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Abstract. This material is for a course on stochastic analysis at UW–
Madison. The text covers the development of the stochastic integral of
predictable processes with respect to cadlag semimartingale integrators,
Itô’s formula in an open domain in Rn, an existence and uniqueness
theorem for an equation of the type dX = dH + F (t,X) dY where Y
is a cadlag semimartingale, and local time and Girsanov’s theorem for
Brownian motion. There is also a chapter on the integral with respect
to the white noise martingale measure and solving the stochastic heat
equation with multiplicative noise.

The text is self-contained except for certain basics of integration
theory and probability theory which are explained but not proved. In
addition, the reader needs to accept without proof two basic martin-
gale theorems: (i) the existence of quadratic variation for a cadlag local
martingale; and (ii) the so-called fundamental theorem of local martin-
gales that states the following: given a cadlag local martingale M and
a positive constant c, M can be decomposed as N + A where N and A
are cadlag local martingales, jumps of N are bounded by c, and A has
paths of bounded variation.

This text intends to provide a stepping stone to deeper books such
as Karatzas-Shreve and Protter. The hope is that this material is acces-
sible to students who do not have an ideal background in analysis and
probability theory, and useful for instructors who (like the author) are
not experts on stochastic analysis.
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Chapter 1

Measures, Integrals,
and Foundations of
Probability Theory

In this chapter we sort out the integrals one typically encounters in courses
on calculus, analysis, measure theory, probability theory and various applied
subjects such as statistics and engineering. These are the Riemann inte-
gral, the Riemann-Stieltjes integral, the Lebesgue integral and the Lebesgue-
Stieltjes integral. The starting point is the general Lebesgue integral on an
abstract measure space. The other integrals are special cases, even though
they have definitions that look different.

This chapter is not a complete treatment of the basics of measure theory.
It provides a brief unified explanation for readers who have prior familiarity
with various notions of integration. To avoid unduly burdening this chapter,
many technical matters that we need later in the book have been relegated
to the appendix. For details that we have omitted and for proofs the reader
should turn to any of the standard textbook sources, such as Folland [8].

In the second part of the chapter we go over the measure-theoretic foun-
dations of probability theory. Readers who know basic measure theory and
measure-theoretic probability can safely skip this chapter.

1.1. Measure theory and integration

A space X is in general an arbitrary set. For integration, the space must
have two additional structural elements, namely a σ-algebra and a measure.
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2 1. Measures, Integrals, and Foundations of Probability Theory

1.1.1. σ-algebras. Suppose A is a collection of subsets of X. (Terms such
as class, collection and family are used as synonyms for set to avoid speaking
of “sets of sets,” or even “sets of sets of sets.”) Then A is a σ-algebra (also
called a σ-field) if it has these properties:

(i) X ∈ A and ∅ ∈ A.

(ii) If A ∈ A then also Ac ∈ A.

(iii) If {Ai} is a sequence of sets in A, then also their union
⋃
iAi is an

element of A.

The restriction to countable unions in part (iii) is crucial. Unions over
arbitrarily large collections of sets are not permitted. On the other hand, if
part (iii) only permits finite unions, then A is called an algebra of sets, but
this is not rich enough for developing a useful theory of integration.

A pair (X,A) where X is a space and A is a σ-algebra on X is called
a measurable space. The elements of A are called measurable sets. Suppose
(X,A) and (Y,B) are two measurable spaces and f : X → Y is a map
(another term for a function) from X into Y . Then f is measurable if for
every B ∈ B, the inverse image

f−1(B) = {x ∈ X : f(x) ∈ B} = {f ∈ B}
lies in A. Measurable functions are the fundamental object in measure
theory. Measurability is preserved by composition f ◦ g of functions.

In finite or countable spaces the useful σ-algebra is usually the power set
2X which is the collection of all subsets of X. Not so in uncountable spaces.
Furthermore, the important σ-algebras are usually very complicated so that
it is impossible to give a concise criterion for testing whether a given set is
a member of the σ-algebra. The preferred way to define a σ-algebra is to
generate it by a smaller collection of sets that can be explicitly described.
This procedure is analogous to spanning a subspace of a vector space with a
given set of vectors. Except that the generated σ-algebra usually lacks the
kind of internal description that vector subspaces have as the set of finite
linear combinations of basis vectors. Generation of σ-algebras is based on
this lemma whose proof the reader should fill in as an exercise, if this material
is new.

Lemma 1.1. Let Γ be a family of σ-algebras on a space X. Then the
intersection

C =
⋂
A∈Γ

A

is also a σ-algebra.

Let E be an arbitrary collection of subsets of X. The σ-algebra generated
by E , denoted by σ(E), is by definition the intersection of all σ-algebras on
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X that contain E . This intersection is well-defined because there is always
at least one σ-algebra on X that contains E , namely the power set 2X . An
equivalent characterization of σ(E) is that it satisfies these three properties:
(i) σ(E) ⊇ E , (ii) σ(E) is a σ-algebra on X, and (iii) if B is any σ-algebra on
X that contains E , then σ(E) ⊆ B. This last point justifies calling σ(E) the
smallest σ-algebra on X that contains E .

A related notion is a σ-algebra generated by collection of functions.
Suppose (Y,H) is a measurable space, and Φ is a collection of functions
from X into Y . Then the σ-algebra generated by Φ is defined by

(1.1) σ(Φ) = σ
{
{f ∈ B} : f ∈ Φ, B ∈ H

}
.

σ(Φ) is the smallest σ-algebra that makes all the functions in Φ measurable.

Example 1.2 (Borel σ-algebras). If X is a metric space, then the Borel
σ-field BX is the smallest σ-algebra on X that contains all open sets. The
members of BX are called Borel sets. We also write B(X) when subscripts
become clumsy.

It is often technically convenient to have different generating sets for a
particular σ-algebra. For example, the Borel σ-algebra BR of the real line
is generated by either one of these classes of intervals:

{(a, b] : −∞ < a < b <∞} and {(−∞, b) : −∞ < b <∞}.

We shall also need the Borel σ-algebra B[−∞,∞] of the extended real line
[−∞,∞]. We define this as the smallest σ-algebra that contains all Borel sets
on the real line and the singletons {−∞} and {∞}. This σ-algebra is also
generated by the intervals {[−∞, b] : b ∈ R}. It is possible to define a metric
on [−∞,∞] such that this σ-algebra is the Borel σ-algebra determined by
the metric.

When we speak of real-valued or extended real-valued measurable func-
tions on an arbitrary measurable space (X,A), we always have in mind the
Borel σ-algebra on R and [−∞,∞]. One can then check that measurability
is preserved by algebraic operations (f±g, fg, f/g, whenever these are well-
defined) and by pointwise limits and suprema of sequences: if {fn : n ∈ N}
is a sequence of real-valued measurable functions, then for example the func-
tions

g(x) = sup
n∈N

fn(x) and h(x) = lim
n→∞

fn(x)

are measurable. The set N above is the set of natural numbers N =
{1, 2, 3, . . . }. Thus measurability is a more robust property than other fa-
miliar types of regularity, such as continuity or differentiability, that are not
in general preserved by pointwise limits.
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If (X,BX) is a metric space with its Borel σ-algebra, then every continu-
ous function f : X → R is measurable. The definition of continuity implies
that for any open G ⊆ R, f−1(G) is an open set in X, hence a member
of BX . Since the open sets generate BR, this suffices for concluding that
f−1(B) ∈ BX for all Borel sets B ⊆ R.

Example 1.3 (Product σ-algebras). Of great importance for probability
theory are product σ-algebras. Let I be an arbitrary index set, and for
each i ∈ I let (Xi,Ai) be a measurable space. The Cartesian product space
X =

∏
i∈I Xi is the space of all functions x : I →

⋃
i∈I Xi such that

x(i) ∈ Xi for each i. Alternate notation for x(i) is xi. Coordinate projection
maps on X are defined by fi(x) = xi, in other words fi maps X onto Xi by
extracting the i-coordinate of the I-tuple x. The product σ-algebra

⊗
i∈I Ai

is by definition the σ-algebra generated by the coordinate projections {fi :
i ∈ I}.

1.1.2. Measures. Let us move on to discuss the second fundamental in-
gredient of integration. Let (X,A) be a measurable space. A measure is a
function µ : A → [0,∞] that satisfies these properties:

(i) µ(∅) = 0.

(ii) If {Ai} is a sequence of sets in A such that Ai∩Aj = ∅ for all i 6= j
(pairwise disjoint is the term), then

µ

(⋃
i

Ai

)
=
∑
i

µ(Ai).

Property (ii) is called countable additivity. It goes together with the fact
that σ-algebras are closed under countable unions, so there is no issue about
whether the union

⋃
iAi is a member of A. The triple (X,A, µ) is called a

measure space.

If µ(X) < ∞ then µ is a finite measure. If µ(X) = 1 then µ is a prob-
ability measure. Infinite measures arise naturally. The ones we encounter
satisfy a condition called σ-finiteness: µ is σ-finite if there exists a sequence
of measurable sets {Vi} such that X =

⋃
Vi and µ(Vi) < ∞ for all i. A

measure defined on a Borel σ-algebra is called a Borel measure.

Example 1.4. Suppose X = {xi : i ∈ N} is a countable space, and let
{ai : i ∈ N} be a sequence of nonnegative real numbers. Then

µ(A) =
∑
i:xi∈A

ai

defines a σ-finite (or finite, if
∑
ai <∞) measure on the σ-algebra 2X of all

subsets of X.
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The example shows that to define a measure on a countable space, one
only needs to specify the measures of the singletons, and the rest follows
by countable additivity. Again, things are more complicated in uncountable
spaces. For example, we would like to have a measure m on the Borel sets of
the real line with the property that the measure m(I) of an interval I is the
length of the interval. (This measure is known as the Lebesgue measure.)
But then the measure of any singleton must be zero. So there is no way to
construct the measure by starting with singletons.

Since it is impossible to describe every element of a σ-algebra, it is
even more impossible to give a simple explicit formula for the measure of
every measurable set. Consequently we need a theorem that “generates” a
measure from some modest ingredients that can be explicitly written down.
Here is a useful one.

First, a class S of subsets of X is a semialgebra if it has these properties:

(i) ∅ ∈ S
(ii) If A,B ∈ S then also A ∩B ∈ S.

(iii) If A ∈ S, then Ac is a finite disjoint union of elements of S.

A good example on the real line to keep in mind is

(1.2) S = {(a, b] : −∞ ≤ a ≤ b <∞} ∪ {(a,∞) : −∞ ≤ a <∞}.
This semialgebra generates BR.

Theorem 1.5. Let S be a semialgebra, and µ0 : S → [0,∞] a function with
these properties:

(i) µ0(∅) = 0

(ii) If A ∈ S is a finite disjoint union of sets B1, . . . , Bn in S, then
µ0(A) =

∑
µ0(Bi).

(iii) If A ∈ S is a countable disjoint union of sets B1, B2, . . . , Bn, . . . in
S, then µ0(A) ≤

∑
µ0(Bi).

Assume furthermore that there exists a sequence of sets {Ai} in S such that
X =

⋃
Ai and µ0(Ai) <∞ for all i. Then there exists a unique measure µ

on the σ-algebra σ(S) such that µ = µ0 on S.

This theorem is proved by first extending µ0 to the algebra generated
by S, and by then using the so-called Carathéodory Extension Theorem to
go from the algebra to the σ-algebra. With Theorem 1.5 we can describe a
large class of measures on R.

Example 1.6 (Lebesgue-Stieltjes measures). Let F be a nondecreasing,
right-continuous real-valued function on R. For intervals (a, b], define

µ0(a, b] = F (b)− F (a).
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This will work also for a = −∞ and b =∞ if we define

F (∞) = lim
x↗∞

F (x) and F (−∞) = lim
y↘−∞

F (y).

It is possible that F (∞) = ∞ and F (−∞) = −∞, but this will not hurt
the definition. One can show that µ0 satisfies the hypotheses of Theorem
1.5, and consequently there exists a measure µ on (R,BR) that gives mass
F (b) − F (a) to each interval (a, b]. This measure is called the Lebesgue-
Stieltjes measure of the function F , and we shall denote µ by ΛF to indicate
the connection with F .

The most important special case is Lebesgue measure which we shall
denote by m, obtained by taking F (x) = x.

On the other hand, if µ is a Borel measure on R such that µ(B) < ∞
for all bounded Borel sets, we can define a right-continuous nondecreasing
function by

G(0) = 0, and G(x) =

{
µ(0, x], x > 0

−µ(x, 0], x < 0

and then µ = ΛG. Thus Lebesgue-Stieltjes measures give us all the Borel
measures that are finite on bounded sets.

1.1.3. The integral. Let (X,A, µ) be a fixed measure space. To say that a
function f : X → R or f : X → [−∞,∞] is measurable is always interpreted
with the Borel σ-algebra on R or [−∞,∞]. In either case, it suffices to
check that {f ≤ t} ∈ A for each real t. The Lebesgue integral is defined
in several stages, starting with cases for which the integral can be written
out explicitly. This same pattern of proceeding from simple cases to general
cases will also be used to define stochastic integrals.

Step 1. Nonnegative measurable simple functions. A nonnegative sim-
ple function is a function with finitely many distinct values α1, . . . , αn ∈
[0,∞). If we set Ai = {f = αi}, then we can write

f(x) =
n∑
i=1

αi1Ai(x)

where

1A(x) =

{
1, x ∈ A
0, x /∈ A

is the indicator function (also called characteristic function) of the set A.
The integral

∫
f dµ is defined by∫

f dµ =

n∑
i=1

αiµ(Ai).
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This sum is well-defined because f is measurable iff each Ai is measurable,
and it is possible to add and multiply numbers in [0,∞]. Note the convention
0 · ∞ = 0.

Step 2. [0,∞]-valued measurable functions. Let f : X → [0,∞] be
measurable. Then we define∫

f dµ = sup

{∫
g dµ : g is a simple function such that 0 ≤ g ≤ f

}
.

This integral is a well-defined number in [0,∞].

Step 3. General measurable functions. Let f : X → [−∞,∞] be
measurable. The positive and negative parts of f are f+ = f ∨ 0 and
f− = −(f ∧ 0). f± are nonnegative functions, and satisfy f = f+ − f− and
|f | = f+ + f−. The integral of f is defined by∫

f dµ =

∫
f+ dµ−

∫
f− dµ

provided at least one of the integrals on the right is finite.

These steps complete the construction of the integral. Along the way
one proves that the integral has all the necessary properties, such as linearity∫

(αf + βg) dµ = α

∫
f dµ+ β

∫
g dµ,

monotonicity:

f ≤ g implies

∫
f dµ ≤

∫
g dµ,

and the important inequality∣∣∣∣ ∫ f dµ

∣∣∣∣ ≤ ∫ |f | dµ.
Various notations are used for the integral

∫
f dµ. Sometimes it is desir-

able to indicate the space over which one integrates by
∫
X f dµ. Then one

can indicate integration over a subset A by defining∫
A
f dµ =

∫
X

1Af dµ.

To make the integration variable explicit, one can write∫
X
f(x)µ(dx) or

∫
X
f(x) dµ(x).

Since the integral is linear in both the function and the measure, the linear
functional notation 〈f, µ〉 is used. Sometimes the notation is simplified to
µ(f), or even to µf .
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A basic aspect of measure theory is that whatever happens on sets of
measure zero is not visible. We say that a property holds µ-almost every-
where (or simply almost everywhere if the measure is clear from the context)
if there exists a set N ∈ A such that µ(N) = 0 (a µ-null set) and the
property in question holds on the set N c.

For example, we can define a measure µ on R which agrees with Lebesgue
measure on [0, 1] and vanishes elsewhere by µ(B) = m(B∩[0, 1]) for B ∈ BR.
Then if g(x) = x on R while

f(x) =


sinx, x < 0

x, 0 ≤ x ≤ 1

cosx, x > 1

we can say that f = g µ-almost everywhere.

The principal power of the Lebesgue integral derives from three funda-
mental convergence theorems which we state next. The value of an integral is
not affected by changing the function on a null set. Therefore the hypotheses
of the convergence theorems require only almost everywhere convergence.

Theorem 1.7. (Fatou’s lemma) Let 0 ≤ fn ≤ ∞ be measurable functions.
Then ∫ (

lim
n→∞

fn
)
dµ ≤ lim

n→∞

∫
fn dµ.

Theorem 1.8. (Monotone convergence theorem) Let fn be nonnegative mea-
surable functions, and assume fn ≤ fn+1 almost everywhere, for each n. Let
f = limn→∞ fn. This limit exists at least almost everywhere. Then∫

f dµ = lim
n→∞

∫
fn dµ.

Theorem 1.9. (Dominated convergence theorem) Let fn be measurable func-
tions, and assume the limit f = limn→∞ fn exists almost everywhere. As-
sume there exists a function g ≥ 0 such that |fn| ≤ g almost everywhere for
each n, and

∫
g dµ <∞. Then∫

f dµ = lim
n→∞

∫
fn dµ.

Finding examples where the hypotheses and the conclusions of these
theorems fail are excellent exercises. By the monotone convergence theorem
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we can give the following explicit limit expression for the integral
∫
f dµ of

a [0,∞]-valued function f . Define simple functions

(1.3) fn(x) =
2nn−1∑
k=0

2−nk · 1{2−nk≤f<2−n(k+1)}(x) + n · 1{f≥n}(x).

Then 0 ≤ fn(x)↗ f(x), and so by Theorem 1.8,∫
f dµ = lim

n→∞

∫
fn dµ

= lim
n→∞

{2nn−1∑
k=0

2−nk · µ
{
k

2n ≤ f <
k+1
2n

}
+ n · µ{f ≥ n}

}
.

(1.4)

There is an abstract change of variables principle which is particu-
larly important in probability. Suppose we have a measurable map ψ :
(X,A) → (Y,H) between two measurable spaces, and a measurable func-
tion f : (Y,H) → (R,BR). If µ is a measure on (X,A), we can define a
measure ν on (Y,H) by

ν(U) = µ(ψ−1(U)) for U ∈ H.

In short, this connection is expressed by

ν = µ ◦ ψ−1.

If the integral of f over the measure space (Y,H, ν) exists, then the value of
this integral is not changed if instead we integrate f ◦ ψ over (X,A, µ):

(1.5)

∫
Y
f dν =

∫
X

(f ◦ ψ) dµ.

Note that the definition of ν already gives equality (1.5) for f = 1U . The
linearity of the integral then gives it for simple f . General f ≥ 0 follow by
monotone convergence, and finally general f = f+ − f− by linearity again.
This sequence of steps recurs often when an identity for integrals is to be
proved.

1.1.4. Completion of measures. There are certain technical benefits to
having the following property in a measure space (X,A, µ), called complete-
ness: if N ∈ A satisfies µ(N) = 0, then every subset of N is measurable
(and then of course has measure zero). It turns out that this can always be
arranged by a simple enlargement of the σ-algebra. Let

Ā = {A ⊆ X : there exists B,N ∈ A and F ⊆ N
such that µ(N) = 0 and A = B ∪ F}

and define µ̄ on Ā by µ̄(A) = µ(B) when B has the relationship to A from
above. Then one can check that A ⊆ Ā, (X, Ā, µ̄) is a complete measure
space, and µ̄ agrees with µ on A.
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An important example of this procedure is the extension of Lebesgue
measure m from BR to a σ-algebra LR of the so-called Lebesgue measurable
sets. LR is the completion of BR under Lebesgue measure, and it is strictly
larger than BR. Proving this latter fact is typically an exercise in real
analysis (for example, Exercise 2.9 in [8]). For our purposes the Borel sets
suffice as a domain for Lebesgue measure. In analysis literature the term
Lebesgue measure usually refers to the completed measure.

1.1.5. The Riemann and Lebesgue integrals. In calculus we learn the
Riemann integral. Suppose f is a bounded function on a compact interval
[a, b]. Given a (finite) partition π = {a = s0 < s1 < · · · < sn = b} of [a, b]
and some choice of points xi ∈ [si, si+1], we form the Riemann sum

S(π) =
n−1∑
i=0

f(xi)(si+1 − si).

We say f is Riemann integrable on [a, b] if there is a number c such that the
following is true: given ε > 0, there exists δ > 0 such that |c − S(π)| ≤ ε
for every partition π with mesh(π) = max{si+1− si} ≤ δ and for any choice
of the points xi in the Riemann sum. In other words, the Riemann sums
converge to c as the mesh of the partition converges to zero. The limiting
value is by definition the Riemann integral of f :

(1.6)

∫ b

a
f(x) dx = c = lim

mesh(π)→0
S(π).

One can then prove that every continuous function is Riemann integrable.

The definition of the Riemann integral is fundamentally different from
the definition of the Lebesgue integral. For the Riemann integral there is
one recipe for all functions, instead of a step-by-step definition that proceeds
from simple to complex cases. For the Riemann integral we partition the
domain [a, b], whereas the Lebesgue integral proceeds by partitioning the
range of f , as formula (1.4) makes explicit. This latter difference is some-
times illustrated by counting the money in your pocket: the Riemann way
picks one coin at a time from the pocket, adds its value to the total, and re-
peats this until all coins are counted. The Lebesgue way first partitions the
coins into pennies, nickles, dimes, and quarters, and then counts the piles.
As the coin-counting picture suggests, the Lebesgue way is more efficient (it
leads to a more general integral with superior properties) but when both
apply, the answers are the same. The precise relationship is the following,
which also gives the exact domain of applicability of the Riemann integral.

Theorem 1.10. Suppose f is a bounded function on [a, b].



1.1. Measure theory and integration 11

(a) If f is a Riemann integrable function on [a, b], then f is Lebesgue
measurable, and the Riemann integral of f coincides with the Lebesgue in-
tegral of f with respect to Lebesgue measure m on [a, b].

(b) f is Riemann integrable iff the set of discontinuities of f has Lebesgue
measure zero.

Because of this theorem, the Riemann integral notation is routinely used
for Lebesgue integrals on the real line. In other words, we write∫ b

a
f(x) dx instead of

∫
[a,b]

f dm

for a Borel or Lebesgue measurable function f on [a, b], even if the function
f is not Riemann integrable.

1.1.6. Function spaces. Various function spaces play an important role in
analysis and in all the applied subjects that use analysis. One way to define
such spaces is through integral norms. Let (X,A, µ) be a measure space.
For 1 ≤ p <∞, the space Lp(µ) is the set of all measurable f : X → R such
that

∫
|f |p dµ <∞. The Lp norm on this space is defined by

(1.7) ‖f‖p = ‖f‖Lp(µ) =

{∫
|f |p dµ

} 1
p

.

A function f is called integrable if
∫
|f | dµ < ∞. This is synonymous with

f ∈ L1(µ).

There is also a norm corresponding to p =∞, defined by

(1.8) ‖f‖∞ = ‖f‖L∞(µ) = inf
{
c ≥ 0 : µ{|f | > c} = 0

}
.

This quantity is called the essential supremum of |f |. The inequality |f(x)| ≤
‖f‖∞ holds almost everywhere, but can fail on a null set of points x.

The Lp(µ) spaces, 1 ≤ p ≤ ∞, are Banach spaces (see Appendix). The
type of convergence in these spaces is called Lp convergence, so we say
fn → f in Lp(µ) if

‖fn − f‖Lp(µ) → 0 as n→∞.

However, a problem is created by the innocuous property of a norm that
requires ‖f‖p = 0 if and only if f = 0. For example, let the underlying
measure space be the interval [0, 1] with Lebesgue measure on Borel sets.
From the definition of the Lp norm then follows that ‖f‖p = 0 if and only
if f = 0 Lebesgue–almost everywhere. In other words, f can be nonzero
on even infinitely many points as long as these points form a Lebesgue–null
set, and still ‖f‖p = 0. An example of this would be the indicator function
of the rationals in [0, 1]. So the disturbing situation is that many functions
have zero norm, not just the identically zero function f(x) ≡ 0.
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To resolve this, we apply the idea that whatever happens on null sets
is not visible. We simply adopt the point of view that functions are equal
if they differ only on a null set. The mathematically sophisticated way
of phrasing this is that we regard elements of Lp(µ) as equivalence classes
of functions. Particular functions that are almost everywhere equal are
representatives of the same equivalence class. Fortunately, we do not have
to change our language. We can go on regarding elements of Lp(µ) as
functions, as long as we remember the convention concerning equality. This
issue will appear again when we discuss spaces of stochastic processes.

1.1.7. Product measures. Let (X,A, µ) and (Y,B, ν) be two σ-finite
measure spaces. The product measure space (X × Y,A ⊗ B, µ ⊗ ν) is de-
fined as follows. X×Y is the Cartesian product space. A⊗B is the product
σ-algebra. The product measure µ⊗ ν is the unique measure on A⊗B that
satisfies

µ⊗ ν(A×B) = µ(A)ν(B)

for measurable rectangles A × B where A ∈ A and B ∈ B. Measurable
rectangles generate A⊗ B and they form a semialgebra. The hypotheses of
the Extension Theorem 1.5 can be checked, so the measure µ⊗ν is uniquely
and well defined. This measure µ⊗ ν is also σ-finite.

The x-section fx of an A⊗ B-measurable function f is fx(y) = f(x, y).
It is a B-measurable function on Y . Furthermore, the integral of fx over
(Y,B, ν) gives an A-measurable function of x. Symmetric statements hold
for the y-section fy(x) = f(x, y), a measurable function on X. This is part
of the important Tonelli-Fubini theorem.

Theorem 1.11. Suppose (X,A, µ) and (Y,B, ν) are σ-finite measure spaces.

(a) (Tonelli’s theorem) Let f be a [0,∞]-valued A⊗B-measurable func-
tion on X×Y . Then the functions g(x) =

∫
Y fx dν and h(y) =

∫
X fy dµ are

[0,∞]-valued measurable functions on their respective spaces. Furthermore,
f can be integrated by iterated integration:

(1.9)

∫
X×Y

f d(µ⊗ ν) =

∫
X

{∫
Y
f(x, y) ν(dy)

}
µ(dx)

=

∫
Y

{∫
X
f(x, y)µ(dx)

}
ν(dy).

(b) (Fubini’s theorem) Let f ∈ L1(µ⊗ν). Then fx ∈ L1(ν) for µ-almost
every x, fy ∈ L1(µ) for ν-almost every y, g ∈ L1(µ) and h ∈ L1(ν). Iterated
integration is valid as in (1.9) above.
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The product measure construction and the theorem generalize naturally
to products ( n∏

i=1

Xi ,

n⊗
i=1

Ai ,
n⊗
i=1

µi

)
of finitely many σ-finite measure spaces. Infinite products shall be discussed
in conjunction with the construction problem of stochastic processes.

The part of the Tonelli-Fubini theorem often needed is that integrating
away some variables from a product measurable function always leaves a
function that is measurable in the remaining variables.

In multivariable calculus we learn the multivariate Riemann integral over
n-dimensional rectangles,∫ b1

a1

∫ b2

a2

· · ·
∫ bn

an

f(x1, x2, . . . , xn) dxn · · · dx2 dx1.

This is an integral with respect to n-dimensional Lebesgue measure on
Rn, which can be defined as the completion of the n-fold product of one-
dimensional Lebesgue measures.

As a final technical point, consider metric spaces X1, X2, . . . , Xn, with
product space X =

∏
Xi. X has the product σ-algebra

⊗
BXi of the Borel

σ-algebras from the factor spaces. On the other hand, X is a metric space in
its own right, and so has its own Borel σ-algebra BX . What is the relation
between the two? The projection maps (x1, . . . , xn) 7→ xi are continuous,
hence BX -measurable. Since these maps generate

⊗
BXi , it follows that⊗

BXi ⊆ BX . It turns out that if the Xi’s are separable then equality holds:⊗
BXi = BX . A separable metric space is one that has a countable dense

set. An example of a countable dense set is the set of rational numbers in
R.

1.1.8. Signed measures. A finite signed measure µ on a measurable space
(X,A) is a function µ : A → R such that µ(∅) = 0, and

(1.10) µ(A) =

∞∑
i=1

µ(Ai)

whenever A =
⋃
Ai is a disjoint union. The series in (1.10) has to converge

absolutely, meaning that ∑
i

|µ(Ai)| <∞.

Without absolute convergence the limit of the series
∑
µ(Ai) would depend

on the order of the terms. But this must not happen because rearranging
the sets A1, A2, A3, . . . does not change their union.
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More generally, a signed measure is allowed to take one of the values
±∞ but not both. Absolute convergence in (1.10) is then required if µ(A)
is a finite real number. We shall use the term measure only when the signed
measure takes only values in [0,∞]. If this point needs emphasizing, we use
the term positive measure as a synonym for measure.

For any signed measure ν, there exist unique positive measures ν+ and
ν− such that ν = ν+ − ν− and ν+⊥ν−. (The statement ν+⊥ν− reads “ν+

and ν− are mutually singular”, and means that there exists a measurable
set A such that ν+(A) = ν−(Ac) = 0.) The measure ν+ is the positive
variation of ν, ν− is the negative variation of ν, and the pair ν+, ν− is the
Jordan decomposition of ν. There exist measurable sets P and N such that
P ∪N = X, P ∩N = ∅, and ν+(A) = ν(A ∩ P ) and ν−(A) = −ν(A ∩N).
(P,N) is called the Hahn decomposition of ν. The total variation of ν is the
positive measure |ν| = ν+ +ν−. We say that the signed measure ν is σ-finite
if |ν| is σ-finite.

Integration with respect to a signed measure is defined by

(1.11)

∫
f dν =

∫
f dν+ −

∫
f dν−

whenever both integrals on the right are finite. A function f is integrable
with respect to ν if it is integrable with respect to |ν|. In other words, L1(ν)
is by definition L1( |ν| ). A useful inequality is

(1.12)

∣∣∣∣∫ f dν

∣∣∣∣ ≤ ∫ |f | d|ν|
valid for all f for which the integral on the right is finite.

Note for future reference that integrals with respect to |ν| can be ex-
pressed in terms of ν by

(1.13)

∫
f d|ν| =

∫
P
f dν+ +

∫
N
f dν− =

∫
(1P − 1N )f dν.

1.1.9. BV functions and Lebesgue-Stieltjes integrals. Let F be a
function on [a, b]. The total variation function of F is the function VF (x)
defined on [a, b] by

(1.14) VF (x) = sup

{ n∑
i=1

|F (si)− F (si−1)| : a = s0 < s1 < · · · < sn = x

}
.

The supremum above is taken over partitions of the interval [a, x]. F has
bounded variation on [a, b] if VF (b) < ∞. BV [a, b] denotes the space of
functions with bounded variation on [a, b] (BV functions).

VF is a nondecreasing function with VF (a) = 0. F is a BV function iff
it is the difference of two bounded nondecreasing functions, and in case F
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is BV, one way to write this decomposition is

F = 1
2(VF + F )− 1

2(VF − F )

(the Jordan decomposition of F ). If F is BV and right-continuous, then also
VF is right-continuous.

Henceforth suppose F is BV and right-continuous on [a, b]. Then there
is a unique signed Borel measure ΛF on (a, b] determined by

ΛF (u, v] = F (v)− F (u), a ≤ u < v ≤ b.

We can obtain this measure from our earlier definition of Lebesgue-Stieltjes
measures of nondecreasing functions. Let F = F1−F2 be the Jordan decom-
position of F . Extend these functions outside [a, b] by setting Fi(x) = Fi(a)
for x < a, and Fi(x) = Fi(b) for x > b. Then ΛF = ΛF1 −ΛF2 is the Jordan
decomposition of the measure ΛF , where ΛF1 and ΛF2 are as constructed in
Example 1.6. Furthermore, the total variation measure of ΛF is

|ΛF | = ΛF1 + ΛF2 = ΛVF ,

the Lebesgue-Stieltjes measure of the total variation function VF . The inte-
gral of a bounded Borel function g on (a, b] with respect to the measure ΛF
is of course denoted by∫

(a,b]
g dΛF but also by

∫
(a,b]

g(x) dF (x),

and the integral is called a Lebesgue-Stieltjes integral. We shall use both
of these notations in the sequel. Especially when

∫
g dF might be confused

with a stochastic integral, we prefer
∫
g dΛF . For Lebesgue-Stieltjes integrals

inequality (1.12) can be written in the form

(1.15)

∣∣∣∣∫
(a,b]

g(x) dF (x)

∣∣∣∣ ≤ ∫
(a,b]
|g(x)| dVF (x).

We consider ΛF a measure on (a, b] rather than [a, b] because according
to the connection between a right-continuous function and its Lebesgue-
Stieltjes measure, the measure of the singleton {a} is

(1.16) ΛF {a} = F (a)− F (a−).

This value is determined by how we choose to extend F to x < a, and so is
not determined by the values on [a, b].

Advanced calculus courses sometimes cover a related integral called the
Riemann-Stieltjes, or the Stieltjes integral. This is a generalization of the



16 1. Measures, Integrals, and Foundations of Probability Theory

Riemann integral. For bounded functions g and F on [a, b], the Riemann-

Stieltjes integral
∫ b
a g dF is defined by∫ b

a
g dF = lim

mesh(π)→0

∑
i

g(xi)
(
F (si+1)− F (si)

)
if this limit exists. The notation and the interpretation of the limit is as
in (1.6). One can prove that this limit exists for example if g is continuous
and F is BV [16, page 282]. The next lemma gives a version of this limit
that will be used frequently in the sequel. The left limit function is defined
by f(t−) = lims↗t,s<t f(s), by approaching t strictly from the left, provided
these limits exist.

Lemma 1.12. Let ν be a finite signed measure on (0, T ]. Let f be a bounded
Borel function on [0, T ] for which the left limit f(t−) exists at all 0 < t ≤ T .
Let πn = {0 = sn1 < · · · < snm(n) = T} be partitions of [0, T ] such that

mesh(πn)→ 0. Then

lim
n→∞

sup
0≤t≤T

∣∣∣∣ m(n)−1∑
i=0

f(sni )ν(sni ∧ t, sni+1 ∧ t]−
∫

(0,t]
f(s−) ν(ds)

∣∣∣∣ = 0.

In particular, for a right-continuous function G ∈ BV [0, T ],

lim
n→∞

sup
0≤t≤T

∣∣∣∣ m(n)−1∑
i=0

f(sni )
(
G(sni+1 ∧ t)−G(sni ∧ t)

)
−
∫

(0,t]
f(s−) dG(s)

∣∣∣∣ = 0.

It is important here that f is evaluated at the left endpoint of the par-
tition intervals [sni , s

n
i+1].

Proof. For each 0 ≤ t ≤ T ,∣∣∣∣m(n)−1∑
i=0

f(sni )ν(sni ∧ t, sni+1 ∧ t]−
∫

(0,t]
f(s−) ν(ds)

∣∣∣∣
≤
∫

(0,t]

∣∣∣∣m(n)−1∑
i=0

f(sni )1(sni ,s
n
i+1](s)− f(s−)

∣∣∣∣ |ν|(ds)
≤
∫

(0,T ]

∣∣∣∣m(n)−1∑
i=0

f(sni )1(sni ,s
n
i+1](s)− f(s−)

∣∣∣∣ |ν|(ds)
where the last inequality is simply a consequence of increasing the interval
of integration to (0, T ]. The last integral gives a bound that is uniform in t,
and it vanishes as n→∞ by the dominated convergence theorem. �
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Example 1.13. A basic example is a step function. Let {xi} be a sequence
of points in R (ordering of xi’s is immaterial), and {αi} an absolutely sum-
mable sequence, which means

∑
|αi| <∞. Define

G(t) =
∑
i:xi≤t

αi for t ∈ R.

From

|G(t)−G(s)| ≤
∑

i:s<xi≤t
|αi| for s < t

one can show that G is right-continuous and a BV function on any subin-
terval of R. Furthermore, the left limit G(t−) exists and is given by

G(t−) =
∑
i:xi<t

αi for each t ∈ R.

The Lebesgue-Stieltjes integral of a bounded Borel function f is

(1.17)

∫
(0,T ]

f dG =
∑

i:0<xi≤T
αif(xi).

To justify this, first take f = 1(a,b] with 0 ≤ a < b ≤ T and check that
both sides equal G(b)−G(a) (left-hand side by definition of the Lebesgue-
Stieltjes measure). These intervals, together with the empty set, form a
π-system that generates the Borel σ-algebra on (0, T ]. Theorem B.4 can be
applied to verify the identity for all bounded Borel functions f .

The above proof of (1.17) is a good example of a recurring theme. Sup-
pose the goal is to prove an identity for a large class of objects (for example,
(1.17) above is supposed to be valid for all bounded Borel functions f).
Typically we can do an explicit verification for some special cases. If this
class of special cases is rich enough, then we can hope to complete the proof
by appealing to some general principle that extends the identity from the
special class to the entire class. Examples of such general principles are
Theorems B.3 and B.4 and Lemmas B.5 and B.6 in Appendix B.

1.1.10. Radon-Nikodym theorem. This theorem is among the most im-
portant in measure theory. We state it here because it gives us the existence
of conditional expectations in the next section. First a definition. Suppose µ
is a measure and ν a signed measure on a measurable space (X,A). We say
ν is absolutely continuous with respect to µ, abbreviated ν � µ, if µ(A) = 0
implies ν(A) = 0 for all A ∈ A.

