − hei, t0)− φ(x0, t0).

These inequalities imply 0 ≤ φxi
(x0, t0) ≤ Ki. For the time increment,

0 ≤ u(x0, t0 − hei)− u(x0, t0) ≤ φ(x0, t0 − hei)− φ(x0, t0)

and

−h ≤ u(x0, t0 + hei)− u(x0, t0) ≤ φ(x0, t0 + hei)− φ(x0, t0).

These inequalities imply 0 ≥ φt(x0, t0) ≥ −1.

The statement 0 ≥ φt(x0, t0) ≥ −1 is not needed. It was included only to make the

lemma complete. In the next two lemmas we check the defining inequalities of the viscosity

solution for u.

Lemma 9.25 Suppose u− φ has a local maximum at (x0, t0). Then

φt(x0, t0) + f
(
∇φ(x0, t0)

)
≤ 0.
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Proof. For small 0 < h < t0, pick a point z = z(h) ∈ Rd such that |z|1 ≤ 1 and

u(x0, t0) = u(x0 − hz, t0 − h) + hg(z).

The existence of such z follows from the semigroup property of the Hopf-Lax formula (Lemma

A.31 in Section A.12 in the Appendix) and the fact that in our case the supremum in the

Hopf-Lax formula is always attained by a suitably bounded z (Lemma 9.14). Combining

this with the local maximum,

u(x0 − hz, t0 − h) + hg(z)− φ(x0, t0) = u(x0, t0)− φ(x0, t0)

≥ u(x0 − hz, t0 − h)− φ(x0 − hz, t0 − h)

for small enough h. From this

0 ≥ φ(x0, t0)− φ(x0 − hz, t0 − h)− hg(z).

Define a path r : [0, 1] → Rd × (0,∞) by

r(s) =
(
x0 − (1− s)hz, t0 − (1− s)h

)
. (9.80)

Then by the presumed continuous differentiablity of φ,

0 ≥
∫ 1

0

{ d

ds
φ(r(s))− hg(z)

}
ds = h

∫ 1

0

{
φt(r(s)) +∇φ(r(s)) · z − g(z)

}
ds

≥ h

∫ 1

0

{
φt(r(s)) + f

(
∇φ(r(s))

)}
ds.

For the last inequality we used the concave duality (9.19) of f and g. Divide away the factor

h from the front. Let h→ 0, and note that r(s) → (x0, t0) for all 0 ≤ s ≤ 1. Use continuity

of the integrand and dominated converge to conclude that

0 ≥ φt(x0, t0) + f
(
∇φ(x0, t0)

)
.

Lemma 9.26 Suppose u− φ has a local minimum at (x0, t0). Then

φt(x0, t0) + f
(
∇φ(x0, t0)

)
≥ 0.
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Proof. To get a contradiction, suppose there exists β > 0 such that

φt(x0, t0) + f
(
∇φ(x0, t0)

)
≤ −3β < 0.

By the concave duality (9.19), it is possible to find z ∈ Rd such that

φt(x0, t0) +∇φ(x0, t0) · z − g(z) ≤ −2β.

By the continuous differentiability, there exists a neighborhood B of (x0, t0) in Rd × (0,∞)

such that

φt(x, t) +∇φ(x, t) · z − g(z) ≤ −β

for (x, t) ∈ B.

Define the path r(s) as in (9.80) in the previous proof, and repeat the integration step.

Take h small enough so that r(s) ∈ B, and note that by the semigroup property of the

Hopf-Lax formula,

u(x0, t0) ≥ u(x0 − hz, t0 − h) + hg(z).

Putting all this together gives

φ(x0, t0)− φ(x0 − hz, t0 − h) = h

∫ 1

0

{
φt(r(s)) +∇φ(r(s)) · z

}
ds

≤ hg(z)− βh ≤ u(x0, t0)− u(x0 − hz, t0 − h)− βh.

Rearranging this gives

u(x0, t0)− φ(x0, t0) ≥ u(x0 − hz, t0 − h)− φ(x0 − hz, t0 − h) + βh

for all small enough h > 0. Thus (x0, t0) cannot be a local minimum.

We have shown that u satisfies the properties of a uniformly continuous viscosity solution

of (9.27). By Ishii’s uniqueness theorem A.33, Theorem 9.8 is proved.

Notes

Variational approach

The variational approach to exclusion processes and the related height processes was intro-

duced in articles [35], [34], and [37]. The approach works for admissible height functions

somewhat more complicated than the one described in Section 9.1. For example, one can

take a function % : Zd → Z+ such that %(0) = 0, and define the state space H of height

functions by

H = {h : Zd → Z : h(v)− h(u) ≤ %(v − u)}.
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This type of example was treated in [30]. It is also possible to permit the height values, or

the exclusion particles, to jump more than one step at a time. Such an example appears in

[38]. Examples where the rates of the Poisson clocks are inhomogeneous in space or random

appear in [30], [37], [42], and [39]. The approach does not seem to work when jumps in both

directions are permitted, or when the rate of jumping is a more general function of the local

configuration.

The pathwise variational property can be formulated as a linear mapping in max–plus

algebra (unpublished work of I. Grigorescu and M. Kang).

In addition to exclusion processes and related height processes, the variational approach

has been successfully used in connection with Hammersley’s process. This process describes

the totally asymmetric evolution of point particles on the real line. Its variational represen-

tation involves the increasing sequences model on planar Poisson points. The idea for this

process appeared in Hammersley’s classic paper [20]. Aldous and Diaconis [1] defined the

process on the infinite line. Properties of this process have been investigated in papers [33],

[36], [40], and [41]. A review of the connection between Hammersley’s process and increasing

sequences appeared in [19], and of the wider mathematical context in [2].

In addition to Evans’s textbook [14], another excellent reference on conservation laws is

[25].

Exercise 9.1 Prove the attractivity lemma 9.1.

Exercise 9.2 Multidimensional increment process. Formulate an increment process for the

multidimensional height process ht : Zd → Z for d ≥ 2. For example, one could set η(u, i) =

h(u)− h(u− ei), and define the state as η = (η(u, i) : u ∈ Zd, 1 ≤ i ≤ d). What is the state

space? Observe that not all configurations η can represent increments because(
h(u)− h(u− ei)

)
+
(
h(u− ei)− h(u− ei − ej)

)
=
(
h(u)− h(u− ej)

)
+
(
h(u− ej)− h(u− ej − ei)

)
.

What is the jump rule for the ηt process?

No examples of translation-invariant equilibrium distributions for such increment pro-

cesses are known in more than one dimension.

Exercise 9.3 Riemann solution. Compute the evolution of the simplest shock profile. Take

d = 1 and K = 1. Let 0 < λ < ρ < 1, and

ψ0(x) =

{
λx, x ≤ 0

ρx, x > 0.
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Compute ψ(x, t) from the Hopf-Lax formula (9.17) with g given by (9.39). Differentiate to

find the macroscopic particle density ρ(x, t). You will find that the shock travels at speed

v =
f(λ)− f(ρ)

λ− ρ
.

Exercise 9.4 Shock profiles from smooth profiles. With 0 < λ < ρ < 1 as in Exercise 9.3,

let u0 be an arbitrary smooth function such that u0(x) = λx for x ≤ −1 and u0(x) = ρx for

x ≥ 1. Let u(x, t) be the solution from the Hopf-Lax formula. Show that after some time

T0, u(x, t) = ψ(x, t) where ψ is the solution calculated in Exercise 9.3.

Exercise 9.5 Rarefaction fan. Repeat Exercise 9.3 with λ > ρ. What you see now is called

a rarefaction fan.
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A Appendix

This section is a collection of material from analysis and probability. Some definitions and

terminology are included as a reminder to the reader. We state some important theorems

whose proof is outside the scope of the text, such as Choquet’s and de Finetti’s theorems.

And we prove some technical lemmas that are used in the text.

A.1 Basic measure theory and probability

The fundamental mathematical object in probability theory is the probability space (Ω,F , P ),

which models a random experiment or collection of experiments. The sample space Ω is the

set of all possible outcomes of the experiment, F is a σ-algebra of events, and P is a prob-

ability measure on F . A σ-algebra is a collection of subsets of the space that satisfies these

axioms:

(1) ∅ ∈ F and Ω ∈ F .

(2) If A ∈ F , then Ac ∈ F .

(3) If Aj ∈ F for j = 1, 2, 3, . . . then ∪∞j=1Aj ∈ F .

The axioms for the probability measure P are these:

(1) 0 ≤ P (A) ≤ 1 for all A ∈ F , P (∅) = 0 and P (Ω) = 1.

(2) If Aj ∈ F for j = 1, 2, 3, . . . , Ai ∩ Aj = ∅ whenever i 6= j, and A = ∪∞j=1Aj, then

P (A) =
∞∑

j=1

P (Aj).

More generally, a measure µ is a [0,∞]-valued function on a σ-algebra that satisfies µ(∅) = 0

and the countable additivity axiom (2) above.

For any collection A of subsets of a space Ω, the σ-algebra σ(A) generated by A is by

definition the intersection of all the σ-algebras that contain A. It is the smallest σ-algebra

that contains A.

Let Ω be an arbitrary space, and L and P collections of subsets of Ω. P is a π-system if

it is closed under intersections, in other words if A,B ∈ P , then A∩B ∈ P . L is a λ-system

if it has the following three properties:

(1) Ω ∈ L.

(2) If A,B ∈ L and A ⊆ B then B \ A ∈ L.

(3) If {An : 1 ≤ n <∞} ⊆ L and An ↗ A then A ∈ L.

Theorem A.1 (Dynkin’s π-λ-theorem) If P is a π-system and L is a λ-system that contains

P, then L contains the σ-algebra σ(P) generated by P.
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For a proof, see the Appendix in [11].

Exercise A.1 A collection A of subsets of Ω is an algebra if Ω ∈ A, Ac ∈ A whenever

A ∈ A, and A∪B ∈ A whenever A ∈ A and B ∈ A. Suppose P is a probability measure on

the σ-algebra σ(A) generated by A. Show that for every B ∈ σ(A) and ε > 0 there exists

A ∈ A such that P (A4B) < ε. The operation 4 is the symmetric difference defined by

A4B = (ArB) ∪ (B r A).

A.2 Metric spaces

A metric on a space Y is a distance function ρ that has these properties for all x, y, z ∈ Y :

(1) 0 ≤ ρ(x, y) <∞, and ρ(x, y) = 0 iff x = y

(2) ρ(x, y) = ρ(y, x) (symmetry)

(3) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) (triangle inequality).

Convergence of a sequence {xn} to a point x in Y means that the distance vanishes in the

limit: xn → x if ρ(xn, x) → 0. {xn} is a Cauchy sequence if supm>n ρ(xm, xn) → 0 as n→∞.

Completeness of a metric space means that every Cauchy sequence in the space has a limit

in the space. A countable set {yk} is dense in Y if for every x ∈ Y and every ε > 0, there

exists a k such that ρ(x, yk) < ε. Y is a separable metric space if it has a countable dense

set. A complete, separable metric space is called a Polish space.

The open ball of radius r centered at x is

B(x, r) = {y ∈ Y : ρ(x, y) < r}.

A set G ⊆ Y is open if every point in G has an open ball around it that lies in G. The

collection of open sets is called a topology. A topology is a more fundamental notion than a

metric. A metric is just one of many ways of specifying a topology (in other words, a class

of open sets) on a space.

If two metrics ρ1 and ρ2 on Y determine the same open sets, they share many properties.

For example, they have the same convergent sequences, and the same dense sets. Complete-

ness is an important counterexample to this, for it is a property of the metric and not of the

topology. For example, on Y = [1,∞) the metrics ρ1(x, y) = |x−y| and ρ2(x, y) = |x−1−y−1|
have the same open sets, but ρ1 is complete while ρ2 is not.

The Borel σ-algebra B(Y ) is the smallest σ-algebra on Y that contains all the open sets.

Elements of B(Y ) are Borel sets, and measures defined on B(Y ) are Borel measures.

