NOTES ON THE MARTINGALE APPROACH TO CENTRAL LIMIT THEOREMS FOR MARKOV CHAINS

TIMO SEPPÄLÄINEN

ABSTRACT. Notes on the Maxwell-Woodroofe martingale approach to central limit theorems for Markov chains.

1. INTRODUCTION

Suppose $\{X_k\}$ are independent and identically distributed random variables with values in some measurable space (S, \mathcal{B}) , defined on a probability space (Ω, \mathcal{F}, P) , with common distribution μ . Suppose $g: S \to \mathbb{R}$ is a measurable function such that

$$\int g \, d\mu = 0$$
 and $\sigma^2 = \int g^2 \, d\mu < \infty$.

Let

$$S_n = \sum_{k=0}^{n-1} g(X_k).$$

Then the basic central limit theorem says that the random variable $n^{-1/2}S_n$ converges weakly to a centered normal distribution with variance σ^2 . Furthermore, define the process $Y_n(t) = n^{-1/2}S_{[nt]}$ for $t \in [0, \infty)$, with paths in the space $D[0, \infty)$. According to Donsker's invariance principle, the process Y_n converges weakly on D to the process σB where $B = \{B(t) : t \in [0, \infty)\}$ denotes standard Brownian motion.

The purpose of these notes is to develop results of this kind for the case where $\{X_k\}$ is a Markov chain. Presently we cover the approach of Maxwell-Woodroofe [1] with some small improvement from [2].

Notation. $\mathbb{Z}_+ = \{0, 1, 2, 3, ...\}$ is the set of nonnegative integers, $\mathbb{N} = \{1, 2, 3, ...\}$ the set of positive integers. $C, C_1, C_2, ...$ denote constants that do not depend on the growing parameter of the context (often n) and whose precise value may change from line to line. The floor and ceiling of a real number are $[x] = \max\{n \in \mathbb{Z} : x \leq n\}$ and $[x] = \min\{n \in \mathbb{Z} : x \leq n\}$.

Date: November 3, 2006.

Author partially supported by National Science Foundation grant DMS-0402231.

2. A MARTINGALE INVARIANCE PRINCIPLE

Let M_n be a mean 0 \mathbb{R}^d -valued vector martingale in L^2 , with differences $Y_k = M_k - M_{k-1}$. A vector martingale simply means that each coordinate forms a real-valued martingale. Define the scaled process $\overline{M}_n(t) = n^{-1/2} M_{[nt]}$. Assume

$$\frac{1}{n} \sum_{k=1}^{n} E(Y_k Y_k^T | \mathcal{F}_{k-1}) \to \Gamma \quad \text{in probability}$$

for a symmetric, nonnegative definite $d \times d$ matrix Γ , and

$$\frac{1}{n} \sum_{k=1}^{n} E(|Y_k|^2 \mathbf{1}\{|Y_k| \ge \varepsilon \sqrt{n}\} | \mathcal{F}_{k-1}) \to 0 \quad \text{in probability.}$$

Then \overline{M}_n converges weakly on the path space $D_{\mathbb{R}^d}[0,\infty)$ to a process $W = \{W(t) : t \ge 0\}$ which is a Brownian motion with diffusion matrix Γ . This last definition means that W(0) = 0, W has continuous paths, independent increments, and for s < t the *d*-vector W(t) - W(s) has Gaussian distribution with mean zero and covariance matrix $(t - s)\Gamma$. One can produce such a process by finding a matrix Λ such that $\Gamma = \Lambda \Lambda^T$, and by defining $W(t) = \Lambda B(t)$ where B is a *d*-dimensional standard Brownian motion.

3. MARKOV CHAIN NOTATION AND BASICS

There is a measurable space (S, \mathcal{B}) which is the state space of the process. A transition probability p is a function p(x, A) of $x \in S$ and $A \in \mathcal{B}$ and satisfies these properties:

- (i) For each $A \in \mathcal{B}$, p(x, A) is a measurable function of $x \in S$.
- (ii) For each $x \in S$, $p(x, \cdot)$ is a probability measure on (S, \mathcal{B}) .

The integral $\int f(y) p(x, dy)$ is a measurable function of x for any real or complex measurable function f for which the integrals are well-defined. In particular, the transition probability p defines two operators, one on the space B(S) of bounded measurable functions f on (S, \mathcal{B}) , the other on the space M(S) of finite signed measures on (S, \mathcal{B}) . Both are denoted by P, but distinguished by left and right notation:

$$Pf(x) = \int f(y) p(x, dy)$$
 and $\mu P(A) = \int p(x, A) \mu(dx).$

The functions and measures could also be complex-valued if desired.