Theorem 1.14. Let µ be a σ-finite measure and ν a σ-finite signed mea-
sure on a measurable space (X,A). Assume ν is absolutely continuous with
respect to µ. Then there exists a µ-almost everywhere unique A-measurable
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function f such that at least one of
∫
f+ dµ and

∫
f− dµ is finite, and for

each A ∈ A,

(1.18) ν(A) =

∫
A
f dµ.

Some remarks are in order. Since either
∫
A f

+ dµ or
∫
A f
− dµ is finite,

the integral
∫
A f dµ has a well-defined value in [−∞,∞]. The equality of

integrals (1.18) extends to measurable functions, so that

(1.19)

∫
g dν =

∫
gf dµ

for all A-measurable functions g for which the integrals make sense. The
precise sense in which f is unique is this: if f̃ also satisfies (1.18) for all

A ∈ A, then µ{f 6= f̃} = 0.

The function f is the Radon-Nikodym derivative of ν with respect to µ,
and denoted by f = dν/dµ. The derivative notation is very suggestive. It
leads to dν = f dµ which tells us how to do the substitution in the integral.
Also, it suggests that

(1.20)
dν

dρ
· dρ
dµ

=
dν

dµ

which is a true theorem under the right assumptions: suppose ν is a signed
measure, ρ and µ positive measures, all σ-finite, ν � ρ and ρ� µ. Then∫

g dν =

∫
g · dν

dρ
dρ =

∫
g · dν

dρ
· dρ
dµ

dµ

by two applications of (1.19). Since the Radon-Nikodym derivative is unique,
the equality above proves (1.20).

Here is a result that combines the Radon-Nikodym theorem with Lebesgue-
Stieltjes integrals.

Lemma 1.15. Suppose ν is a finite signed Borel measure on [0, T ] and
g ∈ L1(ν). Let

F (t) =

∫
[0,t]

g(s) ν(ds), 0 ≤ t ≤ T.

Then F is a right-continuous BV function on [0, T ]. The Lebesgue-Stieltjes
integral of a bounded Borel function φ on (0, T ] satisfies

(1.21)

∫
(0,T ]

φ(s) dF (s) =

∫
(0,T ]

φ(s)g(s) ν(ds).

In abbreviated form, dF = g dν and g = dΛF /dν on (0, T ].
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Proof. For right continuity of F , let tn ↘ t. Then

|F (tn)− F (t)| =
∣∣∣∣ ∫

[0,T ]
1(t,tn] · g dν

∣∣∣∣ ≤ ∫
[0,T ]

1(t,tn]|g| d|ν|.

The last integral vanishes as tn ↘ t because 1(t,tn](s) → 0 at each point s,
and the integral converges by dominated convergence. Thus F (t+) = F (t).

For any partition 0 = s0 < s1 < · · · < sn = T ,∑
i

∣∣F (si+1)− F (si)
∣∣ =

∑
i

∣∣∣∣ ∫
(si,si+1]

g dν

∣∣∣∣ ≤∑
i

∫
(si,si+1]

|g| d|ν|

=

∫
(0,T ]
|g| d|ν|.

By the assumption g ∈ L1(ν) the last quantity above is a finite upper bound
on the sums of F -increments over all partitions. Hence F ∈ BV [0, T ].

The last issue is the equality of the two measures ΛF and g dν on (0, T ].
By Lemma B.5 it suffices to check the equality of the two measures for
intervals (a, b], because this class of intervals is closed under intersection
and generates the Borel σ-algebra on (0, T ].

ΛF (a, b] = F (b)−F (a) =

∫
[0,b]

g(s) ν(ds)−
∫

[0,a]
g(s) ν(ds) =

∫
(a,b]

g(s) ν(ds).

This suffices. �

The conclusion (1.21) can be extended to [0, T ] if we define F (0−) = 0.
For then

ΛF {0} = F (0)− F (0−) = F (0) = g(0)ν{0} =

∫
{0}

g dν.

On the other hand, the conclusion of the lemma on (0, T ] would not change
if we defined F (0) = 0 and

F (t) =

∫
(0,t]

g(s) ν(ds), 0 < t ≤ T.

This changes F by a constant and hence does not affect its total variation
or Lebesgue-Stieltjes measure.

1.2. Basic concepts of probability theory

This section summarizes the measure-theoretic foundations of probability
theory. Matters related to stochastic processes will be treated in the next
chapter.
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1.2.1. Probability spaces, random variables and expectations. The
foundations of probability are taken directly from measure theory, with no-
tation and terminology adapted to probabilistic conventions. A probability
space (Ω,F , P ) is a measure space with total mass P (Ω) = 1. The prob-
ability space is supposed to model the random experiment or collection of
experiments that we wish to analyze. The underlying space Ω is called the
sample space, and its sample points ω ∈ Ω are the elementary outcomes of
the experiment. The measurable sets in F are called events. P is a proba-
bility measure. A random variable is a measurable function X : Ω→ S with
values in some measurable space S. Most often S = R. If S = Rd one can
call X a random vector, and if S is a function space then X is a random
function.

Here are some examples to illustrate the terminology.

Example 1.16. Consider the experiment of choosing randomly a person in
a room of N people and registering his or her age in years. Then naturally
Ω is the set of people in the room, F is the collection of all subsets of Ω,
and P{ω} = 1/N for each person ω ∈ Ω. Let X(ω) be the age of person ω.
Then X is a Z+-valued measurable function (random variable) on Ω.

Example 1.17. Consider the (thought) experiment of tossing a coin infin-
itely many times. Let us record the outcomes (heads and tails) as zeroes
and ones. The sample space Ω is the space of sequences ω = (x1, x2, x3, . . . )
of zeroes and ones, or Ω = {0, 1}N, where N = {1, 2, 3, . . . } is the set of nat-
ural numbers. The σ-algebra F on Ω is the product σ-algebra B⊗N where
each factor is the natural σ-algebra

B =
{
∅, {0}, {1}, {0, 1}

}
on {0, 1}. To choose the appropriate probability measure on Ω, we need to
make assumptions on the coin. Simplest would be to assume that successive
coin tosses are independent (a term we discuss below) and fair (heads and
tails equally likely). Let S be the class of events of the form

A = {ω : (x1, . . . , xn) = (a1, . . . , an)}

as n varies over N and (a1, . . . , an) varies over n-tuples of zeroes and ones.
Include ∅ and Ω to make S a semialgebra. Our assumptions dictate that
the probability of the event A should be P0(A) = 2−n. One needs to check
that P0 satisfies the hypotheses of Theorem 1.5. Then the mathematical
machinery takes over and gives the existence of a unique probability measure
P on (Ω,F) that agrees with P0 on S.

This is a mathematical model of a sequence of independent fair coin
tosses. Natural random variables to define on Ω are first the coordinate
variables Xi(ω) = xi, and then variables derived from these such as Sn =
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X1 + · · · + Xn, the number of ones among the first n tosses. The random
variables {Xi} are an example of an i.i.d. sequence, which is short for
independent and identically distributed.

The expectation of a real-valued random variableX is simply its Lebesgue
integral over the probability space:

EX =

∫
Ω
X dP.

The rules governing the existence of the expectation are exactly those inher-
ited from measure theory. The spaces Lp(P ) are also defined as for general
measure spaces.

The probability distribution (or simply distribution, also the term law is
used) µ of a random variable X is the probability measure obtained when
the probability measure P is transported to the real line via

µ(B) = P{X ∈ B}, B ∈ BR.

The expression {X ∈ B} is an abbreviation for the longer set expression
{ω ∈ Ω : X(ω) ∈ B}.

If h is a bounded Borel function on R, then h(X) is also a random
variable (this means the composition h ◦X), and

(1.22) Eh(X) =

∫
Ω
h(X) dP =

∫
R
h(x)µ(dx).

This equality is an instance of the change of variables identity (1.5). Notice
that we need not even specify the probability space to make this calculation.
This is the way things usually work. There must always be a probability
space underlying our reasoning, but when situations are simple we can ignore
it and perform our calculations in familiar spaces such as the real line or
Euclidean spaces.

The (cumulative) distribution function F of a random variable X is
defined by F (x) = P{X ≤ x}. The distribution µ is the Lebesgue-Stieltjes
measure of F . Using the notation of Lebesgue-Stieltjes integrals, (1.22) can
be expressed as

(1.23) Eh(X) =

∫
R
h(x) dF (x).

This is the way expectations are expressed in probability and statistics books
that avoid using measure theory, relying on the advanced calculus level
understanding of the Stieltjes integral.

The density function f of a random variableX is the Radon-Nikodym de-
rivative of its distribution with respect to Lebesgue measure, so f = dµ/dx.
It exists iff µ is absolutely continuous with respect to Lebesgue measure on
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R. When f exists, the distribution function F is differentiable Lebesgue–
almost everywhere, and F ′ = f Lebesgue–almost everywhere. The expecta-
tion can then be expressed as an integral with respect to Lebesgue measure:

(1.24) Eh(X) =

∫
R
h(x)f(x) dx.

This is the way most expectations are evaluated in practice. For example, if
X is a rate λ exponential random variable (X ∼ Exp(λ) in symbols), then

Eh(X) =

∫ ∞
0

h(x)λe−λx dx.

The concepts discussed above have natural extensions to Rd-valued random
vectors.

Example 1.18. Here are the most important probability densities.

(i) On any bounded interval [a, b] of R there is the uniform distribution
Unif[a, b] with density f(x) = (b − a)−11[a,b](x). Whether the endpoints
are included is immaterial because it does not affect the outcome of any
calculation.

(ii) The exponential distribution mentioned above is a special case of the
Gamma(α, λ) distribution on R+ with density f(x) = Γ(α)−1(λx)α−1λe−λx.
The two parameters satisfy α, λ > 0. The gamma function is Γ(α) =∫∞

0 xα−1e−x dx.

(iii) For α, β > 0 the Beta(α, β) distribution on (0, 1) has density f(x) =
Γ(α+β)

Γ(α)Γ(β)x
α−1(1− x)β−1.

(iv) For a vector v ∈ Rd (d ≥ 1) and a symmetric, nonnegative definite,
nonsingular d× d matrix Γ, the normal (or Gaussian) distribution N (v,Γ)
on Rd has density

(1.25) f(x) =
1

(2π)d/2
√

det Γ
exp
(
−1

2(x− v)TΓ−1(x− v)
)
.

Above, and in general, we regard a d-vector v as a d× 1 matrix with 1× d
transpose vT .

If Γ is singular then the N (v,Γ) distribution can be characterized by its
characteristic function (the probabilistic term for Fourier transform)

(1.26) E(eis
TX) = exp

(
isTv − 1

2sTΓs
)
, s ∈ Rd,

where X represents the Rd-valued N (v,Γ)-distributed random vector and
i is the imaginary unit

√
−1. This probability distribution is supported on

the image of Rd under Γ.

The N (0, 1) distribution on R with density f(x) = (2π)−1/2e−x
2/2 is the

standard normal distribution. When d > 1, N (v,Γ) is called a multivariate
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normal. As is evident from the formulas, the distribution of a Gaussian
vector X is determined by its mean vector v = EX and covariance matrix
Γ = E(XXT ).

One more terminological change as we switch from analysis to probabil-
ity: almost everywhere (a.e.) becomes almost surely (a.s.). But of course
there is no harm in using both.

Equality of random variables X and Y has the same meaning as equality
for any functions: if X and Y are defined on the same sample space Ω then
they are equal as functions if X(ω) = Y (ω) for each ω ∈ Ω. Often we
cannot really control what happens on null sets (sets of probability zero),
so the more relevant notion is the almost sure equality: X = Y a.s. if
P (X = Y ) = 1. We also talk about equality in distribution of X and Y
which means that P (X ∈ B) = P (Y ∈ B) for all measurable sets B in the

(common) range space of X and Y . This is abbreviated X
d
= Y and makes

sense even if X and Y are defined on different probability spaces.

1.2.2. Convergence of random variables. Here is a list of ways in which
random variables can converge. Except for convergence in distribution, they
are direct adaptations of the corresponding modes of convergence from anal-
ysis.

Definition 1.19. Let {Xn} be a sequence of random variables and X a
random variable, all real-valued.

(a) Xn → X almost surely if

P
{
ω : lim

n→∞
Xn(ω) = X(ω)

}
= 1.

(b) Xn → X in probability if for every ε > 0,

lim
n→∞

P
{
ω : |Xn(ω)−X(ω)| ≥ ε

}
= 0.

(c) Xn → X in Lp for 1 ≤ p <∞ if

lim
n→∞

E
{
|Xn(ω)−X(ω)|p

}
= 0.

(d) Xn → X in distribution (also called weakly) if

lim
n→∞

P{Xn ≤ x} = P{X ≤ x}

for each x at which F (x) = P{X ≤ x} is continuous.

Convergence types (a)–(c) require that all the random variables are defined
on the same probability space, but (d) does not.
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The definition of weak convergence above is a specialization to the real
line of the general definition, which is this: let {µn} and µ be Borel proba-
bility measures on a metric space S. Then µn → µ weakly if∫

S
g dµn −→

∫
S
g dµ

for all bounded continuous functions g on S. Random variables converge
weakly if their distributions do in the sense above. Commonly used notation
for weak convergence is Xn ⇒ X.

Here is a summary of the relationships between the different types of
convergence. We need one new definition: a sequence {Xn} of random
variables is uniformly integrable if

(1.27) lim
M→∞

sup
n∈N

E
[
|Xn| · 1{|Xn|≥M}

]
= 0.

Theorem 1.20. Let {Xn} and X be real-valued random variables on a
common probability space.

(i) If Xn → X almost surely or in Lp for some 1 ≤ p < ∞, then
Xn → X in probability.

(ii) If Xn → X in probability, then Xn → X weakly.

(iii) If Xn → X in probability, then there exists a subsequence Xnk such
that Xnk → X almost surely.

(iv) Suppose Xn → X in probability. Then Xn → X in L1 iff {Xn} is
uniformly integrable.

1.2.3. Independence and conditioning. Fix a probability space
(Ω,F , P ). In probability theory, σ-algebras represent information. F rep-
resents all the information about the experiment, and sub-σ-algebras A of
F represent partial information. “Knowing σ-algebra A” means knowing
for each event A ∈ A whether A happened or not. A common way to
create sub-σ-algebras is to generate them with random variables. If X is
a random variable on Ω, then the σ-algebra generated by X is denoted
by σ(X) and it is given by the collection of inverse images of Borel sets:
σ(X) =

{
{X ∈ B} : B ∈ BR

}
. Measurability of X is exactly the same as

σ(X) ⊆ F .

Knowing the actual value of X is the same as knowing whether {X ∈ B}
happened for each B ∈ BR. But of course there may be many sample
points ω that have the same values for X, so knowing X does not allow
us to determine which outcome ω actually happened. In this sense σ{X}
represents partial information. Here is an elementary example.

Example 1.21. Suppose we flip a coin twice. The sample space is Ω =
{(0, 0), (0, 1), (1, 0), (1, 1)} and the generic sample point ω = (ω1, ω2) ∈
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{0, 1}2. LetX(ω) = ω1+ω2. Then σ{X} consists of ∅, {(0, 0)}, {(0, 1), (1, 0)},
{(1, 1)} and all their unions. But knowing σ{X} cannot distinguish whether
outcome (0, 1) or (1, 0) happened. In English: if you tell me only that one
flip came out heads, I don’t know if it was the first or the second flip.

Elementary probability courses define that two events A and B are inde-
pendent if P (A ∩ B) = P (A)P (B). The conditional probability of A, given
B, is defined as

(1.28) P (A|B) =
P (A ∩B)

P (B)

provided P (B) > 0. Thus the independence of A and B can be equivalently
expressed as P (A|B) = P (A). This reveals the meaning of independence:
knowing that B happened (in other words, conditioning on B) does not
change our probability for A.

One technical reason we need to go beyond these elementary definitions
is that we need to routinely condition on events of probability zero. For ex-
ample, suppose X and Y are independent random variables, both uniformly
distributed on [0, 1], and we set Z = X + Y . Then we would all agree that
P (Z ≥ 1

2 |Y = 1
3) = 5

6 , yet since P (Y = 1
3) = 0 this conditional probability

cannot be defined in the above manner.

The general definition of independence, from which various other defini-
tions follow as special cases, is for the independence of σ-algebras.

Definition 1.22. Let A1,A2, . . . ,An be sub-σ-algebras of F . Then A1,
A2, . . . , An are mutually independent (or simply independent) if, for every
choice of events A1 ∈ A1, A2 ∈ A2, . . . , An ∈ An,

(1.29) P (A1 ∩A2 ∩ · · · ∩An) = P (A1) · P (A2) · · ·P (An).

An arbitrary collection {Ai : i ∈ I} of sub-σ-algebras of F is independent
if each finite subcollection is independent.

The more concrete notions of independence of random variables and
independence of events derive from the above definition.

Definition 1.23. A collection of random variables {Xi : i ∈ I} on a prob-
ability space (Ω,F , P ) is independent if the σ-algebras {σ(Xi) : i ∈ I} gen-
erated by the individual random variables are independent. Equivalently,
for any finite set of distinct indices i1, i2, . . . , in and any measurable sets
B1, B2, . . . , Bn from the range spaces of the random variables, we have

(1.30) P{Xi1 ∈ B1, Xi2 ∈ B2, . . . , Xin ∈ Bn} =

n∏
k=1

P{Xik ∈ Bk}.

Finally, events {Ai : i ∈ I} are independent if the corresponding indicator
random variables {1Ai : i ∈ I} are independent.
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Some remarks about the definitions. The product property extends to
all expectations that are well-defined. If A1, . . . , An are independent σ-
algebras, and Z1, . . . , Zn are integrable random variables such that Zi is
Ai-measurable (1 ≤ i ≤ n) and the product Z1Z2 · · ·Zn is integrable, then

(1.31) E
[
Z1Z2 · · ·Zn

]
= EZ1 · EZ2 · · · EZn.

If the variables Zi are [0,∞]-valued then this identity holds regardless of
integrability because the expectations are limits of expectations of truncated
random variables.

Independence is closely tied with the notion of product measure. Let
µ be the distribution of the random vector X = (X1, X2, . . . , Xn) on Rn,
and let µi be the distribution of component Xi on R. Then the variables
X1, X2, . . . , Xn are independent iff µ = µ1 ⊗ µ2 ⊗ · · · ⊗ µn.

Further specialization yields properties familiar from elementary prob-
ability. For example, if the random vector (X,Y ) has a density f(x, y) on
R2, then X and Y are independent iff f(x, y) = fX(x)fY (y) where fX and
fY are the marginal densities of X and Y . Also, it is enough to check prop-
erties (1.29) and (1.30) for classes of sets that are closed under intersections
and generate the σ-algebras in question. (A consequence of the so-called
π-λ theorem, see Lemma B.5 in the Appendix.) Hence we get the familiar
criterion for independence in terms of cumulative distribution functions:

(1.32) P{Xi1 ≤ t1, Xi2 ≤ t2, . . . , Xin ≤ tn} =

n∏
k=1

P{Xik ≤ tk}.

Independence is a special property, and always useful when it is present.
The key tool for handling dependence (that is, lack of independence) is the
notion of conditional expectation. It is a nontrivial concept, but fundamen-
tal to just about everything that follows in this book.

Definition 1.24. Let X ∈ L1(P ) and let A be a sub-σ-field of F . The con-
ditional expectation of X, given A, is the integrable, A-measurable random
variable Y that satisfies

(1.33)

∫
A
X dP =

∫
A
Y dP for all A ∈ A.

The notation for the conditional expectation is Y (ω) = E(X|A)(ω). It is

almost surely unique, in other words, if Ỹ is A-measurable and satisfies

(1.33), then P{Y = Ỹ } = 1.
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Justification of the definition. The existence of the conditional expec-
tation follows from the Radon-Nikodyn theorem. Define a finite signed mea-
sure ν on (Ω,A) by

ν(A) =

∫
A
X dP, A ∈ A.

P (A) = 0 implies ν(A) = 0, and so ν � P . By the Radon-Nikodym theorem
there exists a Radon-Nikodym derivative Y = dν/dP which is A-measurable
and satisfies ∫

A
Y dP = ν(A) =

∫
A
X dP for all A ∈ A.

Y is integrable because∫
Ω
Y + dP =

∫
{Y≥0}

Y dP = ν{Y ≥ 0} =

∫
{Y≥0}

X dP

≤
∫

Ω
|X| dP <∞

and a similar bound can be given for
∫

Ω Y
− dP .

To prove uniqueness, suppose Ỹ satisfies the same properties as Y . Let

A = {Y ≥ Ỹ }. This is an A-measurable event. On A, Y − Ỹ = (Y − Ỹ )+,

while on Ac, (Y − Ỹ )+ = 0. Consequently∫
(Y − Ỹ )+ dP =

∫
A

(Y − Ỹ ) dP =

∫
A
Y dP −

∫
A
Ỹ dP

=

∫
A
X dP −

∫
A
X dP = 0.

The integral of a nonnegative function vanishes iff the function vanishes

almost everywhere. Thus (Y − Ỹ )+ = 0 almost surely. A similar argument

shows (Y − Ỹ )− = 0, and so |Y − Ỹ | = 0 almost surely. �

The defining property (1.33) of the conditional expectation E(X|A) ex-
tends to

(1.34)

∫
Ω
ZX dP =

∫
Ω
Z E(X|A) dP

for any bounded A-measurable random variable Z. Boundedness of Z guar-
antees that ZX and Z E(X|A) are integrable for an integrable random vari-
able X.

Some notational conventions. When X = 1B is the indicator random
variable of an event B, we can write P (B|A) for E(1B|A). When the con-
ditioning σ-algebra is generated by a random variable Y , so A = σ{Y }, we
can write E(X|Y ) instead of E(X|σ{Y }).
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Sometimes one also sees the conditional expectation E(X|Y = y), re-
garded as a function of y ∈ R (assuming now that Y is real-valued). This
is defined by an additional step. Since E(X|Y ) is σ{Y }-measurable, there
exists a Borel function h such that E(X|Y ) = h(Y ). This is an instance of a
general exercise according to which every σ{Y }-measurable random variable
is a Borel function of Y . Then one uses h to define E(X|Y = y) = h(y). This
conditional expectation works with integrals on the real line with respect to
the distribution µY of Y : for any B ∈ BR,

(1.35) E[1B(Y )X] =

∫
B
E(X|Y = y)µY (dy).

The definition of the conditional expectation is abstract, and it takes
practice to get used to the idea of conditional probabilities and expecta-
tions as random variables rather than as numbers. The task is to familiarize
oneself with this concept by working with it. Eventually one will under-
stand how it actually does everything we need. The typical way to find
conditional expectations is to make an educated guess, based on an intu-
itive understanding of the situation, and then verify the definition. The
A-measurability is usually built into the guess, so what needs to be checked
is (1.33). Whatever its manifestation, conditional expectation always in-
volves averaging over some portion of the sample space. This is especially
clear in this simplest of examples.

Example 1.25. Let A be an event such that 0 < P (A) < 1, and A =
{∅,Ω, A,Ac}. Then

(1.36) E(X|A)(ω) =
E(1AX)

P (A)
· 1A(ω) +

E(1AcX)

P (Ac)
· 1Ac(ω).

Let us check (1.33) for A. Let Y denote the right-hand side of (1.36).
Then∫

A
Y dP =

∫
A

E(1AX)

P (A)
1A(ω)P (dω) =

E(1AX)

P (A)

∫
A

1A(ω)P (dω)

= E(1AX) =

∫
A
X dP.

A similar calculation checks
∫
Ac Y dP =

∫
Ac X dP , and adding these together

gives the integral over Ω. ∅ is of course trivial, since any integral over ∅ equals
zero. See Exercise 1.15 for a generalization of this.

Here is a concrete case. Let X ∼ Exp(λ), and suppose we are allowed
to know whether X ≤ c or X > c. What is our updated expectation for
X? To model this, let us take (Ω,F , P ) = (R+,BR+ , µ) with µ(dx) =

λe−λxdx, the identity random variable X(ω) = ω, and the sub-σ-algebra
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A = {Ω, ∅, [0, c], (c,∞)}. Following (1.36), for ω ∈ (c,∞) we compute

E(X|A)(ω) =
E(1{X>c}X)

P (X > c)
=

1

µ(c,∞)

∫ ∞
c

xλe−λx dx

= eλc(ce−λc + λ−1e−λc) = c+ λ−1.

You probably knew the answer from the memoryless property of the expo-
nential distribution? If not, see Exercise 1.13. Exercise 1.16 asks you to
complete this example.

The next theorem lists the main properties of the conditional expecta-
tion. Equalities and inequalities for conditional expectations are almost sure
statements because the conditional expectation itself is defined only up to
null sets. So each statement below except (i) comes with an “a.s.” modifier.

Theorem 1.26. Let (Ω,F , P ) be a probability space, X and Y integrable
random variables on Ω, and A and B sub-σ-fields of F .

(i) E[E(X|A)] = EX.

(ii) E[αX + βY |A] = αE[X|A] + βE[Y |A] for α, β ∈ R.

(iii) If X ≥ Y then E[X|A] ≥ E[Y |A].

(iv) If X is A-measurable, then E[X|A] = X.

(v) If X is A-measurable and XY is integrable, then

(1.37) E[XY |A] = X · E[Y |A].

(vi) If X is independent of A (which means that the σ-algebras σ{X}
and A are independent), then E[X|A] = EX.

(vii) If A ⊆ B, then

E{E(X|A) |B} = E{E(X|B) |A} = E[X|A].

(viii) If A ⊆ B and E(X|B) is A-measurable, then E(X|B) = E(X|A).

(ix) (Jensen’s inequality) Suppose f is a convex function on (a, b), −∞ ≤
a < b ≤ ∞. This means that

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) for x, y ∈ (a, b) and 0 < θ < 1.

Assume P{a < X < b} = 1. Then

(1.38) f
(
E[X|A]

)
≤ E

[
f(X)

∣∣ A]
provided the conditional expectations are well defined.

(x) Suppose X is a random variable with values in a measurable space
(S1,H1), Y is a random variable with values in a measurable space (S2,H2),
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and φ : S1×S2 → R is a measurable function such that φ(X,Y ) is integrable.
Assume that X is A-measurable while Y is independent of A. Then

(1.39) E[φ(X,Y )|A](ω) =

∫
Ω
φ(X(ω), Y (ω̃))P (dω̃).

Proof. The proofs must appeal to the definition of the conditional expecta-
tion. We leave them mostly as exercises or to be looked up in any graduate
probability textbook. Let us prove (v) and (vii) as examples.

Proof of part (v). We need to check that X · E[Y |A] satisfies the defi-
nition of E[XY |A]. The A-measurability of X · E[Y |A] is true because X
is A-measurable by assumption, E[Y |A] is A-measurable by definition, and
multiplication preserves A-measurability. Then we need to check that

(1.40) E
(
1AXY

)
= E

(
1AX E[Y |A]

)
for an arbitrary A ∈ A. If X were bounded, this would be a special case of
(1.34) with Z replaced by 1AX. For the general case we need to check the
integrability of X E[Y |A] before we can honestly write down the right-hand
side of (1.40).

Let us assume first that both X and Y are nonnegative. Then also
E(Y |A) ≥ 0 by (iii), because E(0|A) = 0 by (iv). Let X(k) = X ∧ k be a
truncation of X. We can apply (1.34) to get

(1.41) E
[
1AX

(k)Y
]

= E
[
1AX

(k)E(Y |A)
]
.

Inside both expectations we have nonnegative random variables that increase
with k. By the monotone convergence theorem we can let k →∞ and recover
(1.40) in the limit, for nonnegative X and Y . In particular, this tells us that,
at least if X,Y ≥ 0, the integrability of X, Y and XY imply that X E(Y |A)
is integrable.

Now decompose X = X+ −X− and Y = Y + − Y −. By property (ii),

E(Y |A) = E(Y +|A)− E(Y −|A).

The left-hand side of (1.40) becomes

E
[
1AX

+Y +
]
− E

[
1AX

−Y +
]
− E

[
1AX

+Y −
]

+ E
[
1AX

−Y −
]
.

The integrability assumption is true for all pairs X±Y ± and X±Y ∓, so to
each term above we can apply the case of (1.40) already proved for nonneg-
ative random variables. The expression becomes

E
[
1AX

+E(Y +|A)
]
− E

[
1AX

−E(Y +|A)
]
− E

[
1AX

+E(Y −|A)
]

+ E
[
1AX

−E(Y −|A)
]
.
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For integrable random variables, a sum of expectations can be combined
into an expectation of a sum. Consequently the sum above becomes the
right-hand side of (1.40). This completes the proof of part (v).

Proof of part (vii). That E{E(X|A) |B} = E[X|A] follows from part
(iv). To prove E{E(X|B) |A} = E[X|A], we show that E[X|A] satisfies
the definition of E{E(X|B) |A}. Again the measurability is not a problem.
Then we need to check that for any A ∈ A,∫

A
E(X|B) dP =

∫
A
E(X|A) dP.

This is true because A lies in both A and B, so both sides equal
∫
AX dP . �

There is a geometric way of looking at E(X|A) as the solution to an
optimization or estimation problem. Assume that X ∈ L2(P ). Then what
is the best A-measurable estimate of X in the mean-square sense? In other
words, find the A-measurable random variable Z ∈ L2(P ) that minimizes
E[(X − Z)2]. This is a “geometric view” of E(X|A) because it involves
projecting X orthogonally to the subspace L2(Ω,A, P ) of A-measurable L2-
random variables.

Proposition 1.27. Let X ∈ L2(P ). Then E(X|A) ∈ L2(Ω,A, P ). For all
Z ∈ L2(Ω,A, P ),

E
[
(X − E[X|A])2

]
≤ E

[
(X − Z)2

]
with equality iff Z = E(X|A).

Proof. By Jensen’s inequality,

E
{
E[X|A]2

}
≤ E

{
E[X2|A]

}
= E

{
X2
}
.

Consequently E[X|A] is in L2(P ).

E
[
(X − Z)2

]
= E

[
(X − E[X|A] + E[X|A]− Z)2

]
= E

[
(X − E[X|A])2

]
+ 2E

[
(X − E[X|A])(E[X|A]− Z)

]
+ E

[
(E[X|A]− Z)2

]
= E

[
(X − E[X|A])2

]
+ E

[
(E[X|A]− Z)2

]
.

The cross term of the square vanishes because E[X|A]−Z is A-measurable,
and this justifies the last equality. The last line is minimized by the unique
choice Z = E[X|A]. �

1.2.4. Construction of probability spaces. In addition to the usual
construction issues of measures that we discussed before, in probability the-
ory we need to construct stochastic processes which are infinite collections
{Xt : t ∈ I} of random variables. Often the naturally available ingredients
for the construction are the finite-dimensional distributions of the process.
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These are the joint distributions of finite vectors (Xt1 , Xt2 , . . . , Xtn) of ran-
dom variables. Kolmogorov’s Extension Theorem, whose proof is based
on the general machinery for extending measures, states that the finite-
dimensional distributions are all we need. The natural home for the con-
struction is a product space.

To formulate the hypotheses below, we need to consider permutations
acting on n-tuples of indices from an index set I and on n-vectors from a
product space. A permutation π is a bijective map of {1, 2, . . . , n} onto itself,
for some finite n. If s = (s1, s2, . . . , sn) and t = (t1, t2, . . . , tn) are n-tuples,
then t = πs means that (t1, t2, . . . , tn) = (sπ(1), sπ(2), . . . , sπ(n)). The action
of π on any n-vector is defined similarly, by permuting the coordinates.

Here is the setting for the theorem. I is an arbitrary index set, and for
each t ∈ I, (Ωt,Bt) is a complete, separable metric space together with its
Borel σ-algebra. Let Ω =

∏
Ωt be the product space and B =

⊗
Bt the

product σ-algebra. A generic element of Ω is written ω = (ωt)t∈I .

Theorem 1.28 (Kolmogorov’s extension theorem). Suppose that for each
ordered n-tuple t = (t1, t2, . . . , tn) of distinct indices we are given a probabil-

ity measure Qt on the product space (Ωt,Bt) =
(∏n

k=1 Ωtk ,
⊗n

k=1 Btk
)

, for

all n ≥ 1. We assume two properties that make {Qt} a consistent family of
finite-dimensional distributions:

(i) If t = πs, then Qt = Qs ◦ π−1.

(ii) If t = (t1, t2, . . . , tn−1, tn) and s = (t1, t2, . . . , tn−1), then for A ∈
Bs, Qs(A) = Qt(A× Ωtn).

Then there exists a probability measure P on (Ω,B) whose finite-dimensional
marginal distributions are given by {Qt}. In other words, for any t =
(t1, t2, . . . , tn) and any B ∈ Bt,

(1.42) P{ω ∈ Ω : (ωt1 , ωt2 , . . . , ωtn) ∈ B} = Qt(B).

We refer the reader to [4, Chapter 12] for a proof of Kolmogorov’s the-
orem in this generality. [5] gives a proof for the case where I is countable
and Ωt = R for each t. The main idea of the proof is no different for the
more abstract result.

To construct a stochastic process (Xt)t∈I with prescribed finite-dimensional
marginals

Qt(A) = P{(Xt1 , Xt2 , . . . , Xtn) ∈ A},
apply Kolmogorov’s theorem to these inputs, take (Ω,B, P ) as the probabil-
ity space, and for ω = (ωt)t∈I ∈ Ω define the coordinate random variables
Xt(ω) = ωt. When I is countable, such as Z+, this strategy is perfectly
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adequate, and gives for example all infinite sequences of i.i.d. random vari-
ables. When I is uncountable, such as R+, we typically want something
more from the construction than merely the correct distributions, namely
some regularity for the random function t 7→ Xt(ω). This is called path
regularity. This issue is addressed in the next chapter.

We will not discuss the proof of Kolmogorov’s theorem. Let us observe
that hypotheses (i) and (ii) are necessary for the existence of P , so nothing
unnecessary is assumed in the theorem. Property (ii) is immediate from
(1.42) because (ωt1 , ωt2 , . . . , ωtn−1) ∈ A iff (ωt1 , ωt2 , . . . , ωtn) ∈ A × Ωtn .
Property (i) is also clear on intuitive grounds because all it says is that if
the coordinates are permuted, their distribution gets permuted too. Here is
a rigorous justification. Take a bounded measurable function f on Ωt. Note
that f ◦ π is then a function on Ωs, because

ω = (ω1, . . . , ωn) ∈ Ωs ⇐⇒ ωi ∈ Ωsi (1 ≤ i ≤ n)

⇐⇒ ωπ(i) ∈ Ωti (1 ≤ i ≤ n)

⇐⇒ πω = (ωπ(1), . . . , ωπ(n)) ∈ Ωt.

Compute as follows, assuming P exists:∫
Ωt

f dQt =

∫
Ω
f(ωt1 , ωt2 , . . . , ωtn)P (dω)

=

∫
Ω
f(ωsπ(1) , ωsπ(2) , . . . , ωsπ(n))P (dω)

=

∫
Ω

(f ◦ π)(ωs1 , ωs2 , . . . , ωsn)P (dω)

=

∫
Ωs

(f ◦ π) dQs =

∫
Ωt

f d(Qs ◦ π−1).

Since f is arbitrary, this says that Qt = Qs ◦ π−1.

Exercises

Exercise 1.1. (a) Suppose F is continuous on [0, T ], has a continuous de-

rivative F ′ = f on (0, T ), and
∫ T

0 |f(s)| ds <∞ (equivalently, f ∈ L1(0, T )).
What formula does Lemma 1.15 give for

∫
(0,T ] φ(s) dF (s)?

(b) Let F be as in part (a), t0 ∈ (0, T ], c ∈ R and define

G(t) =

{
F (t) t ∈ [0, t0)

F (t) + c t ∈ [t0, T ].

Give the formula for
∫

(0,T ] φ(s) dG(s) in terms of φ, f , t0 and c.
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Exercise 1.2. In case you wish to check your understanding of the Lebesgue-
Stieltjes integral, compute

∫
(0,3a] x dF (x) with a > 0 and

F (x) =


π, 0 ≤ x < a

4 + a− x, a ≤ x < 2a

(x− 2a)2, x ≥ 2a.

You should get 8a3/3 + a2/2− (4 + π)a.

Exercise 1.3. Let V be a continuous, nondecreasing function on R and Λ
its Lebesgue-Stieltjes measure. Say t is a point of strict increase for V if
V (s) < V (t) < V (u) for all s < t and all u > t. Let I be the set of such
points. Show that I is a Borel set and Λ(Ic) = 0.

Hint. For rationals q let a(q) = inf{s ∈ [q − 1, q] : V (s) = V (q)} and
b(q) = sup{s ∈ [q, q+1] : V (s) = V (q)}. Considering q such that a(q) < b(q)
show that Ic is a countable union of closed intervals with zero Λ-measure.
The restriction of a(q) and b(q) to [q − 1, q + 1] is there only to guarantee
that a(q) and b(q) are finite.

Exercise 1.4. Show that in the definition (1.14) of total variation one can-
not in general replace the supremum over partitions by the limit as the mesh
of the partition tends to zero. (How about the indicator function of a single
point?) But if F has some regularity, for example right-continuity, then the
supremum can be replaced by the limit as mesh(π)→ 0.

