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Abstract. Notes on the Maxwell-Woodroofe martingale approach to central limit
theorems for Markov chains.

1. Introduction

Suppose {Xk} are independent and identically distributed random variables with
values in some measurable space (S,B), defined on a probability space (Ω,F , P ),
with common distribution µ. Suppose g : S → R is a measurable function such that∫

g dµ = 0 and σ2 =

∫
g2 dµ < ∞.

Let

Sn =
n−1∑
k=0

g(Xk).

Then the basic central limit theorem says that the random variable n−1/2Sn converges
weakly to a centered normal distribution with variance σ2. Furthermore, define the
process Yn(t) = n−1/2S[nt] for t ∈ [0,∞), with paths in the space D[0,∞). According
to Donsker’s invariance principle, the process Yn converges weakly on D to the process
σB where B = {B(t) : t ∈ [0,∞)} denotes standard Brownian motion.

The purpose of these notes is to develop results of this kind for the case where
{Xk} is a Markov chain. Presently we cover the approach of Maxwell-Woodroofe [1]
with some small improvement from [2].

Notation. Z+ = {0, 1, 2, 3, . . . } is the set of nonnegative integers, N = {1, 2, 3, . . . }
the set of positive integers. C, C1, C2, . . . denote constants that do not depend on the
growing parameter of the context (often n) and whose precise value may change from
line to line. The floor and ceiling of a real number are [x] = max{n ∈ Z : x ≤ n} and
dxe = min{n ∈ Z : x ≤ n}.

Date: November 3, 2006.
Author partially supported by National Science Foundation grant DMS-0402231.

1



2

2. A Martingale invariance principle

Let Mn be a mean 0 Rd-valued vector martingale in L2, with differences Yk =
Mk − Mk−1. A vector martingale simply means that each coordinate forms a real-
valued martingale. Define the scaled process M̄n(t) = n−1/2M[nt]. Assume

1

n

n∑
k=1

E( YkY
T
k | Fk−1 ) → Γ in probability

for a symmetric, nonnegative definite d× d matrix Γ, and

1

n

n∑
k=1

E( |Yk|21{|Yk| ≥ ε
√

n} |Fk−1 ) → 0 in probability.

Then M̄n converges weakly on the path space DRd [0,∞) to a process W = {W (t) :
t ≥ 0} which is a Brownian motion with diffusion matrix Γ. This last definition
means that W (0) = 0, W has continuous paths, independent increments, and for
s < t the d-vector W (t) − W (s) has Gaussian distribution with mean zero and
covariance matrix (t − s)Γ. One can produce such a process by finding a matrix
Λ such that Γ = ΛΛT , and by defining W (t) = ΛB(t) where B is a d-dimensional
standard Brownian motion.

3. Markov chain notation and basics

There is a measurable space (S,B) which is the state space of the process. A
transition probability p is a function p(x, A) of x ∈ S and A ∈ B and satisfies these
properties:

(i) For each A ∈ B, p(x, A) is a measurable function of x ∈ S.
(ii) For each x ∈ S, p(x, · ) is a probability measure on (S,B).

The integral
∫

f(y) p(x, dy) is a measurable function of x for any real or complex
measurable function f for which the integrals are well-defined. In particular, the
transition probability p defines two operators, one on the space B(S) of bounded
measurable functions f on (S,B), the other on the space M(S) of finite signed mea-
sures on (S,B). Both are denoted by P , but distinguished by left and right notation:

Pf(x) =

∫
f(y) p(x, dy) and µP (A) =

∫
p(x, A) µ(dx).

The functions and measures could also be complex-valued if desired.
The path space of the process is Ω = SZ+ with its product σ-algebra F = B⊗Z+ .

Given an initial state x ∈ S, the path measure Px on (Ω,F) is the probability measure
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uniquely determined by the property

Px{X0 ∈ A0, X1 ∈ A1, . . . , Xn ∈ An}

= 1A0(x)

∫
p(x, dx1)1A1(x1)

∫
p(x1, dx2)1A2(x2) · · ·

· · ·
∫

p(xn−3, dxn−2)1An−2(xn−2)

∫
p(xn−2, dx1−1)1An−1(xn−1) p(xn−1, An).