The path space of the process is $\Omega = S^{\mathbb{Z}_+}$ with its product σ -algebra $\mathcal{F} = \mathcal{B}^{\otimes \mathbb{Z}_+}$. Given an initial state $x \in S$, the path measure P_x on (Ω, \mathcal{F}) is the probability measure uniquely determined by the property

$$P_{x}\{X_{0} \in A_{0}, X_{1} \in A_{1}, \dots, X_{n} \in A_{n}\}$$

$$(3.1) \qquad = \mathbf{1}_{A_{0}}(x) \int p(x, dx_{1}) \mathbf{1}_{A_{1}}(x_{1}) \int p(x_{1}, dx_{2}) \mathbf{1}_{A_{2}}(x_{2}) \cdots$$

$$\cdots \int p(x_{n-3}, dx_{n-2}) \mathbf{1}_{A_{n-2}}(x_{n-2}) \int p(x_{n-2}, dx_{1-1}) \mathbf{1}_{A_{n-1}}(x_{n-1}) p(x_{n-1}, A_{n}).$$

The existence of P_x follows from Kolmogorov's Extension Theorem if (S, \mathcal{B}) is a Borel subset of a complete separable metric space with its Borel σ -algebra. However, the assumption that the transition probabilities exist allows one to do away with topological assumptions and prove the existence of P_x for an arbitrary measurable space (S, \mathcal{B}) . This is called Tulcea's Extension Theorem. Expectation under P_x is denoted by E_x . So for a bounded measurable function G on Ω ,

$$E_x[G] = \int_{\Omega} G(\omega) P_x(d\omega)$$

and this is again a measurable function of x.

Given an arbitrary probability measure μ on (S, \mathcal{B}) , define

$$P_{\mu}(A) = \int P_x(A) \,\mu(dx) \,, \quad A \in \mathcal{F}.$$

Thus P_x is the special case of P_{μ} with $\mu = \delta_x$, point mass at x.

Let $\omega = (x_k)_{k \in \mathbb{Z}_+}$ denote a generic element of Ω . The coordinate random variables on Ω are defined by $X_k(\omega) = x_k$. The filtration $\{\mathcal{F}_k\}$ is defined by $\mathcal{F}_n = \sigma\{X_0, \ldots, X_n\}$. The previous construction can now be summarized by this statement: on the probability space $(\Omega, \mathcal{F}, P_\mu)$ the process $\{X_n\}$ is a Markov chain with respect to the filtration $\{\mathcal{F}_n\}$, with initial distribution μ and with transition probability p.

This last statement has a meaning that does not depend on the particular construction. Namely, any S-valued process $\{X_n\}$ on some probability space (Ω, \mathcal{F}, P) is said to be a Markov chain with respect to the filtration $\{\mathcal{F}_n\}$, with initial distribution μ and transition probability p, if these three conditions are satisfied:

- (i) Process $\{X_n\}$ is adapted to the filtration $\{\mathcal{F}_n\}$.
- (ii) $P\{X_0 \in A\} = \mu(A) \text{ for } A \in \mathcal{B}.$
- (iii) For any $n \in \mathbb{N}$ and $A \in \mathcal{B}$,

(3.2)
$$P(X_{n+1} \in A | \mathcal{F}_n) = p(X_n, A) \quad P\text{-almost surely}$$

A probability measure π on (S, \mathcal{B}) is invariant for p if $\pi = \pi P$, and reversible for p if

$$\int g P f \, d\pi = \int f P g \, d\pi$$

for all $f, g \in B(S)$. Reversibility implies invariance. Invariance is equivalent to the condition that the path measure P_{π} is invariant under the shift mapping θ on Ω defined by $(\theta \omega)_k = \omega_{k+1}$. Invariance under θ means that $P_{\pi}(A) = P_{\pi}(\theta^{-1}A)$ for all $A \in \mathcal{F}$. Another way of saying this is that the coordinate process is stationary, which means the distributional equality

$$(X_0, X_1, X_2, \dots) \stackrel{d}{=} (X_1, X_2, X_3, \dots).$$

Reversibility is equivalent to the condition

$$(X_0, X_1, X_2, \dots, X_n) \stackrel{d}{=} (X_n, X_{n-1}, X_{n-2}, \dots, X_0)$$
 for all $n \in \mathbb{N}$.

This means that the original and the time-reversed process have the same distribution.