The Cartesian product Y n = Y × Y × · · · × Y is a metric space with metric ρ(x,y) =∑
i ρ(xi, yi) defined for vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in Y n. Y n has its
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own Borel σ-algebra B(Y n), but also the product σ-algebra B(Y )⊗n. Since the projections

x 7→ xi are continuous, B(Y n) always contains B(Y )⊗n. If Y is separable, then we have

equality B(Y n) = B(Y )⊗n. This fact extends to the countably infinite product space Y N of

sequences x = (xi)1≤i<∞, metrized by

ρ(x,y) =
∞∑
i=1

2−i (ρ(xi, yi) ∧ 1) .

If Y is compact, then so is Y N. This is a consequence of the much more general theorem

of Tychonoff (Section 4.6 in [17]). In metric spaces compactness is equivalent to sequential

compactness, which requires that every sequence has a convergent subsequence. This latter

property can be verified relatively easily for Y N. Given a sequence {xn} in Y N, each coordi-

nate sequence {xn
i } lies in the compact space Y . The familiar diagonal argument constructs

a subsequence {xnk} along which each coordinate sequence converges: xnk
i → xi as k →∞.

This coordinatewise convergence is equivalent to ρ(xnk ,x) → 0.

A.2.1 Weak topology on probability measures

Let M1(Y ) the space of Borel probability measures on Y , and Cb(Y ) the space of bounded

continuous functions on Y . The ε-neighborhood of a set A ⊆ Y is by definition

A(ε) = {x ∈ Y : ρ(x, y) < ε for some y ∈ A}.

The Prohorov metric on M1(Y ) is defined by

r(µ, ν) = inf{ε > 0 : ν(F ) ≤ µ(F (ε)) + ε for every closed set F ⊆ Y }. (A.1)

Convergence under the Prohorov metric is the familiar weak convergence of probability mea-

sures:

r(µn, µ) → 0 iff

∫
f dµn →

∫
f dµ for all f ∈ Cb(Y ).

It is important to know that if Y is a complete separable metric space, then so isM1(Y ), and

if Y is compact, so is M1(Y ). The Borel σ-algebra B(M1(Y )) on the space of probability

measures is the same as the σ-algebra generated by the maps µ 7→ µ(A) as A varies over

Borel subsets of Y .

A key fact about the weak topology of probability measures on a Polish space Y is that

a set U ⊆M1(Y ) is relatively compact iff it is tight, which means that for every ε > 0 there

exists a compact set K ⊆ Y such that infµ∈U µ(K) ≥ 1− ε.
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A.2.2 Skorokhod topology on path space

Let DY be the space of functions ω : [0,∞) → Y that are right-continuous and have left

limits everywhere. Right-continuity at t means that ω(s) → ω(t) as s approaches t from

above. The existence of a left limit at t means that a point ω(t−) ∈ Y exists such that

ω(s) → ω(t−) as s approaches t from below. These properties are required to hold at each

t ≥ 0. Path ω has a jump at t if ρ(ω(t), ω(t−)) > 0, and then this quantity is the magnitude

of the jump. There cannot be too many large jumps in any bounded interval. Namely, for

any ε > 0 and 0 < T <∞,

a path ω can have only finitely many jumps

of magnitude at least ε in time interval [0, T ].
(A.2)

The reason is that any accumulation point t of such jumps would fail either right-continuity

or the existence of the left limit.

This is the path space for stochastic processes whose paths are not continuous in time, but

are right-continuous, so for example for continuous-time Markov chains and for interacting

particle systems.

DY has a metric defined as follows. Assume that the metric on Y satisfies ρ(x, y) ≤ 1.

This is not a restriction because we can replace the metric ρ with ρ(x, y) ∧ 1. Let Λ be the

collection of strictly increasing, bijective Lipschitz functions λ : [0,∞) → [0,∞) that satisfy

γ(λ) = sup
s>t≥0

∣∣∣∣log
λ(s)− λ(t)

s− t

∣∣∣∣ <∞. (A.3)

For ω, ζ ∈ DY , λ ∈ Λ and 0 < u <∞ set

s(ω, ζ, λ, u) = sup
t≥0

ρ (ω(t ∧ u), ζ(λ(t) ∧ u)) ,

and finally the Skorokhod distance between ω and ζ is

s(ω, ζ) = inf
λ∈Λ

{
γ(λ) ∨

∫ ∞

0

e−us(ω, ζ, λ, u) du

}
. (A.4)

Two paths are close in this topology if, on any bounded time interval, they are uniformly

close after a small distortion λ of the time axis aligns their large jumps. On the subspace

of continuous functions, convergence in the s-metric is the same as uniform convergence on

compact intervals. Here is a useful characterization of convergence under this metric.

Lemma A.2 Convergence s(ωn, ω) → 0 is equivalent to the existence of λn ∈ Λ such that

γ(λn) → 0 and

sup
0≤t≤T

ρ
(
ωn(t), ω(λn(t))

)
→ 0 (A.5)

for all 0 < T <∞.
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Condition (A.5) can be equivalently replaced by

sup
0≤t≤T

ρ
(
ωn(λn(t)), ω(t)

)
→ 0. (A.6)

The condition γ(λn) → 0 implies that the derivative λ′n converges to 1 uniformly (λn is

a.e. differentiable by Lipschitz continuity), and that λn converges to the identity function

uniformly on compact intervals. Note that λn ∈ Λ entails λn(0) = 0.

The coordinate mappings ω 7→ ω(t) are not continuous on DY but they are Borel measur-

able. If Y is a separable metric space, the Borel σ-algebra B(DY ) is the same as the σ-algebra

F generated by the coordinate mappings. If Y is a Polish space, then so is DY . Exercise

A.2 below implies that the function (ω, t) 7→ ω(t) is jointly measurable on DY × [0,∞). This

is useful for example for concluding that integrals of the type
∫ t

0
g(ω(s)) ds are measurable

functions of a path ω.

Next we state a compactness criterion for a sequence of probability measures on DY . This

comes in terms of the following modulus of continuity. For ζ ∈ DY , δ > 0, and 0 < T <∞,

w′(ζ, δ, T ) = inf
{ti}

sup{ρ(ζ(s), ζ(t)) : s, t ∈ [ti−1, ti) for some i}

where the infimum is over finite partitions 0 = t0 < t1 < · · · < tn−1 < T ≤ tn that satisfy

min1≤i≤n(ti − ti−1) > δ. Note the elementary but important property that

lim
δ→0

w′(ζ, δ, T ) = 0 for any fixed ζ ∈ DY and 0 < T <∞. (A.7)

To check this, fix N > 0, define τN
0 = 0, and inductively

τN
k = inf

{
s > τN

k−1 : ρ
(
ζ(s), ζ(τN

k−1)
)
> 1/N

}
.

By right-continuity τN
k > τN

k−1, and by the existence of left limits, τN
k ↗∞ as k ↗∞. Pick

n so that τN
n > T , and let

δ < min
1≤k≤n

(τN
k − τN

k−1).

Then {τN
k }0≤k≤n is an admissible partition in the infimum in the definition of w′(ζ, δ, T ),

and we conclude that w′(ζ, δ, T ) ≤ N−1.

As a byproduct we get the useful fact that

a path ζ ∈ DY is bounded in a bounded time interval [0, T ]. (A.8)

Boundedness in an abstract metric space means that the path {ζ(t) : 0 ≤ t ≤ T} lies inside

a large enough ball. This follows because by the choice of n above,

sup
0≤t≤T

ρ
(
ζ(0), ζ(t)

)
≤ max

0≤k<n
ρ
(
ζ(0), ζ(τN

k )
)

+ 1/N.

Here is a compactness criterion.
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Theorem A.3 Let (Y, ρ) be a complete, separable metric space, and let {Qn} be a sequence

of probability measures on DY . Then {Qn} is tight iff these two conditions hold.

(i) For every ε > 0 and t ≥ 0, there exists a compact set K ⊆ Y such that

lim sup
n→∞

Qn{ζ : ζ(t) ∈ Kc} ≤ ε.

(ii) For every ε > 0 and 0 < T <∞ there exists a δ > 0 such that

lim sup
n→∞

Qn{ζ : w′(ζ, δ, T ) ≥ ε} ≤ ε.

Much used references for the weak topology and D-space are [3] and [13]. Lemma A.2 is

part of Proposition 5.2 on p. 119 in [13], and Theorem A.3 is Corollary 7.4 on p. 129 in [13].

Exercise A.2 Suppose Z is a measurable space, and a function f : Z×[0,∞) → R has these

properties: x 7→ f(x, t) is measurable for each fixed t, and t 7→ f(x, t) is right-continuous for

each fixed x. Show that f is jointly measurable, by considering

fn(x, t) = f(x, 0) · 1{0}(t) +
∞∑

k=1

f(x, k2−n) · 1((k−1)2−n,k2−n](t).

A.3 Ordering among configurations and measures

Let W be a compact subset of R and S a countable set. A partial order between config-

urations η, ζ ∈ X = W S is defined by η ≥ ζ iff η(x) ≥ ζ(x) for all x ∈ S. A continuous

function f on X is increasing if f(η) ≥ f(ζ) whenever η ≥ ζ. In terms of such functions we

can define an order among probability measures. For probability measures µ, ν on X let us

say µ ≥ ν if ∫
f dµ ≥

∫
f dν

for all increasing continuous functions f . Ordering between measures turns out to be equiv-

alent to a coupling property.

Theorem A.4 (Strassen’s Theorem) Let µ and ν be probability measures on X. Then µ ≥ ν

iff there exists a probability measure Q on X ×X with these properties: Q(A×X) = µ(A)

and Q(X ×B) = ν(B) for all measurable sets A,B ⊆ X, and Q{(η, ζ) : η ≥ ζ} = 1.
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The ‘if’ part of the theorem is immediate, but the other direction is not so easy. We

actually do not need the hard part of the theorem if we take as definition of µ ≥ ν the

existence of the coupling measure Q. A proof of the theorem can be found in Section II.2 of

[27].

Next some properties of the order relation.

Lemma A.5 Suppose µ ≥ ν and for all x ∈ S,∫
η(x)µ(dη) =

∫
η(x) ν(dη).

Then µ = ν.

In particular, this conclusion follows from having both µ ≥ ν and ν ≥ µ.

Proof. Let Q be the coupling measure. Then for all x, Q{η(x) ≥ ζ(x)} = 1 but∫
(η(x)− ζ(x))Q(dη, dζ) =

∫
η(x)µ(dη)−

∫
ζ(x) ν(dζ) = 0.

It follows that η(x) = ζ(x) Q-almost surely. Since S is countable, then Q{η = ζ} = 1 and

equality of the marginal distributions µ and ν follows.

To verify the last statement of the lemma, just observe that µ ≥ ν and ν ≥ µ together

imply that
∫
η(x)µ(dη) =

∫
η(x) ν(dη).

Lemma A.6 Suppose {µn} is a monotone sequence of probability measures on X. Then the

weak limit µn → µ exists.

Proof. By compactness of X, it suffices to show that any two weak limit points of the

sequence {µn} agree. So let µ′ and µ′′ be two limit points. Fix a finite set {x1, x2, . . . , xm} ⊆
S of sites, and let

Fn(u1, u2, . . . , um) = µn{η(x1) ≤ u1, η(x2) ≤ u2, . . . , η(xm) ≤ um}

be the multivariate distribution functions of the marginal distributions of the µn’s on the

η(x1), η(x2), . . . , η(xm) coordinates. The function

f(η) = −1{η(x1) ≤ u1, η(x2) ≤ u2, . . . , η(xm) ≤ um}

is increasing, so by the monotonicity assumption the limits

F̃ (u1, u2, . . . , um) = lim
n→∞

Fn(u1, u2, . . . , um)
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exist. For all but countably many vectors (u1, u2, . . . , um),

µ′{η(x1) = u1} = µ′{η(x2) = u2} = · · · = µ′{η(xm) = um}
= µ′′{η(x1) = u1} = µ′′{η(x2) = u2} = · · · = µ′′{η(xm) = um} = 0.

It is a basic property of weak convergence νj → ν of probablity measures that νj(A) → ν(A)

for any Borel set A whose boundary ∂A satisfies ν(∂A) = 0. Hence for all vectors that satisfy

the above condition,

µ′{η(x1) ≤ u1, η(x2) ≤ u2, . . . , η(xm) ≤ um} = F̃ (u1, u2, . . . , um)

= µ′′{η(x1) ≤ u1, η(x2) ≤ u2, . . . , η(xm) ≤ um}.