(3.1)

The existence of Px follows from Kolmogorov’s Extension Theorem if (S,B) is a
Borel subset of a complete separable metric space with its Borel σ-algebra. However,
the assumption that the transition probabilities exist allows one to do away with
topological assumptions and prove the existence of Px for an arbitrary measurable
space (S,B). This is called Tulcea’s Extension Theorem. Expectation under Px is
denoted by Ex. So for a bounded measurable function G on Ω,

Ex[G] =

∫
Ω

G(ω) Px(dω)

and this is again a measurable function of x.
Given an arbitrary probability measure µ on (S,B), define

Pµ(A) =

∫
Px(A) µ(dx) , A ∈ F .

Thus Px is the special case of Pµ with µ = δx, point mass at x.
Let ω = (xk)k∈Z+ denote a generic element of Ω. The coordinate random vari-

ables on Ω are defined by Xk(ω) = xk. The filtration {Fk} is defined by Fn =
σ{X0, . . . , Xn}. The previous construction can now be summarized by this state-
ment: on the probability space (Ω,F , Pµ) the process {Xn} is a Markov chain with
respect to the filtration {Fn}, with initial distribution µ and with transition proba-
bility p.

This last statement has a meaning that does not depend on the particular construc-
tion. Namely, any S-valued process {Xn} on some probability space (Ω,F , P ) is said
to be a Markov chain with respect to the filtration {Fn}, with initial distribution µ
and transition probability p, if these three conditions are satisfied:

(i) Process {Xn} is adapted to the filtration {Fn}.
(ii) P{X0 ∈ A} = µ(A) for A ∈ B.
(iii) For any n ∈ N and A ∈ B,

(3.2) P (Xn+1 ∈ A|Fn) = p(Xn, A) P -almost surely.

A probability measure π on (S,B) is invariant for p if π = πP , and reversible for
p if ∫

g Pf dπ =

∫
f Pg dπ
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for all f, g ∈ B(S). Reversibility implies invariance. Invariance is equivalent to the
condition that the path measure Pπ is invariant under the shift mapping θ on Ω
defined by (θω)k = ωk+1. Invariance under θ means that Pπ(A) = Pπ(θ−1A) for all
A ∈ F . Another way of saying this is that the coordinate process is stationary, which
means the distributional equality

(X0, X1, X2, . . . )
d
= (X1, X2, X3, . . . ).

Reversibility is equivalent to the condition

(X0, X1, X2, . . . , Xn)
d
= (Xn, Xn−1, Xn−2, . . . X0) for all n ∈ N.

This means that the original and the time-reversed process have the same distribution.
An invariant distribution π is ergodic for p if the path measure Pπ is ergodic under

θ. This means that, in addition to θ-invariance, Pπ(A) ∈ {0, 1} for all θ-invariant
events A. These are the members of the invariant σ-algebra

I = {A ∈ F : θ−1A = A}.
Equivalently, π is ergodic for p if it is an extreme point of the convex set of p-invariant
probability measures on (S,B).

In the invariant case the ergodic theorem says that

1

n

n−1∑
k=0

G ◦ θk → Eπ[G|I] Pπ-almost surely

for any G ∈ L1(Pπ). Under the ergodicity assumption I is trivial under Pπ, and so
Eπ[G|I] = Eπ[G].

4. The martingale approach to Markov chain central limit theorems

Let {Xn} be a Markov chain with transition p. Let h be a measurable function
on the state space such that h(Xk) is integrable for all k. The initial distribution
is arbitrary at this point. Then there is a standard way to produce a martingale
associated to h. Namely, by the Markov property

E
[
h(Xk)− Ph(Xk−1)

∣∣Fk−1

]
= 0,

so the process

Mn =
n∑

k=1

{
h(Xk)− Ph(Xk−1)

}
is a mean-zero martingale.

Next we turn this into a derivation of a central limit theorem for a sum of the type

Sn = Sn(g) =
n−1∑
k=0

g(Xk)
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where g is a given function on the state space S. Assume now that π is an ergodic
invariant measure for the Markov transition p. Given g ∈ L2(π), suppose there exists
u ∈ L2(π) such that

(4.1) u(x)− Pu(x) = g(x) for x ∈ S,

or (I − P )u = g in operator short-hand. I denotes the identity operator on L2(π).
Then it is straightforward to deduce this theorem from the martingale invariance
principle.

Theorem 4.1. Assume (4.1). Then the process Yn(t) = n−1/2S[nt](g) (t ≥ 0) con-
verges weakly to σB, where the limiting variance is given by

σ2 =

∫
(u2 − (Pu)2) dπ.