An invariant distribution π is ergodic for p if the path measure P_{π} is ergodic under θ . This means that, in addition to θ -invariance, $P_{\pi}(A) \in \{0,1\}$ for all θ -invariant events A. These are the members of the invariant σ -algebra

$$\mathcal{I} = \{A \in \mathcal{F} : \theta^{-1}A = A\}.$$

Equivalently, π is ergodic for p if it is an extreme point of the convex set of p-invariant probability measures on (S, \mathcal{B}) .

In the invariant case the ergodic theorem says that

$$\frac{1}{n}\sum_{k=0}^{n-1} G \circ \theta^k \to E_{\pi}[G|\mathcal{I}] \quad P_{\pi}\text{-almost surely}$$

for any $G \in L^1(P_{\pi})$. Under the ergodicity assumption \mathcal{I} is trivial under P_{π} , and so $E_{\pi}[G|\mathcal{I}] = E_{\pi}[G]$.

4. The martingale approach to Markov chain central limit theorems

Let $\{X_n\}$ be a Markov chain with transition p. Let h be a measurable function on the state space such that $h(X_k)$ is integrable for all k. The initial distribution is arbitrary at this point. Then there is a standard way to produce a martingale associated to h. Namely, by the Markov property

$$E[h(X_k) - Ph(X_{k-1}) \left| \mathcal{F}_{k-1} \right] = 0,$$

so the process

$$M_n = \sum_{k=1}^n \{h(X_k) - Ph(X_{k-1})\}$$

is a mean-zero martingale.

Next we turn this into a derivation of a central limit theorem for a sum of the type

$$S_n = S_n(g) = \sum_{k=0}^{n-1} g(X_k)$$

where g is a given function on the state space S. Assume now that π is an ergodic invariant measure for the Markov transition p. Given $g \in L^2(\pi)$, suppose there exists $u \in L^2(\pi)$ such that

(4.1)
$$u(x) - Pu(x) = g(x) \quad \text{for } x \in S,$$

or (I - P)u = g in operator short-hand. I denotes the identity operator on $L^2(\pi)$. Then it is straightforward to deduce this theorem from the martingale invariance principle.

THEOREM 4.1. Assume (4.1). Then the process $Y_n(t) = n^{-1/2} S_{[nt]}(g)$ $(t \ge 0)$ converges weakly to σB , where the limiting variance is given by

$$\sigma^2 = \int (u^2 - (Pu)^2) \, d\pi$$

If the Poisson equation (4.1) cannot be solved for a given g, one can instead solve the approximate Poisson equation

(4.2)
$$(1+\varepsilon)u_{\varepsilon} - Pu_{\varepsilon} = g$$

where $\varepsilon > 0$. This equation can always be solved by

(4.3)
$$u_{\varepsilon} = \sum_{k=1}^{\infty} \frac{P^{k-1}g}{(1+\varepsilon)^k}.$$

This series that defines u_{ε} converges in $L^2(\pi)$ because P is a contraction: $||Pg||_2 \leq ||g||_2$. The solvability of (4.2) follows also from basic spectral considerations. Since P is a contraction on $L^2(\pi)$, its operator norm satisfies $||P|| \leq 1$. Since Pc = c for any constant function c, ||P|| = 1 and $\lambda = 1$ is an eigenvalue of P. Thus the spectral radius r(P) = 1. Consequently $1 + \varepsilon$ lies in the resolvent set of P, which is the complement of the spectrum $\sigma(P)$. This means that the inverse $(1 + \varepsilon - P)^{-1}$ exists as a bounded operator on $L^2(\pi)$, and one can define

$$u_{\varepsilon} = (1 + \varepsilon - P)^{-1}g.$$

Let us attempt to build on this by the same martingale ideas as before. Write

$$S_n(g) = \sum_{k=0}^{n-1} \left((1+\varepsilon)u_{\varepsilon}(X_k) - Pu_{\varepsilon}(X_k) \right)$$
$$= \sum_{k=1}^n \left(u_{\varepsilon}(X_k) - Pu_{\varepsilon}(X_{k-1}) \right) + \left(u_{\varepsilon}(X_0) - u_{\varepsilon}(X_n) \right) + \varepsilon S_n(u_{\varepsilon}).$$

Rename the terms on the right above to write this as

(4.4)
$$S_n(g) = M_n(\varepsilon) + R_n(\varepsilon) + \varepsilon S_n(u_{\varepsilon}).$$

The decomposition above suggests this strategy. First let $\varepsilon \to 0$ to obtain a representation

$$(4.5) S_n(g) = M_n + R_n$$

where M_n is an L^2 martingale, and then try to show that $n^{-1/2}(M_n + R_n)$ satisfies a central limit theorem. We can identify three steps that achieve this.