Since such vectors are dense, we have shown that µ′ and µ′′ have identical marginal distri-

butions on any finite set of coordinates. Consequently µ′ = µ′′.

Recall the definition of the Bernoulli measures νρ from (4.15).

Lemma A.7 Let µ be a probability measure on X = {0, 1}S. Suppose there exists a number

ρ0 ∈ [0, 1] such that νρ ≤ µ for ρ < ρ0 and νλ ≥ µ for λ > ρ0. Then µ = νρ0.

Proof. For any finite set A ⊆ S, f(η) = 1{η = 1 on A} is an increasing function. Thus

for ρ < ρ0 < λ,

ρ|A| = νρ{η = 1 on A} ≤ µ{η = 1 on A} ≤ νλ{η = 1 on A} = λ|A|.

Letting ρ ↗ ρ0 and λ ↘ ρ0 gives µ{η = 1 on A} = ρ
|A|
0 . It is an exercise to verify that the

measure on sets of this type determines the entire measure on X.

A.4 Translation invariance and ergodicity

The basic formulation of the pointwise ergodic theorem (Birkhoff’s ergodic theorem) is the

following. Let (Ω,H, P ) be a probability space, and T : Ω → Ω a measure-preserving

transformation. In other words, T is a measurable map on Ω, and P (T−1A) = P (A) for all

A ∈ H. Let JT be the σ-algebra of T -invariant events:

JT = {A ∈ H : T−1A = A}.

T k = T ◦ T ◦ · · · ◦ T denotes k-fold composition of T with itself.
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Theorem A.8 (Ergodic Theorem) Let f ∈ L1(P ). Then

lim
n→∞

1

n

n−1∑
k=0

f ◦ T k = E[ f | JT ]

P -almost surely and in L1(P ).

If T is invertible with a measurable inverse, then the limits for T and T−1 are the same:

lim
n→∞

1

n

n−1∑
k=0

f ◦ T−k = E[ f | JT−1 ] = E[ f | JT ] = lim
n→∞

1

n

n−1∑
k=0

f ◦ T k. (A.9)

The reason is that JT = JT−1 , as can be checked directly from the definition.

The setting where we apply these notions is that of spatial translations or shifts. Let

W be a Polish space, d ≥ 1 an integer, and X = WZd
the product space of configurations

or functions η : Zd → W . X is a Polish space under the product metric, and B(X) is its

Borel σ-algebra, also the product σ-algebra generated by coordinate mappings. Translations

are invertible, continuous maps θx defined on X by θxη(y) = η(x + y) for all x, y ∈ Zd and

η ∈ X. They form a group Θ = {θx : x ∈ Zd}. A probability measure µ on X is translation

invariant if µ(θ−1
x A) = µ(A) for all x ∈ Zd and A ∈ B(X). We write S for the space of

translation invariant probability measures on X. It is a closed subset of the space M1 of

probability measures on X in the weak topology. If X is compact, then so are M1 and S.

Let JΘ be the sub-σ-algebra of translation invariant events:

JΘ = {A ∈ B(X) : θ−1
x A = A for all x ∈ Zd}.

A measure µ ∈ S is ergodic if µ(A) ∈ {0, 1} for all A ∈ JΘ. These definitions also apply to

the coordinate process {η(x) : x ∈ Zd} defined on the probability space (X,B(X), µ). The

process {η(x)} is stationary if the underlying measure is translation invariant, and ergodic

if the measure is ergodic.

Let Λk = [−k, k]d ∩ Zd be the cube with (2k + 1)d sites, centered at the origin. The

multiparameter ergodic theorem states that for any µ ∈ S and f ∈ L1(µ),

lim
k→∞

1

(2k + 1)d

∑
x∈Λk

f ◦ θx = Eµ[ f | JΘ ] both µ-almost surely and in L1(µ). (A.10)

If µ is ergodic, the limit is the constant
∫
f dµ. A proof of this can be found in Chapter 14

of [18].

One can use the ergodic theorem to show that two translation invariant probability

measures coincide iff they agree on JΘ. From this one deduces that a translation invariant
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probability measure is ergodic iff it is an extreme point of S. A measure µ ∈ S is an extreme

point if it cannot be written nontrivially as a convex combination of other elements of S.

Se denotes the set of extreme points of S, or equivalently, the set of ergodic probability

measures.

Next some basic facts used in the text.

Lemma A.9 Suppose U and V are Polish spaces, Y = UZd
, Z = V Zd

, µ is an i.i.d. product

measure on Y and ν is an ergodic measure on Z. Let W = U × V . Then µ̄ = µ ⊗ ν is an

ergodic measure on X = Y × Z = WZd
.

Proof. The ζ-section Bζ of a measurable set B ⊆ X is by definition

Bζ = {η ∈ Y : (η, ζ) ∈ B} for ζ ∈ Z.

Check that translations operate as follows:

(θ−1
x B)ζ = θ−1

x (Bθxζ).

Let A be a translation invariant event on X. We need to show µ̄(A) = 0 or 1. Let c = µ̄(A).

By Fubini’s theorem, ∫
Z

µ(Aζ) ν(dζ) = c.

By the translation invariance of µ and A,

µ(Aθxζ) = µ(θ−1
x [Aθxζ ]) = µ([θ−1

x A]ζ) = µ(Aζ).

Thus the function ζ 7→ µ(Aζ) is invariant, and so by the ergodicity of ν, µ(Aζ) = c for

ν-almost every ζ.

Given ε > 0, pick an event B ⊆ X such that µ̄(A4B) ≤ ε and B depends on only finitely

many coordinates (Exercise A.1). So for some finite set Λ ⊆ Zd and Borel set B̃ ⊆ WΛ,

B = {(η, ζ) : (ηΛ, ζΛ) ∈ B̃}

where ηΛ = (η(x) : x ∈ Λ) denotes the configuration restricted to Λ, and similarly for ζΛ.

Fix x ∈ Zd so that (Λ+x)∩Λ = ∅. Then B and θ−1
x B depend on disjoint sets of coordinates.

First observe that

|µ̄(A)− µ̄(B ∩ θ−1
x B)| = |µ̄(A ∩ θ−1

x A)− µ̄(B ∩ θ−1
x B)|

≤ µ̄ ([A ∩ θ−1
x A]4[B ∩ θ−1

x B]) ≤ µ̄(A4B) + µ̄(θ−1
x A4θ−1

x B) ≤ 2ε.
(A.11)
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For the steps above, the reader needs to check that in general for a measure ρ and any events,

|ρ(G)− ρ(H)| ≤ ρ(G4H)

and also that

(G1 ∩G2)4(H1 ∩H2) ⊆ (G14H1) ∪ (G24H2).

Next, by the product form and translation invariance of µ,

µ̄(B ∩ θ−1
x B) =

∫
µ(Bζ ∩ [θ−1

x B]ζ) ν(dζ) =

∫
µ(Bζ ∩ θ−1

x [Bθxζ ]) ν(dζ)

=

∫
µ(Bζ)µ(Bθxζ) ν(dζ).

We already observed that µ(Aζ) = µ(Aθxζ), so

|µ(Bζ)µ(Bθxζ)− µ(Aζ)2| = |µ(Bζ)µ(Bθxζ)− µ(Aζ)µ(Aθxζ)|
≤ |µ(Bζ)− µ(Aζ)|µ(Bθxζ) + |µ(Bθxζ)− µ(Aθxζ)|µ(Aζ)

≤ µ(Aζ4Bζ) + µ(Aθxζ4Bθxζ) = µ([A4B]ζ) + µ([A4B]θxζ).

For the last equality, the reader needs to check another property of the symmetric difference

operation 4. By integrating over the above inequality, we get∣∣∣∣µ̄(B ∩ θ−1
x B)−

∫
µ(Aζ)2 ν(dζ)

∣∣∣∣
=

∣∣∣∣∫ µ(Bζ)µ(Bθxζ) ν(dζ)−
∫
µ(Aζ)2 ν(dζ)

∣∣∣∣
≤

∫ ∣∣µ(Bζ)µ(Bθxζ)− µ(Aζ)2
∣∣ ν(dζ)

≤
∫ [

µ([A4B]ζ) + µ([A4B]θxζ)
]
ν(dζ)

= 2µ̄(A4B) ≤ 2ε.

Combine (A.11) with above to get∣∣∣∣µ̄(A)−
∫
µ(Aζ)2 ν(dζ)

∣∣∣∣ ≤ 4ε.

This says |c− c2| ≤ 4ε, and since ε > 0 was arbitrary, c = 0 or 1.

Products of ergodic measures are not always ergodic. Here is an example.
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Exercise A.3 On X = {−1, 1}Z, define the configuration ζ = (ζ(x) : x ∈ Z) by ζ(x) =

(−1)x. Let µ = 1
2
(δζ + δθ1ζ). Show that µ is ergodic but µ⊗ µ is not.

Lemma A.10 Let µ be a translation invariant probability measure on X = WZd
. Let g be

a measurable function from X into a Polish space U . Let Y = UZd
. Define a measurable

map G from X into Y by G(η)(x) = g(θxη), and a measure ν on Y by ν = µ ◦G−1. Then ν

is translation invariant. If µ is also ergodic, then so is ν.

Proof. Check that G commutes with translations: θx◦G = G◦θx. Then both conclusions

follow. First translation invariance of ν:

ν(θ−1
x A) = µ(G−1θ−1

x A) = µ(θ−1
x G−1A) = µ(G−1A) = ν(A).

Then ergodicity: suppose A is an invariant event on Y . Then so is G−1A on X, and if µ is

ergodic, ν(A) = µ(G−1A) ∈ {0, 1}.

This lemma is perhaps clearer in stochastic process terms. Define a U -valued process

{Yx} by Yx = g(θxη). Then {Yx} inherits stationarity (and ergodicity) from {η(x)}.

Lemma A.11 Suppose P is a translation invariant probability measure on X = {0, 1}Z
such that the all zero configuration η ≡ 0 has zero P -probability. Let

Y = inf{x ≥ 1 : η(x) = 1}

be the position of the next value 1 to the right of the origin. Then E[η(0)Y ] = 1.

Proof. A computation:

E[η(0)Y ] =
∞∑

k=1

kP [η(0) = 1, η(i) = 0 (0 < i < k), η(k) = 1]

=
∞∑

k=1

k∑
j=1

P [η(0) = 1, η(i) = 0 (0 < i < k), η(k) = 1]

=
∞∑

j=1

∞∑
k=j

P [η(0) = 1, η(i) = 0 (0 < i < k), η(k) = 1]

=
∞∑

j=1

∞∑
k=j

P [η(−j) = 1, η(i) = 0 (−j < i < k − j), η(k − j) = 1]

=
∞∑

j=1

∞∑
`=0

P [η(−j) = 1, η(i) = 0 (−j < i < `), η(`) = 1]

= P [for some m < 0 ≤ n, η(m) = η(n) = 1]

= 1.
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The last equality comes from the assumption that there is a value 1 somewhere with proba-

bility 1. For then

1 = lim
m→∞

P [η(x) = 1 for some x ≤ m] = lim
n→−∞

P [η(x) = 1 for some x ≥ n]

by the convergence of probability along monotone sequences of events. But by stationarity

the probabilities above are equal for different n (and different m), hence in particular

P [η(x) = 1 for some x ≤ −1] = P [η(x) = 1 for some x ≥ 0] = 1.

Weak convergence preserves invariance under continuous mappings. For example, the

spatial shift ν 7→ ν ◦θ−1
x of a probability measure is weakly continuous. Consequently a weak

limit of translation invariant probability measures is itself translation invariant. But ergodic

measures do not form a weakly closed subset of probability measures, and consequently a

weak limit of ergodic processes may fail to be ergodic. Here is an example.

Exercise A.4 For 0 ≤ α < 1, let Pα be the distribution on {0, 1}Z of the stationary Markov

chain with transition matrix [
1− α α

α 1− α

]
.

Show the weak convergence Pα → P0 as α→ 0, and that here ergodic measures converge to

a nonergodic one.

The next theorem is Liggett’s version of Kingman’s subadditive ergodic theorem. A proof

can be found in Section 6.6 of [11].

Theorem A.12 Suppose a stochastic process {Xm,n : 0 ≤ m < n} satisfies these properties.