Exercise 1.5. Let G be a continuous BV function on [0, T ] with Lebesgue-
Stieltjes measure ΛG on (0, T ], and let h be a Borel measurable function on
[0, T ] that is integrable with respect to ΛG. Define a function F on [0, T ]
by F (0) = 0 and F (t) =

∫
(0,t] h(s) dG(s) for t > 0. Building on Lemma 1.15

and its proof, and remembering also (1.16), show that F is a continuous BV

function on [0, T ]. Note in particular the special case F (t) =
∫ t

0 h(s) ds.

Exercise 1.6. For a simple example of the failure of uncountable additiv-
ity for probabilities, let X be a [0, 1]-valued uniformly distributed random
variable on (Ω,F , P ). Then P (X = s) = 0 for each individual s ∈ [0, 1] but
the union of these events over all s is Ω.

Exercise 1.7. Here is a useful formula for computing expectations. Suppose
X is a nonnegative random variable, and h is a nondecreasing function on
R+ such that h(0) = 0 and h is absolutely continuous on each bounded
interval. (This last hypothesis is for ensuring that h(a) =

∫ a
0 h
′(s) ds for all

0 ≤ a <∞.) Then

(1.43) Eh(X) =

∫ ∞
0

h′(s)P [X > s] ds.
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Exercise 1.8. Suppose we need to prove something about a σ-algebra B =
σ(E) on a space X, generated by a class E of subsets of X. A common
strategy for proving such a result is to identify a suitable class C containing
E whose members have the desired property. If C can be shown to be a
σ-field then B ⊆ C follows and thereby all members of B have the desired
property. Here are useful examples.

(a) Fix two points x and y of the underlying space. Suppose that for
each A ∈ E , {x, y} ⊆ A or {x, y} ⊆ Ac. Show that the same property is true
for all A ∈ B. In other words, if the generating sets do not separate x and
y, neither does the σ-field.

(b) Suppose Φ is a collection of functions from a space X into a mea-
surable space (Y,H). Let B = σ{f : f ∈ Φ} be the smallest σ-algebra that
makes all functions f ∈ Φ measurable, as defined in (1.1). Suppose g is a
function from another space Ω into X. Let Ω have σ-algebra F . Show that
g is a measurable function from (Ω,F) into (X,B) iff for each f ∈ Φ, f ◦ g
is a measurable function from (Ω,F) into (Y,H).

(c) In the setting of part (b), suppose two points x and y of X satisfy
f(x) = f(y) for all f ∈ Φ. Show that for each B ∈ B, {x, y} ⊆ B or
{x, y} ⊆ Bc.

(d) Let S ⊆ X such that S ∈ B. Let

B1 = {B ∈ B : B ⊆ S} = {A ∩ S : A ∈ B}

be the restricted σ-field on the subspace S. Show that B1 is the σ-field
generated on the space S by the collection

E1 = {E ∩ S : E ∈ E}.

Show by example that B1 is not necessarily generated by

E2 = {E ∈ E : E ⊆ S}.

Hint: Consider C = {B ⊆ X : B ∩ S ∈ B1}. For the example, note that
BR is generated by the class {(−∞, a] : a ∈ R} but none of these infinite
intervals lie in a bounded interval such as [0, 1].

(e) Let (X,A, ν) be a measure space. Let U be a sub-σ-field of A, and
let N = {A ∈ A : ν(A) = 0} be the collection of sets of ν-measure zero
(ν-null sets). Let U∗ = σ(U ∪ N ) be the σ-field generated by U and N .
Show that

U∗ = {A ∈ A : there exists U ∈ U such that U4A ∈ N}.

U∗ is called the augmentation of U .
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Exercise 1.9. Suppose {Ai} and {Bi} are sequences of measurable sets in
a measure space (X,A, ν) such that ν(Ai4Bi) = 0. Then

ν
(
(∪Ai)4(∪Bi)

)
= ν

(
(∩Ai)4(∩Bi)

)
= 0.

Exercise 1.10. (Product σ-algebras.) Recall the setting of Example 1.3.
For a subset L ⊆ I of indices, let BL = σ{fi : i ∈ L} denote the σ-algebra
generated by the projections fi for i ∈ L. So in particular, BI =

⊗
i∈I Ai is

the full product σ-algebra.

(a) Show that for each B ∈ BI there exists a countable set L ⊆ I such
that B ∈ BL. Hint. Do not try to reason starting from a particular set
B ∈ BI . Instead, try to say something useful about the class of sets for
which a countable L exists.

(b) Let R[0,∞) be the space of all functions x : [0,∞) → R, with the
product σ-algebra generated by the projections x 7→ x(t), t ∈ [0,∞). Show
that the set of continuous functions is not measurable.

Exercise 1.11. (a) Let E1, . . . , En be collections of measurable sets on
(Ω,F , P ), each closed under intersections (if A,B ∈ Ei then A ∩ B ∈ Ei).
Suppose

P (A1 ∩A2 ∩ · · · ∩An) = P (A1) · P (A2) · · · P (An)

for all A1 ∈ E1, . . . , An ∈ En. Show that the σ-algebras σ(E1), . . . , σ(En) are
independent. Hint. A straight-forward application of the π–λ theorem B.3.

(b) Let {Ai : i ∈ I} be a collection of independent σ-algebras. Let I1,
. . . , In be pairwise disjoint subsets of I, and let Bk = σ{Ai : i ∈ Ik} for
1 ≤ k ≤ n. Show that B1, . . . , Bn are independent.

(c) Let A, B, and C be sub-σ-algebras of F . Assume σ{B, C} is indepen-
dent of A, and C is independent of B. Show that A, B and C are independent,
and so in particular C is independent of σ{A,B}.

(d) Show by example that the independence of C and σ{A,B} does not
necessarily follow from having B independent of A, C independent of A, and
C independent of B. This last assumption is called pairwise independence of
A, B and C. Hint. An example can be built from two independent fair coin
tosses.

Exercise 1.12. If you have never done so, compute the moments of a cen-
tered Gaussian random variable: for Z ∼ N (0, σ2) and k ∈ N, E(Z2k+1) = 0
and E(Z2k) = (2k − 1)(2k − 3) · · · 1 · σ2k. This is useful to know.

Exercise 1.13. (Memoryless property.) LetX ∼ Exp(λ). Show that, condi-
tional on X > c, X−c ∼ Exp(λ). In plain English: given that I have waited
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for c time units, the remaining waiting time is still Exp(λ)-distributed. This
is the memoryless property of the exponential distribution.

Exercise 1.14. Independence allows us to average separately. Here is a
special case that will be used in a later proof. Let (Ω,F , P ) be a probability
space, U and V measurable spaces, X : Ω→ U and Y : Ω→ V measurable
mappings, f : U × V → R a bounded measurable function (with respect to
the product σ-algebra on U × V ). Assume that X and Y are independent.
Let µ be the distribution of Y on the V -space, defined by µ(B) = P{Y ∈ B}
for measurable sets B ⊆ V . Show that

E[f(X,Y )] =

∫
V
E[f(X, y)]µ(dy).

Hints. Start with functions of the type f(x, y) = g(x)h(y). Use Theorem
B.4 from the appendix.

Exercise 1.15. Let {Di : i ∈ N} be a countable partition of Ω, by which we
mean that {Di} are pairwise disjoint and Ω =

⋃
Di. Let D be the σ-algebra

generated by {Di}.
(a) Show that G ∈ D iff G =

⋃
i∈I Di for some I ⊆ N.

(b) Let X ∈ L1(P ). Let U = {i ∈ N : P (Di) > 0}. Show that

E(X|D)(ω) =
∑
i:i∈U

E(1DiX)

P (Di)
· 1Di(ω).

Exercise 1.16. Complete the exponential case in Example 1.25 by finding
E(X|A)(ω) for ω ∈ [0, c]. Then verify the identity E

[
E(X|A)

]
= EX. Do

you understand why E(X|A) must be constant on [0, c] and on (c,∞)?

Exercise 1.17. Suppose P (A) = 0 or 1 for all A ∈ A. Show that E(X|A) =
EX for all X ∈ L1(P ).

Exercise 1.18. Let (X,Y ) be an R2-valued random vector with joint den-
sity f(x, y). This means that for any bounded Borel function φ on R2,

E[φ(X,Y )] =

∫∫
R2

φ(x, y)f(x, y) dx dy.

The marginal density of Y is defined by

fY (y) =

∫
R
f(x, y) dx.

Let

f(x|y) =


f(x, y)

fY (y)
, if fY (y) > 0

0, if fY (y) = 0.
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(a) Show that f(x|y)fY (y) = f(x, y) for almost every (x, y), with respect
to Lebesgue measure on R2. Hint: Let

H = {(x, y) : f(x|y)fY (y) 6= f(x, y)}.
Show that m(Hy) = 0 for each y-section of H, and use Tonelli’s theorem.

(b) Show that f(x|y) functions as a conditional density of X, given that
Y = y, in this sense: for a bounded Borel function h on R,

E[h(X)|Y ](ω) =

∫
R
h(x)f(x|Y (ω)) dx.

Exercise 1.19. (Gaussian processes.) Let I be an arbitrary index set,
and c : I2 → R a positive definite function, which means that for any
t1, . . . , tn ∈ I and real α1, . . . , αn,

(1.44)
∑

1≤i,j≤n
αiαjc(ti, tj) ≥ 0.

Then there exists a probability space (Ω,F , P ) and on that space a stochas-
tic process {Xt : t ∈ I} such that, for each choice of indices t1, . . . , tn ∈ I,
the n-vector (Xt1 , . . . , Xtn) has N (0,Γ) distribution with covariance ma-
trix Γti,tj = c(ti, tj). A process whose finite dimensional distributions are
Gaussian is called a Gaussian process.

Exercise 1.20. It is not too hard to write down impossible requirements
for a stochastic process. Suppose {Xt : 0 ≤ t ≤ 1} is a real-valued stochastic
process that satisfies

(i) Xs and Xt are independent whenever s 6= t.

(ii) Each Xt has the same distribution, and variance 1.

(iii) The path t 7→ Xt(ω) is continuous for almost every ω.

Show that a process satisfying these conditions cannot exist.



Chapter 2

Stochastic Processes

This chapter first covers general matters in the theory of stochastic processes,
and then discusses the two most important processes, Brownian motion and
Poisson processes.

2.1. Filtrations and stopping times

The set of nonnegative reals is denoted by R+ = [0,∞). Similarly Q+ for
nonnegative rationals and Z+ = {0, 1, 2, . . . } for nonnegative integers. The
set of natural numbers is N = {1, 2, 3, . . . }.

The discussion always takes place on a fixed probability space (Ω,F , P ).
We will routinely assume that this space is complete as a measure space.
This means that if D ∈ F and P (D) = 0, then all subsets of D lie in F and
have probability zero. This is not a restriction because every measure space
can be completed. See Section 1.1.4.

A filtration on a probability space (Ω,F , P ) is a collection of σ-fields
{Ft : t ∈ R+} that satisfy

Fs ⊆ Ft ⊆ F for all 0 ≤ s < t <∞.

Whenever the index t ranges over nonnegative reals, we write simply {Ft}
for {Ft : t ∈ R+}. Given a filtration {Ft} we can add a last member to it
by defining

(2.1) F∞ = σ

( ⋃
0≤t<∞

Ft
)
.

F∞ is contained in F but can be strictly smaller than F .

39
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Example 2.1. The natural interpretation for the index t ∈ R+ is time.
Let Xt denote the price of some stock at time t and assume it makes sense
to imagine that it is defined for all t ∈ R+. At time t we know the entire
evolution {Xs : s ∈ [0, t]} up to the present. In other words, we are in
possession of the information in the σ-algebra FXt = σ{Xs : s ∈ [0, t]}.
{FXt } is a basic example of a filtration.

We will find it convenient to assume that each Ft contains all subsets
of F-measurable P -null events. This is more than just assuming that each
Ft is complete, but it entails no loss of generality. To achieve this, first
complete (Ω,F , P ), and then replace Ft with

F̄t = {B ∈ F : there exist A ∈ Ft such that P (A4B) = 0 }.(2.2)

Exercise 1.8(e) verified that F̄t is a σ-algebra. The filtration {F̄t} is some-
times called complete, or the augmented filtration.

At the most general level, a stochastic process is a collection of random
variables {Xi : i ∈ I} indexed by some arbitrary index set I, and all defined
on the same probability space. For us the index set is most often R+ or
some subset of it. Let X = {Xt : t ∈ R+} be a process on (Ω,F , P ). It
is convenient to regard X as a function on R+ × Ω through the formula
X(t, ω) = Xt(ω). Indeed, we shall use the notations X(t, ω) and Xt(ω)
interchangeably. When a process X is discussed without explicit mention of
an index set, then R+ is assumed.

If the random variables Xt take their values in a space S, we say X =
{Xt : t ∈ R+} is an S-valued process. To even talk about S-valued random
variables, S needs to have a σ-algebra so that a notion of measurability
exists. Often in general accounts of the theory S is assumed a metric space,
and then the natural σ-algebra on S is the Borel σ-field BS . We have no
cause to consider anything more general than S = Rd, the d-dimensional
Euclidean space. Unless otherwise specified, in this section a process is
always Rd-valued. Of course, most important is the real-valued case with
state space R1 = R.

A process X = {Xt : t ∈ R+} is adapted to the filtration {Ft} if Xt is
Ft-measurable for each 0 ≤ t < ∞. The smallest filtration to which X is
adapted is the filtration that it generates, defined by

FXt = σ{Xs : 0 ≤ s ≤ t}.

A process X is measurable if X is BR+ ⊗ F-measurable as a function

from R+ × Ω into Rd. Furthermore, X is progressively measurable if the
restriction of the function X to [0, T ]×Ω is B[0,T ]⊗FT -measurable for each
T . More explicitly, the requirement is that for each B ∈ BRd , the event

{(t, ω) ∈ [0, T ]× Ω : X(t, ω) ∈ B}
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lies in the σ-algebra B[0,T ] ⊗FT . If X is progressively measurable then it is
also adapted, but the reverse implication does not hold (Exercise 2.6).

Properties of random objects are often interpreted in such a way that
they are not affected by events of probability zero. For example, let X =
{Xt : t ∈ R+} and Y = {Yt : t ∈ R+} be two stochastic processes defined
on the same probability space (Ω,F , P ). As functions on R+×Ω, X and Y
are equal if Xt(ω) = Yt(ω) for each ω ∈ Ω and t ∈ R+. A useful relaxation
of this strict notion of equality is called indistinguishability. We say X and
Y are indistinguishable if there exists an event Ω0 ⊆ Ω such that P (Ω0) = 1
and for each ω ∈ Ω0, Xt(ω) = Yt(ω) for all t ∈ R+. Since most statements
about processes ignore events of probability zero, for all practical purposes
indistinguishable processes can be regarded as equal.

Another, even weaker notion is modification: Y is a modification (also
called version) of X if for each t, P{Xt = Yt} = 1.

Equality in distribution is also of importance for processes X and Y :

X
d
= Y means that P{X ∈ A} = P{Y ∈ A} for all measurable sets for which

this type of statement makes sense. In all reasonable situations equality in
distribution between processes follows from the weaker equality of finite-
dimensional distributions:

(2.3)
P{Xt1 ∈ B1, Xt2 ∈ B2, . . . , Xtm ∈ Bm}

= P{Yt1 ∈ B1, Yt2 ∈ B2, . . . , Ytm ∈ Bm}

for all finite subsets {t1, t2, . . . , tm} of indices and all choices of the measur-
able sets B1, B2, . . . , Bm in the range space. This can be proved for example
with Lemma B.5 from the appendix.

Assuming that the probability space (Ω,F , P ) and the filtration {Ft}
are complete conveniently avoids certain measurability complications. For
example, if X is adapted and P{Xt = Yt} = 1 for each t ∈ R+, then Y is
also adapted. To see the reason, let B ∈ BRd , and note that

{Yt ∈ B} = {Xt ∈ B} ∪ {Yt ∈ B, Xt /∈ B} \ {Yt /∈ B, Xt ∈ B}.

Since all subsets of zero probability events lie in Ft, we conclude that there
are events D1, D2 ∈ Ft such that {Yt ∈ B} = {Xt ∈ B} ∪ D1 \ D2, which
shows that Y is adapted.

In particular, since the point of view is that indistinguishable processes
should really be viewed as one and the same process, it is sensible that such
processes cannot differ in adaptedness or measurability.

A stopping time is a random variable τ : Ω → [0,∞] such that {ω :
τ(ω) ≤ t} ∈ Ft for each 0 ≤ t < ∞. Many operations applied to stopping
times produce new stopping times. Often used ones include the minimum
and the maximum. If σ and τ are stopping times (for the same filtration)
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then

{σ ∧ τ ≤ t} = {σ ≤ t} ∪ {τ ≤ t} ∈ Ft
so σ ∧ τ is a stopping time. Similarly σ ∨ τ can be shown to be a stopping
time.

Example 2.2. Here is an illustration of the notion of stopping time.

(a) If you instruct your stockbroker to sell all your shares in company
ABC on May 1, you are specifying a deterministic time. The time of sale
does not depend on the evolution of the stock price.

(b) If you instruct your stockbroker to sell all your shares in company
ABC as soon as the price exceeds 20, you are specifying a stopping time.
Whether the sale happened by May 5 can be determined by inspecting the
stock price of ABC Co. until May 5.

(c) Suppose you instruct your stockbroker to sell all your shares in com-
pany ABC on May 1 if the price will be lower on June 1. Again the sale
time depends on the evolution as in case (b). But now the sale time is not
a stopping time because to determine whether the sale happened on May 1
we need to look into the future.

So the notion of a stopping time is eminently sensible because it makes
precise the idea that today’s decisions must be based on the information
available today and not on future information.

If τ is a stopping time, the σ-field of events known at time τ is defined
by

(2.4) Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft for all 0 ≤ t <∞}.
A deterministic time is a special case of a stopping time. If τ(ω) = u for all
ω, then Fτ = Fu.

If {Xt} is a process and τ is a stopping time, Xτ denotes the value of
the process at the random time τ , in other words Xτ (ω) = Xτ(ω)(ω). The
random variable Xτ is defined on the event {τ <∞}, so not necessarily on
the whole space Ω unless τ is finite. Or at least almost surely finite so that
Xτ is defined with probability one.

Here are some basic properties of these concepts. Infinities arise natu-
rally, and we use the conventions that ∞ ≤ ∞ and ∞ = ∞ are true, but
∞ <∞ is not.

Lemma 2.3. Let σ and τ be stopping times, and X a process.

(i) For A ∈ Fσ, the events A ∩ {σ ≤ τ} and A ∩ {σ < τ} lie in Fτ . In
particular, σ ≤ τ implies Fσ ⊆ Fτ .

(ii) Both τ and σ ∧ τ are Fτ -measurable. The events {σ ≤ τ}, {σ < τ},
and {σ = τ} lie in both Fσ and Fτ .
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(iii) If the process X is progressively measurable then X(τ) is Fτ -measurable
on the event {τ <∞} .

Proof. Part (i). Let A ∈ Fσ. For the first statement, we need to show that
(A ∩ {σ ≤ τ}) ∩ {τ ≤ t} ∈ Ft. Write

(A ∩ {σ ≤ τ}) ∩ {τ ≤ t}
= (A ∩ {σ ≤ t}) ∩ {σ ∧ t ≤ τ ∧ t} ∩ {τ ≤ t}.

All terms above lie in Ft. (a) The first by the definition of A ∈ Fσ. (b) The
second because both σ∧ t and τ ∧ t are Ft-measurable random variables: for
any u ∈ R, {σ ∧ t ≤ u} equals Ω if u ≥ t and {σ ≤ u} if u < t, a member of
Ft in both cases. (c) {τ ≤ t} ∈ Ft since τ is a stopping time.

In particular, if σ ≤ τ , then Fσ ⊆ Fτ .

To show A ∩ {σ < τ} ∈ Fτ , write

A ∩ {σ < τ} =
⋃
n≥1

A ∩ {σ + 1
n ≤ τ}.

All members of the union on the right lie in Fτ by the first part of the proof,
because σ ≤ σ+ 1

n implies A ∈ Fσ+1/n. (And you should observe that for a
constant u ≥ 0, σ + u is also a stopping time.)

Part (ii). Since {τ ≤ s}∩{τ ≤ t} = {τ ≤ s∧t} ∈ Ft ∀s, by the definition
of a stopping time, τ is Fτ -measurable. By the same token, the stopping
time σ ∧ τ is Fσ∧τ -measurable, hence also Fτ -measurable.

Taking A = Ω in part (a) gives {σ ≤ τ} and {σ < τ} ∈ Fτ . Taking the
difference gives {σ = τ} ∈ Fτ , and taking complements gives {σ > τ} and
{σ ≥ τ} ∈ Fτ . Now we can interchange σ and τ in the conclusions.

Part (iii). We claim first that ω 7→ X(τ(ω) ∧ t, ω) is Ft-measurable. To
see this, write it as the composition

ω 7→ (τ(ω) ∧ t, ω) 7→ X(τ(ω) ∧ t, ω).

The first step ω 7→ (τ(ω) ∧ t, ω) is measurable as a map from (Ω,Ft) into
the product space

(
[0, t]×Ω,B[0,t] ⊗Ft

)
if the components have the correct

measurability (Exercise 1.8(b)). It was already argued above in part (i) that
ω 7→ τ(ω) ∧ t is measurable from Ft into B[0,t]. The other component is the
identity map ω 7→ ω.

The second step of the composition is the map (s, ω) 7→ X(s, ω). By the
progressive measurability assumption for X, this step is measurable from(
[0, t]× Ω,B[0,t] ⊗Ft

)
into (Rd,BRd).

We have shown that {Xτ∧t ∈ B} ∈ Ft for B ∈ BRd , and so

{Xτ ∈ B, τ <∞} ∩ {τ ≤ t} = {Xτ∧t ∈ B} ∩ {τ ≤ t} ∈ Ft.
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This shows that {Xτ ∈ B, τ <∞} ∈ Fτ which was the claim. �

All the stochastic processes we study will have some regularity properties
as functions of t, when ω is fixed. These are regularity properties of paths.
A stochastic process X = {Xt : t ∈ R+} is continuous if for each ω ∈ Ω,
the path t 7→ Xt(ω) is continuous as a function of t. The properties left-
continuous and right-continuous have the obvious analogous meaning. An
Rd-valued process X is right continuous with left limits (or cadlag as the
French acronym for this property goes) if the following is true for all ω ∈ Ω:

Xt(ω) = lim
s↘t

Xs(ω) for all t ∈ R+, and

the left limit Xt−(ω) = lim
s↗t

Xs(ω) exists in Rd for all t > 0.

Above s ↘ t means that s approaches t from above (from the right), and
s↗ t approach from below (from the left). Finally, we also need to consider
the reverse situation, namely a process that is left continuous with right
limits, and for that we use the term caglad. Regularity properties of these
types of functions are collected in Appendix A.1.

X is a finite variation process (FV process) if for each ω ∈ Ω the path
t 7→ Xt(ω) has bounded variation on each compact interval [0, T ]. In other
words, the total variation function VX(ω)(T ) < ∞ for each ω and T . But
VX(ω)(T ) does not have to be bounded uniformly in ω.

We shall use all these terms also of a process that has a particular path
property for almost every ω. For example, if t 7→ Xt(ω) is continuous for

all ω in a set Ω0 of probability 1, then we can define X̃t(ω) = Xt(ω) for

ω ∈ Ω0 and X̃t(ω) = 0 for ω /∈ Ω0. Then X̃ has all paths continuous, and

X and X̃ are indistinguishable. Since we regard indistinguishable processes
as equal, it makes sense to regard X itself as a continuous process. When
we prove results under hypotheses of path regularity, we assume that the
path condition holds for each ω. Typically the result will be the same for
processes that are indistinguishable.

Note, however, that processes that are modifications of each other can
have quite different path properties (Exercise 2.5).

The next two lemmas record some technical benefits of path regularity.

Lemma 2.4. Let X be adapted to the filtration {Ft}, and suppose X is
either left- or right-continuous. Then X is progressively measurable.

Proof. Suppose X is right-continuous. Fix T < ∞. Define on [0, T ] × Ω
the function

Xn(t, ω) = X(0, ω) · 1{0}(t) +

2n−1∑
k=0

X
( (k+1)T

2n , ω
)
· 1(kT2−n,(k+1)T2−n](t).
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Xn is a sum of products of B[0,T ] ⊗ FT -measurable functions, hence itself
B[0,T ] ⊗ FT -measurable. By right-continuity Xn(t, ω)→ X(t, ω) as n→∞,
hence X is also B[0,T ] ⊗FT -measurable when restricted to [0, T ]× Ω.

We leave the case of left-continuity as an exercise. �

Checking indistinguishability between two processes with some path reg-
ularity reduces to an a.s. equality check at a fixed time.

Lemma 2.5. Suppose X and Y are right-continuous processes defined on
the same probability space. Suppose P{Xt = Yt} = 1 for all t in some dense
countable subset S of R+. Then X and Y are indistinguishable. The same
conclusion holds under the assumption of left-continuity if 0 ∈ S.

Proof. Let Ω0 =
⋂
s∈S{ω : Xs(ω) = Ys(ω)}. By assumption, P (Ω0) = 1.

Fix ω ∈ Ω0. Given t ∈ R+, there exists a sequence sn in S such that sn ↘ t.
By right-continuity,

Xt(ω) = lim
n→∞

Xsn(ω) = lim
n→∞

Ysn(ω) = Yt(ω).

Hence Xt(ω) = Yt(ω) for all t ∈ R+ and ω ∈ Ω0, and this says X and Y are
indistinguishable.

For the left-continuous case the origin t = 0 needs a separate assumption
because it cannot be approached from the left. �

Filtrations also have certain kinds of limits and continuity properties.
Given a filtration {Ft}, define the σ-fields

(2.5) Ft+ =
⋂
s:s>t

Fs.

{Ft+} is a new filtration, and Ft+ ⊇ Ft. If Ft = Ft+ for all t, we say {Ft}
is right-continuous. Performing the same operation again does not lead to
anything new: if Gt = Ft+ then Gt+ = Gt, as you should check. So in
particular {Ft+} is a right-continuous filtration.

Right-continuity is the important property, but we could also define

(2.6) F0− = F0 and Ft− = σ

( ⋃
s:s<t

Fs
)

for t > 0.

Since a union of σ-fields is not necessarily a σ-field, Ft− needs to be defined
as the σ-field generated by the union of Fs over s < t. The generation step
was unnecessary in the definition of Ft+ because any intersection of σ-fields
is again a σ-field. If Ft = Ft− for all t, we say {Ft} is left-continuous. .

It is convenient to note that, since Fs depends on s in a monotone fash-
ion, the definitions above can be equivalently formulated through sequences.
For example, if sj > t is a sequence such that sj ↘ t, then Ft+ =

⋂
j Fsj .
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The assumption that {Ft} is both complete and right-continuous is
sometimes expressed by saying that {Ft} satisfies the usual conditions. In
many books these are standing assumptions. When we develop the sto-
chastic integral we assume the completeness. We shall not assume right-
continuity as a routine matter, and we alert the reader whenever that as-
sumption is used.

Since Ft ⊆ Ft+, {Ft+} admits more stopping times than {Ft}. So there
are benefits to having a right-continuous filtration. Let us explore this a
little.

Lemma 2.6. A [0,∞]-valued random variable τ is a stopping time with
respect to {Ft+} iff {τ < t} ∈ Ft for all t ∈ R+.

Proof. Suppose τ is an {Ft+}-stopping time. Then for each n ∈ N,

{τ ≤ t− n−1} ∈ F(t−n−1)+ ⊆ Ft,

and so {τ < t} =
⋃
n{τ ≤ t− n−1} ∈ Ft.

Conversely, if {τ < t+n−1} ∈ Ft+n−1 for all n ∈ N, then for all m ∈ N,
{τ ≤ t} =

⋂
n:n≥m{τ < t+n−1} ∈ Ft+m−1 . And so {τ ≤ t} ∈

⋂
mFt+m−1 =

Ft+. �

Given a set H, define

(2.7) τH(ω) = inf{t ≥ 0 : Xt(ω) ∈ H}.

This is called the hitting time of the set H. If the infimum is taken over
t > 0 then the above time is called the first entry time into the set H. These
are the most important random times we wish to deal with, so it is crucial
to know whether they are stopping times.

Lemma 2.7. Let X be a process adapted to a filtration {Ft} and assume
X is left- or right-continuous. If G is an open set, then τG is a stopping
time with respect to {Ft+}. In particular, if {Ft} is right-continuous, τG is
a stopping time with respect to {Ft}.

Proof. If the path s 7→ Xs(ω) is left- or right-continuous, τG(ω) < t iff
Xs(ω) ∈ G for some s ∈ [0, t) iff Xq(ω) ∈ G for some rational q ∈ [0, t). (If
X is right-continuous, every value Xs for s ∈ [0, t) can be approached from
the right along values Xq for rational q. If X is left-continuous this is true
for all values except s = 0, but 0 is among the rationals so it gets taken care
of.) Thus we have

{τG < t} =
⋃

q∈Q+∩[0,t)

{Xq ∈ G} ∈ σ{Xs : 0 ≤ s < t} ⊆ Ft. �
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Example 2.8. Assuming X continuous would not improve the conclusion
to {τG ≤ t} ∈ Ft. To see this, let G = (b,∞) for some b > 0 and consider
the two paths

Xs(ω0) = Xs(ω1) = bs for 0 ≤ s ≤ 1

while
Xs(ω0) = bs

Xs(ω1) = b(2− s)

}
for s ≥ 1.

Now τG(ω0) = 1 while τG(ω1) = ∞. Since Xs(ω0) and Xs(ω1) agree for
s ∈ [0, 1], the points ω0 and ω1 must be together either inside or outside any
event in FX1 [Exercise 1.8(c)]. But clearly ω0 ∈ {τG ≤ 1} while ω1 /∈ {τG ≤
1}. This shows that {τG ≤ 1} /∈ FX1 .

There is an alternative way to register arrival into a set, if we settle for
getting infinitesimally close. For a process X, let X[s, t] = {X(u) : s ≤ u ≤
t}, with (topological) closure X[s, t]. For a set H define

(2.8) σH = inf{t ≥ 0 : X[0, t] ∩H 6= ∅}.

Note that for a cadlag path,

(2.9) X[0, t] = {X(u) : 0 ≤ u ≤ t} ∪ {X(u−) : 0 < u ≤ t}.

Lemma 2.9. Suppose X is a cadlag process adapted to {Ft} and H is a
closed set. Then σH is a stopping time.

Proof. Fix t ≥ 0. First we claim that

{σH ≤ t} = {X(0) ∈ H} ∪ {X(s) ∈ H or X(s−) ∈ H for some s ∈ (0, t]}.

It is clear that the event on the right is contained in the event on the left. To
prove the opposite containment, suppose σH ≤ t. If the event on the right
does not happen, then by the definition of σH as an infimum, for each k ∈ N
there exists t < uk ≤ t + 1/k such that either X(uk) ∈ H or X(uk−) ∈ H.
Then uk → t, and by the right-continuity of paths, both X(uk) and X(uk−)
converge to X(t), which thus must lie in H. The equality above is checked.

Let

Hn = {y : there exists x ∈ H such that |x− y| < n−1}

be the n−1-neighborhood of H. Let U contain all the rationals in [0, t] and
the point t itself. Next we claim

{X(0) ∈ H} ∪ {X(s) ∈ H or X(s−) ∈ H for some s ∈ (0, t]}

=
∞⋂
n=1

⋃
q∈U
{X(q) ∈ Hn}.
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To justify this, note first that if X(s) = y ∈ H for some s ∈ [0, t] or X(s−) =
y ∈ H for some s ∈ (0, t], then we can find a sequence qj ∈ U such that
X(qj)→ y, and then X(qj) ∈ Hn for all large enough j. Conversely, suppose
we have qn ∈ U such that X(qn) ∈ Hn for all n. Extract a convergent
subsequence qn → s. By the cadlag property a further subsequence of X(qn)
converges to either X(s) or X(s−). By the closedness of H, one of these
lies in H.

Combining the set equalities proved shows that {σH ≤ t} ∈ Ft. �

Lemma 2.9 fails for caglad processes, unless the filtration is assumed
right-continuous (Exercise 2.15). For a continuous process X and a closed
set H the random times defined by (2.7) and (2.8) coincide. So we get this
corollary.

Corollary 2.10. Assume X is continuous and H is closed. Then τH is a
stopping time.

Remark 2.11. (A look ahead.) The stopping times discussed above will
play a role in the development of the stochastic integral in the following way.
To integrate an unbounded real-valued process X we need stopping times
ζk ↗∞ such that Xt(ω) stays bounded for 0 < t ≤ ζk(ω). Caglad processes
will be an important class of integrands. For a caglad X Lemma 2.7 shows
that

ζk = inf{t ≥ 0 : |Xt| > k}
are stopping times, provided {Ft} is right-continuous. Left-continuity of X
then guarantees that |Xt| ≤ k for 0 < t ≤ ζk.

Of particular interest will be a caglad process X that satisfies Xt = Yt−
for t > 0 for some adapted cadlag process Y . Then by Lemma 2.9 we get
the required stopping times by

ζk = inf{t > 0 : |Yt| ≥ k or |Yt−| ≥ k}
without having to assume that {Ft} is right-continuous.

Remark 2.12. (You can ignore all the above hitting time complications.)
The following is a known fact.

Theorem 2.13. Assume the filtration {Ft} satisfies the usual conditions,
and X is a progressively measurable process with values in some metric space.
Then τH defined by (2.7), or the same with infimum restricted to t > 0, are
stopping times for every Borel set H.

This is a deep theorem. A fairly accessible recent proof appears in [1].
The reader may prefer to use this theorem in the sequel, and always assume
that filtrations satisfy the usual conditions. We shall not do so in the text
to avoid proliferating the mysteries we have to accept without justification.
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2.2. Quadratic variation

In stochastic analysis many processes turn out to have infinite total variation
and it becomes necessary to use quadratic variation as a measure of path
oscillation. For example, we shall see in the next chapter that if a continuous
martingale M has finite variation, then Mt = M0.

Let Y be a stochastic process. For a partition π = {0 = t0 < t1 < · · · <
tm(π) = t} of [0, t] we can form the sum of squared increments

m(π)−1∑
i=0

(Yti+1 − Yti)2.

We say that these sums converge to the random variable [Y ]t in probability
as mesh(π) = maxi(ti+1 − ti) → 0 if for each ε > 0 there exists δ > 0 such
that

(2.10) P

{ ∣∣∣∣m(π)−1∑
i=0

(Yti+1 − Yti)2 − [Y ]t

∣∣∣∣ ≥ ε} ≤ ε
for all partitions π with mesh(π) ≤ δ. We express this limit as

(2.11) lim
mesh(π)→0

∑
i

(Yti+1 − Yti)2 = [Y ]t in probability.

Definition 2.14. The quadratic variation process [Y ] = {[Y ]t : t ∈ R+} of
a stochastic process Y is a process such that [Y ]0 = 0, the paths t 7→ [Y ]t(ω)
are nondecreasing for all ω, and the limit (2.11) holds for all t ≥ 0.

We will see in the case of Brownian motion that limit (2.11) cannot be
required to hold almost surely, unless we pick the partitions carefully. Hence
limits in probability are used.

Between two processes we define a quadratic covariation in terms of
quadratic variations.

Definition 2.15. Let X and Y be two stochastic processes on the same
probability space. The (quadratic) covariation process [X,Y ] = {[X,Y ]t :
t ∈ R+} is defined by

(2.12) [X,Y ] =
[

1
2(X + Y )

]
−
[

1
2(X − Y )

]
provided the quadratic variation processes on the right exist in the sense of
Definition 2.14.

From the identity ab = 1
4(a+ b)2 − 1

4(a− b)2 applied to a = Xti+1 −Xti

and b = Yti+1 − Yti it follows that, for each t ∈ R+,

(2.13) lim
mesh(π)→0

∑
i

(Xti+1 −Xti)(Yti+1 − Yti) = [X,Y ]t in probability.
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Utilizing these limits together with the identities

ab = 1
2

(
(a+ b)2 − a2 − b2

)
= 1

2

(
a2 + b2 − (a− b)2

)
gives these almost sure equalities at fixed times:

(2.14) [X,Y ]t = 1
2

(
[X + Y ]t − [X]t − [Y ]t

)
a.s.

and

(2.15) [X,Y ]t = 1
2

(
[X]t + [Y ]t − [X − Y ]t

)
a.s.

provided all the processes in question exist.

We defined [X,Y ] by (2.12) instead of by the limits (2.13) so that the
property [Y, Y ] = [Y ] is immediately clear. Limits (2.13) characterize [X,Y ]t
only almost surely at each fixed t and imply nothing about path properties.
This is why monotonicity was made part of Definition 2.14. Monotonicity
ensures that the quadratic variation of the identically zero process is indis-
tinguishable from the zero process. (Exercise 2.5 gives another process that
satisfies limits (2.11) for Y = 0.)

We give a preliminary discussion of quadratic variation and covariation
in this section. That quadratic variation exists for Brownian motion and
the Poisson process will be proved later in this chapter. The case of local
martingales is discussed in Section 3.4 of Chapter 3. Existence of quadratic
variation for FV processes follows purely analytically from Lemma A.10 in
Appendix A.

In the next proposition we show that if X is cadlag, then we can take
[X]t also cadlag. Technically, we show that for each t, [X]t+ = [X]t almost
surely. Then the process [X]t+ has cadlag paths (Exercise 2.12) and satisfies
the definition of quadratic variation. From definition (2.12) it then follows
that [X,Y ] can also be taken cadlag when X and Y are cadlag.