If the Poisson equation (4.1) cannot be solved for a given g, one can instead solve
the approximate Poisson equation

(4.2) (1 + ε)uε − Puε = g

where ε > 0. This equation can always be solved by

(4.3) uε =
∞∑

k=1

P k−1g

(1 + ε)k
.

This series that defines uε converges in L2(π) because P is a contraction: ‖Pg‖2 ≤
‖g‖2. The solvability of (4.2) follows also from basic spectral considerations. Since
P is a contraction on L2(π), its operator norm satisfies ‖P‖ ≤ 1. Since Pc = c for
any constant function c, ‖P‖ = 1 and λ = 1 is an eigenvalue of P . Thus the spectral
radius r(P ) = 1. Consequently 1 + ε lies in the resolvent set of P , which is the
complement of the spectrum σ(P ). This means that the inverse (1 + ε− P )−1 exists
as a bounded operator on L2(π), and one can define

uε = (1 + ε− P )−1g.

Let us attempt to build on this by the same martingale ideas as before. Write

Sn(g) =
n−1∑
k=0

(
(1 + ε)uε(Xk)− Puε(Xk)

)
=

n∑
k=1

(
uε(Xk)− Puε(Xk−1)

)
+

(
uε(X0)− uε(Xn)

)
+ εSn(uε).

Rename the terms on the right above to write this as

(4.4) Sn(g) = Mn(ε) + Rn(ε) + εSn(uε).
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The decomposition above suggests this strategy. First let ε → 0 to obtain a repre-
sentation

(4.5) Sn(g) = Mn + Rn

where Mn is an L2 martingale, and then try to show that n−1/2(Mn + Rn) satisfies a
central limit theorem. We can identify three steps that achieve this.

(a) Show that εSn(uε) → 0 in L2 as ε → 0, for each n.
(b) Show that the limits Rn = lim

ε→0
Rn(ε) exist in L2, and n−1/2Rn → 0 in proba-

bility.
(c) Show that the limits Mn = lim

ε→0
Mn(ε) exist in L2. Since each process {Mn(ε) :

n ∈ N} is a martingale with stationary, ergodic increments, Mn inherits these
properties (exercise below).

Decomposition (4.5), items (b) and (c), and Theorem imply then that n−1/2Sn(g)
satisfies the functional central limit theorem with limiting variance σ2 = E(M2

1 ).
The task ahead is to investigate hypotheses under which this three-step program

can be realized.

Exercise 4.2. Let {Fn} be a filtration on a probability space (Ω,F , P ). Suppose

that for each k, {M (k)
n : n ≥ 1} is an L2-martingale with respect to {Fn}. Assume the

limit Mn = lim
k→∞

M (k)
n exists in L2 for each n. Then {Mn} is also an L2-martingale with

respect to {Fn}. Hint: Consider limits of E[Y M
(k)
n ] for bounded Fn−1-measurable

Y .

5. Moment assumptions on the resolvent

In this section we make the following standing assumption and prove a central limit
theorem for an ergodic Markov chain under this hypothesis.

Assumption 5.1. There exist constants 0 < C < ∞ and 0 < α < 1/2 such that

(5.1)
∥∥∥ n−1∑

k=0

P kg
∥∥∥

L2(π)
≤ Cnα for all n ∈ N.

The key point is the strict inequality α < 1/2. When convenient we abbreviate
V0g = 0 and

Vng =
n−1∑
k=0

P kg for n ≥ 1.

We shall use ‖·‖ to denote L2 norm without specifying the space when no confusion
should arise.

Lemma 5.2. For 0 < ε ≤ 1, ‖uε‖L2(π) ≤ Cε−α.
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Proof. First sum by parts:

uε =
∞∑

k=0

V k+1g − V kg

(1 + ε)k+1
= ε

∞∑
k=0

V kg

(1 + ε)k+1
.

Note that log(1 + ε) ≥ C1ε for 0 < ε ≤ 1, and bound as follows, using (5.1):

‖uε‖ ≤ Cε
∞∑

k=0

kα

(1 + ε)k+1
≤ Cε

∫ ∞

0

(1 + ε)−xxα dx

= Cε(log(1 + ε))−1−α

∫ ∞

0

e−yyα dy ≤ Cε · ε−1−α. �

On the product space S2 define the measure π2 = π ⊗ P by

π2(dx, dy) = π(dx)p(x, dy).

In other words, π2 is the distribution of any pair (Xk, Xk+1) under Pπ. Define the
L2(π2) function Hε on S2 by

Hε(x, y) = uε(y)− Puε(x).