(a) X0,m +Xm,n ≥ X0,n.

(b) For each fixed `, the process {Xn`,(n+1)` : n ≥ 1} is stationary and ergodic.

(c) The distribution of the sequence {Xm,m+k : k ≥ 1} is the same for all values of m.

(d) EX+
0,1 <∞, and γ = infn n

−1EX0,n > −∞.

Then

lim
n→∞

1

n
X0,n = γ almost surely and in L1.

Exercise A.5 Use a truncation argument to show that a process Xm,n that satisfies Xm,n ≥
0,X0,n ≥ X0,m+Xm,n, and assumptions (b) and (c) of Theorem A.12 satisfies limn→∞ n−1X0,n =

γ = supn n
−1EX0,n without any moment assumptions, even if γ = ∞.
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A.5 Integral representations

Some functional analytic terminology used in this section does not appear anywhere else in

the lectures. The reader who is not familiar with this area can simply accept Corollary A.14.

For any convex set K in a vector space, a point x ∈ K is an extreme point if x cannot be

expressed as a convex combination of points from K in a nontrivial fashion. In other words,

x = βx′ + (1− β)x′′ for some 0 < β < 1 and x′, x′′ ∈ K forces x′ = x′′ = x. We write Ke for

the set of extreme points of K.

Theorem A.13 (Choquet’s Theorem) Suppose K is a metrizable compact convex subset of a

locally convex topological vector space X , and x0 ∈ K. Then there exists a Borel probability

measure γ on Ke that represents x0 in the following sense: for every continuous linear

functional ϕ on X ,

ϕ(x0) =

∫
Ke

ϕ(x) γ(dx). (A.12)

In the setting described in the theorem Ke is a Gδ-set (a countable intersection of open

sets), so in particular a Borel set. Thus it is not problematic to integrate over the set Ke. A

short proof of Theorem A.13 can be found in [28]. Reading the proof requires knowledge of

the Hahn-Banach Theorem and the Rietz Representation Theorem.

The following corollary of Choquet’s theorem is used in several places in the text. Let

Y be a metric space, and M1(Y ) the space of probability measures on Y , endowed with its

weak topology.

Corollary A.14 Let K be a compact convex subset of M1(Y ), and Ke the set of extreme

points of K. Then µ ∈ K iff there exists a probability measure Γ on Ke such that

µ =

∫
Ke

ν Γ(dν). (A.13)

Remark. Interpret (A.13) in the sense that∫
f dµ =

∫
Ke

{∫
f dν

}
Γ(dν) for bounded Borel functions f on Y . (A.14)

Proof. Let M be the vector space of finite signed Borel measures on Y , topologized by

the weak topology defined by Cb(Y ), the space of bounded continuous functions on Y . This

space is a locally convex topological vector space, and Cb(Y ) is the dual space M∗. This
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topology on M1(Y ) is metrizable because it is the familiar weak topology, hence K satisfies

the hypotheses of Choquet’s theorem.

Conclusion (A.12) from Choquet’s theorem gives (A.14) for f ∈ Cb(Y ). By taking

bounded limits, we obtain (A.14) for f = 1A for closed sets A. An application of the

π-λ-theorem A.1 extends this to f = 1A for all Borel sets A. A final round of bounded

pointwise limits gives (A.14) as it stands.

Suppose µ satisfies (A.14). If µ /∈ K, by the separation theorem (for example, Theorem

3.4 in [32]) there would have to exist f ∈ Cb(Y ) such that∫
f dµ > sup

λ∈K

∫
f dλ.

This contradicts (A.14).

Note that if Y is compact to begin with, then M1(Y ) is compact also, and in Corollary

A.14 it suffices to assume that K is closed.

A particular case of this theorem is the ergodic decomposition of translation invariant

measures. In this situation we also have uniqueness of the representation, which we use in

the text. Recall the setting of Section A.4 where X = WZd
, and assume W is compact. S

is the space of translation invariant probability measures on X. Se is the subset of ergodic

measures, which is also the set of extreme points of S.

Theorem A.15 (Ergodic decomposition) For µ ∈ S there is a unique probability measure Γ

on Se such that

µ =

∫
Se

λΓ(dλ).

Proof. W is compact by assumption, hence so is X, hence so is the space M1 of proba-

bility measures on X, and hence so is S. The existence of Γ follows from Corollary A.14.

Let Λk = [−k, k]d ∩ Zd be the cube with (2k + 1)d sites, centered at the origin. For any

bounded measurable function f on X, define

f̄(η) =

 lim
k→∞

1

(2k + 1)d

∑
x∈Λk

f(θxη) if this limit exists,

0 otherwise.

(A.15)

Let us abbreviate ν(f) =
∫
f dν for the integral. For an ergodic measure λ, λ{f̄ = λ(f)} = 1.

Pick bounded measurable functions f1, f2, . . . , fm on X and Borel subsets A1, A2, . . . , Am of
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R. Then

µ{f̄1 ∈ A1, f̄2 ∈ A2, . . . , f̄m ∈ Am}

=

∫
Se

λ{f̄1 ∈ A1, f̄2 ∈ A2, . . . , f̄m ∈ Am}Γ(dλ)

=

∫
Se

{
m∏

i=1

1Ai
(λ(fi))

}
Γ(dλ)

= Γ{λ : λ(f1) ∈ A1, λ(f2) ∈ A2, . . . , λ(fm) ∈ Am}.

As the functions fi and the sets Ai vary, the class of sets

{λ ∈M1 : λ(f1) ∈ A1, λ(f2) ∈ A2, . . . , λ(fm) ∈ Am}

form a π-system that generates the Borel σ-algebra on the spaceM1. The above computation

shows that the Γ-measures of these sets are determined by µ, and so Γ itself is uniquely

determined.

A.6 Exchangeable measures and de Finetti’s theorem

Suppose S is an arbitrary countable set. A probability measure µ on X = {0, 1}S is ex-

changeable if the occupation variables η(x) can be permuted without affecting the joint

distributions under µ. In other words, for any two sets {x1, . . . , xn} and {y1, . . . , yn} of n

sites, and any choice of numbers k1, . . . , kn ∈ {0, 1},

µ{η : η(x1) = k1, η(x2) = k2, . . . , η(xn) = kn}
= µ{η : η(y1) = k1, η(y2) = k2, . . . , η(yn) = kn}.

Exercise A.6 Show that µ is exchangeable iff for all finite sets A ⊆ S, µ{η = 1 on A}
depends only on the size |A| of A.

In general, de Finetti’s theorem says that when the index set S is infinite, exchangeable

measures are mixtures of i.i.d. measures. In the special case of X = {0, 1}S, i.i.d. measures

are precisely the Bernoulli measures νρ, indexed by the density ρ ∈ [0, 1], defined by (4.15).

So de Finetti’s theorem specializes to this statement:

Theorem A.16 (de Finetti) A probability measure µ on X is exchangeable iff there exists

a probability measure γ on [0, 1] such that

µ =

∫
[0,1]

νρ γ(dρ).

A martingale proof of De Finetti’s theorem can be found in Chapter 4 of [11].
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A.7 Large deviations

Suppose {Xi} are independent and identically distributed real valued random variables, and

Sn = X1 + · · ·+Xn. Assume that the logarithmic moment generating function

Λ(t) = logE[etX ]

is finite in some neighborhood of the origin. This guarantees that X1 has all moments. Let

I(x) = sup
t∈R

{xt− Λ(t)} (A.16)

be the convex conjugate of Λ. I is [0,∞]-valued, and under the finiteness assumption on Λ,

I(x) = 0 iff x = EX1. For x < EX1 the supremum in (A.16) can be restricted to t < 0, and

I is strictly decreasing to the left of EX1. Conversely, for x > EX1 the supremum in (A.16)

can be restricted to t > 0, and I is strictly increasing to the right of EX1. I is called the

Cramér rate function for large deviations, a term explained by the next theorem.

Theorem A.17 (Cramér’s Theorem) Let H be a Borel subset of R, with interior Ho and

closure H. Then

− inf
x∈Ho

I(x) ≤ lim inf
n→∞

1

n
logP

{
n−1Sn ∈ H

}
≤ lim sup

n→∞

1

n
logP

{
n−1Sn ∈ H

}
≤ − inf

x∈H
I(x).

The bounds in the theorem give the rate of exponential decay of the probability that

n−1Sn deviates from its limit EX1. Proofs of Cramér’s theorem can be found in all books

on large deviations, such as [8] and [9].

When the set H in question is an interval, the upper large deviation bound is valid

already for finite n.

Proposition A.18 Suppose H is an interval such that P [X1 ∈ H] > 0. Then for all n,

P
{
n−1Sn ∈ H

}
≤ exp

{
− inf

x∈H
I(x)

}
.

Proof. Let Sm,n =
∑n

i=m+1Xi so that S0,n = Sn. Then by convexity and independence,

P
{
(m+ n)−1Sm+n ∈ H

}
≥ P

{
m−1S0,m ∈ H and n−1Sm,m+n ∈ H

}
= P

{
m−1Sm ∈ H

}
· P
{
n−1Sn ∈ H

}
.

193



Thus the sequence

an = logP
{
n−1Sn ∈ H

}
has the superadditivity property

am+n ≥ am + an.

The hypothesis P [X1 ∈ H] > 0 implies that an > −∞ for all n. Then by Exercise A.7,

lim
n→∞

1

n
logP

{
n−1Sn ∈ H

}
= sup

n≥1

1

n
logP

{
n−1Sn ∈ H

}
,

and the conclusion follows from Cramér’s theorem.

Exercise A.7 Suppose an is a [−∞,∞)-valued sequence such that am+n ≥ am + an for all

m,n, and an > −∞ for large enough n. Show that

lim
n→∞

an

n
= sup

n

an

n
,

regardless of whether the supremum is finite or infinite. Show by example that the conclusion

may fail if an = −∞ for arbitrarily large n.

Exercise A.8 Prove directly the conclusion of Proposition A.18 by an application of Cheby-

chev’s inequality. For example, if EX1 < a < b, then for t ≥ 0,

P
{
n−1Sn ∈ [a, b]

}
≤ P

{
etSn ≥ enta

}
≤ e−ntaE[etSn ] = exp {−n[ta− Λ(t)]} .

Choose t ≥ 0 to minimize the last expression.

Exercise A.9 Derive some basic Cramér rate functions.

(a) For Bernoulli variables with P (Xi = 1) = p and P (Xi = 0) = q = 1 − p, I(x) =

x log x+ (1− x) log(1− x)− x log p− (1− x) log q for 0 ≤ x ≤ 1.

(b) For the rate α exponential distribution I(x) = αx− 1− logαx.

(c) For the mean λ Poisson distribution I(x) = x log(x/λ)− x+ λ.

A.8 Laplace and Fourier transforms

For a measurable function u on [0,∞), its Laplace transform is defined by

φ(λ) =

∫ ∞

0

e−λtu(t) dt for λ ≥ 0.
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Lemma A.19 A bounded measurable function u on [0,∞) is determined by its Laplace

transform up to Lebesgue-null sets. In particular, a bounded right-continuous function on

[0,∞) is uniquely determined by its Laplace transform.

Proof. For a bounded u, all derivatives of φ exist and are given by

φ(k)(λ) = (−1)k

∫ ∞

0

e−λttku(t) dt.

Then for integers n > 0 and real x > 0,∑
0≤k≤nx

1

k!
(−1)knkφ(k)(n) =

∫ ∞

0

∑
0≤k≤nx

1

k!
e−nt(nt)ku(t) dt

=

∫ ∞

0

P [Ynt ≤ nx]u(t) dt

where Ynt is a Poisson(nt) distributed random variable. By the weak law of large numbers,

P [Ynt ≤ nx] → 1t≤x as n→∞ for t 6= x, in other words for almost every t. Letting n→∞
above gives

lim
n→∞

∑
0≤k≤nx

1

k!
(−1)knkφ(k)(n) =

∫ x

0

u(t) dt.

Thus these integrals are determined by the Laplace transform. If∫ x

0

u(t) dt =

∫ x

0

v(t) dt

for all x, then u = v Lebesgue almost everywhere. And if u and v are right-continuous, they

agree everywhere.