Furthermore, we show that the jumps of the covariation match the jumps
of the processes. For any cadlag process Z, the jump at t is denoted by

∆Z(t) = Z(t)− Z(t−).

The statement below about jumps can be considered preliminary. After
developing more tools we can strengthen the statement for semimartingales
Y so that the equality ∆[Y ]t = (∆Yt)

2 is true for all t ∈ R+ outside a single
exceptional event of probability zero. (See Lemma 5.40.)

Proposition 2.16. Suppose X and Y are cadlag processes, and [X,Y ] exists
in the sense of Definition 2.15. Then there exists a cadlag modification of
[X,Y ]. For any t, ∆[X,Y ]t = (∆Xt)(∆Yt) almost surely.
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Proof. It suffices to treat the case X = Y . Pick δ, ε > 0. Fix t < u. Pick
η > 0 so that

(2.16) P

{ ∣∣∣∣ [X]u − [X]t −
m(π)−1∑
i=0

(Xti+1 −Xti)
2

∣∣∣∣ < ε

}
> 1− δ

whenever π = {t = t0 < t1 < · · · < tm(π) = u} is a partition of [t, u] with
mesh(π) < η. (The little observation needed here is in Exercise 2.10.) Pick
such a partition π. Keeping t1 fixed, refine π further in [t1, u] so that

P

{ ∣∣∣∣ [X]u − [X]t1 −
m(π)−1∑
i=1

(Xti+1 −Xti)
2

∣∣∣∣ < ε

}
> 1− δ.

Taking the intersection of these events, we have that with probability at
least 1− 2δ,

[X]u − [X]t ≤
m(π)−1∑
i=0

(Xti+1 −Xti)
2 + ε

= (Xt1 −Xt)
2 +

m(π)−1∑
i=1

(Xti+1 −Xti)
2 + ε

≤ (Xt1 −Xt)
2 + [X]u − [X]t1 + 2ε

which rearranges to

[X]t1 ≤ [X]t + (Xt1 −Xt)
2 + 2ε.

Looking back, we see that this argument works for any t1 ∈ (t, t + η). By
the monotonicity [X]t+ ≤ [X]t1 , so for all these t1,

P
{

[X]t+ ≤ [X]t + (Xt1 −Xt)
2 + 2ε

}
> 1− 2δ.

Shrink η > 0 further so that for t1 ∈ (t, t+ η) by right continuity

P
{

(Xt1 −Xt)
2 < ε

}
> 1− δ.

The final estimate is

P
{

[X]t ≤ [X]t+ ≤ [X]t + 3ε
}
> 1− 3δ.

Since ε, δ > 0 were arbitrary, it follows that [X]t+ = [X]t almost surely. As
explained before the statement of the proposition, this implies that we can
choose a version of [X] with cadlag paths.

To bound the jump at u, return to the partition π chosen for (2.16).
Let s = tm(π)−1. Keeping s fixed refine π sufficiently in [t, s] so that, with
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probability at least 1− 2δ,

[X]u − [X]t ≤
m(π)−1∑
i=0

(Xti+1 −Xti)
2 + ε

= (Xu −Xs)
2 +

m(π)−2∑
i=0

(Xti+1 −Xti)
2 + ε

≤ (Xu −Xs)
2 + [X]s − [X]t + 2ε

which rearranges, through ∆[X]u ≤ [X]u − [X]s, to give

P
{

∆[X]u ≤ (Xu −Xs)
2 + 2ε

}
> 1− 2δ.

Here s ∈ (u− η, u) was arbitrary. Again we can pick η small enough so that
for all such s with probability at least 1− δ,

(2.17)
∣∣(Xu −Xs)

2 − (∆Xu)2
∣∣ < ε.

Since ε, δ are arbitrary, we have ∆[X]u ≤ (∆Xu)2 almost surely.

For the other direction, return to the calculation above with partition π
and s = tm(π)−1, but now derive opposite inequalities: with probability at
least 1− 2δ,

[X]u − [X]s ≥ (Xu −Xs)
2 − ε ≥ (∆Xu)2 − 2ε.

We can take s close enough to u so that P{∆[X]u ≥ [X]u− [X]s−ε} > 1−δ.
Then we have ∆[X]u ≥ (∆Xu)2−3ε with probability at least 1−3δ. Letting
ε, δ to zero once more completes the proof. �

In particular, we can say that in the cadlag case [Y ] is an increasing
process, according to this definition.

Definition 2.17. An increasing process A = {At : 0 ≤ t < ∞} is an
adapted process such that, for almost every ω, A0(ω) = 0 and s 7→ As(ω) is
nondecreasing and right-continuous. Monotonicity implies the existence of
left limits At−, so it follows that an increasing process is cadlag.

Next two useful inequalities.

Lemma 2.18. Suppose the processes below exist. Then at a fixed t,

(2.18) | [X,Y ]t| ≤ [X]
1/2
t [Y ]

1/2
t a.s.

and more generally for 0 ≤ s < t

(2.19) | [X,Y ]t − [X,Y ]s| ≤
(

[X]t − [X]s
)1/2(

[Y ]t − [Y ]s
)1/2

a.s.

Furthermore,

(2.20)
∣∣ [X]t − [Y ]t

∣∣ ≤ [X − Y ]t + 2[X − Y ]
1/2
t [Y ]

1/2
t a.s.
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In the cadlag case the inequalities are valid simultaneously at all s < t ∈ R+,
with probability 1.

Proof. The last statement follows from the earlier ones because the in-
equalities are a.s. valid simultaneously at all rational times and then limits
capture all time points.

Inequalities (2.18)–(2.19) follow from the Cauchy-Schwarz inequality

(2.21)
∣∣∣∑xiyi

∣∣∣ ≤ (∑
x2
i

)1/2(∑
y2
i

)1/2
.

For (2.19) use also the observation (Exercise 2.10) that the increments of
the (co)variation processes are limits of sums over partitions, as in (2.16).

From the identity a2− b2 = (a− b)2 + 2(a− b)b applied to increments of
X and Y follows

[X]− [Y ] = [X − Y ] + 2[X − Y, Y ].

Utilizing (2.18),∣∣ [X]− [Y ]
∣∣ ≤ [X − Y ] +

∣∣ 2[X − Y, Y ]
∣∣

≤ [X − Y ] + 2[X − Y ]1/2[Y ]1/2. �

In all our applications [X,Y ] will be a cadlag process. As the difference
of two increasing processes in Definition (2.12), [X,Y ]t is BV on any compact
time interval. Lebesgue-Stieltjes integrals over time intervals with respect
to [X,Y ] have an important role in the development. These are integrals
with respect to the Lebesgue-Stieltjes measure Λ[X,Y ] defined by

Λ[X,Y ](a, b] = [X,Y ]b − [X,Y ]a, 0 ≤ a < b <∞,
as explained in Section 1.1.9. Note that there is a hidden ω in all these
quantities. This integration over time is done separately for each fixed ω.
This kind of operation is called “path by path” because ω represents the
path of the underlying process [X,Y ].

When the origin is included in the time interval, we assume [X,Y ]0− = 0,
so the Lebesgue-Stieltjes measure Λ[X,Y ] gives zero measure to the singleton
{0}. The Lebesgue-Stieltjes integrals obey the following useful inequality.

Proposition 2.19 (Kunita-Watanabe inequality). Fix ω such that [X], [Y ]
and [X,Y ] exist and are right-continuous on the interval [0, T ]. Then for
any B[0,T ] ⊗F-measurable bounded functions G and H on [0, T ]× Ω,∣∣∣∣∫

[0,T ]
G(t, ω)H(t, ω) d[X,Y ]t(ω)

∣∣∣∣
≤
{∫

[0,T ]
G(t, ω)2 d[X]t(ω)

}1/2{∫
[0,T ]

H(t, ω)2 d[Y ]t(ω)

}1/2

.

(2.22)
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The integrals above are Lebesgue-Stieltjes integrals with respect to the t-
variable, evaluated for the fixed ω.

Proof. Once ω is fixed, the result is an analytic lemma, and the depen-
dence of G and H on ω is irrelevant. We included this dependence so that
the statement better fits its later applications. It is a property of product-
measurability that for a fixed ω, G(t, ω) and H(t, ω) are measurable func-
tions of t.

Consider first step functions

g(t) = α01{0}(t) +

m−1∑
i=1

αi1(si,si+1](t)

and

h(t) = β01{0}(t) +
m−1∑
i=1

βi1(si,si+1](t)

where 0 = s1 < · · · < sm = T is a partition of [0, T ]. (Note that g and h
can be two arbitrary step functions. If they come with distinct partitions,
{si} is the common refinement of these partitions.) Then∣∣∣∣∫

[0,T ]
g(t)h(t) d[X,Y ]t

∣∣∣∣ =

∣∣∣∣∑
i

αiβi
(
[X,Y ]si+1 − [X,Y ]si

)∣∣∣∣
≤
∑
i

|αiβi|
(
[X]si+1 − [X]si

)1/2(
[Y ]si+1 − [Y ]si

)1/2
≤
{∑

i

|αi|2
(
[X]si+1 − [X]si

)}1/2{∑
i

|βi|2
(
[Y ]si+1 − [Y ]si

)}1/2

=

{∫
[0,T ]

g(t)2 d[X]t

}1/2{∫
[0,T ]

h(t)2 d[Y ]t

}1/2

where we applied (2.19) and then Schwarz inequality (2.21).

Let g and h be two arbitrary bounded Borel functions on [0, T ], and pick
0 < C < ∞ so that |g| ≤ C and |h| ≤ C. Let ε > 0. Define the bounded
Borel measure

µ = Λ[X] + Λ[Y ] + |Λ[X,Y ]|
on [0, T ]. Above, Λ[X] is the positive Lebesgue-Stieltjes measure of the
function t 7→ [X]t (for the fixed ω under consideration), same for Λ[Y ],
and |Λ[X,Y ]| is the positive total variation measure of the signed Lebesgue-
Stieltjes measure Λ[X,Y ]. By Lemma A.17 we can choose step functions g̃

and h̃ so that |g̃| ≤ C, |h̃| ≤ C, and∫ (
|g − g̃|+ |h− h̃|

)
dµ <

ε

2C
.
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On the one hand∣∣∣∣∫
[0,T ]

gh d[X,Y ]t −
∫

[0,T ]
g̃h̃ d[X,Y ]t

∣∣∣∣ ≤ ∫
[0,T ]

∣∣gh− g̃h̃ ∣∣ d|Λ[X,Y ]|

≤ C
∫

[0,T ]
|g − g̃| d|Λ[X,Y ]|+ C

∫
[0,T ]
|h− h̃| d|Λ[X,Y ]| ≤ ε.

On the other hand,∣∣∣∣∫
[0,T ]

g2 d[X]t −
∫

[0,T ]
g̃2 d[X]t

∣∣∣∣ ≤ ∫
[0,T ]

∣∣g2 − g̃2
∣∣ d[X]t

≤ 2C

∫
[0,T ]
|g − g̃| d[X]t ≤ ε,

with a similar bound for h. Putting these together with the inequality
already proved for step functions gives∣∣∣∣∫

[0,T ]
gh d[X,Y ]t

∣∣∣∣ ≤ ε+

{
ε+

∫
[0,T ]

g2 d[X]t

}1/2{
ε+

∫
[0,T ]

h2 d[Y ]t

}1/2

.

Since ε > 0 was arbitrary, we can let ε→ 0. The inequality as stated in the
proposition is obtained by choosing g(t) = G(t, ω) and h(t) = H(t, ω). �

Remark 2.20. Inequality (2.22) has the following corollary. As in the proof,
let |Λ[X,Y ](ω)| be the total variation measure of the signed Lebesgue-Stieltjes
measure Λ[X,Y ](ω) on [0, T ]. For a fixed ω, (1.13) implies that |Λ[X,Y ](ω)| �
Λ[X,Y ](ω) and the Radon-Nikodym derivative

φ(t) =
d|Λ[X,Y ](ω)|
dΛ[X,Y ](ω)

(t)

on [0, T ] satisfies |φ(t)| ≤ 1. For an arbitrary bounded Borel function g on
[0, T ] ∫

[0,T ]
g(t) |Λ[X,Y ](ω)|(dt) =

∫
[0,T ]

g(t)φ(t) d[X,Y ]t(ω).

Combining this with (2.22) gives∫
[0,T ]

∣∣G(t, ω)H(t, ω)
∣∣ |Λ[X,Y ](ω)|(dt)

≤
{∫

[0,T ]
G(t, ω)2 d[X]t(ω)

}1/2{∫
[0,T ]

H(t, ω)2 d[Y ]t(ω)

}1/2

.

(2.23)

2.3. Path spaces and Markov processes

So far we have thought of a stochastic process as a collection of random
variables on a probability space. An extremely fruitful, more abstract view
regards a process as a probability distribution on a path space. This is a
natural generalization of the notion of probability distribution of a random
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variable or a random vector. If Y = (Y1, . . . , Yn) is an Rn-valued random
vector on a probability space (Ω,F , P ), its distribution µ is the Borel prob-
ability measure on Rn defined by

µ(B) = P{ω : Y (ω) ∈ B}, B ∈ BRn .

One can even forget about the “abstract” probability space (Ω,F , P ), and
redefine Y on the “concrete” space (Rn,BRn , µ) as the identity random
variable Y (s) = s for s ∈ Rn.

To generalize this notion for an Rd-valued process X = {Xt : 0 ≤ t <
∞}, we have to choose a suitable measurable space U so that X can be
thought of as a measurable map X : Ω→ U . For a fixed ω the value X(ω)
is the function t 7→ Xt(ω), so the space U has to be a space of functions,
or a “path space.” The path regularity of X determines which space U will
do. Here are the three most important choices.

(i) Without any further assumptions, X is a measurable map into the

product space (Rd)[0,∞) with product σ-field B(Rd)⊗[0,∞).

(ii) If X is an Rd-valued cadlag process, then a suitable path space is
D = DRd [0,∞), the space of Rd-valued cadlag functions ξ on [0,∞), with
the σ-algebra generated by the coordinate projections ξ 7→ ξ(t) from D into
Rd. It is possible to define a metric on D that makes it a complete, separable
metric space, and under which the Borel σ-algebra is the one generated by
the coordinate mappings. This is the so-called Skorohod metric, see for
example [2, 6]. Thus we can justifiably denote this σ-algebra by BD.

(iii) If X is an Rd-valued continuous process, then X maps into C =
CRd [0,∞), the space of Rd-valued continuous functions on [0,∞). This
space is naturally metrized by

(2.24) r(η, ζ) =

∞∑
k=1

2−k
(

1 ∧ sup
0≤t≤k

|η(t)− ζ(t)|
)
, η, ζ ∈ C.

This is the metric of uniform convergence on compact sets. (C, r) is a
complete, separable metric space, and its Borel σ-algebra BC is generated
by the coordinate mappings. C is a subspace of D, and indeed the notions
of convergence and measurability in C coincide with the notions it inherits
as a subspace of D.

Generating the σ-algebra of the path space with the coordinate functions
guarantees that X is a measurable mapping from Ω into the path space
(Exercise 1.8(b)). Then we can define the distribution µ of the process on
the path space. For example, if X is cadlag, then define µ(B) = P{X ∈ B}
for B ∈ BD. As in the case of the random vector, we can switch probability
spaces. Take (D,BD, µ) as the new probability space, and define the process
{Yt} on D via the coordinate mappings: Yt(ω) = ω(t) for ω ∈ D. Then the
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old process X and the new process Y have the same distribution, because
by definition

P{X ∈ B} = µ(B) = µ{ω ∈ D : ω ∈ B} = µ{ω ∈ D : Y (ω) ∈ B}
= µ{Y ∈ B}.

One benefit from this construction is that it leads naturally to a theory
of weak convergence of processes, which is used in many applications. This
comes from specializing the well-developed theory of weak convergence of
probability measures on metric spaces to the case of a path space.

The two most important general classes of stochastic processes are mar-
tingales and Markov processes. Both classes are defined by the relationship
of the process X = {Xt} to a filtration {Ft}. It is always first assumed that
{Xt} is adapted to {Ft}.

Let X be a real-valued process. Then X is a martingale with respect to
{Ft} if Xt is integrable for each t, and

E[Xt|Fs] = Xs for all s < t.

For the definition of a Markov process X can take its values in an ab-
stract space, but Rd is sufficiently general for us. An Rd-valued process X
satisfies the Markov property with respect to {Ft} if

(2.25) P [Xt ∈ B|Fs] = P [Xt ∈ B|Xs] for all s < t and B ∈ BRd .

A martingale represents a fair gamble in the sense that, given all the
information up to the present time s, the expectation of the future fortune
Xt is the same as the current fortune Xs. Stochastic analysis relies heavily
on martingale theory. The Markov property is a notion of causality. It says
that, given the present state Xs, future events are independent of the past.

These notions are of course equally sensible in discrete time. Let us
give the most basic example in discrete time, since that is simpler than
continuous time. Later in this chapter we will have sophisticated continuous-
time examples when we discuss Brownian motion and Poisson processes.

Example 2.21. (Random Walk) Let X1, X2, X3, . . . be a sequence of i.i.d.
random variables. Define the partial sums by S0 = 0, and Sn = X1+· · ·+Xn

for n ≥ 1. Then Sn is a Markov chain (the term for a Markov process in
discrete time). If EXi = 0 then Sn is a martingale. The natural filtration
to use here is the one generated by the process: Fn = σ{X1, . . . , Xn}.

Martingales are treated in Chapter 3. In the remainder of this section we
discuss the Markov property and then the strong Markov property. These
topics are not necessary for all that follows, but we do make use of the
Markov property of Brownian motion for some calculations and exercises.
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With Markov processes it is natural to consider the whole family of
processes obtained by varying the initial state. In the previous example,
to have the random walk start at x, we simply say S0 = x and Sn =
x+X1 +· · ·+Xn. The definition of such a family of processes is conveniently
expressed in terms of probability distributions on a path space. Below we
give the definition of a time-homogeneous cadlag Markov process. Time-
homogeneity means that the transition mechanism does not change with
time: given that the state of the process is x at time s, the chances of
residing in set B at time s+ t depend on (x, t, B) but not on s.

On the path space D, the coordinate variables are defined by Xt(ω) =
ω(t) for ω ∈ D, and the natural filtration is Ft = σ{Xs : s ≤ t}. We write
also X(t) when subscripts are not convenient. The shift maps θs : D → D
are defined by (θsω)(t) = ω(s + t). In other words, the path θsω has its
time origin translated to s and the path before s is deleted. For an event
A ∈ BD, the inverse image

θ−1
s A = {ω ∈ D : θsω ∈ A}

represents the event that “A happens starting at time s.”

Definition 2.22. An Rd-valued Markov process is a collection {P x : x ∈
Rd} of probability measures on D = DRd [0,∞) with these properties:

(a) P x{ω ∈ D : ω(0) = x} = 1.

(b) For each A ∈ BD, the function x 7→ P x(A) is measurable on Rd.

(c) P x[θ−1
t A|Ft](ω) = PXt(ω)(A) for P x-almost every ω ∈ D, for every

x ∈ Rd and A ∈ BD.

Requirement (a) in the definition says that x is the initial state under the
measure P x. You should think of P x as the probability distribution of the
entire process given that the initial state is x. Requirement (b) is for tech-
nical purposes. If we wish to start the process in a random initial state X0

with distribution µ, then we use the path measure Pµ(A) =
∫
P x(A)µ(dx).

P x itself is the special case µ = δx.

Requirement (c) is the Markov property. It appears qualitatively differ-
ent from (2.25) because the event A can depend on the entire process, but
in fact (c) would be just as powerful if it were stated with an event of the
type A = {Xs ∈ B}. The general case can then be derived by first going
inductively to finite-dimensional events, and then by a π-λ argument to all
A ∈ BD. In the context of Markov processes Ex stands for expectation un-
der the measure P x. Parts (b) and (c) together imply (2.25), with the help
of property (viii) of Theorem 1.26.

What (c) says is that, if we know that the process is in state y at time t,
then regardless of the past, the future of the process behaves exactly as a new
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process started from y. Technically, conditional on Xt = y and the entire
information in Ft, the probabilities of the future process {Xt+u : u ≥ 0}
obey the measure P y. Informally we say that at each time point the Markov
process restarts itself from its current state, forgetting its past. (Exercise
2.16 practices this in a simple calculation.)

The transition probability of the Markov process is p(t, x,B) = P x(Xt ∈
B). For each fixed t ∈ R+, p(t, x,B) is a measurable function of x ∈ Rd

and a Borel probability measure in the set argument B ∈ BRd . It gives the
conditional probability in (2.25), regardless of the initial distribution:

(2.26) Pµ(Xs+t ∈ B|Fs)(ω) = p(t,Xs(ω), B).

The next calculation justifies. Let A ∈ Fs and B ∈ BRd .

Eµ[1A1{Xs+t ∈ B}] =

∫
Ex[1A1{Xs+t ∈ B}]µ(dx)

=

∫
Ex[1A(ω)P x(Xs+t ∈ B | Fs)(ω)]µ(dx)

=

∫
Ex
[
1A(ω)P x(θ−1

s {Xt ∈ B} |Fs)(ω)
]
µ(dx)

=

∫
Ex
[
1A(ω)PXs(ω){Xt ∈ B}

]
µ(dx)

=

∫
Ex[1A(ω)p(t,Xs(ω), B)]µ(dx)

= Eµ[1A p(t,Xs, B)].

The fourth equality above used property (c) of Definition 2.22. The inte-
gration variable ω was introduced temporarily to indicate those quantities
that are integrated by the outside expectation Ex.

Finite-dimensional distributions of the Markov process are iterated in-
tegrals of the transition probabilities. For 0 = s0 < s1 < · · · < sn and a
bounded Borel function f on Rd(n+1),

(2.27)
Eµ[f(Xs0 , Xs1 , . . . , Xsn)] =

∫
· · ·
∫
µ(dx0)p(s1, x0, dx1)

p(s2 − s1, x1, dx2) · · · p(sn − sn−1, xn−1, dxn) f(x0, x1, . . . , xn).

(Exercise 2.17.)

There is also a related semigroup property for a family of operators. On
bounded measurable functions g on the state space, define operators S(t)
by

(2.28) S(t)g(x) = Ex[g(Xt)].

(The way to think about this is that S(t) maps g into a new function S(t)g,
and the formula above tells us how to compute the values S(t)g(x).) S(0)
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is the identity operator: S(0)g = g. The semigroup property is S(s + t) =
S(s)S(t) where the multiplication of S(s) and S(t) means composition. This
can be checked with the Markov property:

S(s+ t)g(x) = Ex[g(Xs+t)] = Ex
[
Ex{g(Xs+t) | Fs}

]
= Ex

[
EX(s){g(Xt)}

]
= Ex

[(
S(t)g

)
(Xs)

]
= S(s)

(
S(t)g

)
(x).

Another question suggests itself. Statement (c) in Definition 2.22 restarts
the process at a particular time t from the state y that the process is at. But
since the Markov process is supposed to forget its past and transitions are
time-homogeneous, should not the same restarting take place for example
at the first visit to state y? This scenario is not covered by statement (c)
because this first visit happens at a random time. So we ask whether we
can replace time t in part (c) with a stopping time τ . With some additional
regularity the answer is affirmative. The property we are led to formulate
is called the strong Markov property.

The additional regularity needed is that the probability distribution
P x(Xt ∈ · ) of the state at a fixed time t is a continuous function of the
initial state x. Recall the notion of weak convergence of probability mea-
sures for spaces more general than R introduced below Definition 1.19. A
Markov process {P x} is called a Feller process if for all t ≥ 0, all xj , x ∈ Rd,

and all g ∈ Cb(Rd) (the space of bounded continuous functions on Rd)

(2.29) xj → x implies Exj [g(Xt)]→ Ex[g(Xt)].

Equation (2.30) below is the strong Markov property, and a Markov pro-
cess that satisfies this property is a strong Markov process. It is formulated
for a function Y of both a time point and a path, hence more generally than
the Markov property in Definition 2.22(c). This is advantageous for some
applications. Again, the state space could really be any metric space but
for concreteness we think of Rd.

Theorem 2.23. Let {P x} be a Feller process with state space Rd. Let
Y (s, ω) be a bounded, jointly measurable function of (s, ω) ∈ R+ × D and
τ a stopping time on D. Let the initial state x be arbitrary. Then on the
event {τ <∞} the equality

(2.30) Ex[Y (τ,X ◦ θτ ) | Fτ ](ω) = Eω(τ)[Y (τ(ω), X)]

holds for P x-almost every path ω.

Before turning to the proof, let us sort out the meaning of statement
(2.30). First, we introduced a random shift θτ defined by (θτω)(s) =
ω(τ(ω) + s) for those paths ω for which τ(ω) < ∞. On both sides of
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the identity inside the expectations X denotes the identity random variable
on D: X(ω) = ω. The purpose of writing Y (τ,X ◦ θτ ) is to indicate that
the path argument in Y has been translated by τ , so that the integrand
Y (τ,X ◦ θτ ) on the left is a function of the future process after time τ . On
the right the expectation should be read like this:

Eω(τ)[Y (τ(ω), X)] =

∫
D
Y (τ(ω), ω̃)Pω(τ)(dω̃).

In other words, the first argument of Y on the right inherits the value τ(ω)
which (note!) has been fixed by the conditioning on Fτ on the left side of

(2.30). The path argument ω̃ obeys the probability measure Pω(τ), in other
words it is the process restarted from the current state ω(τ).

Example 2.24. Let us perform a simple calculation to illustrate the me-
chanics. Let τ = inf{t ≥ 0 : Xt = z or Xt− = z} be the first hitting time of
point z, a stopping time by Lemma 2.9. Suppose the process is continuous
which means that P x(C) = 1 for all x. Suppose further that P x(τ <∞) = 1.
From this and path continuity P x(Xτ = z) = 1. Let us use (2.30) to
check that, for a fixed t > 0, P x(Xτ+t ∈ A) = P z(Xt ∈ A). We take
Y (ω) = 1{ω(t) ∈ A} so now the Y -function does not need a time argument.

P x(Xτ+t ∈ A) = Ex[Y ◦ θτ ] = Ex
[
Ex(Y ◦ θτ | Fτ )

]
= Ex[EX(τ)(Y )] = Ex[Ez(Y )] = Ez(Y ) = P z(Xt ∈ A).

The Ex-expectation goes away because the integrand Ez(Y ) is no longer
random, it is merely a constant.

Remark 2.25. Up to now in our discussion we have used the filtration {Ft}
on D or C generated by the coordinates. Our important examples, such
as Brownian motion and the Poisson process, actually satisfy the Markov
property (part (c) of Definition 2.22) under the larger filtration {Ft+}. The
strong Markov property holds also for the larger filtration because the proof
below goes through as long as the Markov property is true.

Proof of Theorem 2.23. Let A ∈ Fτ . What needs to be shown is that

(2.31) Ex
[
1A1{τ<∞}Y (τ,X ◦ θτ )

]
=

∫
A∩{τ<∞}

Eω(τ)[Y (τ(ω), X)]P x(dω).

As so often with these proofs, we do a calculation for a special case and then
appeal to a general principle to complete the proof.
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First we assume that all the possible finite values of τ can be arranged
in an increasing sequence t1 < t2 < t3 < · · · . Then

Ex
[
1A1{τ<∞}Y (τ,X ◦ θτ )

]
=
∑
n

Ex
[
1A1{τ=tn}Y (τ,X ◦ θτ )

]
=
∑
n

Ex
[
1A1{τ=tn}Y (tn, X ◦ θtn)

]
=
∑
n

Ex
[
1A(ω)1{τ(ω)=tn}E

x{Y (tn, X ◦ θtn) | Ftn}(ω)
]

=
∑
n

Ex
[
1A(ω)1{τ(ω)=tn}E

ω(tn){Y (tn, X)}
]

= Ex
[
1A(ω)1{τ(ω)<∞}E

ω(τ(τ)){Y (τ(ω), X)}
]

where we used the basic Markov property and wrote ω for the integration
variable in the last two Ex-expectations in order to not mix this up with
the variable X inside the Eω(τ)-expectation. The expression ω(τ(ω)) does
make sense since τ(ω) ∈ R+!

Now let τ be a general stopping time. The next stage is to define τn =
2−n([2nτ ]+1). Check that these are stopping times that satisfy {τn <∞} =
{τ <∞} and τn ↘ τ as n↗∞. Since τn > τ , A ∈ Fτ ⊆ Fτn . The possible
finite values of τn are {2−nk : k ∈ N} and so we already know the result for
τn:

(2.32)

Ex
[
1A1{τ<∞}Y (τn, X ◦ θτn)

]
=

∫
A∩{τ<∞}

Eω(τn)[Y (τn(ω), X)]P x(dω).

The idea is to let n↗∞ above and argue that in the limit we recover (2.31).
For this we need some continuity. We take Y of the following type:

(2.33) Y (s, ω) = f0(s) ·
m∏
i=1

fi(ω(si))

where 0 ≤ s1 < . . . < sn are time points and f0, f1, . . . , fm are bounded con-
tinuous functions. Then on the left of (2.32) we have inside the expectation

Y (τn, θτnω) = f0(τn) ·
m∏
i=1

fi(ω(τn + si))

−→
n→∞

f0(τ) ·
m∏
i=1

fi(ω(τ + si)) = Y (τ, θτω).

The limit above used the right continuity of the path ω. Dominated conver-
gence will now take the left side of (2.32) to the left side of (2.31).
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On the right of (2.32) we have inside the integral

Eη(τn)[Y (τn(η), X)] =

∫
Y (τn(η), ω)P η(τn)(dω)

= f0(τn(η))

∫ m∏
i=1

fi(ω(si))P
η(τn)(dω).

In order to assert that the above converges to the integrand on the right
side of (2.31), we need to prove the continuity of

f0(s)

∫ m∏
i=1

fi(ω(si))P
x(dω)

as a function of (s, x) ∈ R+×Rd. Since products preserve continuity, what
really is needed is the extension of the definition (2.29) of the Feller property
to expectations of more complicated continuous functions of the path. We
leave this to the reader (Exercise 2.18). Now dominated convergence again
takes the right side of (2.32) to the right side of (2.31).

We have verified (2.31) for Y of type (2.33), and it remains to argue that
this extends to all bounded measurable Y . This will follow from Theorem
B.4. The class R in that Theorem are sets of the type B = {(s, ω) : s ∈
A0, ω(s1) ∈ A1, . . . , ω(sm) ∈ Am} where A0 ⊆ R+ and Ai ⊆ Rd are closed
sets. (2.33) holds for 1B because we can find continuous 0 ≤ fi,n ≤ 1 such
that fi,n → 1Ai as n→∞, and then the corresponding Yn → 1B and (2.33)
extends by dominated convergence. Sets of type B generate BR+ ⊗ BD
because this σ-algebra is generated by coordinate functions. This completes
the proof of the strong Markov property for Feller processes. �

Next we discuss the two most important processes, Brownian motion
and the Poisson process.

2.4. Brownian motion

Informally Brownian motion could be characterized as random walk that
takes infinitesimal steps infinitely fast. Its paths are continuous but highly
oscillatory.

Definition 2.26. One some probability space (Ω,F , P ), let {Ft} be a filtra-
tion and B = {Bt : 0 ≤ t < ∞} an adapted real-valued stochastic process.
Then B is a one-dimensional Brownian motion with respect to {Ft} if it has
these two properties.

(i) For almost every ω, the path t 7→ Bt(ω) is continuous.

(ii) For 0 ≤ s < t, Bt − Bs is independent of Fs and has normal
distribution with mean zero and variance t− s.
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If furthermore

(iii) B0 = 0 almost surely

then B is a standard Brownian motion. Since the definition involves both
the process and the filtration, sometimes one calls this B an {Ft}–Browian
motion, or the pair {Bt,Ft : 0 ≤ t <∞} is called the Brownian motion.

To be explicit, point (ii) of the definition can be expressed by the re-
quirement

E
[
Z · h(Bt −Bs)

]
= E(Z) · 1√

2π(t− s)

∫
R
h(x) exp

{
− x2

2(t− s)

}
dx

for all bounded Fs-measurable random variables Z and all bounded Borel
functions h on R. By an inductive argument, it follows that for any 0 ≤
s0 < s1 < · · · < sn, the increments

Bs1 −Bs0 , Bs2 −Bs1 , . . . , Bsn −Bsn−1

are independent random variables and independent of Fs0 (Exercise 2.20).
Furthermore, the joint distribution of the increments is not changed by a
shift in time: namely, the joint distribution of the increments above is the
same as the joint distribution of the increments

Bt+s1 −Bt+s0 , Bt+s2 −Bt+s1 , . . . , Bt+sn −Bt+sn−1

for any t ≥ 0. These two points are summarized by saying that Brownian
motion has stationary, independent increments.

A d-dimensional standard Brownian motion is an Rd-valued process
Bt = (B1

t , . . . , B
d
t ) with the property that each component Bi

t is a one-
dimensional standard Brownian motion (relative to the underlying filtration
{Ft}), and the coordinates B1, B2, . . . , Bd are independent. This is equiv-
alent to requiring that

(i) B0 = 0 almost surely.

(ii) For almost every ω, the path t 7→ Bt(ω) is continuous.

(iii) For 0 ≤ s < t, Bt − Bs is independent of Fs, and has multivariate
normal distribution with mean zero and covariance matrix (t −
s) I
d×d

.

Above, I
d×d

is the d× d identity matrix.

To create a Brownian motion Bt with a more general initial distribution
µ (the probability distribution of B0), take a standard Brownian motion

(B̃t, F̃t) and a µ-distributed random variable X independent of F̃∞, and

define Bt = X + B̃t. The filtration is now Ft = σ{X, F̃t}. Since Bt −Bs =

B̃t−B̃s, F̃∞ is independent of X, and B̃t−B̃s is independent of F̃s, Exercise



2.4. Brownian motion 65

1.11(c) implies that Bt−Bs is independent of Fs. Conversely, if a process Bt
satisfies parts (i) and (ii) of Definition 2.26, then B̃t = Bt−B0 is a standard
Brownian motion, independent of B0.

The construction (proof of existence) of Brownian motion is rather tech-
nical, and hence relegated to Section B.2 in the Appendix. For the un-
derlying probability space the construction uses the “canonical” path space
C = CR[0,∞). Let Bt(ω) = ω(t) be the coordinate projections on C, and
FBt = σ{Bs : 0 ≤ s ≤ t} the filtration generated by the coordinate process.

Theorem 2.27. There exists a Borel probability measure P 0 on the path
space C = CR[0,∞) such that the process B = {Bt : 0 ≤ t < ∞} on
the probability space (C,BC , P 0) is a standard one-dimensional Brownian
motion with respect to the filtration {FBt }.

The proof of this existence theorem relies on the Kolmogorov Extension
Theorem 1.28. The probability measure P 0 on C constructed in the theorem
is called Wiener measure to recognize that Norbert Wiener was the first to
give a rigorous construction of Brownian motion. Brownian motion itself
is sometimes also called the Wiener process. Once we know that Brownian
motion starting at the origin exists, we can construct Brownian motion with
an arbitrary initial point (random or deterministic) following the description
after Definition 2.26.

The construction gives us the following regularity property of paths. Fix
0 < γ < 1

2 . For P 0-almost every ω ∈ C,

(2.34) sup
0≤s<t≤T

|Bt(ω)−Bs(ω)|
|t− s|γ

<∞ for all T <∞.

This property is expressed by saying that Brownian paths are Hölder contin-
uous with exponent γ. We shall show later in this section that this property
is not true for γ > 1

2 .

2.4.1. Brownian motion as a martingale and a strong Markov
process. We discuss mainly properties of the one-dimensional case. The
multidimensional versions of the statements follow naturally from the one-
dimensional case. We shall use the term Brownian motion to denote a
process that satisfies (i) and (ii) of Definition 2.26, and call it standard if
also B0 = 0.

A fundamental property of Brownian motion is that it is both a martin-
gale and a Markov process.

Proposition 2.28. Suppose B = {Bt} is a Brownian motion with respect
to a filtration {Ft} on (Ω,F , P ). Then Bt and B2

t − t are martingales with
respect to {Ft}.
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Proof. Follows from the properties of Brownian increments and basic prop-
erties of conditional expectations. Let s < t.

E[Bt|Fs] = E[Bt −Bs|Fs] + E[Bs|Fs] = Bs,

and

E[B2
t |Fs] = E[(Bt −Bs +Bs)

2|Fs]
= E[(Bt −Bs)2|Fs] + 2BsE[Bt −Bs|Fs] +B2

s

= (t− s) +B2
s . �

Next we show that Brownian motion restarts itself independently of the
past. This is the heart of the Markov property. Also, it is useful to know
that the filtration of a Brownian motion can always be both augmented with
the null events and made right-continuous.

Proposition 2.29. Suppose B = {Bt} is a Brownian motion with respect
to a filtration {Ft} on (Ω,F , P ).

(a) We can assume that Ft contains every set A for which there exists
an event N ∈ F such that A ⊆ N and P (N) = 0. (This is the notion of a
complete or augmented filtration introduced earlier.) Furthermore, B = {Bt}
is also a Brownian motion with respect to the right-continuous filtration
{Ft+}.