- (a) Show that $\varepsilon S_n(u_{\varepsilon}) \to 0$ in L^2 as $\varepsilon \to 0$, for each n. (b) Show that the limits $R_n = \lim_{\varepsilon \to 0} R_n(\varepsilon)$ exist in L^2 , and $n^{-1/2}R_n \to 0$ in probability.
- (c) Show that the limits $M_n = \lim_{\varepsilon \to 0} M_n(\varepsilon)$ exist in L^2 . Since each process $\{M_n(\varepsilon) :$ $n \in \mathbb{N}$ is a martingale with stationary, ergodic increments, M_n inherits these properties (exercise below).

Decomposition (4.5), items (b) and (c), and Theorem imply then that $n^{-1/2}S_n(q)$ satisfies the functional central limit theorem with limiting variance $\sigma^2 = E(M_1^2)$.

The task ahead is to investigate hypotheses under which this three-step program can be realized.

EXERCISE 4.2. Let $\{\mathcal{F}_n\}$ be a filtration on a probability space (Ω, \mathcal{F}, P) . Suppose that for each k, $\{M_n^{(k)} : n \ge 1\}$ is an L^2 -martingale with respect to $\{\mathcal{F}_n\}$. Assume the limit $M_n = \lim_{k \to \infty} M_n^{(k)}$ exists in L^2 for each n. Then $\{M_n\}$ is also an L^2 -martingale with respect to $\{\mathcal{F}_n\}$. *Hint:* Consider limits of $E[YM_n^{(k)}]$ for bounded \mathcal{F}_{n-1} -measurable Y.

5. Moment assumptions on the resolvent

In this section we make the following standing assumption and prove a central limit theorem for an ergodic Markov chain under this hypothesis.

ASSUMPTION 5.1. There exist constants $0 < C < \infty$ and $0 < \alpha < 1/2$ such that

(5.1)
$$\left\| \sum_{k=0}^{n-1} P^k g \right\|_{L^2(\pi)} \le C n^{\alpha} \quad \text{for all } n \in \mathbb{N}$$

The key point is the strict inequality $\alpha < 1/2$. When convenient we abbreviate $V_0g = 0$ and

$$V_n g = \sum_{k=0}^{n-1} P^k g \qquad \text{for } n \ge 1.$$

We shall use $\|\cdot\|$ to denote L^2 norm without specifying the space when no confusion should arise.

LEMMA 5.2. For $0 < \varepsilon \leq 1$, $\|u_{\varepsilon}\|_{L^{2}(\pi)} \leq C\varepsilon^{-\alpha}$.

Proof. First sum by parts:

$$u_{\varepsilon} = \sum_{k=0}^{\infty} \frac{V^{k+1}g - V^k g}{(1+\varepsilon)^{k+1}} = \varepsilon \sum_{k=0}^{\infty} \frac{V^k g}{(1+\varepsilon)^{k+1}} \,.$$

Note that $\log(1 + \varepsilon) \ge C_1 \varepsilon$ for $0 < \varepsilon \le 1$, and bound as follows, using (5.1):

$$\|u_{\varepsilon}\| \leq C\varepsilon \sum_{k=0}^{\infty} \frac{k^{\alpha}}{(1+\varepsilon)^{k+1}} \leq C\varepsilon \int_{0}^{\infty} (1+\varepsilon)^{-x} x^{\alpha} dx$$
$$= C\varepsilon (\log(1+\varepsilon))^{-1-\alpha} \int_{0}^{\infty} e^{-y} y^{\alpha} dy \leq C\varepsilon \cdot \varepsilon^{-1-\alpha}.$$

On the product space S^2 define the measure $\pi_2 = \pi \otimes P$ by

$$\pi_2(dx, dy) = \pi(dx)p(x, dy).$$

In other words, π_2 is the distribution of any pair (X_k, X_{k+1}) under P_{π} . Define the $L^2(\pi_2)$ function H_{ε} on S^2 by

$$H_{\varepsilon}(x,y) = u_{\varepsilon}(y) - Pu_{\varepsilon}(x).$$

EXERCISE 5.3. Use the invariance of π and the Markov property to show that for any two functions $f, h \in L^2(\pi)$,

(5.2)
$$E_{\pi} \left[(f(X_1) - Pf(X_0) - h(X_1) + Ph(X_0))^2 \right] \\= \int_S (I+P)(h-f) \cdot (I-P)(h-f) \, d\pi.$$

LEMMA 5.4. The limit $H = \lim_{\varepsilon \to 0} H_{\varepsilon}$ exists in $L^2(\pi_2)$.