Exercise 5.3. Use the invariance of π and the Markov property to show that for
any two functions f, h ∈ L2(π),

Eπ

[
(f(X1)− Pf(X0)− h(X1) + Ph(X0))

2
]

=

∫
S

(I + P )(h− f) · (I − P )(h− f) dπ.
(5.2)

Lemma 5.4. The limit H = lim
ε→0

Hε exists in L2(π2).

Proof. In the following calculation, first use (5.2), then Schwartz inequality, next
(I − P )uε = −εuε + g, then the contraction property of P as an operator on L2(π),
and finally Lemma 5.2.

Eπ

[
(Hε −Hδ)

2
]

=

∫
S

(I + P )(uε − uδ) · (I − P )(uε − uδ) dπ

≤ ‖(I + P )(uε − uδ)‖ · ‖(I − P )(uε − uδ)‖
= ‖(I + P )(uε − uδ)‖ · ‖εuε − δuδ‖
≤ 2 ‖uε − uδ‖ · ‖εuε − δuδ‖ ≤ 2

(
‖uε‖+ ‖uδ‖

)(
ε ‖uε‖+ δ ‖uδ‖

)
≤ 2C(ε−α + δ−α)(ε1−α + δ1−α).

With δk = 2−k,

sup
ε∈[δk,δk+1]

‖Hε −Hδk
‖ ≤ C

(
2(k+1)α + 2kα

)1/2(
2−k+kα + 2−k+kα

)1/2

≤ C2−( 1
2
−α)k.
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The last bound is summable over k. Hence if we apply it to ε = δk+1 we can conclude
that H = lim

k→∞
Hδk

exists in L2(π2). Another application of the same estimate shows

that Hε → H as ε → 0. �

Return to the decomposition

(5.3) Sn(g) = Mn(ε) + Rn(ε) + εSn(uε)

where

Mn(ε) =
n−1∑
k=0

Hε(Xk, Xk+1) and Rn(ε) = uε(X0)− uε(Xn).

Since
‖Hε(Xk, Xk+1)−H(Xk, Xk+1)‖L2(Pπ) = ‖Hε −H‖L2(π2)

it follows that for each n we have the L2(Pπ)-limit

Mn ≡
n−1∑
k=0

H(Xk, Xk+1) = lim
ε→0

n−1∑
k=0

Hε(Xk, Xk+1) = lim
ε→0

Mn(ε).

By Lemma 5.2 ‖εSn(uε)‖ ≤ nε1−α for each n, and so εSn(uε) → 0 in L2(Pπ) as
ε → 0. The L2-limit Rn = lim

ε→0
Rn(ε) must then also exist since all other terms in

(5.3) converge (for fixed n).
Thus after letting ε → 0, (5.3) has turned into

(5.4) Sn(g) = Mn + Rn

where Mn is an L2 martingale, and the increment processes

{Mn −Mn−1 = H(Xn−1, Xn) : n ≥ 1} and {Rn −Rn−1 : n ≥ 1}
are stationary and ergodic. Next we derive a moment bound on the remaining error.

Lemma 5.5. Eπ

[
|Rn|2

]
≤ Cn2α.

Proof. Write

(5.5) Rn = Sn(g)−Mn = Mn(ε)−Mn + Rn(ε) + εSn(uε).

Choose k so that 2k−1 ≤ n ≤ 2k and take ε = δk = 2−k Then by an earlier calculation,

‖Hε −H‖L2(π2) ≤
∞∑

j=k

∥∥Hδj
−Hδj+1

∥∥
L2(π2)

≤ C
∞∑

j=k

2−( 1
2
−α)j

≤ C2−( 1
2
−α)k ≤ Cnα− 1

2 .

By orthogonality of martingale increments and stationarity,

‖Mn(ε)−Mn‖2
L2(Pπ) = n ‖Hε −H‖2

L2(π2) ≤ Cn2α.

Next
‖Rn(ε)‖L2(Pπ) ≤ 2‖uε‖L2(π) ≤ Cε−α ≤ Cnα
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and

‖εSn(uε)‖L2(Pπ) ≤ Cnε1−α ≤ Cnα.

These estimates applied to the right-hand side of (5.5) give the conclusion. �

We can record a CLT for the stationary process. Define

(5.6) σ2 = ‖M1‖2
L2(Pπ) =

∫
S2

H2 dπ2.