(b) Fix s ∈ R+ and define Yt = Bs+t −Bs. Then the process Y = {Yt :
0 ≤ t < ∞} is independent of Fs+ and it is a standard Brownian motion
with respect to the filtration {Gt} defined by Gt = F(s+t)+.

Proof. Definition (2.2) shows how to complete the filtration. Of course, the
adaptedness of B to the filtration is not harmed by enlarging the filtration,
the issue is the independence of F̄s and Bt − Bs. If G ∈ F has A ∈ Fs
such that P (A4G) = 0, then P (G ∩H) = P (A ∩H) for any event H. In
particular, the independence of F̄s from Bt −Bs follows.

The rest follows from a single calculation. Fix s ≥ 0 and 0 = t0 < t1 <
t2 < · · · < tn, and for h ≥ 0 abbreviate

ξ(h) = (Bs+h+t1 −Bs+h, Bs+h+t2 −Bs+h+t1 , . . . , Bs+h+tn −Bs+h+tn−1)

for a vector of Brownian increments. Let Z be a bounded Fs+-measurable
random variable. For each h > 0, Z is Fs+h-measurable. Since Brownian
increments are independent of the past (see the strengthening of property
(ii) of Definition 2.26 given in Exercise 2.20), ξ(h) is independent of Z. Let f
be a bounded continuous function on Rn. By path continuity, independence,



2.4. Brownian motion 67

and finally the stationarity of Brownian increments,

(2.35)

E
[
Z · f(ξ(0))

]
= lim

h↘0
E
[
Z · f(ξ(h))

]
= lim

h↘0
EZ · E

[
f(ξ(h))

]
= EZ · E

[
f(ξ(0))

]
= EZ · E

[
f(Bs+t1 −Bs, Bs+t2 −Bs+t1 , . . . , Bs+tn −Bs+tn−1)

]
= EZ · E

[
f(Bt1 −B0, Bt2 −Bt1 , . . . , Btn −Btn−1)

]
.

The equality of the first and last members of the above calculation extends
by Lemma B.6 from continuous f to bounded Borel f .

Now we can harvest the conclusions. The independence of Fs+ and
Bt − Bs is contained in (2.35) so the fact that B is a Brownian motion
with respect to {Ft+} has been proved. Secondly, since ξ(0) = (Yt1 , Yt2 −
Yt1 , . . . , Ytn − Ytn−1) and the vector η = (Yt1 , Yt2 , . . . , Ytn) is a function of
ξ(0), we conclude that η is independent of Fs+. This being true for all
choices of time points 0 < t1 < t2 < · · · < tn implies that the entire process
Y is independent of Fs+, and the last member of (2.35) shows that given
Fs+, Y has the distribution of standard Brownian motion.

Finally, the independence of Yt2 − Yt1 and Gt1 is the same as the inde-
pendence of Bs+t2 −Bs+t1 of F(s+t1)+ which was already argued. �

Parts (a) and (b) of the lemma together assert that Y is a standard
Brownian motion, independent of F̄t+, the filtration obtained by replac-
ing {Ft} with the augmented right-continuous version. (The order of the
two operations on the filtration is immaterial, in other words the σ-algebra⋂
s:s>t F̄s agrees with the augmentation of

⋂
s:s>tFs, see Exercise 2.4.)

The key calculation (2.35) of the previous proof used only right-continuity.
Thus the same argument gives us this lemma that we can apply to other
processes.

Lemma 2.30. Suppose X = (Xt : t ∈ R+) is a right-continuous process
adapted to a filtration {Ft} and for all s < t the increment Xt − Xs is
independent of Fs. Then Xt −Xs is independent of F̄s+.

Next we develop some properties of Brownian motion by concentrating
on the “canonical setting”. The underlying probability space is the path
space C = CR[0,∞) with the coordinate process Bt(ω) = ω(t) and the
filtration FBt = σ{Bs : 0 ≤ s ≤ t} generated by the coordinates. For each
x ∈ R there is a probability measure P x on C under which B = {Bt} is
Brownian motion started at x. Expectation under P x is denoted by Ex and
satisfies

Ex[H] = E0[H(x+B)]
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for any bounded BC-measurable function H. On the right x + B is a sum
of a point and a process, interpreted as the process whose value at time t is
x + Bt. (In Theorem 2.27 we constructed P 0, and the equality above can
be taken as the definition of P x.)

On C we have the shift maps {θs : 0 ≤ s < ∞} defined by (θsω)(t) =
ω(s+ t) that move the time origin to s. The shift acts on the process B by
θsB = {Bs+t : t ≥ 0}.

A consequence of Lemma 2.29(a) is that the coordinate process B is a
Brownian motion also relative to the larger filtration FBt+ =

⋂
s:s>tFBs . We

shall show that members of FBt and FBt+ differ only by null sets. (These
σ-algebras are different, see Exercise 2.13.) This will have interesting conse-
quences when we take t = 0. The next proposition establishes the Markov
property with respect to the larger filtration {FBt+}.

Proposition 2.31. Let H be a bounded BC-measurable function on C.

(a) Ex[H] is a Borel measurable function of x.

(b) For each x ∈ R

(2.36) Ex[H ◦ θs|FBs+](ω) = EBs(ω)[H] for P x-almost every ω.

In particular, the family {P x} on C satisfies Definition 2.22 of a Markov
process with respect to the filtration {FBt+}.

Proof. Part (a). Suppose we knew that x 7→ P x(F ) is measurable for each
closed set F ⊆ C. Then the π-λ Theorem B.3 implies that x 7→ P x(A) is
measurable for each A ∈ BC (fill in the details for this claim as an exercise).
Since linear combinations and limits preserve measurability, it follows that
x 7→ Ex[H] is measurable for any bounded BC-measurable function H.

To show that x 7→ P x(F ) is measurable for each closed set F , consider
first a bounded continuous function H on C. (Recall that C is metrized by
the metric (2.24) of uniform continuity on compact intervals.) If xj → x in
R, then by continuity and dominated convergence,

Exj [H] = E0[H(xj +B)] −→ E0[H(x+B)] = Ex[H]

so Ex[H] is continuous in x, which makes it Borel measurable. The indicator
function 1F of a closed set can be written as a bounded pointwise limit of
continuous functions Hn (see (B.2) in the appendix). So it follows that

P x(F ) = lim
n→∞

Ex[Hn]

is also Borel measurable in x.

Part (b). We can write the shifted process as θsB = Bs + Y where
Yt = Bs+t −Bs. Let Z be a bounded FBs+-measurable random variable. By
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Lemma 2.29(b), Y is a standard Brownian motion, independent of (Z,Bs)
because the latter pair is FBs+-measurable. Consequently

Ex
[
Z ·H(θsB)

]
= Ex[Z ·H(Bs + Y )]

=

∫
C
Ex
[
Z ·H(Bs + ζ)

]
P 0(dζ).

By independence the expectation over Y can be separated from the expecta-
tion over (Z,Bs). (This was justified in Exercise 1.14.) P 0 is the distribution
of Y because Y is a standard Brownian motion. Next move the P 0(dζ) in-
tegral back inside, and observe that∫

C
H(y + ζ)P 0(dζ) = Ey[H]

for any point y, including y = Bs(ω). This gives

Ex
[
Z ·H(θsB)

]
= Ex

[
Z · EBs(H)

]
.

The proof is complete. �

Proposition 2.32. Let H be a bounded BC-measurable function on C. Then
for any x ∈ R and 0 ≤ s <∞,

(2.37) Ex[H|FBs+] = Ex[H|FBs ] P x-almost surely.

Proof. Suppose first H is of the type

H(ω) =

n∏
i=1

1Ai(ω(ti))

for some 0 ≤ t1 < t2 < · · · < tn and Ai ∈ BR. By separating those factors
where ti ≤ s, we can write H = H1 · (H2 ◦ θs) where H1 is FBs -measurable.
Then

Ex[H|FBs+] = H1 · Ex[H2 ◦ θs|FBs+] = H1 · EBs [H2]

which is FBs -measurable. Since FBs+ contains FBs , (2.37) follows from prop-
erty (viii) of conditional expectations given in Theorem 1.26.

Let H be the collection of bounded functions H for which (2.37) holds.
By the linearity and the monotone convergence theorem for conditional ex-
pectations (Theorem B.14), H satisfies the hypotheses of Theorem B.4. For
the π-system S needed for Theorem B.4 take the class of events of the form

{ω : ω(t1) ∈ A1, . . . , ω(tn) ∈ An}
for 0 ≤ t1 < t2 < · · · < tn and Ai ∈ BR. We checked above that indicator
functions of these sets lie in H. Furthermore, these sets generate BC because
BC is generated by coordinate projections. By Theorem B.4 H contains all
bounded BC-measurable functions. �
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Corollary 2.33. If A ∈ FBt+ then there exists B ∈ FBt such that P x(A4B) =
0.

Proof. Let Y = Ex(1A|FBt ), and B = {Y = 1} ∈ FBt . The event A4B is
contained in {1A 6= Y }, because ω ∈ A\B implies 1A(ω) = 1 6= Y (ω), while
ω ∈ B \ A implies Y (ω) = 1 6= 0 = 1A(ω). By (2.37), 1A = Y P x-almost
surely. Hence {1A 6= Y }, and thereby A4B, is a P x-null event. �

Corollary 2.34. (Blumenthal’s 0–1 Law) Let x ∈ R. Then for A ∈ FB0+,
P x(A) is 0 or 1.

Proof. The σ-algebra FB0 satisfies the 0–1 law under P x, because P x{B0 ∈
G} = 1G(x). Then every P x-conditional expectation with respect to FB0
equals the expectation (Exercise 1.17). The following equalities are valid
P x-almost surely for A ∈ FB0+:

1A = Ex(1A|FB0+) = Ex(1A|FB0 ) = P x(A).

Thus there must exist points ω ∈ C such that 1A(ω) = P x(A), and so the
only possible values for P x(A) are 0 and 1. �

From the 0–1 law we get a fact that suggests something about the fast
oscillation of Brownian motion: if it starts at the origin, then in any nontriv-
ial time interval (0, ε) the process is both positive and negative, and hence
by continuity also zero. To make this precise, define

σ = inf{t > 0 : Bt > 0}, τ = inf{t > 0 : Bt < 0},
and T0 = inf{t > 0 : Bt = 0}.

(2.38)

Corollary 2.35. P 0-almost surely σ = τ = T0 = 0.

Proof. To see that the event {σ = 0} lies in FB0+, write

{σ = 0} =

∞⋂
m=n

{Bq > 0 for some rational q ∈ (0, 1
m)} ∈ FBn−1 .

Since this is true for every n ∈ N, {σ = 0} ∈
⋂
n∈NFBn−1 = FB0+. Same

argument shows {τ = 0} ∈ FB0+.

Since each variable Bt is a centered Gaussian,

P 0{σ ≤ 1
m} ≥ P

0{B1/m > 0} = 1
2

and so

P 0{σ = 0} = lim
m→∞

P 0{σ ≤ 1
m} ≥

1
2 .

The convergence of the probability happens because the events {σ ≤ 1
m}

shrink down to {σ = 0} as m→∞. By Blumenthal’s 0–1 law, P 0{σ = 0} =
0 or 1, so this quantity has to be 1. Again, the same argument for τ .
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Finally, fix ω so that σ(ω) = τ(ω) = 0. Then there exist s, t ∈ (0, ε)
such that Bs(ω) < 0 < Bt(ω). By continuity, Bu(ω) = 0 for some u between
s and t. Hence T0(ω) < ε. Since ε > 0 can be taken arbitrarily small,
T0(ω) = 0. �

Identity (2.36) verified that Brownian motion is a Markov process, also
under the larger filtration Gt = FBt+. The transition probability of Brownian
motion is a normal distribution and consequently has a density function.
Namely,

p(t, x,A) =

∫
A
p(t, x, y) dy for A in BR

with

(2.39) p(t, x, y) =
1√
2πt

exp
{
−(x− y)2

2t

}
.

This transition probability density of Brownian motion is called the Gauss-
ian kernel. An important analytic fact about the Gaussian kernel is that it
gives the fundamental solution of the heat equation ρt = 1

2ρxx. (See Section
9.2 for an explanation of this.)

Next we strengthen the Markov property of Brownian motion to the
strong Markov property. Recall the definition from (2.30).

Proposition 2.36. Brownian motion is a Feller process, and consequently
a strong Markov process under the filtration {Gt}.

Proof. It only remains to observe the Feller property: for g ∈ Cb(R)

Ex[g(Bt)] =
1√
2πt

∫
R
g(x+ y) exp

{
−y

2

2t

}
dx

and the continuity as a function of x is clear by dominated convergence. �

A natural way to understand the strong Markov property of Brownian

motion is that, on the event {τ < ∞}, the process B̃t = Bτ+t − Bτ is a
standard Brownian motion, independent of Gτ . Formally we can extract
this point from the statement of the strong Markov property as follows.
Given a bounded measurable function g on the path space C, define h by
h(ω) = g(ω − ω(0)). Then

Ex[g(B̃) | Gτ ](ω) = Ex[h ◦ θτ | Gτ ](ω) = Eω(τ)[h] = E0[g].

The last equality comes from the definition of the measures P x:

Ex[h] = E0[h(x+B)] = E0[g(x+B − x)] = E0[g].

The Markov and strong Markov properties are valid also for d-dimensional
Brownian motion. The definitions and proofs are straightforward extensions.
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Continuing still in 1 dimension, a favorite application of the strong
Markov property of Brownian motion is the reflection principle, which is
useful for calculations. Define the running maximum of Brownian motion
by

(2.40) Mt = sup
0≤s≤t

Bs

Proposition 2.37. (Reflection principle) Let a ≤ b and b > 0 be real num-
bers. Then

(2.41) P 0(Bt ≤ a,Mt ≥ b) = P 0(Bt ≥ 2b− a).

Each inequality in the statement above can be either strict or weak, by
taking limits (Exercise 2.23) and because Bt has a continuous distribution.

Proof. Let

τb = inf{t ≥ 0 : Bt = b}

be the hitting time of point b. By path continuity Mt ≥ b is equivalent to
τb ≤ t. In the next calculation ω indicates quantities that are random for
the outer expectation but constant for the inner probability.

P 0(Bt(ω) ≤ a,Mt(ω) ≥ b) = P 0(τb(ω) ≤ t, Bt(ω) ≤ a)

= E0
[
1{τb(ω) ≤ t}P 0(Bt ≤ a | Fτb)(ω)

]
= E0

[
1{τb(ω) ≤ t}P b(Bt−τb(ω) ≤ a)

]
= E0

[
1{τb(ω) ≤ t}P b(Bt−τb(ω) ≥ 2b− a)

]
= E0

[
1{τb(ω) ≤ t}P 0(Bt ≥ 2b− a | Fτb)(ω)

]
= P 0(Mt(ω) ≥ b, Bt(ω) ≥ 2b− a) = P 0(Bt(ω) ≥ 2b− a).

On the third and the fourth line τb(ω) appears in two places, and it is a
constant in the inner probability. Then comes the reflection: by symmetry,
Brownian motion started at b is equally likely to reside below a as above
b + (b − a) = 2b − a. The last equality drops the condition on Mt that is
now superfluous because 2b− a ≥ b.

The reader may feel a little uncomfortable about the cavalier way of
handling the strong Markov property. Let us firm it up by introducing
explicitly Y (s, ω) that allows us to mechanically apply (2.30):

Y (s, ω) = 1{s ≤ t, ω(t− s) ≥ 2b− a} − 1{s ≤ t, ω(t− s) ≤ a}.
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By symmetry of Brownian motion, for any s ≤ t,

Eb[Y (s,B)] = P b{Bt−s ≥ 2b− a} − P b{Bt−s ≤ a}
= P 0{Bt−s ≥ b− a} − P 0{Bt−s ≤ a− b} = 0.

In the next calculation, begin with this equality, note that b = Bτb(ω) and
then apply the strong Markov property. Use X as the identity mapping on
C in the first innermost expectation.

0 = E0
[
1{τb(ω) ≤ t}Eb{Y (τb(ω), X)}

]
= E0

[
1{τb(ω) ≤ t}E0{Y (τb, θτbB) | Fτb}(ω)

]
= E0

[
1{τb ≤ t}Y (τb, θτbB)

]
= P 0{τb ≤ t, Bt ≥ 2b− a} − P 0{τb ≤ t, Bt ≤ a}
= P 0{Bt ≥ 2b− a} − P 0{τb ≤ t, Bt ≤ a}.

The second last step used

Y (τb, θτbB) = 1{τb ≤ t, Bt ≥ 2b− a} − 1{τb ≤ t, Bt ≤ a}

which is a direct consequence of the definition of Y . �

An immediate corollary of (2.41) is that Mt has the same distribution
as |Bt|: taking a = b > 0

(2.42)
P 0(Mt ≥ b) = P 0(Bt ≤ b,Mt ≥ b) + P 0(Bt > b,Mt ≥ b)

= P 0(Bt ≥ b) + P 0(Bt > b) = 2P 0(Bt ≥ b) = P 0(|Bt| ≥ b).

With a little more effort one can write down the joint density of (Bt,Mt)
(Exercise 2.24).

2.4.2. Path regularity of Brownian motion. As a byproduct of the
construction of Brownian motion in Section B.2 we obtained Hölder conti-
nuity of paths with any exponent strictly less than 1

2 .

Theorem 2.38. Fix 0 < γ < 1
2 . The following is true almost surely for

Brownian motion: for every T <∞ there exists a finite constant C(ω) such
that

(2.43) |Bt(ω)−Bs(ω)| ≤ C(ω)|t− s|γ for all 0 ≤ s, t ≤ T .

Next we prove a result from the opposite direction. Namely, for an
exponent strictly larger than 1

2 there is not even local Hölder continuity.
(“Local” here means that the property holds in a small enough interval
around a given point.)
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Theorem 2.39. Let B be a Brownian motion. For finite positive reals γ,
C, and ε define the event

G(γ,C, ε) = {there exists s ∈ R+ such that |Bt −Bs| ≤ C|t− s|γ

for all t ∈ [s− ε, s+ ε]}.

Then if γ > 1
2 , P

(
G(γ,C, ε)

)
= 0 for all positive C and ε.

Proof. Fix γ > 1
2 . Since only increments of Brownian motion are involved,

we can assume that the process in question is a standard Brownian motion.

(Bt and B̃t = Bt −B0 have the same increments.) In the proof we want to
deal only with a bounded time interval. So define

Hk(C, ε) = {there exists s ∈ [k, k + 1] such that |Bt −Bs| ≤ C|t− s|γ

for all t ∈ [s− ε, s+ ε] ∩ [k, k + 1]}.

G(γ,C, ε) is contained in
⋃
kHk(C, ε), so it suffices to show P

(
Hk(C, ε)

)
= 0

for all k. Since Yt = Bk+t−Bk is a standard Brownian motion, P
(
Hk(C, ε)

)
=

P
(
H0(C, ε)

)
for each k. Finally, what we show is P

(
H0(C, ε)

)
= 0.

Fix m ∈ N such that m(γ− 1
2) > 1. Let ω ∈ H0(C, ε), and pick s ∈ [0, 1]

so that the condition of the event is satisfied. Consider n large enough so
that m/n < ε. Imagine partitioning [0, 1] into intervals of length 1

n . Let

Xn,k = max{|B(j+1)/n −Bj/n| : k ≤ j ≤ k +m− 1} for 0 ≤ k ≤ n−m.

The point s has to lie in one of the intervals [ kn ,
k+m
n ], for some 0 ≤ k ≤ n−m.

For this particular k,

|B(j+1)/n −Bj/n| ≤ |B(j+1)/n −Bs|+ |Bs −Bj/n|

≤ C
(
| j+1
n − s|

γ + |s− j
n |
γ
)
≤ 2C(mn )γ

for all the j-values in the range k ≤ j ≤ k + m − 1. (Simply because

the points j
n and j+1

n are within ε of s. Draw a picture.) In other words,
Xn,k ≤ 2C(mn )γ for this k-value.

Now consider all the possible k-values, recall that Brownian increments
are stationary and independent, and note that by basic Gaussian properties,
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Bt has the same distribution as t1/2B1.

P
(
H0(C, ε)

)
≤

n−m∑
k=0

P{Xn,k ≤ 2C(mn )γ} ≤ nP{Xn,0 ≤ 2C(mn )γ}

= n

m−1∏
j=0

P
{
|B(j+1)/n −Bj/n| ≤ 2C(mn )γ

}
= nP

{
|B1/n| ≤ 2C(mn )γ

}m
= nP

{
|B1| ≤ 2Cn1/2−γmγ

}m
= n

(
1√
2π

∫ 2Cn1/2−γmγ

−2Cn1/2−γmγ
e−x

2/2 dx

)m
≤ n

(
1√
2π

4Cn1/2−γmγ

)m
≤ K(m)n1−m(γ−1/2).

In the last stages above we bounded e−x
2/2 above by 1, and then collected

some of the constants and m-dependent quantities into the function K(m).
The bound is valid for all large n, while m is fixed. Thus we may let n→∞,
and obtain P

(
H0(C, ε)

)
= 0. This proves the theorem. �

Corollary 2.40. The following is true almost surely for Brownian motion:
the path t 7→ Bt(ω) is not differentiable at any time point.

Proof. Suppose t 7→ Bt(ω) is differentiable at some point s. This means
that there is a real-valued limit

ξ = lim
t→s

Bt(ω)−Bs(ω)

t− s
.

Thus if the integer M satisfies M > |ξ| + 1, we can find another integer k
such that for all t ∈ [s− k−1, s+ k−1],

−M ≤ Bt(ω)−Bs(ω)

t− s
≤M which implies |Bt(ω)−Bs(ω)| ≤M |t− s|.

Consequently ω ∈ G(1,M, k−1).

This reasoning shows that if t 7→ Bt(ω) is differentiable at even a single
time point, then ω lies in the union

⋃
M

⋃
kG(1,M, k−1). This union has

probability zero by the previous theorem. �

Functions of bounded variation are differences of nondecreasing func-
tions, and monotone functions can be differentiated at least Lebesgue–almost
everywhere. Hence the above theorem implies that Brownian motion paths
are of unbounded variation on every interval.

To recapitulate, the previous results show that a Brownian path is Hölder
continuous with any exponent γ < 1

2 but not for any γ > 1
2 . For the sake of

completeness, here is the precise result. Proofs can be found for example in
[9, 14].
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Theorem 2.41. (Lévy’s modulus of continuity.) Almost surely,

lim
δ↘0

sup
0≤s<t≤1
t−s≤δ

Bt −Bs√
2δ log δ−1

= 1.

Next we show that Brownian motion has finite quadratic variation [B]t =
t. Quadratic variation was introduced in Section 2.2. This notion occupies
an important role in stochastic analysis and will be discussed more in the
martingale chapter. As a corollary we get another proof of the unbounded
variation of Brownian paths, a proof that does not require knowledge about
the differentiation properties of BV functions.

Recall again the notion of the mesh mesh(π) = maxi(ti+1 − ti) of a
partition π = {0 = t0 < t1 < · · · < tm(π) = t} of [0, t].

Proposition 2.42. Let B be a Brownian motion. For any partition π of
[0, t],

(2.44) E

[( m(π)−1∑
i=0

(Bti+1 −Bti)2 − t
)2 ]

≤ 2tmesh(π).

In particular

(2.45) lim
mesh(π)→0

m(π)−1∑
i=0

(Bti+1 −Bti)2 = t in L2(P ).

If we have a sequence of partitions πn such that
∑

n mesh(πn) < ∞, then
the convergence above holds almost surely along this sequence.

Proof. Straightforward computation, utilizing the facts that Brownian in-
crements are independent, Bs −Br has mean zero normal distribution with
variance s− r, and so its fourth moment is E[(Bs − Br)4] = 3(s− r)2. Let
∆ti = ti+1 − ti.

E

[( m(π)−1∑
i=0

(Bti+1 −Bti)2 − t
)2 ]

=
∑
i

E
[
(Bti+1 −Bti)4

]
+
∑
i 6=j

E
[
(Bti+1 −Bti)2(Btj+1 −Btj )2

]
− 2t

∑
i

E
[
(Bti+1 −Bti)2

]
+ t2

= 3
∑
i

(∆ti)
2 +

∑
i 6=j

∆ti ·∆tj − 2t2 + t2 = 2
∑
i

(∆ti)
2 +

∑
i,j

∆ti ·∆tj − t2

= 2
∑
i

(∆ti)
2 ≤ 2 mesh(π)

∑
i

∆ti = 2 mesh(π)t.
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By Chebychev’s inequality,

P

{ ∣∣∣∣ m(πn)−1∑
i=0

(Btni+1
−Btni )2 − t

∣∣∣∣ ≥ ε}

≤ ε−2E

[( m(πn)−1∑
i=0

(Btni+1
−Btni )2 − t

)2 ]
≤ 2tε−2 mesh(πn).

If
∑

n mesh(πn) < ∞, these numbers have a finite sum over n (in short,
they are summable). Hence the asserted convergence follows from the Borel-
Cantelli Lemma. �

Corollary 2.43. The following is true almost surely for a Brownian motion
B: the path t 7→ Bt(ω) is not a member of BV [0, T ] for any 0 < T <∞.

Proof. Pick an ω such that

lim
n→∞

2n−1∑
i=0

(
B(i+1)T/2n(ω)−BiT/2n(ω)

)2
= T

for each T = k−1 for k ∈ N. Such ω’s form a set of probability 1 by the
previous proposition, because the partitions {iT2−n : 0 ≤ i ≤ 2n} have
meshes 2−n that form a summable sequence. Furthermore, by almost sure
continuity, we can assume that

lim
n→∞

max
0≤i≤2n−1

∣∣B(i+1)T/2n(ω)−BiT/2n(ω)
∣∣ = 0

for each T = k−1. (Recall that a continuous function is uniformly continuous
on a closed, bounded interval.) And now for each such T ,

T = lim
n→∞

2n−1∑
i=0

(
B(i+1)T/2n(ω)−BiT/2n(ω)

)2
≤ lim

n→∞

{
max

0≤i≤2n−1

∣∣B(i+1)T/2n(ω)−BiT/2n(ω)
∣∣}

×
2n−1∑
i=0

∣∣B(i+1)T/2n(ω)−BiT/2n(ω)
∣∣.

Since the maximum in braces vanishes as n→∞, the last sum must converge
to ∞. Consequently the path t 7→ Bt(ω) is not BV in any interval [0, k−1].
Any other nontrivial inteval [0, T ] contains an interval [0, k−1] for some k,
and so this path cannot have bounded variation on any interval [0, T ]. �
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2.5. Poisson processes

Poisson processes describe configurations of random points. The definition
and construction for a general state space is no more complex than for the
real line, so we define and construct the Poisson point process on an abstract
measure space first.

Let 0 < α < ∞. A nonnegative integer-valued random variable X has
Poisson distribution with parameter α (Poisson(α)–distribution) if

P{X = k} = e−α
αk

k!
for k ∈ Z+.

To describe point processes we also need the extreme cases: a Poisson vari-
able with parameter α = 0 is identically zero, or P{X = 0} = 1, while a Pois-
son variable with parameter α =∞ is identically infinite: P{X =∞} = 1.
A Poisson(α) variable has mean and variance α. A sum of independent Pois-
son variables (including a sum of countably infinitely many terms) is again
Poisson distributed. These properties make the next definition possible.

Definition 2.44. Let (S,A, µ) be a σ-finite measure space. A process
{N(A) : A ∈ A} indexed by the measurable sets is a Poisson point pro-
cess with mean measure µ if

(i) Almost surely, N(·) is a Z ∪ {∞}-valued measure on (S,A).

(ii) N(A) is Poisson distributed with parameter µ(A).

(iii) For any pairwise disjoint A1, A2, . . . , An ∈ A, the random variables
N(A1), N(A2), . . . , N(An) are independent.

The interpretation is that N(A) is the number of points in the set A. N is
also called a Poisson random measure.

Observe that items (i) and (ii) give a complete description of all the
finite-dimensional distributions of {N(A)}. For arbitrary B1, B2, . . . , Bm ∈
A, we can find disjoint A1, A2, . . . , An ∈ A so that each Bj is a union of
some of the Ai’s. Then each N(Bj) is a certain sum of N(Ai)’s, and we see
that the joint distribution of N(B1), N(B2), . . . , N(Bm) is determined by
the joint distribution of N(A1), N(A2), . . . , N(An).

Proposition 2.45. Let (S,A, µ) be a σ-finite measure space. Then a Pois-
son point process {N(A) : A ∈ A} with mean measure µ exists.

Proof. Let S1, S2, S3, . . . be disjoint measurable sets such that S =
⋃
Si

and µ(Si) <∞. We shall first define a Poisson point process Ni supported
on the subset Si (this means that Ni has no points outside Si). If µ(Si) = 0,
define Ni(A) = 0 for every measurable set A ∈ A.
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With this trivial case out of the way, we may assume 0 < µ(Si) <∞. Let
{Xi

j : j ∈ N} be i.i.d. Si-valued random variables with common probability
distribution

P{Xi
j ∈ B} =

µ(B ∩ Si)
µ(Si)

for measurable sets B ∈ A.

Independently of the {Xi
j : j ∈ N}, let Ki be a Poisson(µ(Si)) random

variable. Define

Ni(A) =

Ki∑
j=1

1A(Xi
j) for measurable sets A ∈ A.

As the formula reveals, Ki decides how many points to place in Si, and the
{Xi

j} give the locations of the points in Si. We leave it as an exercise to
check that Ni is a Poisson point process whose mean measure is µ restricted
to Si, defined by µi(B) = µ(B ∩ Si).

We can repeat this construction for each Si, and take the resulting ran-
dom processes Ni mutually independent by a suitable product space con-
struction. Finally, define

N(A) =
∑
i

Ni(A).

Again, we leave checking the properties as an exercise. �

The most important Poisson processes are those on Euclidean spaces
whose mean measure is a constant multiple of Lebesgue measure. These are
called homogeneous Poisson point processes. When the points lie on the
positive real line, they naturally acquire a temporal interpretation. For this
case we make the next definition.

Definition 2.46. Let (Ω,F , P ) be a probability space, {Ft} a filtration on
it, and α > 0. A (homogeneous) Poisson process with rate α is an adapted
stochastic process N = {Nt : 0 ≤ t <∞} with these properties.

(i) N0 = 0 almost surely.

(ii) For almost every ω, the path t 7→ Nt(ω) is cadlag.

(iii) For 0 ≤ s < t, Nt − Ns is independent of Fs, and has Poisson
distribution with parameter α(t− s).

Proposition 2.47. Homogeneous Poisson processes on [0,∞) exist.

Proof. Let {N(A) : A ∈ B(0,∞)} be a Poisson point process on (0,∞)
with mean measure αm. Define N0 = 0, Nt = N(0, t] for t > 0, and
FNt = σ{Ns : 0 ≤ s ≤ t}. Let 0 = s0 < s1 < · · · < sn ≤ s < t. Then

N(s0, s1], N(s1, s2], . . . , N(sn−1, sn], N(s, t]
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are independent random variables, from which follows that the vector (Ns1 ,
. . . , Nsn) is independent of N(s, t]. Considering all such n-tuples (for various
n) while keeping s < t fixed shows that Fs is independent of N(s, t] =
Nt −Ns.

The cadlag path property of Nt follows from properties of the Poisson
process. Almost every ω has the property that N(0, T ] <∞ for all T <∞.
Given such an ω and t, there exist t0 < t < t1 such that N(t0, t) = N(t, t1) =
0. (There may be a point at t, but there cannot be sequences of points
converging to t from either left or right.) Consequently Ns is constant for
t0 < s < t and so the left limit Nt− exists. Also Ns = Nt for t ≤ s < t1
which gives the right continuity at t. �

One can show that the jumps of Nt are all of size 1 (Exercise 2.27). This
is because the Lebesgue mean measure does not let two Poisson points sit
on top of each other. The next lemma is proved just like its counterpart for
Brownian motion, so we omit its proof.

Proposition 2.48. Suppose N = {Nt} is a homogeneous Poisson process
with respect to a filtration {Ft} on (Ω,F , P ).

(a) N is a Poisson process also with respect to the augmented right-
continuous filtration {F̄t+}.

(b) Define Yt = Ns+t−Ns and Gt = F(s+t)+. Then Y = {Yt : 0 ≤ t <∞}
is a homogeneous Poisson process with respect to the filtration {Gt}, and
independent of F̄s+.

Since the Poisson process is monotone nondecreasing it cannot be a
martingale. We need to compensate by subtracting off the mean, and so we
define the compensated Poisson process as

Mt = Nt − αt.

Proposition 2.49. M is a martingale.

Proof. Follows from the independence of increments.

E[Nt|Fs] = E[Nt −Ns|Fs] + E[Ns|Fs] = α(t− s) +Ns. �

The Markov property of the Poisson process follows next just like for
Brownian motion. However, we should not take R as the state space, but
instead Z (or alternatively Z+). A Poisson process with initial state x ∈ Z
would be defined as x+Nt, where N is the process defined in Definition 2.46,
and P x would be the distribution of {x+Nt}t∈R+ on the space DZ[0,∞) of
Z-valued cadlag paths. Because the state space is discrete the Feller property
is automatically satisfied. (A discrete space is one where singleton sets {x}
are open. Every function on a discrete space is continuous.) Consequently
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homogeneous Poisson processes also satisfy the strong Markov property. The
semigroup for a rate α Poisson process is

Ex[g(Xt)] = E0[g(x+Xt)] =
∞∑
k=0

g(x+ k)e−α
αk

k!
for x ∈ Z.

The reader should also be aware of another natural construction of N
in terms of waiting times. We refer to [13, Section 4.8] for a proof.

Proposition 2.50. Let {Tk : 1 ≤ k < ∞} be i.i.d. rate α exponential
random variables. Let Sn = T1 + · · · + Tn for n ≥ 1. Then N(A) =∑

n 1A(Sn) defines a homogeneous rate α Poisson point process on R+, and
Nt = max{n : Sn ≤ t} defines a rate α Poisson process with respect to its
own filtration {FNt } with initial point N0 = 0 a.s.

Exercises

Exercise 2.1. To see that even increasing unions of σ-algebras can fail to
be σ-algebras (so that the generation is necessary in (2.1)), look at this
example. Let Ω = (0, 1], and for n ∈ N let Fn be the σ-algebra generated
by the intervals {(k2−n, (k + 1)2−n] : k ∈ {0, 1, 2, . . . , 2n − 1}}. How about
the intersection of the sets (1− 2−n, 1]?

Exercise 2.2. To ward off yet another possible pitfall: uncountable unions
must be avoided. Even if A =

⋃
t∈R+

At and each At ∈ Ft, A may fail to be

a member of F∞. Here is an example. Let Ω = R+ and let Ft = BR+ for
each t ∈ R+. Then also F∞ = BR+ . Pick a subset A of R+ that is not a
Borel subset. (The proof that such sets exist needs to be looked up from an
analysis text.) Then take At = {t} if t ∈ A and At = ∅ otherwise.

Exercise 2.3. Let {Ft} be a filtration, and let Gt = Ft+. Show that Gt− =
Ft− for t > 0.

Exercise 2.4. Assume the probability space (Ω,F , P ) is complete. Let
{Ft} be a filtration, Gt = Ft+ its right-continuous version, and Ht = F̄t
its augmentation. Augment {Gt} to get the filtration {Ḡt}, and define also
Ht+ =

⋂
s:s>tHs. Show that Ḡt = Ht+. In other words, it is immaterial

whether we augment before or after making the filtration right-continuous.

Hints. Ḡt ⊆ Ht+ should be easy. For the other direction, if C ∈ Ht+,
then for each s > t there exists Cs ∈ Fs such that P (C4Cs) = 0. For any

sequence si ↘ t, the set C̃ =
⋂
m≥1

⋃
i≥mCsi lies in Ft+. Use Exercise 1.9.

Exercise 2.5. Let the underlying probability space be Ω = [0, 1] with P
given by Lebesgue measure. Define two processes

Xt(ω) = 0 and Yt(ω) = 1{t=ω}.
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X is obviously continuous. Show that Y does not have a single continuous
path, but X and Y are modifications of each other.

Exercise 2.6. (Example of an adapted but not progressively measurable
process.) Let Ω = [0, 1], and for each t let Ft be the σ-field generated by
singletons on Ω. (Equivalently, Ft consists of all countable sets and their
complements.) Let Xt(ω) = 1{ω = t}. Then {Xt : 0 ≤ t ≤ 1} is adapted.
But X on [0, 1]× Ω is not B[0,1] ⊗F1-measurable.

Hint. Show that elements of B[0,1] ⊗F1 are of the type(⋃
s∈I

Bs × {s}
)
∪
(
H × Ic

)
where I is a countable subset of Ω, each Bt ∈ B[0,1], and H is either empty
or [0, 1]. Consequently the diagonal {(t, ω) : Xt(ω) = 1} is not an element
of B[0,1] ⊗F1.

Exercise 2.7. Let τ be a stopping time and fix t ∈ R+. Let A ∈ Ft satisfy
A ⊆ {τ ≥ t}. Show that then A ∈ Fτ .

You might see this type of property expressed as Ft∩{τ ≥ t} ⊆ Fτ , even
though strictly speaking intersecting Ft with {τ ≥ t} is not legitimate. The
intersection is used to express the idea that the σ-algebra Ft is restricted
to the set {τ ≥ t}. Questionable but convenient usage is called abuse of
notation among mathematicians. It is the kind of license that seasoned
professionals can take but beginners should exercise caution!