Proof. In the following calculation, first use (5.2), then Schwartz inequality, next $(I - P)u_{\varepsilon} = -\varepsilon u_{\varepsilon} + g$, then the contraction property of P as an operator on $L^2(\pi)$, and finally Lemma 5.2.

$$E_{\pi} \left[(H_{\varepsilon} - H_{\delta})^2 \right] = \int_{S} (I + P)(u_{\varepsilon} - u_{\delta}) \cdot (I - P)(u_{\varepsilon} - u_{\delta}) d\pi$$

$$\leq \| (I + P)(u_{\varepsilon} - u_{\delta}) \| \cdot \| (I - P)(u_{\varepsilon} - u_{\delta}) \|$$

$$= \| (I + P)(u_{\varepsilon} - u_{\delta}) \| \cdot \| \varepsilon u_{\varepsilon} - \delta u_{\delta} \|$$

$$\leq 2 \| u_{\varepsilon} - u_{\delta} \| \cdot \| \varepsilon u_{\varepsilon} - \delta u_{\delta} \| \leq 2 (\| u_{\varepsilon} \| + \| u_{\delta} \|) (\varepsilon \| u_{\varepsilon} \| + \delta \| u_{\delta} \|)$$

$$\leq 2C(\varepsilon^{-\alpha} + \delta^{-\alpha}) (\varepsilon^{1-\alpha} + \delta^{1-\alpha}).$$

With $\delta_k = 2^{-k}$,

$$\sup_{\varepsilon \in [\delta_k, \delta_{k+1}]} \|H_{\varepsilon} - H_{\delta_k}\| \le C \left(2^{(k+1)\alpha} + 2^{k\alpha} \right)^{1/2} \left(2^{-k+k\alpha} + 2^{-k+k\alpha} \right)^{1/2} \le C 2^{-(\frac{1}{2} - \alpha)k}.$$

The last bound is summable over k. Hence if we apply it to $\varepsilon = \delta_{k+1}$ we can conclude that $H = \lim_{k \to \infty} H_{\delta_k}$ exists in $L^2(\pi_2)$. Another application of the same estimate shows that $H_{\varepsilon} \to H$ as $\varepsilon \to 0$.

Return to the decomposition

(5.3)
$$S_n(g) = M_n(\varepsilon) + R_n(\varepsilon) + \varepsilon S_n(u_{\varepsilon})$$

where

$$M_n(\varepsilon) = \sum_{k=0}^{n-1} H_{\varepsilon}(X_k, X_{k+1})$$
 and $R_n(\varepsilon) = u_{\varepsilon}(X_0) - u_{\varepsilon}(X_n).$

Since

$$\|H_{\varepsilon}(X_{k}, X_{k+1}) - H(X_{k}, X_{k+1})\|_{L^{2}(P_{\pi})} = \|H_{\varepsilon} - H\|_{L^{2}(\pi_{2})}$$

it follows that for each n we have the $L^2(P_{\pi})$ -limit

$$M_n \equiv \sum_{k=0}^{n-1} H(X_k, X_{k+1}) = \lim_{\varepsilon \to 0} \sum_{k=0}^{n-1} H_\varepsilon(X_k, X_{k+1}) = \lim_{\varepsilon \to 0} M_n(\varepsilon).$$

By Lemma 5.2 $\|\varepsilon S_n(u_{\varepsilon})\| \leq n\varepsilon^{1-\alpha}$ for each n, and so $\varepsilon S_n(u_{\varepsilon}) \to 0$ in $L^2(P_{\pi})$ as $\varepsilon \to 0$. The L^2 -limit $R_n = \lim_{\varepsilon \to 0} R_n(\varepsilon)$ must then also exist since all other terms in (5.3) converge (for fixed n).

Thus after letting $\varepsilon \to 0$, (5.3) has turned into

$$(5.4) S_n(g) = M_n + R_n$$

where M_n is an L^2 martingale, and the increment processes

$$\{M_n - M_{n-1} = H(X_{n-1}, X_n) : n \ge 1\}$$
 and $\{R_n - R_{n-1} : n \ge 1\}$

are stationary and ergodic. Next we derive a moment bound on the remaining error. LEMMA 5.5. $E_{\pi}[|R_n|^2] \leq Cn^{2\alpha}$.