Theorem 5.6. Let π be an ergodic invariant distribution for the Markov transition
p on the measurable state space (S,B), and let g ∈ L2(π) satisfy

∫
g dπ = 0. Suppose

Assumption 5.1 is in force. Then n−1/2Sn(g) converges weakly to a centered normal
distribution with variance σ2, and σ2 is the limiting variance:

(5.7) σ2 = lim
n→∞

Eπ

[(
n−1/2Sn(g)

)2]
.

Proof. By Lemma 5.5 n−1/2Rn → 0 in L2, so by (5.4) it suffices to prove the conver-
gence for n−1/2Mn. Utilizing the Markov property and the ergodic theorem,

1

n

n∑
k=1

Eπ[(Mk −Mk−1)
2|Fk−1] =

1

n

n∑
k=1

EXk−1
[H(X0, X1)

2]

−→
a.s.

∫
Ex[H(X0, X1)

2] π(dx) = Eπ[H(X0, X1)
2] = σ2.

Since ε
√

n > A eventually for any fixed 0 < A < ∞, we can bound as follows:

lim sup
n→∞

1

n

n∑
k=1

Eπ

[
(Mk −Mk−1)

21{|Mk −Mk−1| ≥ ε
√

n }
∣∣Fk−1

]
≤ lim sup

n→∞

1

n

n∑
k=1

EXk−1

[
H(X0, X1)

21{|H(X0, X1)| ≥ A}
]

a.s.
= Eπ

[
H(X0, X1)

21{|H(X0, X1)| ≥ A}
]

=

∫
|H|≥A

H2 dπ2.

The last quantity vanishes as A ↗ ∞ since H ∈ L2(π2). We have verified the
conditions of a martingale central limit theorem.

For the limiting variance, (5.4), Lemma 5.5 and orthognality of martingale incre-
ments imply both

sup
n
‖n−1/2Sn(g)‖ ≤ 2 sup

n
‖n−1/2Mn‖+ Cn2α−1 < ∞

and

‖n−1/2Sn(g)− n−1/2Mn‖ → 0.
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Limit (5.7) now follows from this general observation utilizing the Schwarz inequality:

|E(η2)− E(ζ2) | = |E(η − ζ)(η + ζ) | ≤ ‖η − ζ‖(‖η‖+ ‖ζ‖). �

In order to improve Theorem 5.6 into a functional central limit theorem and to get
results under a fixed starting state x rather than for the stationary process, next we
strengthen the moment assumption on g by a tiny bit.

6. Stronger result from a stronger moment assumption

Recall the definition Yn(t) = n−1/2S[nt](g) of the process Y whose paths are in
the space D[0,∞), and also recall the definition 5.6 of σ2. B denotes standard one-
dimensional Brownian motion.

Theorem 6.1. Let π be an ergodic invariant distribution for the Markov transition
p on the measurable state space (S,B). Let p > 2, and g ∈ Lp(π) satisfy

∫
g dπ = 0.

Suppose Assumption 5.1 is in force. Then for π-almost every x this happens: as
n → ∞, under the measure Px the process Yn converges weakly to σB on the path
space D[0,∞).

Observe first that the verifications of the hypotheses of the martingale invariance
principle in the proof of Theorem 5.6 involved (countably many) limits that hold
Pπ-almost surely. Since

Pπ(A) =

∫
S

Px(A) π(dx)

these limits hold also Px-almost surely, for π-almost every x. Thus the processes
M̄n(t) = n−1/2M[nt] satisfy the invariance principle under the measure Px for π-almost
every x. For each 0 < T < ∞

sup
0≤t≤T

|Yn(t)− M̄n(t)| ≤ n−1/2 max
k≤nT+1

|Rk|.

Consequently in order to transfer the invariance principle from M̄n to Yn, we need to
show that for π-almost every x,

(6.1) n−1/2 max
k≤n

|Rk| −→
n→∞

0 in Px-probability.

Limit (6.1) is done in several steps.
Fix 0 < γ < 1, and let m = dn1−γe and ` = dnγe. Since Rn = Sn(g)−Mn, we can

decompose

n−1/2 max
i≤n

|Ri| ≤ n−1/2 max
0≤k≤m

|Rk`|(6.2)

+ n−1/2 max
0≤k<m

max
k`≤i≤(k+1)`

|Mi −Mk`|(6.3)

+ n−1/2 max
0≤k<m

max
k`≤i≤(k+1)`

|Si(g)− Sk`(g)| .(6.4)
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We give separate arguments for the three lines above. The terms on (6.2) and (6.4)
will be handled by proving almost sure convergence under Pπ along a subsequence.