Exercise 2.8. Show that if A ∈ Fτ , then A ∩ {τ < ∞} ∈ F∞. Show that
any measurable subset of {τ =∞} is a member of Fτ .

The following rather contrived example illustrates that Fτ does not have
to lie inside F∞. Take Ω = {0, 1, 2}, F = 2Ω, Ft = {{0}, {1, 2}, ∅,Ω} for all
t ∈ R+, and τ(0) = 0, τ(1) = τ(2) = ∞. Show that τ is a stopping time
and find Fτ .

Exercise 2.9. Let σ be a stopping time and Z an Fσ-measurable random
variable. Show that for any A ∈ B[0,t], 1{σ∈A}Z is Ft-measurable.

Hint. Start with A = [0, s]. Use the π-λ theorem.

Exercise 2.10. Let t < u. Given that [X,Y ]t and [X,Y ]u satisfy the limit
(2.13), show that

(2.46) [X,Y ]u − [X,Y ]t = lim
mesh(π)→0

∑
i

(Xsi+1 −Xsi)(Ysi+1 − Ysi)

where the limit is in probability and taken over partitions {si} of [t, u] as
the mesh tends to 0.
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Exercise 2.11. Suppose Y is a cadlag process. Show that while in the
definition (1.14) of total variation VY (t) the supremum can be replaced by
the limit as the mesh tends to zero (Exercise 1.4), in the definition of the
quadratic variation [Y ]t the limit cannot in general be replaced by the supre-
mum.

Exercise 2.12. Let f ∈ BV [0, T ] and define g(t) = f(t+) for t ∈ [0, T ) and
g(T ) = f(T ). Show that g is a cadlag function.

Hint. A BV function is the difference of two nondecreasing functions
(page 14).

Exercise 2.13. Let Ft = σ{ω(s) : 0 ≤ s ≤ t} be the filtration generated by
coordinates on the space C = CR[0,∞) of continuous functions. Let

H = {ω ∈ C : t is a local maximum for ω }.
Show that H ∈ Ft+ \ Ft.

Hints. To show H ∈ Ft+, note that ω ∈ H iff for all large enough
n ∈ N, ω(t) ≥ ω(q) for all rational q ∈ (t− n−1, t+ n−1). To show H /∈ Ft,
use Exercise 1.8(b). For any ω ∈ H one can construct ω̃ /∈ H such that
ω(s) = ω̃(s) for s ≤ t.

Exercise 2.14. Let τ be a stopping time. Define

(2.47) Fτ− = σ
{
F0 ∪

⋃
t>0

(
Ft ∩ {τ > t}

)}
.

See the remark in Exercise 2.7 that explains the notation.

(a) Show that for any stopping time σ, Fσ ∩ {σ < τ} ⊆ Fτ−.

(b) Let σn be a nondecreasing sequence of stopping times such that
σn ↗ τ and σn < τ for each n. Show that Fσn ↗ Fτ−. This last convergence
statement means that Fτ− = σ(∪nFσn).

Exercise 2.15. (a) Suppose X is a caglad process adapted to {Ft}. Define
Z(t) = X(t+) for 0 ≤ t < ∞. Show that Z is a cadlag process adapted to
{Ft+}.

(b) Show that Lemma 2.9 is valid for a caglad process under the addi-
tional assumption that {Ft} is right-continuous.

(c) Let Ω be the space of real-valued caglad paths, X the coordinate
process Xt(ω) = ω(t) on Ω, and {Ft} the filtration generated by coordinates.
Show that Lemma 2.9 fails for this setting.

Exercise 2.16. Check that you are able to use the Markov property with
this simple exercise. Let {P x} satisfy Definition 2.22. Let r < s < t be time
points and A,B ∈ BRd . Assuming that P x(Xr ∈ B,Xs = y) > 0, show that

P x(Xt ∈ A |Xr ∈ B,Xs = y) = P y(Xt−s ∈ A)
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with the understanding that the conditional probability on the left is defined
in the elementary fashion by (1.28).

Exercise 2.17. Prove (2.27). Hint. Consider first functions of the type
f(x0, x1, . . . , xn) = f0(x0)f1(x1) · · · fn(xn). Condition on Fsn−1 , use (2.26),
and do induction on n. Then find a theorem in the appendix that allows
you to extend this to all bounded Borel functions f : Rd(n+1) → R.

Exercise 2.18. Let {P x} be a Feller process. Use the Markov property and
the Feller property inductively to show that∫

D

m∏
i=1

fi(ω(si))P
x(dω)

is a continuous function of x ∈ Rd for f1, . . . , fm ∈ Cb(Rd).

Exercise 2.19. Consider the coordinate Markov process on D space under
probability measure P x. Assume Feller continuity. Let τ be a finite stopping
time, A ∈ Fτ and B ∈ BD. Show that

P x(A ∩ θ−1
τ B |Xτ ) = P x(A |Xτ )P x( θ−1

τ B |Xτ ).

If τ marks the present moment, this says that, given the present, the past
and the future are independent. Hint. Use the strong Markov property and
properties (vii) and (viii) from Theorem 1.26.

Exercise 2.20. Using property (ii) in Definition 2.26 show these two prop-
erties of Brownian motion, for any 0 ≤ s0 < s1 < · · · < sn.

(a) The σ-algebras Fs0 , σ(Bs1 −Bs0), σ(Bs2 −Bs1), . . . , σ(Bsn −Bsn−1)
are independent.

(b) The distribution of the vector

(Bt+s1 −Bt+s0 , Bt+s2 −Bt+s1 , . . . , Bt+sn −Bt+sn−1)

is the same for all t ≥ 0.

Exercise 2.21. (Brownian motion as a Gaussian process.) A process {Xt}
is Gaussian if for all finite sets of indices {t1, t2, . . . , tn} the vector (Xt1 , Xt2 ,
. . . , Xtn) has multivariate normal distribution as in Example 1.18(iv). It
is a consequence of a π-λ argument or Kolmogorov’s extension theorem
that the distribution of a Gaussian process is entirely determined by two
functions: the mean m(t) = EXt and the covariance c(s, t) = Cov(Xs, Xt) =
E(XsXt)−m(s)m(t).

(a) Show that having Gaussian marginals does not imply that the joint
distribution is Gaussian.

Hint. Consider this example: X is a standard normal, ξ is independent
of X with distribution P (ξ = ±1) = 1/2, and Y = ξX.
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(b) Starting with points (ii) and (iii) of Definition 2.26 show that stan-
dard Brownian motion is a Gaussian process withm(t) = 0 and c(s, t) = s∧t.

Hint. A helpful observation might be that a linear transformation of a
jointly Gaussian vector is also jointly Gaussian.

Exercise 2.22. Let Bt be a Brownian motion with respect to filtration
{Ft} on probability space (Ω,F , P ). Let A be another sub-σ-algebra of F .
Assume that A and F∞ are independent. Let Gt = σ(Ft,A). That is, Gt is
the smallest σ-algebra that contains both Ft and A, sometimes also denoted
by Gt = Ft∨A. Show that Bt is a Brownian motion with respect to filtration
{Gt}.

Hint. Gt is generated by intersections F ∩ A with F ∈ Ft and A ∈ A.
Use the π-λ theorem.

Exercise 2.23. Use (2.41), limits, and the continuous distribution of Brow-
nian motion to show

P 0(Bt ≤ a,Mt > b) = P 0(Bt > 2b− a)

and

P 0(Bt ≤ a,Mt > b) = P 0(Bt ≥ 2b− a).

Exercise 2.24. Let Bt be standard Brownian motion and Mt its running
maximum. Show that the joint density f(x, y) of (Bt,Mt) is

(2.48) f(x, y) =
2(2y − x)√

2πt3/2
exp
(
− 1

2t
(2y − x)2

)
on the domain 0 < y < ∞, −∞ < x < y. Hint: Use (2.41) and convert
P 0(Bt ≥ 2b− a) into a double integral of the form

∫∞
b dy

∫ a
−∞ dx f(x, y).

Can you give an argument for why it is enough to consider the events
{Bt ≤ a,Mt ≥ b} for a < b and b > 0?

Exercise 2.25. Consider Brownian motion started at x ≥ 0 and let τ0 =
inf{t ≥ 0 : Bt = 0} be the first hitting time of the origin. The process

Xt =

{
Bt, t < τ0

0, t ≥ τ0

is Brownian motion killed (or absorbed) at the origin. Show that on the pos-
itive half-line (0,∞), Xt started at x > 0 has density q(t, x, y) = p(t, x, y)−
p(t, x,−y) where p(t, x, y) is the Gaussian kernel (2.39). In other words, for
x, z > 0 derive

P x(Bt > z, τ0 > t) =

∫ ∞
z

[p(t, x, y)− p(t, x,−y)] dy.
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Hint. Start from P x(Bt > z, τ0 > t) = P 0(x+Bt > z,mins≤t(x+Bs) >
0), use symmetry and the reflection principle.

Exercise 2.26. LetB andX be two independent one-dimensional Brownian
motions. Following the proof of Proposition 2.42, show that

(2.49) lim
mesh(π)→0

m(π)−1∑
i=0

(Bti+1 −Bti)(Xti+1 −Xti) = 0 in L2(P ).

As a consequence of your calculation, find the covariation [B,X].

Can you also find [B,X] from the definition in equation (2.12)?

Exercise 2.27. Let N be a homogeneous Poisson process. Show that for
almost every ω, Nt(ω)−Nt−(ω) = 0 or 1 for all t.

Hint. If Nt − Nt− ≥ 2 for some t ∈ [0, T ], then for any partition 0 =
t0 < t1 < · · · < tn = T , N(ti, ti+1] ≥ 2 for some i. A crude bound shows
that this probability can be made arbitrarily small by shrinking the mesh
of the partition.

Exercise 2.28. Let N be a homogeneous rate α Poisson process on R+

with respect to a filtration {Ft}, and Mt = Nt − αt. Show that M2
t − αt

and M2
t −Nt are martingales.

Exercise 2.29. As in the previous execise, let N be a homogeneous rate α
Poisson process and Mt = Nt − αt. Use Corollary A.11 from the appendix
to find the quadratic variation processes [M ] and [N ].



Chapter 3

Martingales

Let (Ω,F , P ) be a probability space with a filtration {Ft}. We assume that
{Ft} is complete but not necessarily right-continuous, unless so specified.
As defined in the previous chapter, a martingale with respect to {Ft} is a
real-valued stochastic process M = {Mt : t ∈ R+} adapted to {Ft} such
that Mt is integrable for each t, and

E[Mt|Fs] = Ms for all s < t.

If the equality above is relaxed to

E[Mt|Fs] ≥Ms for all s < t

thenM is a submartingale. M is a supermartingale if−M is a submartingale.
M is square-integrable if E[M2

t ] <∞ for all t.

These properties are preserved by certain classes of functions.

Proposition 3.1. (a) If M is a martingale and ϕ a convex function such
that ϕ(Mt) is integrable for all t ≥ 0, then ϕ(Mt) is a submartingale.

(b) If M is a submartingale and ϕ a nondecreasing convex function such
that ϕ(Mt) is integrable for all t ≥ 0, then ϕ(Mt) is a submartingale.

Proof. Part (a) follows from Jensen’s inequality. For s < t,

E[ϕ(Mt)|Fs] ≥ ϕ
(
E[Mt|Fs]

)
= ϕ(Ms).

Part (b) follows from the same calculation, but now the last equality becomes
the inequality ≥ due to the submartingale property E[Mt|Fs] ≥Ms and the
monotonicity of ϕ. �

The martingales we work with have always right-continuous paths. Then
it is sometimes convenient to enlarge the filtration to {Ft+} if the filtration is

87



88 3. Martingales

not right-continuous to begin with. The next proposition permits this move.
An example of its use appears in the proof of Doob’s inequality, Theorem
3.12.

Proposition 3.2. Suppose M is a right-continuous submartingale with re-
spect to a filtration {Ft}. Then M is a submartingale also with respect to
{Ft+}.

Proof. Let s < t and consider n > (t− s)−1. Mt ∨ c is a submartingale, so

E[Mt ∨ c|Fs+n−1 ] ≥Ms+n−1 ∨ c.

Since Fs+ ⊆ Fs+n−1 ,

E[Mt ∨ c|Fs+] ≥ E[Ms+n−1 ∨ c|Fs+].

By the bounds

c ≤Ms+n−1 ∨ c ≤ E[Mt ∨ c|Fs+n−1 ]

and Lemma B.16 from the Appendix, for a fixed c the random variables
{Ms+n−1 ∨ c} are uniformly integrable. Let n → ∞. Right-continuity of
paths implies Ms+n−1 ∨ c → Ms ∨ c. Uniform integrability then gives con-
vergence in L1. By Lemma B.17 there exists a subsequence {nj} such that
conditional expectations converge almost surely:

E[Ms+n−1
j
∨ c|Fs+]→ E[Ms ∨ c|Fs+].

Consequently

E[Mt ∨ c|Fs+] ≥ E[Ms ∨ c|Fs+] = Ms ∨ c ≥Ms.

As c → −∞, the dominated convergence theorem for conditional expecta-
tions (Theorem B.14) makes the conditional expectation on the left converge,
and in the limit E[Mt|Fs+] ≥Ms. �

The connection between the right-continuity of the (sub)martingale and
the filtration goes the other way too. The statement below is Theorem 1.3.13
in [11].

Proposition 3.3. Suppose the filtration {Ft} satisfies the usual conditions,
in other words (Ω,F , P ) is complete, F0 contains all null events, and Ft =
Ft+. Let M be a submartingale such that t 7→ EMt is right-continuous.
Then there exists a cadlag modification of M that is an {Ft}-submartingale.
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3.1. Optional stopping

Optional stopping has to do with extending the submartingale property
E[Mt|Fs] ≥Ms from deterministic times s < t to stopping times. We begin
with discrete stopping times.

Lemma 3.4. Let M be a submartingale. Let σ and τ be two stopping times
whose values lie in an ordered countable set {s1 < s2 < s3 < · · · } ∪ {∞} ⊆
[0,∞] where sj ↗∞. Then for any T <∞,

(3.1) E[Mτ∧T |Fσ] ≥Mσ∧τ∧T .

Proof. Fix n so that sn ≤ T < sn+1. First observe that Mτ∧T is integrable,
because

|Mτ∧T | =
n∑
i=1

1{τ = si}|Msi |+ 1{τ > sn}|MT |

≤
n∑
i=1

|Msi |+ |MT |.

Next check that Mσ∧τ∧T is Fσ-measurable. For discrete stopping times
this is simple. We need to show that {Mσ∧τ∧T ∈ B} ∩ {σ ≤ t} ∈ Ft for all
B ∈ BR and t. Let sj be the highest value not exceeding t. (If there is no
such si, then t < s1, the event above is empty and lies in Ft.) Then

{Mσ∧τ∧T ∈ B} ∩ {σ ≤ t} =

j⋃
i=1

(
{σ ∧ τ = si} ∩ {Msi∧T ∈ B} ∩ {σ ≤ t}

)
.

This is a union of events in Ft because si ≤ t and σ ∧ τ is a stopping time.

Since both E[Mτ∧T |Fσ] and Mσ∧τ∧T are Fσ-measurable, (3.1) follows
from checking that

E{1AE[Mτ∧T |Fσ]} ≥ E{1AMσ∧τ∧T } for all A ∈ Fσ.

By the definition of conditional expectation, this reduces to showing

E[1AMτ∧T ] ≥ E[1AMσ∧τ∧T ].

Decompose A according to whether σ ≤ T or σ > T . If σ > T , then
τ ∧ T = σ ∧ τ ∧ T and then

E[1A∩{σ>T}Mτ∧T ] = E[1A∩{σ>T}Mσ∧τ∧T ].

To handle the case σ ≤ T we decompose it into subcases

E[1A∩{σ=si}Mτ∧T ] ≥ E[1A∩{σ=si}Mσ∧τ∧T ]

= E[1A∩{σ=si}Msi∧τ∧T ] for 1 ≤ i ≤ n.
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Since A∩{σ = si} ∈ Fsi , by conditioning again on the left, this last conclu-
sion will follow from

(3.2) E[Mτ∧T |Fsi ] ≥Msi∧τ∧T for 1 ≤ i ≤ n.

We check (3.2) by an iterative argument. First an auxiliary inequality: for
any j,

E[Msj+1∧τ∧T |Fsj ] = E
[
Msj+1∧T1{τ > sj}+Msj∧τ∧T1{τ ≤ sj}

∣∣ Fsj]
= E[Msj+1∧T |Fsj ] · 1{τ > sj}+Msj∧τ∧T1{τ ≤ sj}
≥Msj∧T1{τ > sj}+Msj∧τ∧T1{τ ≤ sj}
= Msj∧τ∧T .

Above we used the fact that Msj∧τ∧T is Fsj -measurable (which was checked
above) and then the submartingale property. Since τ ∧ T = sn+1 ∧ τ ∧ T
(recall that sn ≤ T < sn+1), applying the above inequality to j = n gives

E[Mτ∧T |Fsn ] ≥Msn∧τ∧T

which is case i = n of (3.2). Now do induction: assuming (3.2) has been
checked for i and applying the auxiliary inequality again gives

E[Mτ∧T |Fsi−1 ] = E
{
E[Mτ∧T |Fsi ]

∣∣ Fsi−1

}
≥ E

{
Msi∧τ∧T

∣∣ Fsi−1

}
≥Msi−1∧τ∧T

which is (3.2) for i − 1. Repeat this until (3.2) has been proved down to
i = 1. �

To extend this result to general stopping times, we assume some regu-
larity on the paths of M . First we derive a moment bound.

Lemma 3.5. Let M be a submartingale with right-continuous paths and
T <∞. Then for any stopping time ρ that satisfies P{ρ ≤ T} = 1,

E |Mρ| ≤ 2E[M+
T ]− E[M0].

Proof. Define a discrete approximation of ρ by ρn = T if ρ = T , and
ρn = 2−nT (b2nρ/T c+ 1) if ρ < T . Then ρn is a stopping time with finitely
many values in [0, T ], and ρn ↘ ρ as n→∞.

Averaging over (3.1) gives E[Mτ∧T ] ≥ E[Mσ∧τ∧T ]. Apply this to τ = ρn
and σ = 0 to get

EMρn ≥ EM0.

Next, apply (3.1) to the submartingale M+
t = Mt ∨ 0, with τ = T and

σ = ρn to get

EM+
T ≥ EM

+
ρn .
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From the above

EM−ρn = EM+
ρn − EMρn ≤ EM+

T − EM0.

Combining these,

E|Mρn | = EM+
ρn + EM−ρn ≤ 2EM+

T − EM0.

Let n→∞, use right-continuity and apply Fatou’s Lemma to get

E|Mρ| ≤ lim
n→∞

E|Mρn | ≤ 2EM+
T − EM0. �

The conclusion from the previous lemma needed next is that for any
stopping time τ and T ∈ R+, the stopped variable Mτ∧t is integrable. Here
is the extension of Lemma 3.4 from discrete to general stopping times.

Theorem 3.6. Let M be a submartingale with right-continuous paths, and
let σ and τ be two stopping times. Then for T <∞,

(3.3) E[Mτ∧T |Fσ] ≥Mσ∧τ∧T .

Remark 3.7. See Exercise 3.2 for a standard example that shows that (3.3)
is not true in general without the truncation at a finite time T .

Proof of Theorem 3.6. As pointed out before the theorem, Mτ∧T and
Mσ∧τ∧T are integrable random variables. In particular, the conditional ex-
pectation is well-defined.

Define approximating discrete stopping times by σn = 2−n(b2nσc + 1)
and τn = 2−n(b2nτc + 1). The interpretation for infinite values is that
σn =∞ if σ =∞, and similarly for τn and τ .

Let c ∈ R. The function x 7→ x ∨ c is convex and nondecreasing, hence
Mt ∨ c is also a submartingale. Applying Lemma 3.4 to this submartingale
and the stopping times σn and τn gives

E[Mτn∧T ∨ c|Fσn ] ≥Mσn∧τn∧T ∨ c.

Since σ ≤ σn, Fσ ⊆ Fσn , and if we condition both sides of the above
inequality on Fσ, we get

(3.4) E[Mτn∧T ∨ c|Fσ] ≥ E[Mσn∧τn∧T ∨ c|Fσ].

The purpose is now to let n → ∞ in (3.4) and obtain the conclusion
(3.3) for the truncated process Mt ∨ c, and then let c ↘ −∞ and get the
conclusion. The time arguments converge from the right: τn ∧ T ↘ τ ∧ T
and σn ∧ τn ∧ T ↘ σ ∧ τ ∧ T . Then by the right-continuity of M ,

Mτn∧T →Mτ∧T and Mσn∧τn∧T →Mσ∧τ∧T .



92 3. Martingales

Next we justify convergence of the conditional expectations along a sub-
sequence. By Lemma 3.4

c ≤Mτn∧T ∨ c ≤ E[MT ∨ c|Fτn ]

and

c ≤Mσn∧τn∧T ∨ c ≤ E[MT ∨ c|Fσn∧τn ].

Together with Lemma B.16 from the Appendix, these bounds imply that the
sequences {Mτn∧T ∨ c : n ∈ N} and {Mσn∧τn∧T ∨ c : n ∈ N} are uniformly
integrable. Since these sequences converge almost surely (as argued above),
uniform integrability implies that they converge in L1. By Lemma B.17
there exists a subsequence {nj} along which the conditional expectations
converge almost surely:

E[Mτnj∧T ∨ c|Fσ]→ E[Mτ∧T ∨ c|Fσ]

and

E[Mσnj∧τnj∧T ∨ c|Fσ]→ E[Mσ∧τ∧T ∨ c|Fσ].

(To get a subsequence that works for both limits, extract a subsequence for
the first limit by Lemma B.17, and then apply Lemma B.17 again to extract
a further subsubsequence for the second limit.) Taking these limits in (3.4)
gives

E[Mτ∧T ∨ c|Fσ] ≥ E[Mσ∧τ∧T ∨ c|Fσ].

M is right-continuous by assumption, hence progressively measurable, and
so Mσ∧τ∧T is Fσ∧τ∧T -measurable. This is a sub-σ-field of Fσ, and so

E[Mτ∧T ∨ c|Fσ] ≥ E[Mσ∧τ∧T ∨ c|Fσ] = Mσ∧τ∧T ∨ c ≥Mσ∧τ∧T .

As c ↘ −∞, Mτ∧T ∨ c → Mτ∧T pointwise, and for c ≤ 0 we have the
integrable bound |Mτ∧T ∨ c| ≤ |Mτ∧T |. Thus by the dominated convergence
theorem for conditional expectations, almost surely

lim
c→−∞

E[Mτ∧T ∨ c|Fσ] = E[Mτ∧T |Fσ].

This completes the proof. �

Corollary 3.8. Suppose M is a right-continuous submartingale and τ is
a stopping time. Then the stopped process M τ = {Mτ∧t : t ∈ R+} is a
submartingale with respect to the original filtration {Ft}.

If M is a also a martingale, then M τ is a martingale. And finally, if M
is an L2-martingale, then so is M τ .

Proof. In (3.3), take T = t, σ = s < t. Then it becomes the submartingale
property for M τ :

(3.5) E[Mτ∧t|Fs] ≥Mτ∧s.
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If M is a martingale, we can apply this to both M and −M . And if M is
an L2-martingale, Lemma 3.5 implies that so is M τ . �

Corollary 3.9. Suppose M is a right-continuous submartingale. Let {σ(u) :
u ≥ 0} be a nondecreasing, [0,∞)-valued process such that σ(u) is a bounded
stopping time for each u. Then {Mσ(u) : u ≥ 0} is a submartingale with
respect to the filtration {Fσ(u) : u ≥ 0}.

If M is a martingale or an L2-martingale to begin with, then so is Mσ(u).

Proof. For u < v and T ≥ σ(v), (3.3) gives E[Mσ(v)|Fσ(u)] ≥ Mσ(u). If
M is a martingale, we can apply this to both M and −M . And if M is
an L2-martingale, Lemma 3.5 applied to the submartingale M2 implies that
E[M2

σ(u)] ≤ 2E[M2
T ] + E[M2

0 ]. �

The last corollary has the following implications:

(i) M τ is a submartingale not only with respect to {Ft} but also with
respect to {Fτ∧t}.

(ii) Let M be an L2-martingale and τ a bounded stopping time. Then
M̄t = Mτ+t −Mτ is an L2-martingale with respect to F̄t = Fτ+t.

3.2. Inequalities and limits

Lemma 3.10. Let M be a submartingale, 0 < T <∞, and H a finite subset
of [0, T ]. Then for r > 0,

(3.6) P
{

max
t∈H

Mt ≥ r
}
≤ r−1E[M+

T ]

and

(3.7) P
{

min
t∈H

Mt ≤ −r
}
≤ r−1

(
E[M+

T ]− E[M0]
)
.

Proof. Let σ = min{t ∈ H : Mt ≥ r}, with the interpretation that σ = ∞
if Mt < r for all t ∈ H. (3.3) with τ = T gives

E[MT ] ≥ E[Mσ∧T ] = E[Mσ1{σ<∞}] + E[MT1{σ=∞}],

from which

rP
{

max
t∈H

Mt ≥ r
}

= rP{σ <∞} ≤ E[Mσ1{σ<∞}] ≤ E[MT1{σ<∞}]

≤ E[M+
T 1{σ<∞}] ≤ E[M+

T ].

This proves (3.6).

To prove (3.7), let τ = min{t ∈ H : Mt ≤ −r}. (3.4) with σ = 0 gives

E[M0] ≤ E[Mτ∧T ] = E[Mτ1{τ<∞}] + E[MT1{τ=∞}],
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from which

−rP
{

min
t∈H

Mt ≤ −r
}

= −rP{τ <∞} ≥ E[Mτ1{τ<∞}]

≥ E[M0]− E[MT1{τ=∞}] ≥ E[M0]− E[M+
T ]. �

Next we generalize this to uncountable suprema and infima.

Theorem 3.11. Let M be a right-continuous submartingale and 0 < T <
∞. Then for r > 0,

(3.8) P
{

sup
0≤t≤T

Mt ≥ r
}
≤ r−1E[M+

T ]

and

(3.9) P
{

inf
0≤t≤T

Mt ≤ −r
}
≤ r−1

(
E[M+

T ]− E[M0]
)
.

Proof. Let H be a countable dense subset of [0, T ] that contains 0 and T ,
and let H1 ⊆ H2 ⊆ H3 ⊆ · · · be finite sets such that H =

⋃
Hn. Lemma

3.10 applies to the sets Hn. Let b < r. By right-continuity,

P
{

sup
0≤t≤T

Mt > b
}

= P
{

sup
t∈H

Mt > b
}

= lim
n→∞

P
{

sup
t∈Hn

Mt > b
}

≤ b−1E[M+
T ].

Let b↗ r. This proves (3.8). (3.9) is proved by a similar argument. �

When X has either left- or right-continuous paths with probability 1,
we define

(3.10) X∗T (ω) = sup
0≤t≤T

|Xt(ω)|.

The measurability of X∗T is checked as follows. First define U = sups∈R|Xs|
where R contains T and all rationals in [0, T ]. U is FT -measurable as a
supremum of countably many FT -measurable random variables. On every
left- or right-continuous path U coincides with X∗T . Thus U = X∗T at least
almost surely. By the completeness assumption on the filtration, all events of
probability zero and their subsets lie in FT , and soX∗T is also FT -measurable.

Theorem 3.12. (Doob’s Inequality) Let M be a nonnegative right-continuous
submartingale and 0 < T <∞. Then for 1 < p <∞

(3.11) E
[

sup
0≤t≤T

Mp
t

]
≤
(

p

p− 1

)p
E
[
Mp
T

]
.
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Proof. Since M is nonnegative, M∗T = sup0≤t≤T Mt. The first part of the
proof is to justify the inequality

(3.12) P
{
M∗T > r

}
≤ r−1E

[
MT1{M∗T ≥ r}

]
for r > 0. Let

τ = inf{t > 0 : Mt > r}.
This is an {Ft+}-stopping time by Lemma 2.7. By right-continuity Mτ ≥ r
when τ <∞. Quite obviously M∗T > r implies τ ≤ T , and so

rP
{
M∗T > r

}
≤ E

[
Mτ1{M∗T > r}

]
≤ E

[
Mτ1{τ ≤ T}

]
.

Since M is a submartingale with respect to {Ft+} by Proposition 3.2, The-
orem 3.6 gives

E[Mτ1{τ≤T}] = E[Mτ∧T ]− E[MT1{τ>T}] ≤ E[MT ]− E[MT1{τ>T}]

= E[MT1{τ≤T}] ≤ E
[
MT1{M∗T ≥ r}

]
.

(3.12) has been verified.

Let 0 < b <∞. By (1.43) and Hölder’s inequality,

E
[
(M∗T ∧ b)p

]
=

∫ b

0
prp−1P [M∗T > r] dr ≤

∫ b

0
prp−2E

[
MT1{M∗T ≥ r}

]
dr

= E
[
MT ·

∫ b∧M∗T

0
prp−2 dr

]
=

p

p− 1
· E

[
MT (b ∧M∗T )p−1

]
≤ p

p− 1
· E
[
Mp
T

] 1
pE
[
(b ∧M∗T )p

] p−1
p .

The truncation at b guarantees that the last expectation is finite so we can
divide by it through the inequality to get

E
[
(M∗T ∧ b)p

] 1
p ≤ p

p− 1
· E
[
Mp
T

] 1
p .

Raise both sides of this last inequality to power p and then let b ↗ ∞.
Monotone convergence theorem gives the conclusion. �

The obvious application would be to M = |X| for a martingale X.
By applying the previous inequalities to the stopped process Mt∧τ , we can
replace T with a bounded stopping time τ . We illustrate the idea with
Doob’s inequality.

Corollary 3.13. Let M be a nonnegative right-continuous submartingale
and τ a bounded stopping time. The for 1 < p <∞

(3.13) E
[ (

sup
0≤t≤τ

Mt

)p ]
≤
(

p

p− 1

)p
E
[
Mp
τ

]
.
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Proof. Pick T so that τ ≤ T . Since sup0≤t≤T Mt∧τ = sup0≤t≤τ Mt and
MT∧τ = Mτ , the result follows immediately by applying (3.11) to Mt∧τ . �

Our treatment of martingales would not be complete without mention-
ing martingale limit theorems, although strictly speaking we do not need
them for developing stochastic integration. Here is the basic martingale
convergence theorem that gives almost sure convergence.

Theorem 3.14. Let M be a right-continuous submartingale such that

sup
t∈R+

E(M+
t ) <∞.

Then there exists a random variable M∞ such that E|M∞| <∞ and Mt(ω)→
M∞(ω) as t→∞ for almost every ω.

Now suppose M = {Mt : t ∈ R+} is a martingale. When can we take
the limit M∞ and adjoin it to the process in the sense that {Mt : t ∈ [0,∞]}
is a martingale? The integrability of M∞ is already part of the conclusion of
Theorem 3.14. However, to also have E(M∞|Ft) = Mt we need an additional
hypotheses of uniform integrability (Definition B.15 in the appendix).

Theorem 3.15. Let M = {Mt : t ∈ R+} be a right-continuous martingale.
Then the following four conditions are equivalent.

(i) The collection {Mt : t ∈ R+} is uniformly integrable.

(ii) There exists an integrable random variable M∞ such that

lim
t→∞

E|Mt −M∞| = 0 (L1 convergence).

(iii) There exists an integrable random variable M∞ such that Mt(ω)→
M∞(ω) almost surely and E(M∞|Ft) = Mt for all t ∈ R+.

(iv) There exists an integrable random variable Z such that Mt = E(Z|Ft)
for all t ∈ R+.

As quick corollaries we get for example the following statements.

Corollary 3.16. (a) For Z ∈ L1(P ), E(Z|Ft)→ E(Z|F∞) as t→∞ both
almost surely and in L1.

(b) (Lévy’s 0-1 law) For A ∈ F∞, E(1A|Ft)→ 1A as t→∞ both almost
surely and in L1.

Proof. Part (b) follows from (a). To see (a), start by definingMt = E(Z|Ft)
so that statement (iv) of Theorem 3.15 is valid. By (ii) and (iii) we have
an a.s. and L1 limit M∞ (explain why there cannot be two different limits).
By construction M∞ is F∞-measurable. For A ∈ Fs we have for t > s and
by L1 convergence

E[1AZ] = E[1AMt]→ E[1AM∞].
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A π-λ argument extends E[1AZ] = E[1AM∞] to all A ∈ F∞. �

3.3. Local martingales and semimartingales

For a stopping time τ and a process X = {Xt : t ∈ R+}, the stopped process
Xτ is defined by Xτ

t = Xτ∧t.

Definition 3.17. Let M = {Mt : t ∈ R+} be a process adapted to a
filtration {Ft}. M is a local martingale if there exists a sequence of stopping
times τ1 ≤ τ2 ≤ τ3 ≤ · · · such that P{τk ↗∞} = 1 and for each k M τk is a
martingale with respect to {Ft}. M is a local square-integrable martingale if
M τk is a square-integrable martingale for each k. In both cases we say {τk}
is a localizing sequence for M .

Remark 3.18. (a) Since M τk
0 = M0 the definition above requires that M0 is

integrable. This extra restriction can be avoided by phrasing the definition
so that Mt∧τn1{τn>0} is a martingale [12, 14]. Another way is to require
that Mt∧τn −M0 is a martingale [3, 10]. We use the simple definition since
we have no need for the extra generality of nonintegrable M0.

(b) In some texts the definition of local martingale also requires that
M τk is uniformly integrable. This can be easily arranged (Exercise 3.10).

(c) Further localization gains nothing. That is, if M is an adapted
process and ρn ↗ ∞ (a.s.) are stopping times such that Mρn is a local
martingale for each n, then M itself is a local martingale (Exercise 3.5).

(d) Sometimes we consider a local martingale {Mt : t ∈ [0, T ]} restricted
to a bounded time interval. Then it seems pointless to require that τn ↗∞.
Indeed it is equivalent to require a nondecreasing sequence of stopping times
σn such that {Mt∧σn : t ∈ [0, T ]} is a martingale for each n and, almost
surely, σn ≥ T for large enough n. Given such a sequence σn one can check
that the original definition can be recovered by taking τn = σn · 1{σn <
T}+∞ · 1{σn ≥ T}.

We shall also use the shorter term local L2-martingale for a local square-
integrable martingale.

Lemma 3.19. Suppose M is a local martingale and σ is an arbitrary stop-
ping time. Then Mσ is also a local martingale. Similarly, if M is a local
L2-martingale, then so is Mσ. In both cases, if {τk} is a localizing sequence
for M , then it is also a localizing sequence for Mσ.

Proof. Let {τk} be a sequence of stopping times such that τk ↗ ∞ and
M τk is a martingale. By Corollary 3.8 the process M τk

σ∧t = (Mσ)τkt is a
martingale. Thus the stopping times τk work also for Mσ.
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If M τk is an L2-martingale, then so is M τk
σ∧t = (Mσ)τkt , because by

applying Lemma 3.5 to the submartingale (M τk)2,

E[M2
σ∧τk∧t] ≤ 2E[M2

τk∧t] + E[M2
0 ]. �

Only large jumps can prevent a cadlag local martingale from being a
local L2-martingale. See Exercise 3.12.

Lemma 3.20. Suppose M is a cadlag local martingale, and there is a con-
stant c such that |Mt(ω)−Mt−(ω)| ≤ c for all t ∈ R+ and ω ∈ Ω. Then M
is a local L2-martingale.

Proof. Let τk ↗∞ be stopping times such that M τk is a martingale. Let

ρk = inf{t ≥ 0 : |Mt| or |Mt−| ≥ k}

be the stopping times defined by (2.8) and (2.9). By the cadlag assumption,
each path t 7→ Mt(ω) is locally bounded (means: bounded in any bounded
time interval), and consequently ρk(ω) ↗ ∞ as k ↗ ∞. Let σk = τk ∧ ρk.
Then σk ↗∞, and Mσk is a martingale for each k. Furthermore,

|Mσk
t | = |Mτk∧ρk∧t| ≤ sup

0≤s<ρk
|Ms|+ |Mρk −Mρk−| ≤ k + c.

So Mσk is a bounded process, and in particular Mσk is an L2-process. �

Recall that the usual conditions on the filtration {Ft} meant that the
filtration is complete (each Ft contains every subset of a P -null event in F)
and right-continuous (Ft = Ft+).

Theorem 3.21 (Fundamental Theorem of Local Martingales). Assume
{Ft} is complete and right-continuous. Suppose M is a cadlag local martin-

gale and c > 0. Then there exist cadlag local martingales M̃ and A such that

the jumps of M̃ are bounded by c, A is an FV process, and M = M̃ +A.

A proof of the fundamental theorem of local martingales can be found in
Section III.6 of [12]. Combining this theorem with the previous lemma gives
the following corollary, which we will find useful because L2-martingales are
the starting point for developing stochastic integration.

Corollary 3.22. Assume {Ft} is complete and right-continuous. Then a

cadlag local martingale M can be written as a sum M = M̃ +A of a cadlag

local L2-martingale M̃ and a local martingale A that is an FV process.