Proof. Write

(5.5)
$$R_n = S_n(g) - M_n = M_n(\varepsilon) - M_n + R_n(\varepsilon) + \varepsilon S_n(u_{\varepsilon})$$

Choose k so that $2^{k-1} \le n \le 2^k$ and take $\varepsilon = \delta_k = 2^{-k}$ Then by an earlier calculation,

$$\begin{aligned} \|H_{\varepsilon} - H\|_{L^{2}(\pi_{2})} &\leq \sum_{j=k}^{\infty} \left\|H_{\delta_{j}} - H_{\delta_{j+1}}\right\|_{L^{2}(\pi_{2})} \leq C \sum_{j=k}^{\infty} 2^{-(\frac{1}{2} - \alpha)j} \\ &\leq C 2^{-(\frac{1}{2} - \alpha)k} \leq C n^{\alpha - \frac{1}{2}}. \end{aligned}$$

By orthogonality of martingale increments and stationarity,

$$||M_n(\varepsilon) - M_n||^2_{L^2(P_\pi)} = n ||H_\varepsilon - H||^2_{L^2(\pi_2)} \le Cn^{2\alpha}.$$

Next

$$||R_n(\varepsilon)||_{L^2(P_\pi)} \le 2||u_\varepsilon||_{L^2(\pi)} \le C\varepsilon^{-\alpha} \le Cn^{\alpha}$$

and

$$\|\varepsilon S_n(u_{\varepsilon})\|_{L^2(P_{\pi})} \le Cn\varepsilon^{1-\alpha} \le Cn^{\alpha}.$$

These estimates applied to the right-hand side of (5.5) give the conclusion.

We can record a CLT for the stationary process. Define

(5.6)
$$\sigma^2 = \|M_1\|_{L^2(P_\pi)}^2 = \int_{S^2} H^2 \, d\pi_2.$$

THEOREM 5.6. Let π be an ergodic invariant distribution for the Markov transition p on the measurable state space (S, \mathcal{B}) , and let $g \in L^2(\pi)$ satisfy $\int g d\pi = 0$. Suppose Assumption 5.1 is in force. Then $n^{-1/2}S_n(g)$ converges weakly to a centered normal distribution with variance σ^2 , and σ^2 is the limiting variance:

(5.7)
$$\sigma^{2} = \lim_{n \to \infty} E_{\pi} \left[\left(n^{-1/2} S_{n}(g) \right)^{2} \right].$$

Proof. By Lemma 5.5 $n^{-1/2}R_n \to 0$ in L^2 , so by (5.4) it suffices to prove the convergence for $n^{-1/2}M_n$. Utilizing the Markov property and the ergodic theorem,

$$\frac{1}{n} \sum_{k=1}^{n} E_{\pi}[(M_k - M_{k-1})^2 | \mathcal{F}_{k-1}] = \frac{1}{n} \sum_{k=1}^{n} E_{X_{k-1}}[H(X_0, X_1)^2]$$
$$\xrightarrow[\text{a.s.}]{} \int E_x[H(X_0, X_1)^2] \pi(dx) = E_{\pi}[H(X_0, X_1)^2] = \sigma^2.$$

Since $\varepsilon \sqrt{n} > A$ eventually for any fixed $0 < A < \infty$, we can bound as follows:

$$\limsup_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} E_{\pi} \Big[(M_k - M_{k-1})^2 \mathbf{1} \{ |M_k - M_{k-1}| \ge \varepsilon \sqrt{n} \} | \mathcal{F}_{k-1} \Big]$$

$$\leq \limsup_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} E_{X_{k-1}} \Big[H(X_0, X_1)^2 \mathbf{1} \{ |H(X_0, X_1)| \ge A \} \Big]$$

$$\stackrel{\text{a.s.}}{=} E_{\pi} \Big[H(X_0, X_1)^2 \mathbf{1} \{ |H(X_0, X_1)| \ge A \} \Big] = \int_{|H| \ge A} H^2 \, d\pi_2.$$

The last quantity vanishes as $A \nearrow \infty$ since $H \in L^2(\pi_2)$. We have verified the conditions of a martingale central limit theorem.

For the limiting variance, (5.4), Lemma 5.5 and orthogonality of martingale increments imply both

$$\sup_{n} \|n^{-1/2} S_n(g)\| \le 2 \sup_{n} \|n^{-1/2} M_n\| + C n^{2\alpha - 1} < \infty$$

and

$$||n^{-1/2}S_n(g) - n^{-1/2}M_n|| \to 0.$$

Limit (5.7) now follows from this general observation utilizing the Schwarz inequality:

$$|E(\eta^{2}) - E(\zeta^{2})| = |E(\eta - \zeta)(\eta + \zeta)| \le ||\eta - \zeta||(||\eta|| + ||\zeta||).$$

In order to improve Theorem 5.6 into a functional central limit theorem and to get results under a fixed starting state x rather than for the stationary process, next we strengthen the moment assumption on g by a tiny bit.