The Fourier coefficients of a finite measure µ on Td = (−π, π]d are defined by

αx =

∫
Td

e−i〈x,t〉µ(dθ) for x ∈ Zd. (A.17)

A sequence {αx}x∈Zd of complex numbers is positive definite if∑
x,y

αx−ywxwy ≥ 0 (A.18)

for every finite collection w1, . . . , wn of complex numbers.

Theorem A.20 (Herglotz’ Theorem) Let {αx}x∈Zd be a sequence of complex numbers. They

are the Fourier coefficients of a finite nonnegative measure on Td iff the sequence is positive

definite.
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The necessity of positive definiteness follows from substituting (A.17) into (A.18) and

noting that the sum in (A.18) becomes
∫ ∣∣∑ e−i〈x,t〉

∣∣2 µ(dt).

To show sufficiency, we start by checking that a positive definite sequence is bounded.

Lemma A.21 For any positive definite sequence {αx}, α0 ≥ 0, α−x = αx, and |αx| ≤ α0.

Proof. Fix x, and in (A.18) set wx = w, w0 = 1, and all other w’s zero. Then

α0(|w|2 + 1) + αxw + αxw ≥ 0.

w = 0 gives α0 ≥ 0. Taking w > 0 forces αx + α−x real, and taking w = iθ for θ > 0 forces

iαx − iα−x real. This implies α−x = αx. And if α0 = 0, taking w = −αx gives 0 ≥ −2|αx|2,
so α0 = 0 implies that the sequence is identically zero.

In case α0 > 0, setting w = αx/α0 gives |αx|2 ≤ α2
0.

We can dispose of the trivial case immediately: if α0 = 0, take the measure identically

zero. From now on, assume α0 > 0. We claim that for 0 < r < 1, the function

fr(s) =
∑

x

αxr
|x|1ei〈x,s〉

defined for s = (s1, . . . , sd) is the density of a bounded nonnegative measure on Td. To show

fr(s) ≥ 0, set wx = r|x|1ei〈x,s〉 for x ≥ 0, and wx = 0 otherwise. Take a limit in (A.18) to a

sum over all x, y, justified for 0 < r < 1.

0 ≤
∑
x,y≥0

αx−yr
|x|1+|y|1ei〈x−y,s〉 =

∑
z

αze
i〈z,s〉

∑
x≥0∨z

r2
Pd

j=1 xj−
Pd

j=1 zj =

(∑
y≥0

r2|y|1

)
fr(s).

Next,

(2π)−d

∫
Td

fr(s)e
−〈x,s〉ds = αxr

|x|1

shows that

µr(ds) = (2π)−dα−1
0 fr(s)ds

is a probability measure on Td, with Fourier coefficients (αx/α0)r
|x|1 . Let µ be any weak

limit of µr as r ↗ 1 along some subsequence. Such a limit exists along some subsequence by

the compactness of Td. Then the measure α0µ has Fourier coefficients {αx}. This completes

the proof of Theorem A.20. This proof is from Feller’s Volume II [16].
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A.9 Sampling an ergodic random field with an irreducible random

walk

Suppose µ is a translation invariant, ergodic probability measure on the space {0, 1}Zd
. Let

ρ = µ{η : η(x) = 1}, independent of x by the translation invariance assumption.

Let p(x, y) = p(0, y − x) be a random walk transition on Zd, and let Xt be the corre-

sponding continuous time random walk with transition probabilities

pt(x, y) =
∞∑

n=0

e−ttn

n!
p(n)(x, y).

The next proposition shows that the ergodic average ρ of {η(x)} is produced by the average

of the values η(Xt) sampled by the random walk.

Proposition A.22 Assume that all bounded harmonic functions for p(x, y) are constant.

Then for every x ∈ Zd, we have the following limit in L2(µ):

lim
t→∞

∫
|Ex[η(Xt)]− ρ|2 µ(dη) = 0.

In particular, the conclusion is valid if p(x, y) is irreducible in the sense of definition (1.26).

Proof. For x ∈ Zd, t ≥ 0, and η ∈ {0, 1}Zd
, set

gt(x, η) = Ex[η(Xt)] =
∑

y

pt(x, y)η(y).

Let

φ(θ) =
∑

x

p(0, x)ei〈x,θ〉 , θ = (θ1, . . . , θd) ∈ Rd,

be the characteristic function of the jump distribution of Xt. Then

Exei〈Xt,θ〉 =
∑

y

pt(0, y)e
i〈x+y,θ〉 = ei〈x,θ〉

∞∑
n=0

e−ttn

n!

∑
y

p(n)(0, y)ei〈y,θ〉

= ei〈x,θ〉
∞∑

n=0

e−ttnφ(θ)n

n!
= ei〈x,θ〉e−t(1−φ(θ)).

The next to last equality above followed from the fact that the iterated transition probability

p(n)(0, y) is the distribution of a sum of n i.i.d. steps each with characteristic function φ.
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The covariance

α(x) = µ{η(0) = 1, η(x) = 1} − ρ2

is a positive definite sequence, so by Herglotz’s theorem there exists a bounded measure γ

on Td = [−π, π)d such that

α(x) =

∫
e−i〈x,θ〉γ(dθ).

In the next computation, let Yt be an independent copy ofXt, and write E(x,x) for expectation

over the pair process (Xt, Yt).∫
gt(x, η)gs(x, η)µ(dη) =

∫
Ex[η(Xt)] · Ex[η(Xs)]µ(dη)

= E(x,x)

∫
η(Xt)η(Ys)µ(dη) = E(x,x)[α(Ys −Xt)] + ρ2

= E(x,x)

∫
e−i〈Ys−Xt,θ〉γ(dθ) + ρ2 =

∫
Exei〈Ys,θ〉 · Exei〈Xt,θ〉γ(dθ) + ρ2

=

∫
e−s(1−φ(θ)) · e−t(1−φ(θ))γ(dθ) + ρ2.

Now apply this calculation to the three terms inside the second integral below, and note that

the ρ2 terms all cancel.∫
|gt(x, η)− gs(x, η)|2µ(dη) =

∫ {
gt(x, η)

2 − 2gt(x, η)gs(x, η) + gs(x, η)
2
}
µ(dη)

=

∫ ∣∣e−s(1−φ(θ)) − e−t(1−φ(θ))
∣∣2 γ(dθ).

The integrand in the last integral above is bounded, vanishes for θ such that φ(θ) = 1, and

converges to zero as s, t→∞ for other θ. (Note that |φ(θ)| ≤ 1.) We conclude that for each

fixed x, gt(x, ·) is Cauchy in L2(µ) as t→∞. Thus there exists an L2(µ) limit

g(x, η) = lim
t→∞

gt(x, η).

The Chapman-Kolmogorov equations for the random walk imply that

gs+t(x, η) =
∑

y

pt(x, y)gs(y, η)

for each s, t ≥ 0. Consequently∥∥∥∥∥g(x, η)−∑
y

pt(x, y)g(y, η)

∥∥∥∥∥
L2(µ)

≤ ‖g(x, η)− gs+t(x, η)‖L2(µ) +
∑

y

pt(x, y) ‖gs(y, η)− g(y, η)‖L2(µ)
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which vanishes as s → ∞. This can be repeated for the countably many states x ∈ Zd

and a countable dense set of times t. We conclude that for µ-almost every η, g(·, η) is a

harmonic function of the random walk, and so by the assumption, for µ-almost all η and all

x, g(x, η) = g(0, η).

By the translation property of the random walk transition and after a change in the

summation index,

gt(x, η) =
∑

y

pt(x, y)η(y) =
∑

y

pt(0, y − x)η(y)

=
∑

w

pt(0, w)η(w + x) = gt(0, θxη).

Passing to the t → ∞ limit gives g(x, η) = g(0, θxη) µ-almost surely. Combining with the

previous paragraph, we get

g(0, η) = g(0, θxη) for µ-almost every η.

Ergodicity implies that g(0, η) is µ-a.s. equal to its mean, and so almost surely

g(0, η) =

∫
g(0, η)µ(dη) = lim

t→∞

∫
gt(0, η)µ(dη) = ρ.

We have proved that gt(x, η) → ρ in L2(µ).

Corollary A.23 Let (X1(t), . . . , Xn(t)) be a vector of independent random walks of the kind

considered in Proposition A.22, and x = (x1, . . . , xn) ∈ Sn. Then

lim
t→∞

∫
|Ex[η(X1(t)) η(X2(t)) · · · η(Xn(t))] − ρn|2 µ(dη) = 0.

Proof. Since the random walks are independent and have identical transitions, the integral

equals ∫ ∣∣∣∣∣
n∏

i=1

Exi [η(X(t))] − ρn

∣∣∣∣∣
2

µ(dη).

Proceed by induction on n to show that this vanishes. The case n = 1 is Proposition A.22.

The basic step is this: Suppose ft(η) and gt(η) are L2(µ) functions such that ft → b and

gt → c in L2(µ) with constant limits, and ‖gt‖L∞(µ) is bounded uniformly in t. Then by the

triangle inequality

‖ftgt − bc‖L2(µ) = ‖(ft − b)gt + b(gt − c)‖L2(µ)

≤ ‖ft − b‖L2(µ)‖gt‖L∞(µ) + |b| ‖gt − c‖L2(µ)
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which vanishes as t→∞.

The proof of Proposition A.22 is from Section 2.2 in [26].

A.10 The vague topology of Radon measures

A [0,∞]-valued measure µ on the Borel sets of Rd is a Radon measure if µ(B) < ∞ for all

bounded Borel sets. The abstract definition of Radon measures on locally compact Hausdorff

spaces sometimes requires some regularity of µ (see for example Chapter 7 in [17]). On Rd

such properties are automatically satisfied, so we ignore the point. The space of Radon

measures on Rd is denoted by M. We go through the basic properties of the vague topology

of M here, assuming that the reader is familiar with the usual weak topology of probability

measures on Polish spaces.

Vague convergence µn → µ of Radon measures is defined by requiring that∫
Rd

f dµn →
∫

Rd

f dµ

for all compactly supported, continuous functions f . The space of such functions is denoted

by Cc(R
d).

Vague convergence can be defined by a metric that we next construct. First choose an

increasing sequence {K` : ` ≥ 1} of compact sets such that K` lies in the interior of K`+1,

Rd =
⋃
K`, and for every compact set H ⊆ Rd there is some ` such that H ⊆ K`.

For each `, choose a sequence φ`,m ∈ Cc(R
d) of functions that are supported on K`+1

and uniformly dense among the Cc(R
d)-functions supported on K`. This can be done for

example as follows. Let

g(x) = 1 ∧
dist(x,Kc

`+1)

dist(K`, Kc
`+1)

. (A.19)

This defines a Cc(R
d) function 0 ≤ g ≤ 1 that is identically 1 on K` and supported on K`+1.

The distance function used above is defined on any metric space (X, r) as follows: between

a point x and a set A,

dist(x,A) = inf{r(x, y) : y ∈ A},

and between two sets A and B,

dist(A,B) = inf{r(x, y) : x ∈ A, y ∈ B}.

For the collection {φ`,m : m ≥ 1} we take all products gp where p ranges over real polynomials

on Rd with rational coefficients. This creates a countable set. We check that the functions

gp are dense among K`-supported Cc(R
d)-functions. For a given f ∈ Cc(R

d) supported on
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K`, by the Stone-Weierstrass Approximation Theorem (Corollary 4.50 in [17]) there exists a

polynomial p with rational coefficients such that

sup
x∈K`+1

|f(x)− p(x)| ≤ ε.

Since g(x) ≡ 1 on K`, we get

|f(x)− g(x)p(x)| = |f(x)− p(x)| ≤ ε for x ∈ K`.

On K`+1 \K`, f(x) ≡ 0 and 0 ≤ g(x) ≤ 1, so

|f(x)− g(x)p(x)| = |g(x)p(x)| ≤ |p(x)| = |f(x)− p(x)| ≤ ε for x ∈ K`+1 \K`.

Finally on Kc
`+1 both f and gp vanish. These steps show that ‖f − gp‖∞ ≤ ε. We have

shown that the class of gp is dense among K`-supported Cc(R
d)-functions.

Note also that the sequence {φ`,m} includes the function g itself (the case p ≡ 1), so some

φ`,m satisfies φ`,m ≥ 1K`
.