Definition 3.23. A cadlag process Y is a semimartingale if it can be written
as Yt = Y0 + Mt + Vt where M is a cadlag local martingale, V is a cadlag
FV process, and M0 = V0 = 0.
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By the previous corollary, we can always select the local martingale
part of a semimartingale to be a local L2-martingale. The normalization
M0 = V0 = 0 does not exclude anything since we can always replace M with
M −M0 without losing either the local martingale or local L2-martingale
property, and also V − V0 has the same total variation as V does.

Remark 3.24. (A look ahead.) The definition of a semimartingale appears
ad hoc. But stochastic analysis will show us that the class of semimartingales
has several attractive properties. (i) For a suitably bounded predictable pro-
cess X and a semimartingale Y , the stochastic integral

∫
X dY is again a

semimartingale. (ii) f(Y ) is a semimartingale for a C2 function f . The class
of local L2-martingales has property (i) but not (ii). In order to develop a
sensible stochastic calculus that involves functions of processes, it is neces-
sary to extend the class of processes considered from local martingales to
semimartingales.

3.4. Quadratic variation for semimartingales

Quadratic variation and covariation were discussed in general in Section
2.2, and here we look at these notions for martingales, local martingales and
semimartingales. We begin with the examples we already know.

Example 3.25 (Brownian motion). From Proposition 2.42 and Exercise
2.26, for two independent Brownian motions B and Y , [B]t = t and [B, Y ]t =
0.

Example 3.26 (Poisson process). Let N be a homogeneous rate α Poisson
process, and Mt = Nt − αt the compensated Poisson process. Then [M ] =

[N ] = N by Corollary A.11. If Ñ is an independent rate α̃ Poisson process

with M̃t = Ñt − α̃t, [M, M̃ ] = 0 by Lemma A.10 because with probability

one M and M̃ have no jumps in common.

Next a general existence theorem. A proof can be found in Section 2.3
of [6].

Theorem 3.27. Let M be a right-continuous local martingale with respect to
a filtration {Ft}. Then the quadratic variation process [M ] exists in the sense
of Definition 2.14. There is a version of [M ] with the following properties.
[M ] is a real-valued, right-continuous, nondecreasing adapted process such
that [M ]0 = 0.

Suppose M is an L2-martingale. Then the convergence in (2.11) for
Y = M holds also in L1, namely for any t ∈ R+,

(3.14) lim
n→∞

E

∣∣∣∣∑
i

(Mtni+1
−Mtni

)2 − [M ]t

∣∣∣∣ = 0
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for any sequence of partitions πn = {0 = tn0 < tn1 < · · · < tnm(n) = t} of [0, t]

with mesh(πn) = maxi(t
n
i+1 − tni )→ 0. Furthermore,

(3.15) E( [M ]t) = E(M2
t −M2

0 ).

If M is continuous, then so is [M ].

We check that the quadratic variation of a stopped submartingale agrees
with the stopped quadratic variation. Our proof works for local L2 martin-
gales which is sufficient for our needs. The result is true for all local mar-
tingales. The statement for all local martingales can be derived from the
estimates in the proof of Theorem 3.27 in [6], specifically from limit (3.26)
on page 70 in [6].

Lemma 3.28. Let M be a right-continuous L2-martingale or local L2-
martingale. Let τ be a stopping time. Then [M τ ] = [M ]τ , in the sense
that these processes are indistinguishable.

Proof. The processes [M τ ] and [M ]τ are right-continuous. Hence indistin-
guishability follows from proving almost sure equality at all fixed times.

Step 1. We start with a discrete stopping time τ whose values form
an unbounded, increasing sequence u1 < u2 < · · · < uj ↗ ∞. Fix t and
consider a sequence of partitions πn = {0 = tn0 < tn1 < · · · < tnm(n) = t} of

[0, t] with mesh(πn)→ 0 as n→∞. For any uj ,∑
i

(Muj∧tni+1
−Muj∧tni )2 → [M ]uj∧t in probability, as n→∞.

We can replace the original sequence πn with a subsequence along which
this convergence is almost sure for all j. We denote this new sequence again
by πn. (The random variables above are the same for all j large enough so
that uj > t, so there are really only finitely many distinct j for which the
limit needs to happen.)

Fix an ω at which the convergence happens. Let uj = τ(ω). Then the
above limit gives

[M τ ]t(ω) = lim
n→∞

∑
i

(
M τ
tni+1

(ω)−M τ
tni

(ω)
)2

= lim
n→∞

∑
i

(
Mτ∧tni+1

(ω)−Mτ∧tni (ω)
)2

= lim
n→∞

∑
i

(
Muj∧tni+1

(ω)−Muj∧tni (ω)
)2

= [M ]uj∧t(ω) = [M ]τ∧t(ω) = [M ]τt (ω).
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The meaning of the first equality sign above is that we know [M τ ]t is given
by this limit, since according to the existence theorem, [M τ ]t is given as a
limit in probability along any sequence of partitions with vanishing mesh.

We have shown that [M τ ]t = [M ]τt almost surely for a discrete stopping
time τ .

Step 2. Let τ be an arbitrary stopping time, but assume M is an L2-
martingale. Let τn = 2−n(b2nτc + 1) be the discrete approximation that
converges to τ from the right. Apply (2.20) to X = M τn and Y = M τ , take
expectations, use (3.15), and apply Schwarz inequality to get

E
{
| [M τn ]t − [M τ ]t |

}
≤ E

{
[M τn −M τ ]t

}
+ 2E

{
[M τn −M τ ]

1/2
t [M τ ]

1/2
t

}
≤ E

{
(M τn

t −M τ
t )2
}

+ 2E
{

[M τn −M τ ]t
}1/2

E
{

[M τ ]t
}1/2

= E
{

(Mτn∧t −Mτ∧t)
2
}

+ 2E
{

(Mτn∧t −Mτ∧t)
2
}1/2

E
{
M2
τ∧t
}1/2

≤
(
E{M2

τn∧t} − E{M
2
τ∧t}

)
+ 2
(
E{M2

τn∧t} − E{M
2
τ∧t}

)1/2
E
{
M2
t

}1/2
.

In the last step we used (3.3) in two ways: For a martingale it gives equality,
and so

E
{

(Mτn∧t −Mτ∧t)
2
}

= E{M2
τn∧t} − 2E{E(Mτn∧t|Fτ∧t)Mτ∧t}+ E{M2

τ∧t}
= E{M2

τn∧t} − E{M
2
τ∧t}.

Second, we applied (3.3) to the submartingale M2 to get

E
{
M2
τ∧t
}1/2 ≤ E

{
M2
t

}1/2
.

The string of inequalities allows us to conclude that [M τn ]t converges to
[M τ ]t in L1 as n→∞, if we can show that

(3.16) E{M2
τn∧t} → E{M2

τ∧t}.

To argue this last limit, first note that by right-continuity, M2
τn∧t → M2

τ∧t
almost surely. By optional stopping (3.6),

0 ≤M2
τn∧t ≤ E(M2

t |Fτn∧t).

This inequality and Lemma B.16 from the Appendix imply that the sequence
{M2

τn∧t : n ∈ N} is uniformly integrable. Under uniform integrability, the
almost sure convergence implies convergence of the expectations (3.16).

To summarize, we have shown that [M τn ]t → [M τ ]t in L1 as n → ∞.
By Step 1, [M τn ]t = [M ]τn∧t which converges to [M ]τ∧t by right-continuity
of the process [M ]. Putting these together, we get the almost sure equality
[M τ ]t = [M ]τ∧t for L2-martingales.
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Step 3. Lastly a localization step. Let {σk} be stopping times such
that σk ↗∞ and Mσk is an L2-martingale for each k. By Step 2

[Mσk∧τ ]t = [Mσk ]τ∧t.

On the event {σk > t}, throughout the time interval [0, t], Mσk∧τ agrees with
M τ and Mσk agrees with M . Hence the corresponding sums of squared
increments agree also. In the limits of vanishing mesh we have almost
surely [Mσk∧τ ]t = [M τ ]t, and also [Mσk ]s = [M ]s for all s ∈ [0, t] by right-
continuity. We can take s = τ ∧ t, and this way we get the required equality
[M τ ]t = [M ]τ∧t. �

Theorem 3.29. (a) If M is a right-continuous L2-martingale, then M2
t −

[M ]t is a martingale.

(b) If M is a right-continuous local L2-martingale, then M2
t − [M ]t is a

local martingale.

Proof. Part (a). Let s < t and A ∈ Fs. Let 0 = t0 < · · · < tm = t be a
partition of [0, t], and assume that s is a partition point, say s = t`.

E
[
1A
(
M2
t −M2

s − [M ]t + [M ]s
)]

= E

[
1A

( m−1∑
i=`

(M2
ti+1
−M2

ti)− [M ]t + [M ]s

)]
(3.17a)

= E

[
1A

( m−1∑
i=`

(Mti+1 −Mti)
2 − [M ]t + [M ]s

)]

= E

[
1A

( m−1∑
i=0

(Mti+1 −Mti)
2 − [M ]t

)]
(3.17b)

+ E

[
1A

(
[M ]s −

`−1∑
i=0

(Mti+1 −Mti)
2

)]
.(3.17c)

The second equality above follows from

E
[
M2
ti+1
−M2

ti

∣∣ Fti] = E
[
(Mti+1 −Mti)

2
∣∣ Fti].

To apply this, the expectation on line (3.17a) has to be taken apart, the
conditioning applied to individual terms, and then the expectation put back
together. Letting the mesh of the partition tend to zero makes the expec-
tations on lines (3.17b)–(3.17c) vanish by the L1 convergence in (2.11) for
L2-martingales.

In the limit we have

E
[
1A
(
M2
t − [M ]t

)]
= E

[
1A
(
M2
s − [M ]s

)]
for an arbitrary A ∈ Fs, which implies the martingale property.
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(b) Let X = M2 − [M ] for the local L2-martingale M . Let {τk} be a
localizing sequence for M . By part (a), (M τk)2

t − [M τk ]t is a martingale.
Since [M τk ]t = [M ]t∧τk by Lemma 3.28, this martingale is the same as
M2
t∧τk − [M ]t∧τk = Xτk

t . Thus {τk} is a localizing sequence for X. �

From Theorem 3.27 it follows also that the covariation [M,N ] of two
right-continuous local martingales M and N exists. As a difference of in-
creasing processes, [M,N ] is a finite variation process.

Lemma 3.30. Let M and N be cadlag L2-martingales or local L2-martingales.
Let τ be a stopping time. Then [M τ , N ] = [M τ , N τ ] = [M,N ]τ .

Proof. [M τ , N τ ] = [M,N ]τ follows from the definition (2.12) and Lemma
3.28. For the first equality claimed, consider a partition of [0, t]. If 0 < τ ≤ t,
let ` be the index such that t` < τ ≤ t`+1. Then∑

i

(M τ
ti+1
−M τ

ti)(Nti+1 −Nti) = (Mτ −Mt`)(Nt`+1
−Nτ )1{0<τ≤t}

+
∑
i

(M τ
ti+1
−M τ

ti)(N
τ
ti+1
−N τ

ti).

(If τ = 0 the equality above is still true, for both sides vanish.) Let the
mesh of the partition tend to zero. With cadlag paths, the term after the
equality sign converges almost surely to (Mτ −Mτ−)(Nτ −Nτ )1{0<τ≤t} = 0.
The convergence of the sums gives [M τ , N ] = [M τ , N τ ]. �

Theorem 3.31. (a) If M and N are right-continuous L2-martingales, then
MN − [M,N ] is a martingale.

(b) If M and N are right-continuous local L2-martingales, then MN −
[M,N ] is a local martingale.

Proof. Apply (2.14) to write

MN − [M,N ] = 1
2{(M +N)2 − [M +N ]} − 1

2{M
2 − [M ]} − 1

2{N
2 − [N ]}.

Both (a) and (b) now follow from Theorem 3.29. �

As the last issue we extend the existence results to semimartingales.

Corollary 3.32. Let M be a cadlag local martingale, V a cadlag FV process,
M0 = V0 = 0, and Y = Y0 + M + V the cadlag semimartingale. Then the
cadlag quadratic variation process [Y ] exists and satisfies

[Y ]t = [M ]t + 2[M,V ]t + [V ]t

= [M ]t + 2
∑
s∈(0,t]

∆Ms∆Vs +
∑
s∈(0,t]

(∆Vs)
2.(3.18)
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Furthermore, [Y τ ] = [Y ]τ for any stopping time τ and the covariation [X,Y ]
exists for any pair of cadlag semimartigales.

Proof. We already know the existence and properties of [M ]. According
to Lemma A.10 the two sums on line (3.18) converge absolutely. Thus the
process given by line (3.18) is a cadlag process. (Recall Example 1.13.)
Theorem 3.27 and Lemma A.10 combined imply that line (3.18) is the limit
(in probability) of sums

∑
i(Yti−Yti−1)2 as mesh(π)→ 0. Denote the process

on line (3.18) temporarily by Ut. It follows from the limits that Us ≤ Ut
a.s. for each pair of times s < t, and hence simultaneously for all rational
s < t. By taking limits, the cadlag property of paths extends monotonicity
from rational times to all times. Thus U is an increasing process and gives
a version of [Y ] with nondecreasing paths. This proves the existence of [Y ].

[Y τ ] = [Y ]τ follows by looking at line (3.18) term by term and by using
Lemma 3.28. Since quadratic variation exists for semimartingales, so does
[X,Y ] = [(X + Y )/2]− [(X − Y )/2]. �

3.5. Doob-Meyer decomposition

In addition to the quadratic variation [M ] there is another increasing pro-
cess with similar notation, the so-called predictable quadratic variation 〈M〉,
associated to a square-integrable martingale M . We will not use 〈M〉 much
in this text, except in Chapter 9 on stochastic partial differential equations.
For the sake of completeness we address the relationship between [M ] and
〈M〉. It turns out that for continuous square-integrable martingales [M ]
and 〈M〉 coincide, so in that context one can use them interchangeably. In
particular, books that restrict their treatment of stochastic integration to
continuous integrators need only discuss 〈M〉.

Throughout this section we work with a fixed probability space (Ω,F , P )
with a filtration {Ft} assumed to satisfy the usual conditions (complete,
right-continuous).

In order to state a precise definition we need to introduce the predictable
σ-algebra P on the space R+ × Ω. P is the sub-σ-algebra of BR+ ⊗ F
generated by left-continuous adapted processes. More precisely, P is gen-
erated by events of the form {(t, ω) : Xt(ω) ∈ B} where X is an adapted,
left-continuous process and B ∈ BR. Such a process is measurable, even pro-
gressively measurable (Lemma 2.4), so these events lie in BR+ ⊗ F . There
are other ways of generating P. For example, continuous processes would
also do. Left-continuity has the virtue of focusing on the “predictability”:
if we know Xs for all s < t then we can “predict” the value Xt. A thorough
discussion of P has to wait till Section 5.1 where stochastic integration with
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respect to cadlag martingales is introduced. Any P-measurable function
X : R+ × Ω→ R is called a predictable process.

Here is the existence and uniqueness statement. It is a special case of
the Doob-Meyer decomposition.

Theorem 3.33. Assume the filtration {Ft} satisfies the usual conditions.
Let M be a right-continuous square-integrable martingale. Then there is a
unique predictable process 〈M〉 such that M2 − 〈M〉 is a martingale.

If M is a right-continuous local L2-martingale, then there is a unique
predictable process 〈M〉 such that M2 − 〈M〉 is a local martingale.

Uniqueness above means uniqueness up to indistinguishability. 〈M〉 is
called the predictable quadratic variation. For two such processes we can
define the predictable covariation by 〈M,N〉 = 1

4〈M + N〉 − 1
4〈M − N〉.

From Theorem 3.29 and the uniqueness of 〈M〉 it follows that if [M ] is
predictable then [M ] = 〈M〉.

Proposition 3.34. Assume the filtration satisfies the usual conditions.

(a) Suppose M is a continuous square-integrable martingale. Then 〈M〉 =
[M ].

(b) Suppose M is a right-continuous square-integrable martingale with
stationary independent increments: for all s, t ≥ 0, Ms+t − Ms is inde-
pendent of Fs and has the same distribution as Mt −M0. Then 〈M〉t =
t · E[M2

1 −M2
0 ].

Proof. Part (a). By Theorems 3.27 and 3.29, [M ] is a continuous, increasing
process such that M2 − [M ] is a martingale. Continuity implies that [M ] is
predictable. Uniqueness of 〈M〉 implies 〈M〉 = [M ].

Part (b). The deterministic, continuous function t 7→ tE[M2
1 −M2

0 ] is
predictable. For any t > 0 and integer k

E[M2
kt −M2

0 ] =

k−1∑
j=0

E[M2
(j+1)t −M

2
jt] =

k−1∑
j=0

E[(M(j+1)t −Mjt)
2]

= kE[(Mt −M0)2] = kE[M2
t −M2

0 ].

Using this twice, for any rational k/n,

E[M2
k/n −M

2
0 ] = kE[M2

1/n −M
2
0 ] = (k/n)E[M2

1 −M2
0 ].

Given an irrational t > 0, pick rationals qm ↘ t. Fix T ≥ qm. By right-
continuity of paths, Mqm → Mt almost surely. Uniform integrability of
{M2

qm} follows by the submartingale property

0 ≤M2
qm ≤ E[M2

T |Fqm ]



106 3. Martingales

and Lemma B.16. Uniform integrability gives convergence of expectations
E[M2

qm ]→ E[M2
t ]. Applying this above gives

E[M2
t −M2

0 ] = tE[M2
1 −M2

0 ].

Now we can check the martingale property.

E[M2
t |Fs] = M2

s + E[M2
t −M2

s |Fs] = M2
s + E[(Mt −Ms)

2|Fs]
= M2

s + E[(Mt−s −M0)2] = M2
s + E[M2

t−s −M2
0 ]

= M2
s + (t− s)E[M2

1 −M2
0 ]. �

This proposition was tailored to handle our two main examples.

Example 3.35. For a standard Brownian motion 〈B〉t = [B]t = t. For a
compensated Poisson process Mt = Nt − αt,

〈M〉t = tE[M2
1 ] = tE[(N1 − α)2] = αt.

We continue this discussion for a while, although what comes next makes
no appearance later on. It is possible to introduce 〈M〉 without reference to
P. We do so next, and then state the Doob-Meyer decomposition. Recall
Definition 2.17 of an increasing process

Definition 3.36. An increasing process A is natural if for every bounded
cadlag martingale M = {M(t) : 0 ≤ t <∞},

(3.19) E

∫
(0,t]

M(s)dA(s) = E

∫
(0,t]

M(s−)dA(s) for 0 < t <∞.

The expectation–integral on the left in condition (3.36) is interpreted
in the following way. First for a fixed ω, the function s 7→ M(s, ω) is
integrated against the (positive) Lebesgue-Stieltjes measure of the function
s 7→ A(s, ω). The resulting quantity is a measurable function of ω (Exercise
3.13). Then this function is averaged over the probability space. Similar
interpretation on the right in (3.36), of course. The expectations in (3.36)
can be infinite. For a fixed ω,∣∣∣∣∫

(0,t]
M(s)dA(s)

∣∣∣∣ ≤ sup
s
|M(s)|A(t) <∞

so the random integral is finite.

Lemma 3.37. Let A be an increasing process and M a bounded cadlag
martingale. If A is continuous then (3.19) holds.

Proof. A cadlag path s 7→ M(s, ω) has at most countably many disconti-
nuities. If A is continuous, the Lebesgue-Stieltjes measure ΛA gives no mass
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to singletons: ΛA{s} = A(s)−A(s−) = 0, and hence no mass to a countable
set either. Consequently∫

(0,t]

(
M(s)−M(s−)

)
dA(s) = 0. �

Much more is true. In fact, an increasing process is natural if and only if
it is predictable. A proof can be found in Chapter 25 of [10]. Consequently
the characterizing property of 〈M〉 can be taken to be naturalness rather
than predictability.

Definition 3.38. For 0 < u <∞, let Tu be the collection of stopping times
τ that satisfy τ ≤ u. A process X is of class DL if the random variables
{Xτ : τ ∈ Tu} are uniformly integrable for each 0 < u <∞.

The main example is the following.

Lemma 3.39. A right-continuous nonnegative submartingale is of class
DL.

Proof. Let X be a right-continuous nonnegative submartingale, and 0 <
u <∞. By (3.3)

0 ≤ Xτ ≤ E[Xu|Fτ ].

By Lemma B.16 the collection of all conditional expectations on the right
is uniformly integrable. Consequently these inequalities imply the uniform
integrability of the collection {Xτ : τ ∈ Tu}. �

Here is the main theorem. For a proof see Theorem 1.4.10 in [11].

Theorem 3.40. (Doob-Meyer Decomposition) Assume the underlying fil-
tration is complete and right-continuous. Let X be a right-continuous sub-
martingale of class DL. Then there is an increasing natural process A,
unique up to indistinguishability, such that X −A is a martingale.

Let us return to a right-continuous square-integrable martingale M . We
can now equivalently define 〈M〉 as the unique increasing, natural process
such that M2

t − 〈M〉t is a martingale, given by the Doob-Meyer decomposi-
tion.

3.6. Spaces of martingales

Stochastic integrals will be constructed as limits. To get the desirable path
properties for the integrals, it is convenient to take these limits in a space
of stochastic processes rather than simply in terms of individual random
variables. This is the purpose of introducing two spaces of martingales.
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Given a probability space (Ω,F , P ) with a filtration {Ft}, letM2 denote
the space of square-integrable cadlag martingales on this space with respect
to {Ft}. The subspace of M2 of martingales with continuous paths is Mc

2.
M2 and Mc

2 are both linear spaces.

We measure the size of a martingale M ∈M2 with the quantity

(3.20) ‖M‖M2 =
∞∑
k=1

2−k
(
1 ∧ ‖Mk‖L2(P )

)
.

‖Mk‖L2(P ) = E[ |Mk|2]1/2 is the L2 norm of Mk. ‖ · ‖M2 is not a norm
because ‖αM‖M2 is not necessarily equal to |α| · ‖M‖M2 for a real number
α. But the triangle inequality

‖M +N‖M2 ≤ ‖M‖M2 + ‖N‖M2

is valid, and follows from the triangle inequality of the L2 norm and because

1 ∧ (a+ b) ≤ 1 ∧ a + 1 ∧ b for a, b ≥ 0.

Hence we can define a metric, or distance function, between two martingales
M,N ∈M2 by

(3.21) dM2(M,N) = ‖M −N‖M2 .

A technical issue arises here. A basic property of a metric is that the
distance between two elements is zero iff these two elements coincide. But
with the above definition we have dM2(M,N) = 0 if M and N are in-
distinguishable, even if they are not exactly equal as functions. So if we
were to precisely follow the axiomatics of metric spaces, indistinguishable
martingales should actually be regarded as equal. The mathematically so-
phisticated way of doing this is to regard M2 not as a space of processes
but as a space of equivalence classes

{M} = {N : N is a square-integrable cadlag martingale on (Ω,F , P ),

and M and N are indistinguishable}

Fortunately this technical point does not cause any difficulties. We shall
continue to regard the elements of M2 as processes in our discussion, and
remember that two indistinguishable processes are really two “representa-
tives” of the same underlying process.

Theorem 3.41. Assume the underlying probability space (Ω,F , P ) and the
filtration {Ft} complete. Let indistinguishable processes be interpreted as
equal. Then M2 is a complete metric space under the metric dM2. The
subspace Mc

2 is closed, and hence a complete metric space in its own right.

Proof. Suppose M ∈ M2 and ‖M‖M2 = 0. Then E[M2
k ] = 0 for each

k ∈ N. Since M2
t is a submartingale, E[M2

t ] ≤ E[M2
k ] for t ≤ k, and



3.6. Spaces of martingales 109

consequently E[M2
t ] = 0 for all t ≥ 0. In particular, for each fixed t,

P{Mt = 0} = 1. A countable union of null sets is a null set, and so there
exists an event Ω0 ⊆ Ω such that P (Ω0) = 1 and Mq(ω) = 0 for all ω ∈ Ω0

and q ∈ Q+. By right-continuity, then Mt(ω) = 0 for all ω ∈ Ω0 and t ∈ R+.
This shows that M is indistinguishable from the identically zero process.

The above paragraph shows that dM2(M,N) = 0 implies M = N , in the
sense that M and N are indistinguishable. We already observed above that
dM2 satisfies the triangle inequality. The remaining property of a metric is
the symmetry dM2(M,N) = dM2(N,M) which is true by the definition.

To check completeness, let {M (n) : n ∈ N} be a Cauchy sequence in the
metric dM2 in the space M2. We need to show that there exists M ∈ M2

such that ‖M (n) −M‖M2 → 0 as n→∞.

For any t ≤ k ∈ N, first because (M
(m)
t −M (n)

t )2 is a submartingale,
and then by the definition (3.20),

1 ∧ E
[
(M

(m)
t −M (n)

t )2
]1/2 ≤ 1 ∧ E

[
(M

(m)
k −M (n)

k )2
]1/2

≤ 2k‖M (m) −M (n)‖M2 .

It follows that for each fixed t, {M (n)
t } is a Cauchy sequence in L2(P ). By

the completeness of the space L2(P ), for each t ≥ 0 there exists a random
variable Yt ∈ L2(P ) defined by the mean-square limit

(3.22) lim
n→∞

E
[
(M

(n)
t − Yt)2

]
= 0.

Take s < t and A ∈ Fs. Let n→∞ in the equality E[1AM
(n)
t ] = E[1AM

(n)
s ].

Mean-square convergence guarantees the convergence of the expectations,
and in the limit

(3.23) E[1AYt] = E[1AYs].

We could already conclude here that {Yt} is a martingale, but {Yt} is not
our ultimate limit because we need the cadlag path property.

To get a cadlag limit we use a Borel-Cantelli argument. By inequality
(3.8),

(3.24) P
{

sup
0≤t≤k

|M (m)
t −M (n)

t | ≥ ε
}
≤ ε−2E

[
(M

(m)
k −M (n)

k )2
]
.

This enables us to choose a subsequence {nk} such that

(3.25) P
{

sup
0≤t≤k

|M (nk+1)
t −M (nk)

t | ≥ 2−k
}
≤ 2−k.

To achieve this, start with n0 = 1, and assuming nk−1 has been chosen, pick
nk > nk−1 so that

‖M (m) −M (n)‖M2 ≤ 2−3k
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for m,n ≥ nk. Then for m ≥ nk,

1 ∧ E
[
(M

(m)
k −M (nk)

k )2
]1/2 ≤ 2k‖M (m) −M (nk)‖M2 ≤ 2−2k,

and the minimum with 1 is superfluous since 2−2k < 1. Substituting this
back into (3.24) with ε = 2−k gives (3.25) with 2−2k on the right-hand side.

By the Borel-Cantelli lemma, there exists an event Ω1 with P (Ω1) = 1
such that for ω ∈ Ω1,

sup
0≤t≤k

|M (nk+1)
t (ω)−M (nk)

t (ω)| < 2−k

for all but finitely many k’s. It follows that the sequence of cadlag functions

t 7→ M
(nk)
t (ω) are Cauchy in the uniform metric over any bounded time

interval [0, T ]. By Lemma A.5 in the Appendix, for each T <∞ there exists

a cadlag process {N (T )
t (ω) : 0 ≤ t ≤ T} such that M

(nk)
t (ω) converges to

N
(T )
t (ω) uniformly on the time interval [0, T ], as k → ∞, for any ω ∈ Ω1.

N
(S)
t (ω) and N

(T )
t (ω) must agree for t ∈ [0, S ∧ T ], since both are limits of

the same sequence. Thus we can define one cadlag function t 7→ Mt(ω) on

R+ for ω ∈ Ω1, such that M
(nk)
t (ω) converges to Mt(ω) uniformly on each

bounded time interval [0, T ]. To have M defined on all of Ω, set Mt(ω) = 0
for ω /∈ Ω1.

The event Ω1 lies in Ft by the assumption of completeness of the filtra-

tion. Since M
(nk)
t → Mt on Ω1 while Mt = 0 on Ωc

1, it follows that Mt is
Ft-measurable. The almost sure limit Mt and the L2 limit Yt of the sequence

{M (nk)
t } must coincide almost surely. Consequently (3.23) becomes

(3.26) E[1AMt] = E[1AMs]

for all A ∈ Fs and gives the martingale property for M .

To summarize, M is now a square-integrable cadlag martingale, in other
words an element of M2. The final piece, namely ‖M (n) − M‖M2 → 0,
follows because we can replace Yt by Mt in (3.22) due to the almost sure
equality Mt = Yt.

If all M (n) are continuous martingales, the uniform convergence above
produces a continuous limit M . This shows thatMc

2 is a closed subspace of
M2 under the metric dM2 . �

By adapting the argument above from equation (3.24) onwards, we get
this useful consequence of convergence in M2.

Lemma 3.42. Suppose ‖M (n) −M‖M2 → 0 as n → ∞. Then for each
T <∞ and ε > 0,

(3.27) lim
n→∞

P
{

sup
0≤t≤T

|M (n)
t −Mt| ≥ ε

}
= 0.
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Furthermore, there exists a subsequence {M (nk)} and an event Ω0 such that
P (Ω0) = 1 and for each ω ∈ Ω0 and T <∞,

(3.28) lim
n→∞

sup
0≤t≤T

∣∣M (nk)
t (ω)−Mt(ω)

∣∣ = 0.

When (3.27) holds for all T <∞ and ε > 0, it is called uniform conver-
gence in probability on compact intervals.

We shall write M2,loc for the space of cadlag local L2-martingales with
respect to a given filtration {Ft} on a given probability space (Ω,F , P ). We
do not introduce a distance function on this space.

Exercises

Exercise 3.1. Create a simple example that shows that E(Mτ |Fσ) = Mσ

cannot hold for general random times σ ≤ τ that are not stopping times.

Exercise 3.2. Let B be a standard Brownian motion and τ = inf{t ≥ 0 :
Bt = 1}. Show that P (τ < ∞) = 1, E(Bτ∧n) = E(B0) for all n ∈ N but
E(Bτ ) = E(B0) fails. In other words, optional stopping does not work for
all stopping times.

Exercise 3.3. Let τ be a stopping time and M a right-continuous mar-
tingale. Corollaries 3.8 and 3.9 imply that M τ is a martingale for both
filtrations {Ft} and {Ft∧τ}. This exercise shows that any martingale with
respect to {Ft∧τ} is also a martingale with respect to {Ft}.

So suppose {Xt} is a martingale with respect to {Ft∧τ}. That is, Xt is
Ft∧τ -measurable and integrable, and E(Xt | Fs∧τ ) = Xs for s < t.

(a) Show that for s < t, 1{τ ≤ s}Xt = 1{τ ≤ s}Xs. Hint. 1{τ ≤ s}Xt

is Fs∧τ -measurable. Multiply the martingale property by 1{τ ≤ s}.
(b) Show that {Xt} is a martingale with respect to {Ft}. Hint. With

s < t and A ∈ Fs, start with E(1AXt) = E(1A1{τ ≤ s}Xt) + E(1A1{τ >
s}Xt).

Exercise 3.4. (Brownian motion with a random speed.) Let Bt be a stan-
dard Brownian motion with filtration FBt = σ{Bs : s ∈ [0, t]}. Let U be
a nonnegative finite random variable, independent of FB∞, and such that
E(U1/2) = ∞. Define the filtration Gt = σ{FBt , σ(U)}. Show that for each
s ≥ 0, sU is a stopping time under filtration {Gt}. Let Xt = BtU , a process
adapted to Ft = GtU . (GtU is defined as in (2.4).) Show that Xt is not a
martingale but it is a local martingale. Hints. You need Exercise (2.22).
Compute E|Xt|. There are localizing stopping times that take only values
0 and ∞, or you can look at Exercise 3.6 below.
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Exercise 3.5. (a) Suppose X is an adapted process and τ1, . . . , τk stopping
times such that Xτ1 , . . . , Xτk are all martingales. Show that then Xτ1∨···∨τk

is a martingale. Hint. In the case k = 2 write Xτ1∨τ2 in terms of Xτ1 , Xτ2

and Xτ1∧τ2 .

(b) Let M be an adapted process, and suppose there exists a sequence
of stopping times ρn ↗ ∞ (a.s.) such that Mρn is a local martingale for
each n. Show that then M is a local martingale.

Exercise 3.6. Let X be a continuous local martingale. Show that X can
be localized by the stopping times νn = inf{t ≥ 0 : |Xt| ≥ n}.

Exercise 3.7. LetX be a nonnegative local martingale such that EX0 <∞.
Show that then X is a supermartingale, and X is a martingale iff EXt =
EX0 for all t ≥ 0. Hint. Consider processes of the type Yt = Xτn∧t ∧K.

Exercise 3.8. Let M be a right-continuous local martingale such that M∗t ∈
L1(P ) for all t ∈ R+. Show that then M is a martingale. Hint. Let n→∞
in the equality E[1AMt∧τn ] = E[1AMs∧τn ] for s < t and A ∈ Fs.

Exercise 3.9. Let M be a local martingale with localizing sequence {τk}.
Suppose that for each t ∈ R+, the sequence {Mt∧τn}n∈N is uniformly inte-
grable. Show that then M is a martingale. Same hint as above.

Exercise 3.10. Let M be a local martingale with localizing sequence {τk}.
Show that Mn∧τn is uniformly integrable (in other words, that the family
of random variables {Mn∧τn

t : t ∈ R+} is uniformly integrable). Hint. Use
Lemma B.16.

Exercise 3.11. Let M be some process and Xt = Mt −M0. Show that if
M is a local martingale, then so is X, but the converse is not true. For the
counterexample, consider simply Mt = ξ for a fixed random variable ξ.

Exercise 3.12. Let (Ω,F , P ) be a complete probability space, N = {N ∈
F : P (N) = 0} the class of null sets, and take a random variable X ∈ L1(P )
but not in L2(P ). For t ∈ R+ define

Ft =

{
σ(N ), 0 ≤ t < 1

F , t ≥ 1
and Mt =

{
EX, 0 ≤ t < 1

X, t ≥ 1.

Then {Ft} satisfies the usual conditions and M is a martingale but not a
local L2 martingale. Hint. Show that {τ < 1} ∈ σ(N ) for any stopping
time τ .

Exercise 3.13. Let A be an increasing process, and φ : R+ × Ω → R a
bounded BR+ ⊗F-measurable function. Let T <∞. Show that

gφ(ω) =

∫
(0,T ]

φ(t, ω)dAt(ω)
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is an F-measurable function. Show also that, for any BR+ ⊗ F-measurable
nonnegative function φ : R+ × Ω→ R+,

gφ(ω) =

∫
(0,∞)

φ(t, ω)dAt(ω)

is an F-measurable function. The integrals are Lebesgue-Stieltjes integrals,
evaluated separately for each ω. The only point in separating the two cases
is that if φ takes both positive and negative values, the integral over the
entire interval [0,∞) might not be defined.

Hint. One can start with φ(t, ω) = 1(a,b]×Γ(t, ω) for 0 ≤ a < b <∞ and
Γ ∈ F . Then apply Theorem B.4 from the Appendix.

Exercise 3.14. Let N = {N(t) : 0 ≤ t < ∞} be a homogeneous rate α
Poisson process with respect to {Ft} and Mt = Nt − αt the compensated
Poisson process. We have seen that the quadratic variation is [M ]t = Nt

while 〈M〉t = αt. It follows that N cannot be a natural increasing process.
In this exercise you show that the naturalness condition fails for N .

(a) Let λ > 0. Show that

X(t) = exp{−λN(t) + αt(1− e−λ)}
is a martingale.

(b) Show that N is not a natural increasing process, by showing that for
X defined above, the condition

E

∫
(0,t]

X(s)dN(s) = E

∫
(0,t]

X(s−)dN(s)

fails. (In case you protest that X is not a bounded martingale, fix T > t
and consider X(s ∧ T ).)





Chapter 4

Stochastic Integral
with respect to
Brownian Motion

As an introduction to stochastic integration we develop the stochastic inte-
gral with respect to Brownian motion. This can be done with fewer tech-
nicalities than are needed for integrals with respect to general cadlag mar-
tingales, so the basic ideas of stochastic integration are in clearer view. The
same steps will be repeated in the next chapter in the development of the
more general integral. For this reason we leave the routine verifications in
this chapter as exercises. We develop only enough properties of the inte-
gral to enable us to get to the point where the integral of local integrands
is defined. This chapter can be skipped without loss. Only Lemma 4.2 is
referred to later in Section 5.5. This lemma is of technical nature and can
be read independently of the rest of the chapter.

Throughout this chapter, (Ω,F , P ) is a fixed probability space with a
filtration {Ft}, and B = {Bt} is a standard one-dimensional Brownian mo-
tion with respect to the filtration {Ft} (Definition 2.26). We assume that F
and each Ft contains all subsets of events of probability zero, an assumption
that entails no loss of generality as explained in Section 2.1.

To begin, let us imagine that we are trying to define the integral
∫ t

0 Bs dBs
through an approximation by Riemann sums. The next calculation reveals
that, contrary to the familiar Riemann and Stieltjes integrals with reason-
ably regular functions, the choice of point of evaluation in a partition interval
matters.

115
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Lemma 4.1. Fix a number u ∈ [0, 1]. Given a partition π = {0 = t0 < t1 <
· · · < tm(π) = t}, let si = (1− u)ti + uti+1, and define

S(π) =

m(π)−1∑
i=0

Bsi(Bti+1 −Bti).