6. Stronger result from a stronger moment assumption

Recall the definition $Y_n(t) = n^{-1/2} S_{[nt]}(g)$ of the process Y whose paths are in the space $D[0, \infty)$, and also recall the definition 5.6 of σ^2 . B denotes standard one-dimensional Brownian motion.

THEOREM 6.1. Let π be an ergodic invariant distribution for the Markov transition p on the measurable state space (S, \mathcal{B}) . Let p > 2, and $g \in L^p(\pi)$ satisfy $\int g d\pi = 0$. Suppose Assumption 5.1 is in force. Then for π -almost every x this happens: as $n \to \infty$, under the measure P_x the process Y_n converges weakly to σB on the path space $D[0, \infty)$.

Observe first that the verifications of the hypotheses of the martingale invariance principle in the proof of Theorem 5.6 involved (countably many) limits that hold P_{π} -almost surely. Since

$$P_{\pi}(A) = \int_{S} P_{x}(A) \,\pi(dx)$$

these limits hold also P_x -almost surely, for π -almost every x. Thus the processes $\overline{M}_n(t) = n^{-1/2} M_{[nt]}$ satisfy the invariance principle under the measure P_x for π -almost every x. For each $0 < T < \infty$

$$\sup_{0 \le t \le T} |Y_n(t) - \bar{M}_n(t)| \le n^{-1/2} \max_{k \le nT+1} |R_k|.$$

Consequently in order to transfer the invariance principle from \overline{M}_n to Y_n , we need to show that for π -almost every x,

(6.1)
$$n^{-1/2} \max_{k \le n} |R_k| \underset{n \to \infty}{\longrightarrow} 0 \text{ in } P_x \text{-probability}.$$

Limit (6.1) is done in several steps.

Fix $0 < \gamma < 1$, and let $m = \lceil n^{1-\gamma} \rceil$ and $\ell = \lceil n^{\gamma} \rceil$. Since $R_n = S_n(g) - M_n$, we can decompose

(6.2)
$$n^{-1/2} \max_{i \le n} |R_i| \le n^{-1/2} \max_{0 \le k \le m} |R_{k\ell}|$$

(6.3)
$$+ n^{-1/2} \max_{0 \le k < m} \max_{k\ell \le i \le (k+1)\ell} |M_i - M_{k\ell}|$$

(6.4)
$$+ n^{-1/2} \max_{0 \le k < m} \max_{k\ell \le i \le (k+1)\ell} |S_i(g) - S_{k\ell}(g)|.$$

We give separate arguments for the three lines above. The terms on (6.2) and (6.4) will be handled by proving almost sure convergence under P_{π} along a subsequence.

We start with line (6.3) where we can apply the martingale invariance principle. First note that, for any $\delta > 0$ and large enough n,

$$n^{-1/2} \max_{0 \le k < m} \max_{k\ell \le i \le (k+1)\ell} |M_i - M_{k\ell}| \le \sup_{\substack{s,t \le 2: |t-s| \le n^{\gamma-1} + n^{-1} \\ s,t \le 2: |t-s| \le \delta}} |\bar{M}_n(t) - \bar{M}_n(s)|.$$

The set

$$\{x \in D[0,\infty) : \sup_{s,t \le 2: |t-s| \le \delta} |x(t) - x(s)| \ge \varepsilon\}$$

is closed in $D[0,\infty)$. Consequently by weak convergence

$$\limsup_{n \to \infty} P_x \Big\{ \max_{0 \le k < m} \max_{k\ell \le i \le (k+1)\ell} |M_i - M_{k\ell}| \ge n^{1/2} \varepsilon \Big\}$$
$$\le P \Big\{ \sup_{s,t \le 2: |t-s| \le \delta} |\sigma B(t) - \sigma B(s)| \ge \varepsilon \Big\} \longrightarrow 0 \qquad \text{as } \delta \searrow 0.$$

Thus line (6.3) converges to 0 in P_x -probability.

We turn to line (6.2). We will use the following maximal inequality.