Once this has been done for each `, let {φj : j ≥ 1} be a relabeling of the entire collection

{φ`,m : `,m ≥ 1}. Define the metric dM on M by

dM(µ, ν) =
∞∑

j=1

2−j
(
1 ∧

∣∣∣ ∫ φj dµ−
∫
φj dν

∣∣∣ ). (A.20)

The open sets in M determined by the metric dM form the vague topology of M.

If necessary, the functions φj in the metric can be assumed infinitely differentiable. Simply

replace the cutoff function g of (A.19) by a suitable convolution

1H ∗ ψ(x) =

∫
H

ψ(x− y) dy.

Take H to be a set such that K` ⊆ H ⊆ K`+1, dist(K`, H
c) > δ and dist(H,Kc

`+1) > δ

for some δ > 0. Let ψ be an infinitely differentiable nonnegative function supported on

the δ-ball B(0, δ) centered at the origin, with integral
∫
ψ(x) dx = 1. Then the convolution

1H ∗ ψ is supported on K`+1, identically one on K`, and infinitely differentiable.

It is clear that vague convergence µn → µ implies dM(µn, µ) → 0. Let us show that

dM(µn, µ) → 0 implies
∫
f dµn →

∫
f dµ for an arbitrary f ∈ Cc(R

d).

Lemma A.24 Let µ ∈ M, f ∈ Cc(R
d) and ε > 0. Then there are finite constants C =

C(µ, f, ε) and h = h(µ, f, ε) such that∣∣∣∫ f dµ−
∫
f dν

∣∣∣ ≤ ε+ CdM(µ, ν)

for all ν ∈ M such that dM(µ, ν) < 2−h.
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Proof. Fix ` such that f is supported on K`. Then fix m such that φm ≥ 1K`+1
. Given

ε > 0, let

δ =
ε

2
·
(
1 + ∫ φm dµ

)−1

and pick φj supported on K`+1 so that ‖φj − f‖∞ < δ. By the triangle inequality∣∣∣∫ f dµ−
∫
f dν

∣∣∣ ≤ ∫ ∣∣f − φj

∣∣ dµ+
∣∣∣∫ φj dµ−

∫
φj dν

∣∣∣
+

∫ ∣∣φj − f
∣∣ dν

≤ δµ(K`+1) +
∣∣∣∫ φj dµ−

∫
φj dν

∣∣∣+ δν(K`+1)

≤ δ

∫
φm dµ+

∣∣∣∫ φj dµ−
∫
φj dν

∣∣∣+ δ

∫
φm dν

≤ 2δ

∫
φm dµ+

∣∣∣∫ φj dµ−
∫
φj dν

∣∣∣+ δ
∣∣∣∫ φm dµ−

∫
φm dν

∣∣∣.
Let h = j +m. Then if dM(µ, ν) < 2−h, the last line above is bounded by

ε+ (2j + 2mδ)dM(µ, ν).

This completes the proof of the Lemma.

This lemma shows that dM(µn, µ) → 0 implies
∫
f dµn →

∫
f dµ. Thereby we have shown

that convergence under the metric dM is the same as the earlier defined vague convergence.

For separate use we retain one point from the proof of the lemma. Given f ∈ Cc(R
d),

we found φm such that |f | ≤ ‖f‖∞ · φm, and then∣∣∣∫ f dµ
∣∣∣ ≤ ‖f‖∞ ·

{ ∫
φm dν +

∣∣∣∫ φm dµ−
∫
φm dν

∣∣∣ }.
In particular, given f ∈ Cc(R

d), there exists an m = m(f) with this property: for any

µ, ν ∈ M such that dM(µ, ν) < 2−m,∣∣∣∫ f dµ
∣∣∣ ≤ ‖f‖∞ ·

{ ∫
φm dν + 2mdM(µ, ν)

}
. (A.21)

In the remainder of this section we treat two points: (i) a compactness criterion for M,

and (ii) the completeness and separability of dM, in other words that (M, dM) is a Polish

space. A set is precompact, also called relatively compact, if its closure is compact.
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Proposition A.25 Let U ⊆ M. U is precompact iff

sup
µ∈U

µ(K) <∞ for all compact K ⊆ Rd. (A.22)

Proof. Assume first that the closure Ū is compact. Given a compact set K ⊆ Rd,

pick f ∈ Cc(R
d) such that f ≥ 1K . The function µ 7→

∫
f dµ is continuous on M, and

consequently bounded on Ū . Then

sup
µ∈U

µ(K) ≤ sup
µ∈Ū

∫
f dµ <∞.

For the converse part, suppose U has the boundedness property (A.22). We first show

that an arbitrary sequence in U has a convergent subsequence, although the limit does not

have to lie in U since U is not assumed closed. Let {µn} be a sequence in U . For each

`, the sequence {µn(K`)} is bounded by assumption. Use a diagonal argument to pick a

subsequence, again denoted by {µn}, along which

µn(K`) −−−→
n→∞

c`

for a finite number c`, for each `. The sequence c` is nondecreasing. If c` = 0 for all `, the

subsequence µn converges to the identically zero measure.

Otherwise there exists an index ¯̀ such that c` > 0 for ` ≥ ¯̀. By dropping finitely many

terms from the subsequence µn, we may assume µn(K`) > 0 for all n and ` ≥ ¯̀.

Let first ` = ¯̀. Define a probability measure ν̄`,n on K` by

ν̄`,n(B) =
µn(B ∩K`)

µn(K`)
for Borel sets B ⊆ K`.

The weak topology of probability measures on a compact set is compact. Consequently there

exists a subsequence {ν̄`,nk
} and a probability measure ν̄` on K` such that∫

h dν̄`,nk
−−−→
k→∞

∫
h dν̄`

for all continuous functions h on K`. Define a Borel measure ν` on Rd by

ν`(A) = c`ν̄`(A ∩K`) for Borel A ⊆ Rd.

Then for any f ∈ Cc(R
d) supported on K`,∫

f dµnk
= µnk

(K`)

∫
K`

f dν̄`,nk
−−−→
k→∞

c`

∫
K`

f dν̄` =

∫
f dν`.
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Starting with the subsequence µnk
thus constructed for `, repeat the step for ` + 1, and

so on, inductively for all ` ≥ ¯̀. Then a diagonal argument gives a single subsequence {µnk
}

and a collection of Borel measures {ν` : ` ≥ ¯̀} on Rd such that∫
f dµnk

−−−→
k→∞

∫
f dν` (A.23)

for any f ∈ Cc(R
d) supported on K`. The measures {ν`} are consistent in the sense that if

f ∈ Cc(R
d) is supported on K`0 , then for all ` ≥ `0,∫

f dν` = lim
k→∞

∫
f dµnk

=

∫
f dν`0 .

Then we can uniquely define a measure µ ∈ M by setting, for f ∈ Cc(R
d),∫

f dµ =

∫
f dν`

for any ` such that f is supported on K`. The vague convergence µnk
→ µ is already

contained in the limits established above.

We have shown that any sequence in U has a subsequence that converges vaguely to some

measure in M.

In a metric space, a set A is compact iff it is sequentially compact, which means that

every sequence in A has a subsequence that converges to a limit in A. Given a sequence {µn}
in Ū , pick a sequence {µ′n} in U such that dM(µn, µ

′
n) < n−1. By the above argument, there

is a convergent subsequence µ′nk
→ µ. The limit µ of a sequence in U lies in the closure Ū .

Since dM(µnk
, µ) ≤ dM(µ′nk

, µ) + n−1
k , also µnk

→ µ. We have shown that Ū is sequentially

compact.

Proposition A.26 (M, dM) is a complete separable metric space.

Proof. We leave it to the reader to check that a countable dense set in M is given by

measures

ν =
m∑

i=1

biδxi

where m <∞, b1, . . . , bm are positive rationals, and x1, . . . , xm are points in Rd with rational

coordinates.

To show completeness, let {µn} be a Cauchy sequence in the dM metric. Then {
∫
φj dµn}

is a Cauchy sequence for each φj. For any compact set K, 1K is dominated by some φj by the

original choice of the functions {φj}. Consequently the sequence {µn(K)} is bounded. By

204



Proposition A.25 the set {µn} is precompact, and so there is a dM-convergent subsequence

µnk
→ µ. Then by the Cauchy property the full sequence µn converges to µ. This establishes

the completeness of the metric dM.

A.11 Heat equation

We derive here existence and uniqueness theorems for the linear partial differential equations

that arise in the hydrodynamic limits of symmetric processes.

Let Γ = (γi,j)1≤i,j≤d be a real symmetric matrix with nonnegative eigenvalues. Define a

differential operator A by

Av =
∑

1≤i,j≤d

γi,jvxi,xj
. (A.24)

Given a bounded measurable function v0 on Rd, consider the initial value problem

vt = 1
2
Av in Rd × (0, T ), v(x, 0) = v0(x) for x ∈ Rd. (A.25)

We say a bounded measurable function v on Rd × [0,∞) is a weak solution of (A.25) if∫
Rd

φ(x)v(x, t) dx−
∫

Rd

φ(x)v0(x) dx− 1
2

∫ t

0

∫
Rd

Aφ(x)v(x, s) dx ds = 0 (A.26)

for all compactly supported, infinitely differentiable test functions φ. Let C∞
c (Rd) denote

the space of such functions.

We can find a weak solution in terms of a multidimensional Gaussian distribution. Let

us represent elements of Rd as column vectors and let a prime denote transposition. An

Rd-valued random vector X = [X1, . . . , Xd]
′ has the N (0,Γ) distribution if its characteristic

function is given by

Eei〈θ,X〉 = exp
{
−1

2
〈θ,Γθ〉

}
for θ ∈ Rd.

Here

〈θ,X〉 =
d∑

i=1

θiXi = θ′X

is the Euclidean inner product on Rd. An N (0,Γ) random vector can be manufactured from

independent standard normal random variables, see Exercise A.10.

Theorem A.27 Suppose v0 is a bounded measurable function on Rd and let X have N (0,Γ)

distribution. Then

v(x, t) = Ev0(x− t1/2X) (A.27)

is a weak solution of (A.25) in the sense (A.26).
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Proof. Noting that∫
Rd

Aφ(x)v(x, s) dx =
∑
i,j

γi,j E

∫
Rd

v0(x− s1/2X)φxi,xj
(x) dx

=
∑
i,j

γi,j E

∫
Rd

v0(x)φxi,xj
(x+ s1/2X) dx

=

∫
Rd

v0(x)
{∑

i,j

γi,j Eφxi,xj
(x+ s1/2X)

}
dx

and by doing a simple reorganization in the first integral of (A.26), we see that the require-

ment is to show∫
Rd

dx v0(x)
{
Eφ(x+ t1/2X)− φ(x)− 1

2

∫ t

0

∑
i,j

γi,jEφxi,xj
(x+ s1/2X) ds

}
= 0.

In other words, we need to check that

Eφ(x+ t1/2X)− φ(x)− 1
2

∫ t

0

∑
i,j

γi,jEφxi,xj
(x+ s1/2X) ds = 0

for φ ∈ C∞
c (Rd), x ∈ Rd and t ≥ 0. We leave this to the reader. See Exercise A.11.

The weak solution found here may or may not be differentiable, depending on v0. See

Exercise A.12.

We turn to the uniqueness theorem. For this we assume Γ nonsingular. Then the N (0,Γ)

distribution has a density on Rd (Exercise A.10). The function v(x, t) = Ev0(x + t1/2X) is

given by

v(x, 0) = v0(x) (A.28)

and for t > 0

v(x, t) = (2πt)−d/2(det Γ)−1/2

∫
Rd

v0(y) exp
{
− 1

2t

〈
x− y,Γ−1(x− y)

〉}
dy (A.29)

We generalize the type of solution from a function to a measure-valued path. Suppose

α : [0,∞) → M is a vaguely continuous path in the space M of Radon measures on Rd.

Write α(t, dx) for the measure on Rd that is the value of α at time t, and

α(t, φ) =

∫
Rd

φ(x)α(t, dx)
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for the intergral. Let us say that such a path α is a weak solution of (A.25) if the initial

condition

α(0, dx) = v0(x)dx (A.30)

is satisfied, and

α(t, φ)−
∫

Rd

φ(x)v0(x) dx− 1
2

∫ t

0

α(s, Aφ) ds = 0 (A.31)

for all φ ∈ C∞
c (Rd).