We start with line (6.3) where we can apply the martingale invariance principle.
First note that, for any δ > 0 and large enough n,

n−1/2 max
0≤k<m

max
k`≤i≤(k+1)`

|Mi −Mk`| ≤ sup
s,t≤2:|t−s|≤nγ−1+n−1

|M̄n(t)− M̄n(s)|

≤ sup
s,t≤2:|t−s|≤δ

|M̄n(t)− M̄n(s)|.

The set
{x ∈ D[0,∞) : sup

s,t≤2:|t−s|≤δ

|x(t)− x(s)| ≥ ε}

is closed in D[0,∞). Consequently by weak convergence

lim sup
n→∞

Px

{
max

0≤k<m
max

k`≤i≤(k+1)`
|Mi −Mk`| ≥ n1/2ε

}
≤ P

{
sup

s,t≤2:|t−s|≤δ

|σB(t)− σB(s)| ≥ ε
}
−→ 0 as δ ↘ 0.

Thus line (6.3) converges to 0 in Px-probability.
We turn to line (6.2). We will use the following maximal inequality.

Lemma 6.2. Suppose Zn is a process such that Z0 = 0, the increments {Zn − Zn−1 :
n ≥ 1} are stationary, and E(Z2

n) ≤ An for some constant A and all n. Then for all
n ≥ 1, λ > 0 and integers k ≥ 0,

P
{

max
0≤j≤n

|Zj| ≥ λ
}
≤ 26kAn1+2−k

λ2
.

Proof. Induction on k. Case k = 0:

P
{

max
0≤j≤n

|Zj| ≥ λ
}
≤

n∑
j=1

P{|Zj| ≥ λ} ≤
n∑

j=1

Ajλ−2 ≤ An2λ−2.

Suppose the claim holds for a given k ≥ 0. Let m = d
√

n e. Then by the stationarity
of increments, the induction hypothesis, and finally by m ≤ 2

√
n,

P
{

max
0≤j≤n

|Zj| ≥ 2λ
}
≤ P

{
max

0≤k<m
max

0≤j≤m
|Zkm + Zkm+j − Zkm| ≥ 2λ

}
≤ P

{
max

0≤k≤m
|Zkm| ≥ λ

}
+ mP

{
max

0≤j≤m
|Zj| ≥ λ

}
≤ 26k(Am)m1+2−k

λ2
+ m · 26kAm1+2−k

λ2

= 2 · 26kAm2+2−k

λ2
≤ 21+6k+2+2−k

An1+2−k−1

λ2
≤ 26(k+1)An1+2−k−1

(2λ)2
.
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This proves the case k + 1. �

By Lemma 5.5
Eπ|Rk`| ≤ C(k`)2α ≤ C`2αk.

Let β > 1. By the maximal inequality, for a fixed ε > 0,

Pπ

{
n−1/2 max

0≤k≤m
|Rk`| ≥ ε

}
≤ C(β)`2αmβn−1 ≤ C(β)n−(1−2αγ−β(1−γ)).(6.5)

Since g ∈ Lp(π), we can bound line (6.4) by

Pπ

{
max

0≤k<m
max

k`≤i≤(k+1)`
|Si(g)− Sk`(g)| ≥ ε

√
n

}
≤ Pπ

{
max
i≤2n

|g(Xi)| ≥ ε
√

n/`
}

≤ 2nπ{ |g| ≥ ε
√

n/` } ≤ 2n · C`pn−p/2 ≤ Cn−(p/2−1−γp).(6.6)

Now consider the two exponents

1− 2αγ − β(1− γ) = 2γ(1
2
− α)− (β − 1)(1− γ)

and p/2 − 1 − γp from (6.5) and (6.6). Since p > 1 and α < 1
2
, we can choose first

γ > 0 small enough and then β > 1 close enough to 1 so that both expressions are
positive. Take nj = jr for a large enough integer r that makes the bounds in (6.5) and
(6.6) summable over j. Then by the Borel-Cantelli lemma, we have proved the limit
(6.1) along the subsequence nj. But this suffices for the entire statement, because for
nj−1 ≤ n ≤ nj

max
k≤n

|Rk|√
n
≤

(
j

j − 1

)r/2

max
k≤nj

|Rk|√
nj

.(6.7)

Theorem 6.1 is thereby proved.
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