LEMMA 6.2. Suppose Z_n is a process such that $Z_0 = 0$, the increments $\{Z_n - Z_{n-1} : n \ge 1\}$ are stationary, and $E(Z_n^2) \le An$ for some constant A and all n. Then for all $n \ge 1$, $\lambda > 0$ and integers $k \ge 0$,

$$P\left\{\max_{0\leq j\leq n}|Z_j|\geq\lambda\right\}\leq\frac{2^{6k}An^{1+2^{-k}}}{\lambda^2}$$

Proof. Induction on k. Case k = 0:

$$P\left\{\max_{0\leq j\leq n} |Z_j| \geq \lambda\right\} \leq \sum_{j=1}^n P\{|Z_j| \geq \lambda\} \leq \sum_{j=1}^n A_j \lambda^{-2} \leq A n^2 \lambda^{-2}.$$

Suppose the claim holds for a given $k \ge 0$. Let $m = \lceil \sqrt{n} \rceil$. Then by the stationarity of increments, the induction hypothesis, and finally by $m \le 2\sqrt{n}$,

$$P\left\{\max_{0 \le j \le n} |Z_j| \ge 2\lambda\right\} \le P\left\{\max_{0 \le k < m} \max_{0 \le j \le m} |Z_{km} + Z_{km+j} - Z_{km}| \ge 2\lambda\right\}$$
$$\le P\left\{\max_{0 \le k \le m} |Z_{km}| \ge \lambda\right\} + mP\left\{\max_{0 \le j \le m} |Z_j| \ge \lambda\right\}$$
$$\le \frac{2^{6k}(Am)m^{1+2^{-k}}}{\lambda^2} + m \cdot \frac{2^{6k}Am^{1+2^{-k}}}{\lambda^2}$$
$$= 2 \cdot \frac{2^{6k}Am^{2+2^{-k}}}{\lambda^2} \le \frac{2^{1+6k+2+2^{-k}}An^{1+2^{-k-1}}}{\lambda^2} \le \frac{2^{6(k+1)}An^{1+2^{-k-1}}}{(2\lambda)^2}$$

12

This proves the case k + 1.

By Lemma 5.5

$$E_{\pi}|R_{k\ell}| \le C(k\ell)^{2\alpha} \le C\ell^{2\alpha}k.$$

Let $\beta > 1$. By the maximal inequality, for a fixed $\varepsilon > 0$,

(6.5)
$$P_{\pi} \Big\{ n^{-1/2} \max_{0 \le k \le m} |R_{k\ell}| \ge \varepsilon \Big\} \le C(\beta) \ell^{2\alpha} m^{\beta} n^{-1} \le C(\beta) n^{-(1-2\alpha\gamma - \beta(1-\gamma))}.$$

Since $g \in L^p(\pi)$, we can bound line (6.4) by

$$P_{\pi} \left\{ \max_{0 \le k < m} \max_{k\ell \le i \le (k+1)\ell} |S_i(g) - S_{k\ell}(g)| \ge \varepsilon \sqrt{n} \right\}$$
$$\le P_{\pi} \left\{ \max_{i \le 2n} |g(X_i)| \ge \varepsilon \sqrt{n}/\ell \right\}$$

(6.6) $\leq 2n\pi\{ |g| \geq \varepsilon \sqrt{n}/\ell \} \leq 2n \cdot C\ell^p n^{-p/2} \leq Cn^{-(p/2-1-\gamma p)}.$

Now consider the two exponents

$$1 - 2\alpha\gamma - \beta(1 - \gamma) = 2\gamma(\frac{1}{2} - \alpha) - (\beta - 1)(1 - \gamma)$$

and $p/2 - 1 - \gamma p$ from (6.5) and (6.6). Since p > 1 and $\alpha < \frac{1}{2}$, we can choose first $\gamma > 0$ small enough and then $\beta > 1$ close enough to 1 so that both expressions are positive. Take $n_j = j^r$ for a large enough integer r that makes the bounds in (6.5) and (6.6) summable over j. Then by the Borel-Cantelli lemma, we have proved the limit (6.1) along the subsequence n_j . But this suffices for the entire statement, because for $n_{j-1} \leq n \leq n_j$

(6.7)
$$\max_{k \le n} \frac{|R_k|}{\sqrt{n}} \le \left(\frac{j}{j-1}\right)^{r/2} \max_{k \le n_j} \frac{|R_k|}{\sqrt{n_j}}.$$

Theorem 6.1 is thereby proved.

References

- M. Maxwell and M. Woodroofe. Central limit theorems for additive functionals of Markov chains. Ann. Probab., 28(2):713–724, 2000.
- [2] F. Rassoul-Agha and T. Seppäläinen. An almost sure invariance principle for additive functionals of Markov chains. http://front.math.ucdavis.edu/math.PR/0411603.

T. SEPPÄLÄINEN, MATHEMATICS DEPARTMENT, UNIVERSITY OF WISCONSIN-MADISON, VAN VLECK HALL, MADISON, WI 53706, USA.

E-mail address: seppalai@math.wisc.edu