Here is the uniqueness theorem for weak solutions that we need for the hydrodynamic

limit of symmetric exclusion. We make a boundedness assumption on the measures α(t) in

terms of open Euclidean balls B(x, r) of radius r centered at x in Rd. This assumption is

stronger than needed but easily satisfied in our application.

Theorem A.28 Suppose v0 is a bounded measurable function on Rd. Suppose α is a vaguely

continuous M-valued path that satisfies (A.30) and (A.31) for all test functions φ ∈ C∞
c (Rd).

Assume that for some constants 0 < C, r0 <∞,

α(t, B(x, r)) ≤ Crd (A.32)

for all r ≥ r0, x ∈ Rd, and t ≥ 0. Define v(x, t) by (A.28) and (A.29). Then α(t, dx) =

v(x, t)dx for all t ≥ 0.

This theorem will be proved after several steps. We begin with a textbook result for the

heat equation. For 0 < T < ∞, let C2
1(Rd × (0, T ]) denote the class of functions u defined

for (x, t) ∈ Rd × (0, T ] such that the partial derivatives ut, uxi
, and uxi,xj

(1 ≤ i, j ≤ d)

exist and are continuous on Rd × (0, T ), and can be extended continuously to Rd × (0, T ].

For x = (x1, . . . , xd) ∈ Rd, |x| denotes the Euclidean norm |x| =
(
x2

1 + · · · + x2
d

)1/2
. The

Laplacian is the operator ∆u = ux1,x1 + ux2,x2 + · · ·+ uxd,xd
.

Let u0 be a given bounded continuous function on Rd. Consider the initial value problem

for the heat equation

ut = 1
2
∆u in Rd × (0, T ), (A.33)

u(x, 0) = u0(x) for x ∈ Rd. (A.34)

The relevant distribution is now the standard d-dimensional Gaussian, so we define a function

u on Rd × [0,∞) by u(x, 0) = u0(x), and

u(x, t) = (2πt)−d/2

∫
Rd

e−
1
2t
|x−y|2u0(y) dy for (x, t) ∈ Rd × (0,∞). (A.35)
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Theorem A.29 The function u defined above is continuous on Rd × [0,∞), infinitely dif-

ferentiable on Rd × (0,∞), and satisfies ut = 1
2
∆u on Rd × (0,∞).

Let 0 < T <∞. There is no other solution u of (A.33)–(A.34) of class C2
1(Rd × (0, T ]),

continuous on Rd × [0, T ], and satisfying the bound

|u(x, t)| ≤ CeB|x|2 for (x, t) ∈ Rd × [0, T ]

for some finite constants B,C.

This theorem is a combination of Theorems 1 and 7 of Section 2.3 in [14]. The uniqueness

part is proved there via the maximum principle.

Next we extend Theorem A.29 to the operator A defined in (A.24), so consider the initial

value problem (A.25). From now on we assume that the matrix Γ is nonsingular. Since we

already assumed Γ has nonnegative eigenvalues, it is equivalent to require strictly positive

eigenvalues. Yet another equivalent statement is that there exists a constant θ > 0 such that∑
i,j

γi,jxixj ≥ θ|x|2

for all x ∈ Rd. Equation (A.25) is then called uniformly parabolic.

Theorem A.30 Suppose v0 is a bounded continuous function on Rd. Then the function v

defined in (A.28)–(A.29) is continuous on Rd×[0,∞), infinitely differentiable on Rd×(0,∞),

and satisfies vt = 1
2
Av on Rd × (0,∞).

Let 0 < T < ∞. There is no other solution v of (A.25) of class C2
1(Rd × (0, T ]),

continuous on Rd × [0, T ], and satisfying the bound

|v(x, t)| ≤ CeB|x|2 for (x, t) ∈ Rd × [0, T ] (A.36)

for some finite constants B,C.

Proof. That v has the continuity and smoothness claimed, and satisfies vt = 1
2
Av on

Rd × (0,∞), can be verified from the definition (A.29). These properties come also from a

direct relation of (A.29) to the heat semigroup (A.35), which will give us the uniqueness.

As a real symmetric matrix, Γ can be diagonalized as Γ = HΛH ′ where

Λ =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λd


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is the diagonal matrix of eigenvalues, and the columns ofH = [h1,h2, . . . ,hd] are an orthonor-

mal set of eigenvectors of Γ. H is an orthogonal matrix, which means that H ′H = HH ′ = I.

Since the eigenvalues of Γ are assumed strictly positive, the matrices

Λ1/2 =


λ

1/2
1 0 · · · 0

0 λ
1/2
2 · · · 0

...
...

. . .
...

0 0 · · · λ
1/2
d

 and Λ−1/2 =


λ
−1/2
1 0 · · · 0

0 λ
−1/2
2 · · · 0

...
...

. . .
...

0 0 · · · λ
−1/2
d

 ,

are nonsingular and inverses of each other. From

Γ−1 = HΛ−1H ′ = HΛ−1/2Λ−1/2H ′ = (Λ−1/2H ′)′(Λ−1/2H ′)

the quadratic form can be re-expressed as

(x− y)′Γ−1(x− y) = (x− y)′(Λ−1/2H ′)′(Λ−1/2H ′)(x− y) = |Λ−1/2H ′(x− y)|2.

Thereby the definition of v(x, t) can be rewritten as

v(x, t) = (2πt)−d/2(det Γ)−1/2

∫
Rd

v0(y) exp
{
− 1

2t
|Λ−1/2H ′(x− y)|2

}
dy.

After a linear change of variable in the integral,

v(x, t) = (2πt)−d/2

∫
Rd

v0(HΛ1/2y) exp
{
− 1

2t
|Λ−1/2H ′x− y|2

}
dy. (A.37)

Set u(x, t) = v(HΛ1/2x, t). Then (A.37) becomes a special case of (A.35) with u0(x) =

v0(HΛ1/2x).

By Theorem A.29, u is continuous on Rd× [0,∞), infinitely differentiable on Rd×(0,∞),

and satisfies ut = 1
2
∆u. Since v(x, t) = u(Λ−1/2H ′x, t), v has the regularity properties of u,

and the chain rule shows vt = 1
2
Av.

Let ṽ be an arbitrary solution of (A.25) of class C2
1(Rd × (0, T ]) ∩ C(Rd × [0, T ]) and

exponentially bounded as in (A.36). Define ũ(x, t) = ṽ(HΛ1/2x, t). Then

ũ(x, 0) = ṽ(HΛ1/2x, 0) = v0(HΛ1/2x) = u0(x).

Differentiation shows that ũt = 1
2
∆ũ. The uniqueness part of Theorem A.29 implies that

ũ = u, from which follows ṽ = v.

Note that we used several times in the proof the nonsingularity of the matrix HΛ1/2,

which is a consequence of the assumption λi > 0.

Proof of Theorem A.28. To apply Theorem A.30 we need some regularity for the solution,

which we get from convolution with a smooth approximate identity. Let f ∈ C∞
c (Rd) be

209



nonnegative, symmetric [meaning f(x) = f(−x)], supported on the unit ball B(0, 1), and

have integral
∫
f dx = 1. For ε > 0, let f ε(x) = ε−df(x/ε). If we think of f ε as a probability

distribution on Rd, f ε converges weakly to a point mass at the origin as ε→ 0.

Define

vε(x, t) = [f ε ∗ α(t)](x) =

∫
Rd

f ε(x− y)α(t, dy).

First we argue that vε ∈ C2
1(Rd × (0, T ]) ∩ C(Rd × [0, T ]) for any T .

Suppose for the moment g is any compactly supported, continuous function on Rd, and

set

ḡ(x, t) = [g ∗ α(t)](x) =

∫
Rd

g(x− y)α(t, dy). (A.38)

Fix (x, t) and consider a nearby point (y, s).

|ḡ(x, t)− ḡ(y, s)| ≤ |ḡ(x, t)− ḡ(x, s)|+ |ḡ(x, s)− ḡ(y, s)|

≤
∣∣∣ ∫ g(x− z)α(t, dz)−

∫
g(x− z)α(s, dz)

∣∣∣+ ∫ |g(x− z)− g(y − z)|α(s, dz).

The last line above tends to zero as (y, s) → (x, t), for the following reasons. By the

assumption of continuity of t 7→ α(t) and the definition of vague convergence,∫
g(x− z)α(s, dz) −−→

s→t

∫
g(x− z)α(t, dz).

Suppose y ∈ B(x, 1). There is a fixed ball B(0, r) such that both z 7→ g(x − z) and

z 7→ g(y−z) are supported on B(0, r) for all y ∈ B(x, 1). By assumption, α(s, B(0, r)) ≤ Crd

for all s (increase r if necessary for this). Since g is uniformly continuous, we get

lim
δ→0

sup
y∈B(x,δ)

sup
s≥0

∫
|g(x− z)− g(y − z)|α(s, dz) ≤ lim

δ→0
sup

|z−w|≤δ

|g(z)− g(w)| · Crd = 0.

This shows ḡ continuous on Rd × [0,∞).

By the smoothness assumption on f and the bound on α(t), spatial derivatives of vε can

be taken inside the integral. For example,

vε
xi,xj

(x, t) =

∫
(f ε)xi,xj

(x− y)α(t, dy).

By taking g = (f ε)xi,xj
in (A.38), the continuity of ḡ is the same as the continuity of vε

xi,xj
.

This gives the continuity in (x, t) of all spatial partial derivatives of vε.
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To get the continuity of the time derivative vt we use the equation. Replace the test

function φ in (A.31) by f ε ∗ φ, and change the order of integration. Note that A(f ε ∗ φ) =

f ε ∗ Aφ. This gives∫
φ(x)vε(x, t) dx−

∫
φ(x)vε(x, 0) dx− 1

2

∫ t

0

ds

∫
dxAφ(x) vε(x, s) = 0.

Integrate by parts in the last term to get∫
φ(x)vε(x, t) dx−

∫
φ(x)vε(x, 0) dx− 1

2

∫
dx φ(x)

∫ t

0

dsAvε(x, s) = 0.

Since this is true for arbitrary compactly supported smooth φ, it follows that

vε(x, t)− vε(x, 0)− 1
2

∫ t

0

dsAvε(x, s) = 0 (A.39)

for Lebesgue almost every x. By continuity, this is true for all x.

Avε(x, s) =

∫
Af ε(x− y)α(s, dy)

is continuous in s by the vague continuity of α(s). Differentiating (A.39) gives vε
t (x, t) =

Avε(x, t), and we see that vε has a continuous time derivative. We have shown that vε ∈
C2

1(Rd × (0,∞)). The continuity of vε down to the t = 0 boundary was already part of the

continuity argument above.

The equation vε
t (x, t) = 1

2
Avε(x, t) was derived as part of the previous paragraph. Bound-

edness of vε follows from the assumption on α(t):

|vε(x, t)| ≤ ‖f ε‖∞ α(t, B(x, ε)) ≤ Cε−d‖f‖∞. (A.40)

Thus Theorem A.30 applies to vε. Abbreviate

qt(z) = (2πt)−d/2(det Γ)−1/2 exp
{
− 1

2t
|Λ−1/2H ′z|2

}
.

By the definition of vε and the initial condition on α(0),

vε(y, 0) =

∫
f ε(y − z)α(0, dz) =

∫
f ε(y − z) v0(z) dz.

By the uniqueness part of Theorem A.30 vε must be given by formula (A.29) with initial

function vε(y, 0). Use this and symmetry f(y − z) = f(z − y) to write

vε(x, t) =

∫
vε(y, 0)qt(x− y) dy =

∫
dz v0(z)

∫
dy f ε(y − z)qt(x− y)

=

∫
dz v0(z)

∫
dy f ε(z − y)qt(x− y).
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This already implies that vε(x, t) → v(x, t) as ε→ 0 because by standard results for approx-

imate identities (Theorem 8.14(a) in [17]), for a fixed (x, t)[
f ε ∗ qt(x− ·)

]
(z) −−→

ε→0
qt(x− z) in L1(Rd).

Our goal is to derive the equality∫
φ(x)α(t, dx) =

∫
φ(x)v(x, t) dx

by showing that both sides are limits of
∫
φ(x)vε(x, t) dx as ε → 0. Hence we need to

integrate over the difference vε(x, t)− v(x, t) multiplied by a test function φ(x). The crude

bound (A.40) is useless as ε→ 0, so we derive a bound for the difference vε(x, t)− v(x, t).

Consider t > 0 fixed for the remainder of the proof. In the next calculation, use the

boundedness of v0 and
∫
dy f ε(z − y) = 1, do a change of variable y = z − εw in the inner

dy-integral, note that f is supported on B(0, 1) and again
∫
f(w) dw = 1, and finally one

more change of variable.

|vε(x, t)− v(x, t)|

=

∣∣∣∣∫ dz v0(z)

∫
dy f ε(z − y)qt(x− y)−

∫
dz v0(z)qt(x− z)

∣∣∣∣
≤ ‖v0‖∞ ·

∫
dz

∣∣∣∣∫ dy f ε(z − y)
(
qt(x− y)− qt(x− z)

)∣∣∣∣
= ‖v0‖∞ ·

∫
dz

∣∣∣∣∫ dw f(w)
(
qt(x− z + εw)− qt(x− z)

)∣∣∣∣
≤ ‖v0‖∞ ·

∫
dz sup

w∈B(0,1)

∣∣qt(x− z + εw)− qt(x− z)
∣∣

≤ ‖v0‖∞ ·
∫
dz sup

w∈B(0,1)

∣∣qt(z + εw)− qt(z)
∣∣

≤ Cε. (A.41)

The last inequality follows for example by applying the mean value theorem to the integrand

(Exercise A.13).

From above we get the uniform estimate

sup
x∈Rd

|vε(x, t)− v(x, t)| ≤ Cε. (A.42)

For φ ∈ C∞
c (Rd), this implies∫

φ(x)vε(x, t) dx −→
∫
φ(x)v(x, t) dx as ε→ 0.
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Note that the integrals are actually restricted to a fixed compact set that supports φ, and

so (A.42) is sufficient for the convergence. On the other hand,∫
φ(x)vε(x, t) dx =

∫
α(t, dy)

∫
dx f ε(x− y)φ(x) −−→

ε→0

∫
α(t, dy)φ(y).

We used the convergence f ε ∗ φ → φ that happens uniformly and supported by a fixed

compact set (Theorem 8.14(b) in [17]). Comparing these two limits for all test functions

implies that α(t, dx) = v(x, t)dx.

Exercise A.10 Multivariate Gaussian distributions. Let Γ be a real symmetric nonnegative

definite matrix. Let Λ = diag[λ1, . . . , λd] be the diagonal matrix of eigenvalues of Γ, and

Γ = HΛH ′ an orthogonal diagonalization of Γ. Let Z1, . . . , Zd be i.i.d. standard normal

random variables, in other words EZi = 0 and E[Z2
i ] = 1. Set Yi = λiZi. In particular if

λi = 0 then Yi is identically zero. Check that Y = [Y1, . . . , Yd]
′ has N (0,Λ)-distribution.

Define X by the matrix product X = HY . Then X has N (0,Γ)-distribution.

If Γ is nonsingular, X has density

f(x) = (2π)−d/2(det Γ)−1/2 exp
{
−1

2
〈x,Γ−1x〉

}
.

Exercise∗ A.11 Completion of the proof of Theorem A.27. Check that for X ∼ N (0,Γ)

and φ ∈ C∞
c (Rd),

Eφ(x+ t1/2X)− φ(x)− 1
2

∫ t

0

∑
i,j

γi,jEφxi,xj
(x+ s1/2X) ds = 0 (A.43)

for all (x, t) ∈ Rd × [0,∞).

Here is one approach. First check (A.43) by explicit computation for φθ(x) = exp{i〈θ, x〉}.
Then consider the Fourier transform

f̂(ξ) =

∫
Rd

f(y)e−2πi〈y,ξ〉 dy =

∫
Rd

f(y)φ−2πy(ξ) dy

of a function f in Schwartz space S. (We follow here the conventions of Folland [17]). By

the case of φθ,

Ef̂(x+ t1/2X) =

∫
f(y)Eφ−2πy(x+ t1/2X) dy

=

∫
f(y)φ−2πy(x) dy +

∫
dy f(y) 1

2

∫ t

0

∑
i,j

γi,jEφ
−2πy
xi,xj

(x+ s1/2X) ds.
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The last line above can be transformed into

f̂(x) + 1
2

∫ t

0

∑
i,j

γi,jE
[
(f̂)xi,xj

(x+ s1/2X)
]
ds

and this shows that (A.43) holds for f̂ if f ∈ S. It remains only to note that this covers all

of C∞
c (Rd) because the Fourier transform is an isomorphism on S [17, Corollary 8.28].

Exercise A.12 Let a > 0, and

Γ =

[
1 a

a a2

]
.

Use Theorem A.27 to solve the initial value problem (A.25) on R2× [0,∞) with initial data

v0(y1, y2) = g(y1 − a−1y2) for a given bounded function g on R. [Answer: v((x1, x2), t) =

g(x1 − a−1x2).] Check that if g ∈ C2(R), then the solution is classical, in other words the

derivatives vt and vxi,xj
exist and satisfy vt = 1

2
Av.

Exercise∗ A.13 Completion of the proof of inequality (A.41). Show that∫
sup

w∈B(0,1)

∣∣qt(z + εw)− qt(z)
∣∣ dz ≤ Cε

for a constant C that depends on t and the matrix Γ but not on ε. To simplify the integral,

start with a change of variable that converts the kernel qt(z) into a standard normal density.

A.12 Hamilton-Jacobi equations

We discuss here a first-order partial differential equation of the type

ut + f(∇u) = 0 , u|t=0 = u0, (A.44)

where a real-valued initial function u0 on Rd is given, and the solution u(x, t) on Rd× [0,∞)

is sought. ut = ∂u/∂t is the time derivative of u, and ∇u = (ux1 , . . . , uxd
) is the gradient

with respect to spatial variables. Equation (A.44) is of Hamilton-Jacobi type. To understand

its solutions one is forced to consider weak solutions u for which the derivatives do not exist

at every point. This type of equation appeared as the hydrodynamic limit for the interface

model studied in Chapter 9. Here we prove results that are not particular to the case in

Chapter 9 but are needed there.
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We assume that the function f is [−∞,∞)-valued, upper semicontinuous, and concave

on Rd. Upper semicontinuity means that the sets {f ≥ s} are closed for all real s, or

equivalently

lim sup
ρ→λ

f(ρ) ≤ f(λ) for all λ ∈ Rd.

Concavity means that

f(sρ+ (1− s)λ) ≥ sf(ρ) + (1− s)f(λ) for all ρ, λ ∈ Rd and 0 < s < 1.

The concave conjugate f ∗ of f is defined by

f ∗(x) = inf
ρ∈Rd

{x · ρ− f(ρ)} for x ∈ Rd.

Then f ∗ is again concave and upper semicontinuous, and f is its own double dual:

f(ρ) = inf
x∈Rd

{x · ρ− f ∗(x)} for ρ ∈ Rd.

Let u0 be a real-valued function on Rd, and define

u(x, t) = sup
y∈Rd

{
u0(y) + tf∗

(
x− y

t

)}
(A.45)

for (x, t) ∈ Rd × (0,∞). For t = 0 set u(x, 0) = u0(x).

Lemma A.31 For all 0 < s < t and x ∈ Rd,

u(x, t) = sup
y∈Rd

{
u(y, s) + (t− s)f ∗

(
x− y

t− s

)}
(A.46)

Proof. Let β be the quantity on the right-hand side (A.46). By (A.45) concavity,

β = sup
y,z

{
u0(z) + sf ∗

(
y − z

s

)
+ (t− s)f ∗

(
x− y

t− s

)}
≤ sup

y,z

{
u0(z) + tf∗

(
x− z

t

)}
= u(x, t).

Let c < u(x, t). Pick y so that

u0(y) + tf∗
(
x− y

t

)
≥ c.
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Let

z =
s

t
x+

(
1− s

t

)
y.

Then
x− y

t
=
x− z

t− s
=
z − y

s
,

and by (A.45) applied to u(z, s),

β ≥ u(z, s) + (t− s)f ∗
(
x− z

t− s

)
≥ u0(y) + sf ∗

(
z − y

s

)
+ (t− s)f ∗

(
x− z

t− s

)
= u0(y) + tf∗

(
x− y

t

)
≥ c.

Let c↗ u(x, t).

Lemma A.32 Assume that for each x the supremum in (A.45) is attained at some y. Sup-

pose u is differentiable at (x, t) ∈ Rd × (0,∞). Then

ut(x, t) + f(∇u(x, t)) = 0.

Proof. For z ∈ Rd and δ > 0,

u(x+ δz, t+ δ) = sup
y

{
u(y, t) + δf ∗

(
x+ δz − y

δ

)}
≥ u(x, t) + δf ∗(z).

From this

δ−1 {u(x+ δz, t+ δ)− u(x, t)} ≥ f ∗(z),

and then after δ ↘ 0 by the differentiability assumption,

ut(x, t) + z · ∇u(x, t)− f ∗(z) ≥ 0.

Since this was valid for all z,

ut(x, t) + f(∇u(x, t)) = ut(x, t) + inf
z
{z · ∇u(x, t)− f ∗(z)} ≥ 0.

To get the opposite inequality, choose y so that u(x, t) = u0(y) + tf∗((x − y)/t). For

δ > 0, let

z =
t− δ

t
x+

δ

t
y = x− δ · x− y

t
.
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Then
x− y

t
=
z − y

t− δ
,

and

u(x, t)− u(z, t− δ) ≤
{
u0(y) + tf∗

(
x− y

t

)}
−
{
u0(y) + (t− δ)f ∗

(
z − y

t− δ

)}
= δf ∗

(
x− y

t

)
.

Consequently

ut(x, t) +
x− y

t
· ∇u(x, t) = lim

δ→0
δ−1 {u(x, t)− u(z, t− δ)} ≤ f ∗

(
x− y

t

)
.

And finally by concave duality,

ut(x, t) + f(∇u(x, t)) = ut(x, t) + inf
w∈Rd

{w · ∇u(x, t)− f ∗(w)}

≤ ut(x, t) +
x− y

t
· ∇u(x, t)− f ∗

(
x− y

t

)
≤ 0.

The lemma is proved.

The correct notion of weak solution for Hamilton-Jacobi equations is the viscosity so-

lution, developed in references in [5] and [4]. Suppose now the function f in the equation

(A.44) is continuous and real-valued on all of Rd. Concavity is not relevant for this definition.

A continuous function u(x, t) on Rd × [0,∞) that satisfies the initial condition u(x, 0) =

u0(x) is a viscosity solution of (A.44) if the following holds for all continuously differentiable

functions φ on Rd × (0,∞):

if u− φ has a local maximum at (x0, t0), then

φt(x0, t0) + f
(
∇φ(x0, t0)

)
≤ 0 ,

and if u− φ has a local minimum at (x0, t0), then

φt(x0, t0) + f
(
∇φ(x0, t0)

)
≥ 0 .

We refer to Chapter 10 in Evans [14] for a general discussion of viscosity solutions of

Hamilton-Jacobi equations. From our point of view, a small drawback in Evans’s treatment

is that only bounded viscosity solutions are considered. The height functions in Chapter 9

for which we need this theory are typically unbounded. Partly for this reason we prove the

viscosity solution property for our case in Section 9.5.5. Another reason for giving this proof

is that our Hamiltonian (or velocity) f also fails the assumptions used in [14].

The following uniqueness theorem of Ishii [21] for unbounded viscosity solutions applies

to our situation in Chapter 9.
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Theorem A.33 Assume the Hamiltonian f in (A.44) is a continuous function on Rd. Sup-

pose u and v are uniformly continuous functions on Rd×[0, T ] and both are viscosity solutions

of (A.44). Then u = v.
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[35] T. Seppäläinen. Hydrodynamic scaling, convex duality and asymptotic shapes of growth

models. Markov Process. Related Fields, 4(1):1–26, 1998.
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[39] T. Seppäläinen. Hydrodynamic profiles for the totally asymmetric exclusion process

with a slow bond. J. Statist. Phys., 102(1-2):69–96, 2001.

221
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