Then

lim
mesh(π)→0

S(π) = 1
2B

2
t − 1

2 t+ ut in L2(P ).

Proof. First check the algebra identity

b(a− c) =
a2

2
− c2

2
− (a− c)2

2
+ (b− c)2 + (a− b)(b− c).

Applying this,

S(π) = 1
2B

2
t − 1

2

∑
i

(Bti+1 −Bti)2 +
∑
i

(Bsi −Bti)2

+
∑
i

(Bti+1 −Bsi)(Bsi −Bti)

≡ 1
2B

2
t − S1(π) + S2(π) + S3(π)

where the last equality defines the sums S1(π), S2(π), and S3(π). By Propo-
sition 2.42,

lim
mesh(π)→0

S1(π) = 1
2 t in L2(P ).

For the second sum,

E[S2(π)] =
∑
i

(si − ti) = u
∑
i

(ti+1 − ti) = ut,

and

Var[S2(π)] =
∑
i

Var[(Bsi −Bti)2] = 2
∑
i

(si − ti)2

≤ 2
∑
i

(ti+1 − ti)2 ≤ 2tmesh(π)

which vanishes as mesh(π) → 0. The factor 2 above comes from Gaussian
properties: if X is a mean zero normal with variance σ2, then

Var[X2] = E[X4]−
(
E[X2]

)2
= 3σ4 − σ4 = 2σ2.

The vanishing of the variance of S2(π) as mesh(π)→ 0 is equivalent to

lim
mesh(π)→0

S2(π) = ut in L2(P ).
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Lastly, we show that S3(π) vanishes in L2(P ) as mesh(π)→ 0.

E[S3(π)2] = E

[ (∑
i

(Bti+1 −Bsi)(Bsi −Bti)
)2]

=
∑
i

E
[
(Bti+1 −Bsi)2(Bsi −Bti)2

]
+
∑
i 6=j

E
[
(Bti+1 −Bsi)(Bsi −Bti)(Btj+1 −Bsj )(Bsj −Btj )

]
=
∑
i

(ti+1 − si)(si − ti) ≤
∑
i

(ti+1 − ti)2 ≤ tmesh(π)

which again vanishes as mesh(π)→ 0. �

According to Proposition 2.28, there is a unique choice that makes the
limit of S(π) into a martingale, namely u = 0, in other words taking si = ti,
the initial point of the partition interval. This is the choice for the Itô
integral. After developing some background we revisit this calculation in
Example 4.9 and establish the Itô integral∫ t

0
Bs dBs = 1

2B
2
t − 1

2 t.

The choice u = 1
2 leads to the Stratonovich integral given by∫ t

0
Bs ◦ dBs = 1

2B
2
t .

A virtue of the Stratonovich integral is that the rules of ordinary calculus
apply, as in the example above. But for developing the theory the Itô integral
reigns supreme. We shall revisit the Stratonovich integral in some exercises
later on.

We turn to develop the Itô stochastic integral with respect to Brownian
motion. The first issue is to describe the spaces of stochastic processes X

that serve as integrands in the integral
∫ t

0 X dB.

For a measurable process X, the L2-norm over the set [0, T ]× Ω is

(4.1) ‖X‖L2([0,T ]×Ω) =

(
E

∫
[0,T ]
|X(t, ω)|2dt

)1/2

.

Let L2(B) denote the collection of all measurable, adapted processes X such
that

‖X‖L2([0,T ]×Ω) <∞
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for all T <∞. A metric on L2(B) is defined by dL2(X,Y ) = ‖X − Y ‖L2(B)

where

(4.2) ‖X‖L2(B) =

∞∑
k=1

2−k
(
1 ∧ ‖X‖L2([0,k]×Ω)

)
.

As for ‖·‖M2 in Section 3.6 we use the norm notation even though ‖·‖L2(B)

is not a genuine norm. The triangle inequality

‖X + Y ‖L2(B) ≤ ‖X‖L2(B) + ‖Y ‖L2(B)

is valid, and this gives the triangle inequality

dL2(X,Y ) ≤ dL2(X,Z) + dL2(Z, Y )

required for dL2(X,Y ) to be a genuine metric.

To have a metric, one also needs the property dL2(X,Y ) = 0 iff X =
Y . We have to adopt the point of view that two processes X and Y are
considered “equal” if the set of points (t, ω) where X(t, ω) 6= Y (t, ω) has
m⊗ P -measure zero. Equivalently,

(4.3)

∫ ∞
0

P{X(t) 6= Y (t)} dt = 0.

In particular processes that are indistinguishable, or modifications of each
other have to be considered equal under this interpretation.

The symmetry dL2(X,Y ) = dL2(Y,X) is immediate from the defini-
tion. So with the appropriate meaning assigned to equality, L2(B) is a
metric space. Convergence Xn → X in L2(B) is equivalent to Xn → X in
L2([0, T ]× Ω) for each T <∞.

The symbol B reminds us that L2(B) is a space of integrands for sto-
chastic integration with respect to Brownian motion.

The finite mean square requirement for membership in L2(B) is restric-
tive. For example, it excludes some processes of the form f(Bt) where f is a
smooth but rapidly growing function. Consequently from L2(B) we move to
a wider class of processes denoted by L(B), where the mean square require-
ment is imposed only locally and only on integrals over the time variable.
Precisely, L(B) is the class of measurable, adapted processes X such that

(4.4) P

{
ω :

∫ T

0
X(t, ω)2 dt <∞ for all T <∞

}
= 1.

This will be the class of processes X for which the stochastic integral process
with respect to Brownian motion, denoted by

(X ·B)t =

∫ t

0
Xs dBs

will ultimately be defined.
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The development of the integral starts from a class of processes for which
the integral can be written down directly. There are several possible starting
places. Here is our choice.

A simple predictable process is a process of the form

(4.5) X(t, ω) = ξ0(ω)1{0}(t) +

n−1∑
i=1

ξi(ω)1(ti,ti+1](t)

where n is finite integer, 0 = t0 = t1 < t2 < · · · < tn are time points, and for
0 ≤ i ≤ n−1, ξi is a bounded Fti-measurable random variable on (Ω,F , P ).
Predictability refers to the fact that the value Xt can be “predicted” from
{Xs : s < t}. Here this point is rather simple because X is left-continuous so
Xt = limXs as s↗ t. In the next chapter we need to deal seriously with the
notion of predictability but in this chapter it is not really needed. We use
the term only to be consistent with what comes later. The value ξ0 at t = 0
is irrelevant both for the stochastic integral of X and for approximating
general processes. We include it so that the value X(0, ω) is not artificially
restricted.

A key point is that processes in L2(B) can be approximated by simple
predictable processes in the L2(B)-distance. We split this approximation
into two steps.

Lemma 4.2. Suppose X is a bounded, measurable, adapted process. Then
there exists a sequence {Xn} of simple predictable processes such that, for
any 0 < T <∞,

lim
n→∞

E

∫ T

0

∣∣Xn(t)−X(t)
∣∣2 dt = 0.

Proof. We begin by showing that, given T < ∞, we can find simple pre-

dictable processes Y
(T )
k that vanish outside [0, T ] and satisfy

(4.6) lim
k→∞

E

∫ T

0

∣∣Y (T )
k (t)−X(t)

∣∣2 dt = 0.

Extend X to R× Ω by defining X(t, ω) = 0 for t < 0. For each n ∈ N and
s ∈ [0, 1], define

Zn,s(t, ω) =
∑
j∈Z

X(s+ 2−nj, ω)1(s+2−nj,s+2−n(j+1)](t) · 1[0,T ](t).

Zn,s is a simple predictable process. It is jointly measurable as a function of
the triple (s, t, ω), so it can be integrated over all three variables. Fubini’s
theorem allows us to perform these integrations in any order we please.
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We claim that

(4.7) lim
n→∞

E

∫ T

0
dt

∫ 1

0
ds
∣∣Zn,s(t)−X(t)

∣∣2 = 0.

This limit relies on the property called Lp-continuity (Proposition A.18).

To prove (4.7), start by considering a fixed ω and rewrite the double
integral as follows:∫ T

0
dt

∫ 1

0
ds
∣∣Zn,s(t, ω)−X(t, ω)

∣∣2
=

∫ T

0
dt
∑
j∈Z

∫ 1

0
ds
∣∣X(s+ 2−nj, ω)−X(t, ω)

∣∣21(s+2−nj,s+2−n(j+1)](t)

=

∫ T

0
dt
∑
j∈Z

∫ 1

0
ds
∣∣X(s+ 2−nj, ω)−X(t, ω)

∣∣21[t−2−n(j+1),t−2−nj)(s).

For a fixed t, the s-integral vanishes unless

0 < t− 2−nj and t− 2−n(j + 1) < 1,

which is equivalent to 2n(t−1)−1 < j < 2nt. For each fixed t and j, change
variables in the s-integral: let h = t−s−2−nj. Then s ∈ [t−2−n(j+ 1), t−
2−nj) iff h ∈ (0, 2−n]. These steps turn the integral into∫ T

0
dt
∑
j∈Z

1{2n(t−1)−1<j<2nt}

∫ 2−n

0
dh
∣∣X(t− h, ω)−X(t, ω)

∣∣2
≤ (2n + 1)

∫ 2−n

0
dh

∫ T

0
dt
∣∣X(t− h, ω)−X(t, ω)

∣∣2.
The last upper bound follows because there are at most 2n + 1 j-values
that satisfy the restriction 2n(t − 1) − 1 < j < 2nt. Now take expectations
through the inequalities. We get

E

∫ T

0
dt

∫ 1

0
ds
∣∣Zn,s(t)−X(t)

∣∣2 dt
≤ (2n + 1)

∫ 2−n

0
dh

{
E

∫ T

0
dt
∣∣X(t− h, ω)−X(t, ω)

∣∣2}.
The last line vanishes as n→∞ for these reasons: First,

lim
h→0

∫ T

0
dt
∣∣X(t− h, ω)−X(t, ω)

∣∣2 = 0

for each fixed ω by virtue of Lp-continuity (Proposition A.18). Since X is
bounded, the expectations converge by dominated convergence:

lim
h→0

E

∫ T

0
dt
∣∣X(t− h, ω)−X(t, ω)

∣∣2 = 0.
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Last,

lim
n→∞

(2n + 1)

∫ 2−n

0
dh

{
E

∫ T

0
dt
∣∣X(t− h, ω)−X(t, ω)

∣∣2} = 0

follows from this general fact, which we leave as an exercise: if f(x)→ 0 as
x→ 0, then

1

ε

∫ ε

0
f(x) dx→ 0 as ε→ 0.

We have justified (4.7).

We can restate (4.7) by saying that the function

φn(s) = E

∫ T

0
dt
∣∣Zn,s(t)−X(t)

∣∣2 dt
satisfies φn → 0 in L1[0, 1]. Consequently a subsequence φnk(s) → 0 for

Lebesgue-almost every s ∈ [0, 1]. Fix any such s. Define Y
(T )
k = Znk,s, and

we have (4.6).

To complete the proof, create the simple predictable processes {Y (m)
k }

for all T = m ∈ N. For each m, pick km such that

E

∫ m

0
dt
∣∣Y (m)
km

(t)−X(t)
∣∣2 dt < 1

m
.

Then Xm = Y
(m)
km

satisfies the requirement of the lemma. �

Proposition 4.3. Suppose X ∈ L2(B). Then there exists a sequence of
simple predictable processes {Xn} such that ‖X −Xn‖L2(B) → 0.

Proof. LetX(k) = (X∧k)∨(−k). Since |X(k)−X| ≤ |X| and |X(k)−X| → 0
pointwise on R+ × Ω,

lim
k→∞

E

∫ m

0

∣∣X(k)(t)−X(t)
∣∣2 dt = 0

for each m ∈ N. This is equivalent to ‖X −X(k)‖L2(B) → 0. Given ε > 0,

pick k such that ‖X −X(k)‖L2(B) ≤ ε/2. Since X(k) is a bounded process,

the previous lemma gives a simple predictable process Y such that ‖X(k) −
Y ‖L2(B) ≤ ε/2. By the triangle inequality ‖X − Y ‖L2(B) ≤ ε. Repeat this
argument for each ε = 1/n, and let Xn be the Y thus selected. This gives
the approximating sequence {Xn}. �

We are ready to proceed to the construction of the stochastic integral.
There are three main steps.

(i) First an explicit formula is given for the integral X · B of a sim-
ple predictable process X. This integral will be a continuous L2-
martingale.
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(ii) A general process X in L2(B) is approximated by simple processes
Xn. One shows that the integrals Xn · B of the approximating
simple processes converge to a uniquely defined continuous L2-
martingale which is then defined to be the stochastic integral X ·B.

(iii) A localization step is used to get from integrands in L2(B) to in-
tegrands in L(B). The integral X · B is a continuous local L2-
martingale

The lemmas needed along the way for this development make valuable
exercises. So we give only hints for the proofs, and urge the first-time reader
to give them a try. These same properties are proved again with full detail
in the next chapter when we develop the more general integral. The proofs
for the Brownian case are very similar to those for the general case.

We begin with the integral of simple processes. For a simple predictable
process of the type (4.5), the stochastic integral is the process X ·B defined
by

(4.8) (X ·B)t(ω) =
n−1∑
i=1

ξi(ω)
(
Bti+1∧t(ω)−Bti∧t(ω)

)
.

Note that our convention is such that the value of X at t = 0 does not
influence the integral. We also write I(X) = X ·B when we need a symbol
for the mapping I : X 7→ X ·B.

Let S2 denote the space of simple predictable processes. It is a subspace
of L2(B). An element X of S2 can be represented in the form (4.5) in many
different ways. We need to check that the integral X · B depends only on
the process X and not on the particular representation. Also, we need to
know that S2 is a linear space, and that the integral I(X) is a linear map
on S2.

Lemma 4.4. (a) Suppose the process X in (4.5) also satisfies

Xt(ω) = η0(ω)1{0}(t) +
m−1∑
j=1

ηj(ω)1(si,si+1](t)

for all (t, ω), where 0 = s0 = s1 < s2 < · · · < sm < ∞ and ηj is Fsj -
measurable for 0 ≤ j ≤ m− 1. Then for each (t, ω),

n−1∑
i=1

ξi(ω)
(
Bti+1∧t(ω)−Bti∧t(ω)

)
=

m−1∑
j=1

ηi(ω)
(
Bsi+1∧t(ω)−Bsi∧t(ω)

)
.

In other words, X ·B is independent of the representation.
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(b) S2 is a linear space, in other words for X,Y ∈ S2 and reals α and
β, αX + βY ∈ S2. The integral satisfies

(αX + βY ) ·B = α(X ·B) + β(Y ·B).

Hints for proof. Let {uk} = {sj} ∪ {ti} be the common refinement of
the partitions {sj} and {ti}. Rewrite both representations of X in terms
of {uk}. The same idea can be used for part (b) to write two arbitrary
simple processes in terms of a common partition, which makes adding them
easy. �

Next we need some continuity properties for the integral. Recall the
distance measure ‖ · ‖M2 defined for continuous L2-martingales by (3.20).

Lemma 4.5. Let X ∈ S2. Then X · B is a continuous square-integrable
martingale with respect to the original filtration {Ft}. We have these isome-
tries:

(4.9) E
[
(X ·B)2

t

]
= E

∫ t

0
X2
s ds for all t ≥ 0,

and

(4.10) ‖X ·B‖M2 = ‖X‖L2(B).

Hints for proof. To show that X ·B is a martingale, start by proving this
statement: if u < v and ξ is a bounded Fu-measurable random variable,
then Zt = ξ(Bt∧v −Bt∧u) is a martingale.

To prove (4.9), first square:

(X ·B)2
t =

n−1∑
i=1

ξ2
i

(
Bt∧ti+1 −Bt∧ti

)2
+ 2

∑
i<j

ξiξj(Bt∧ti+1 −Bt∧ti)(Bt∧tj+1 −Bt∧tj ).

Then compute the expectations of all terms. �

From the isometry property we can deduce that simple process approx-
imation gives approximation of stochastic integrals.

Lemma 4.6. Let X ∈ L2(B). Then there is a unique continuous L2-
martingale Y such that, for any sequence of simple predictable processes
{Xn} such that

‖X −Xn‖L2(B) → 0,
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we have

‖Y −Xn ·B‖M2 → 0.

Hints for proof. It all follows from these facts: an approximating sequence
of simple predictable processes exists for each process in L2(B), a convergent
sequence in a metric space is a Cauchy sequence, a Cauchy sequence in a
complete metric space converges, the spaceMc

2 of continuous L2-martingales
is complete, the isometry (4.10), and the triangle inequality. �

Note that uniqueness of the process Y defined in the lemma means

uniqueness up to indistinguishability: any process Ỹ indistinguishable from

Y also satisfies ‖Ỹ −Xn ·B‖M2 → 0.

Now we can state the definition of the integral of L2(B)-integrands with
respect to Brownian motion.

Definition 4.7. LetB be a Brownian motion on a probability space (Ω,F , P )
with respect to a filtration {Ft}. For any measurable adapted process
X ∈ L2(B), the stochastic integral I(X) = X · B is the square-integrable
continuous martingale that satisfies

lim
n→∞

‖X ·B −Xn ·B‖M2 = 0

for any sequence Xn ∈ S2 of simple predictable processes such that

‖X −Xn‖L2(B) → 0.

The process I(X) is unique up to indistinguishability. Alternative notation
for the stochastic integral is the familiar∫ t

0
Xs dBs = (X ·B)t.

The reader familiar with more abstract principles of analysis should note
that the extension of the stochastic integral X ·B from X ∈ S2 to X ∈ L2(B)
is an instance of a general, classic argument. A uniformly continuous map
from a metric space into a complete metric space can always be extended to
the closure of its domain (Lemma A.3). If the spaces are linear, the linear
operations are continuous, and the map is linear, then the extension is a
linear map too (Lemma A.4). In this case the map is X 7→ X · B, first
defined for X ∈ S2. Uniform continuity follows from linearity and (4.10).
Proposition 4.3 implies that the closure of S2 in L2(B) is all of L2(B).

Some books first define the integral (X ·B)t at a fixed time t as a map
from L2([0, t]×Ω,m⊗P ) into L2(P ), utilizing the completeness of L2-spaces.
Then one needs a separate argument to show that the integrals defined for
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different times t can be combined into a continuous martingale t 7→ (X ·B)t.
We defined the integral directly as a map into the space of martingales Mc

2

to avoid the extra argument. Of course, we did not really save work. We
just did part of the work earlier when we proved that Mc

2 is a complete
space (Theorem 3.41).

Example 4.8. In the definition (4.5) of the simple predictable process we
required the ξi bounded because this will be convenient later. For this
section it would have been more convenient to allow square-integrable ξi.
So let us derive the integral for that case. Let

X(t) =

m−1∑
i=1

ηi1(si,si+1](t)

where 0 ≤ s1 < · · · < sm and each ηi ∈ L2(P ) is Fsi-measurable. Check
that a sequence of approximating simple processes is given by

Xk(t) =
m−1∑
i=1

η
(k)
i 1(si,si+1](t)

with truncated variables η
(k)
i = (ηi ∧ k) ∨ (−k). And then that∫ t

0
X(s) dBs =

m−1∑
i=1

ηi(Bt∧si+1 −Bt∧si).

There is something to check here because it is not immediately obvious that
the terms on the right above are square-integrable. See Exercise 4.4.

Example 4.9. One can check that Brownian motion itself is an element of
L2(B). Let tni = i2−n and

Xn(t) =

2nn−1∑
i=0

Btni 1(tni ,t
n
i+1](t).

Xn /∈ S2 but it can be used to approximate B. By Example 4.8∫ t

0
Xn(s) dBs =

2nn−1∑
i=1

Btni (Bt∧tni+1
−Bt∧tni ).

For any T < n,

E

∫ T

0
|Xn(s)−Bs|2 dt ≤

2nn−1∑
i=0

∫ tni+1

tni

E
[
(Btni −Bs)

2
]
ds

=
2nn−1∑
i=0

1
2(tni+1 − tni )2 = 1

2n2−n.
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Thus Xn converges to B in L2(B) as n→∞. By the isometry (4.12) in the

next Proposition, this integral converges to
∫ t

0 Bs dBs in L2 as n → ∞, so
by Lemma 4.1, ∫ t

0
Bs dBs = 1

2B
2
t − 1

2 t.

Before developing the integral further, we record some properties.

Proposition 4.10. Let X,Y ∈ L2(B).

(a) Linearity carries over:

(αX + βY ) ·B = α(X ·B) + β(Y ·B).

(b) We have again the isometries

(4.11) E
[
(X ·B)2

t

]
= E

∫ t

0
X2
s ds for all t ≥ 0,

and

(4.12) ‖X ·B‖M2 = ‖X‖L2(B).

In particular, if X,Y ∈ L2(B) are m⊗P -equivalent in the sense (4.3), then
X ·B and Y ·B are indistinguishable.

(c) Suppose τ is a stopping time such that X(t, ω) = Y (t, ω) for t ≤ τ(ω).
Then for almost every ω, (X ·B)t(ω) = (Y ·B)t(ω) for t ≤ τ(ω).

Hints for proof. Parts (a)–(b): These properties are inherited from the
integrals of the approximating simple processes Xn. One needs to justify
taking limits in Lemma 4.4(b) and Lemma 4.5.

The proof of part (c) is different from the one that is used in the next
chapter. So we give here more details than in previous proofs.

By considering Z = X−Y , it suffices to prove that if Z ∈ L2(B) satisfies
Z(t, ω) = 0 for t ≤ τ(ω), then (Z ·B)t(ω) = 0 for t ≤ τ(ω).

Assume first that Z is bounded, so |Z(t, ω)| ≤ C. Pick a sequence {Zn}
of simple predictable processes that converge to Z in L2(B). Let Zn be of
the generic type (recall (4.5))

Zn(t, ω) =

m(n)−1∑
i=1

ξni (ω)1(tni ,t
n
i+1](t).

(To approximate a process in L2(B) the t = 0 term in (4.5) is not needed
because values at t = 0 do not affect dt-integrals.) We may assume |ξni | ≤ C
always, for if this is not the case, replacing ξni by (ξni ∧C) ∨ (−C) will only
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improve the approximation. Define another sequence of simple predictable
processes by

Z̃n(t) =

m(n)−1∑
i=1

ξni 1{τ ≤ tni }1(tni ,t
n
i+1](t).

We claim that

(4.13) Z̃n → Z in L2(B).

To prove (4.13), note first that Zn1{τ < t} → Z1{τ < t} = Z in L2(B). So
it suffices to show that

(4.14) Zn1{τ < t} − Z̃n → 0 in L2(B).

Estimate∣∣Zn(t)1{τ < t} − Z̃n(t)
∣∣ ≤ C∑

i

∣∣1{τ < t} − 1{τ ≤ tni }
∣∣1(tni ,t

n
i+1](t)

≤ C
∑
i

1{tni < τ < tni+1}1(tni ,t
n
i+1](t).

Integrate over [0, T ]× Ω, to get

E

∫ T

0

∣∣Zn(t)1{τ < t} − Z̃n(t)
∣∣2 dt

≤ C2
∑
i

P{tni < τ < tni+1}
∫ T

0
1(tni ,t

n
i+1](t) dt

≤ C2 max{T ∧ tni+1 − T ∧ tni : 1 ≤ i ≤ m(n)− 1}.
We can artificially add partition points tni to each Zn so that this last quan-
tity converges to 0 as n → ∞, for each fixed T . This verifies (4.14), and
thereby (4.13).

The integral of Z̃n is given explicitly by

(Z̃n ·B)t =

m(n)−1∑
i=1

ξni 1{τ ≤ tni }(Bt∧tni+1
−Bt∧tni ).

By inspecting each term, we see that (Z̃n ·B)t = 0 if t ≤ τ . By the definition

of the integral and (4.13), Z̃n · B → Z · B in Mc
2. Then by Lemma 3.42

there exists a subsequence Z̃nk · B and an event Ω0 of full probability such
that, for each ω ∈ Ω0 and T <∞,

(Z̃nk ·B)t(ω)→ (Z ·B)t(ω) uniformly for 0 ≤ t ≤ T .

For any ω ∈ Ω0, in the limit (Z ·B)t(ω) = 0 for t ≤ τ(ω). Part (c) has been
proved for a bounded process.

To complete the proof, given Z ∈ L2(B), let Z(k)(t, ω) = (Z(t, ω)∧ k)∨
(−k), a bounded process in L2(B) with the same property Z(k)(t, ω) = 0 if
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t ≤ τ(ω). Apply the previous step to Z(k) and justify what happens in the
limit. �

Next we extend the integral to integrands in L(B). Given a process
X ∈ L(B), define the stopping times

(4.15) τn(ω) = inf

{
t ≥ 0 :

∫ t

0
X(s, ω)2 ds ≥ n

}
.

These are stopping times by Corollary 2.10 because the function

t 7→
∫ t

0
X(s, ω)2 ds

is continuous for each ω in the event in the definition (4.4). By this same
continuity, if τn(ω) <∞,∫ ∞

0
X(s, ω)21{s ≤ τn(ω)} ds =

∫ τn(ω)

0
X(s, ω)2 ds = n.

Let

Xn(t, ω) = X(t, ω)1{t ≤ τn(ω)}.
Adaptedness of Xn follows from {t ≤ τn} = {τn < t}c ∈ Ft. The function
(t, ω) 7→ 1{t ≤ τn(ω)} is BR+ ⊗ F-measurable by Exercise 4.3, hence Xn is
a measurable process. Together these properties say that Xn ∈ L2(B), and
the stochastic integrals Xn ·B are well-defined.

The goal is to show that there is a uniquely defined limit of the processes
Xn ·B as n→∞, and this will then serve as the definition of X ·B.

Lemma 4.11. For almost every ω, (Xm · B)t(ω) = (Xn · B)t(ω) for all
t ≤ τm(ω) ∧ τn(ω).

Proof. Immediate from Proposition 4.10(c). �

The lemma says that, for a given (t, ω), once n is large enough so that
τn(ω) ≥ t, the value (Xn · B)t(ω) does not change with n. The definition
(4.4) guarantees that τn(ω) ↗ ∞ for almost every ω. These ingredients
almost justify the next extension of the stochastic integral to L(B).

Definition 4.12. Let B be a Brownian motion on a probability space
(Ω,F , P ) with respect to a filtration {Ft}, and X ∈ L(B). Let Ω0 be
the event of full probability on which τn ↗∞ and the conclusion of Lemma
4.11 holds for all pairs m,n. The stochastic integral X · B is defined for
ω ∈ Ω0 by

(4.16) (X ·B)t(ω) = (Xn ·B)t(ω) for any n such that τn(ω) ≥ t.
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For ω /∈ Ω0 define (X ·B)t(ω) ≡ 0. The process X ·B is a continuous local
L2-martingale.

To justify the claim that X · B is a local L2-martingale, just note that
{τn} serves as a localizing sequence:

(X ·B)τnt = (X ·B)t∧τn = (Xn ·B)t∧τn = (Xn ·B)τnt ,

so (X ·B)τn = (Xn ·B)τn , which is an L2-martingale by Corollary 3.8. The
above equality also implies that (X ·B)t(ω) is continuous for t ∈ [0, τn(ω)],
which contains any given interval [0, T ] if n is taken large enough.

It seems somewhat arbitrary to base the definition of the stochastic
integral on the particular stopping times {τn}. The property that enabled
us to define X ·B by (4.16) was that X(t)1{t ≤ τn} is a process in the space
L2(B) for all n. Let us make this into a new definition.

Definition 4.13. Let X be an adapted, measurable process. A nonde-
creasing sequence of stopping times {σn} is a localizing sequence for X if
X(t)1{t ≤ σn} is in L2(B) for all n, and σn ↗∞ with probability one.

One can check that X ∈ L(B) if and only if X has a localizing sequence
{σn} (Exercise 4.6). Lemma 4.11 and Definition 4.12 work equally well
with {τn} replaced by an arbitrary localizing sequence {σn}. Fix such a

sequence {σn} and define X̃n(t) = 1{t ≤ σn}X(t). Let Ω1 be the event of

full probability on which σn ↗∞ and for all pairs m,n, (X̃m ·B)t = (X̃n ·B)t
for t ≤ σm ∧ σn. (In other words, the conclusion of Lemma 4.11 holds for
{σn}.) Let Y be the process defined by

(4.17) Yt(ω) = (X̃n ·B)t(ω) for any n such that σn(ω) ≥ t,

for ω ∈ Ω1, and identically zero outside Ω1.

Lemma 4.14. Y = X ·B in the sense of indistinguishability.

Proof. Let Ω2 be the intersection of the full-probability events Ω0 and Ω1

defined previously above (4.16) and (4.17). By applying Proposition 4.10(c)

to the stopping time σn∧τn and the processes Xn and X̃n, we conclude that
for almost every ω ∈ Ω2, if t ≤ σn(ω) ∧ τn(ω),

Yt(ω) = (X̃n ·B)t(ω) = (Xn ·B)t(ω) = (X ·B)t(ω).

Since σn(ω) ∧ τn(ω) ↗ ∞, the above equality holds almost surely for all
0 ≤ t <∞. �

This lemma tells us that for X ∈ L(B) the stochastic integral X ·B can
be defined in terms of any localizing sequence of stopping times.
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Exercises

Exercise 4.1. Show by example that it is possible to have E
∫ 1

0 |Xt| dt <∞
but still E|Xt| =∞ for some fixed time t ∈ [0, 1].

Exercise 4.2. Let X be a continuous, adapted process such that

E
(

sup
t∈[0,T ]

|Xt|2
)
<∞ for all T <∞.

Let πn = {0 = sn0 < sn1 < sn2 < · · · } be any sequence of partitions of R+ such
that, for each fixed n, sni ↗∞ as i↗∞ while meshπn = supi(s

n
i+1−sni )→

0 as n → ∞. Let gn be the truncation gn(x) = (x ∧ n) ∨ (−n). Show that
the processes

Xn(t) =
∑
i≥0

gn(X(sni ))1(sni , s
n
i+1](t)

are simple predictable processes that satisfy ‖Xn −X‖L2(B) → 0.

Exercise 4.3. Show that for any [0,∞]-valued measurable function Y on
(Ω,F), the set {(s, ω) ∈ R+ × Ω : Y (ω) > s} is BR+ ⊗F-measurable.

Hint. Start with a simple Y . Show that if Yn ↗ Y pointwise, then
{(s, ω) : Y (ω) > s} =

⋃
n{(s, ω) : Yn(ω) > s}.

Exercise 4.4. Suppose η ∈ L2(P ) is Fs measurable and t > s. Show that

E
[
η2(Bt −Bs)2

]
= E

[
η2
]
· E
[
(Bt −Bs)2

]
by truncating and using monotone convergence. In particular, this implies
that η(Bt −Bs) ∈ L2(P ).

Complete the details in Example 4.8. You need to show first that Xk →
X in L2(B), and then that∫ t

0
Xk(s) dBs →

m−1∑
i=1

ηi(Bt∧si+1 −Bt∧si) in Mc
2.

Exercise 4.5. Show that B2
t is a process in L2(B) and evaluate∫ t

0
B2
s dBs.

Hint. Follow the example of
∫ t

0 Bs dBs. Answer: 1
3B

3
t −

∫ t
0 Bs ds.

Exercise 4.6. Let X be an adapted, measurable process. Show that X ∈
L(B) if and only if X has a localizing sequence {σn} in the sense of Definition
4.13.
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Exercise 4.7. (Integral of a step function in L(B).) Fix 0 = t0 < t1 <
· · · < tM < ∞, and random variables η0, . . . , ηM−1. Assume that ηi is al-
most surely finite and Fti-measurable, but make no integrability assumption.
Define

g(s, ω) =
M−1∑
i=0

ηi(ω)1(ti,ti+1](s).

The task is to show that g ∈ L(B) (virtually immediate) and that∫ t

0
g(s) dBs =

M−1∑
i=0

ηi(Bti+1∧t −Bti∧t)

as one would expect.

Hints. Show that σn(ω) = inf{t : |g(t, ω)| ≥ n} defines a localizing
sequence of stopping times. (Recall the convention inf ∅ = ∞.) Show that
gn(t, ω) = g(t, ω)1{t ≤ σn(ω)} is also a simple predictable process with the
same partition. Then we know what the approximating integrals

Yn(t, ω) =

∫ t

0
gn(s, ω) dBs(ω)

look like.

Exercise 4.8. Let f be a (nonrandom) Borel function on [0, T ] such that∫ T
0 |f |

2 dt <∞. Find the distribution of the random variable
∫ T

0 f(t) dBt(ω).





Chapter 5

Stochastic Integration
of Predictable
Processes

The main goal of this chapter is the definition of the stochastic integral∫
(0,t]X(s) dY (s) where the integrator Y is a cadlag semimartingale and X

is a locally bounded predictable process. The most important special case
is the one where the integrand is of the form X(t−) for some cadlag process
X. In this case the stochastic integral

∫
(0,t]X(s−) dY (s) can be realized as

the limit of Riemann sums

S(t) =
∞∑
i=0

X(si)
(
Y (si+1 ∧ t)− Y (si ∧ t)

)

when the mesh of the partition {si} tends to zero. The convergence is then
uniform on compact time intervals, and happens in probability. Random
partitions of stopping times can also be used.

These results will be reached in Section 5.3. Before the semimartingale
integral we explain predictable processes and construct the integral with
respect to L2-martingales and local L2-martingales. Right-continuity of the
filtration {Ft} is not needed until we define the integral with respect to a
semimartingale. And even there it is needed only for guaranteeing that the
semimartingale has a decomposition whose local martingale part is a local
L2-martingale. Right-continuity of {Ft} is not needed for the arguments
that establish the integral.

133
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5.1. Square-integrable martingale integrator

Throughout this section, we consider a fixed probability space (Ω,F , P ) with
a filtration {Ft}. M is a square-integrable cadlag martingale relative to the
filtration {Ft}. We assume that the probability space and the filtration are
complete. In other words, if N ∈ F has P (N) = 0, then every subset F ⊆ N
is a member of F and each Ft. Right-continuity of the filtration {Ft} is not
assumed unless specifically stated.

5.1.1. Predictable processes. Predictable rectangles are subsets of R+×
Ω of the type (s, t] × F where 0 ≤ s < t < ∞ and F ∈ Fs, or of the
type {0} × F0 where F0 ∈ F0. R stands for the collection of all predictable
rectangles. We regard the empty set also as a predictable rectangle, since
it can be represented as (s, t]× ∅. The σ-field generated by R in the space
R+×Ω is denoted by P and called the predictable σ-field. P is a sub-σ-field
of BR+ ⊗ F because R ⊆ BR+ ⊗ F . Any P-measurable function X from
R+ × Ω into R is called a predictable process.

A predictable process is not only adapted to the original filtration {Ft}
but also to the potentially smaller filtration {Ft−} defined in (2.6) [Exercise
5.1]. This gives some mathematical sense to the term “predictable”, because
it means that Xt is knowable from the information “immediately prior to t”
represented by Ft−.

Predictable processes will be the integrands for the stochastic integral.
Before proceeding, let us develop additional characterizations of the σ-field
P.

Lemma 5.1. The following σ-fields on R+ × Ω are all equal to P.

(a) The σ-field generated by all continuous adapted processes.

(b) The σ-field generated by all left-continuous adapted processes.

(c) The σ-field generated by all adapted caglad processes (that is, left-
continuous processes with right limits).

Proof. Continuous processes and caglad processes are left-continuous. Thus
to show that σ-fields (a)–(c) are contained in P, it suffices to show that all
left-continuous processes are P-measurable.

Let X be a left-continuous, adapted process. Let

Xn(t, ω) = X0(ω)1{0}(0) +

∞∑
i=0

Xi2−n(ω)1(i2−n,(i+1)2−n](t).
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Then for B ∈ BR,

{(t, ω) : Xn(t, ω) ∈ B} = {0} × {ω : X0(ω) ∈ B}

∪
∞⋃
i=0

{
(i2−n, (i+ 1)2−n]× {ω : Xi2−n(ω) ∈ B}

}
which is an event in P, being a countable union of predictable rectangles.
Thus Xn is P-measurable. By left-continuity of X, Xn(t, ω) → X(t, ω) as
n → ∞ for each fixed (t, ω). Since pointwise limits preserve measurability,
X is also P-measurable.

We have shown that P contains σ-fields (a)–(c).

The indicator of a predictable rectangle is itself an adapted caglad pro-
cess, and by definition this subclass of caglad processes generates P. Thus
σ-field (c) contains P. By the same reasoning, also σ-field (b) contains P.

It remains to show that σ-field (a) contains P. We show that all pre-
dictable rectangles lie in σ-field (a) by showing that their indicator functions
are pointwise limits of continuous adapted processes.

If X = 1{0}×F0
for F0 ∈ F0, let

gn(t) =

{
1− nt, 0 ≤ t < 1/n

0, t ≥ 1/n,

and then define Xn(t, ω) = 1F0(ω)gn(t). Xn is clearly continuous. For a
fixed t, writing

Xn(t) =

{
gn(t)1F0 , 0 ≤ t < 1/n

0, t ≥ 1/n,

and noting that F0 ∈ Ft for all t ≥ 0, shows that Xn is adapted. Since
Xn(t, ω) → X(t, ω) as n → ∞ for each fixed (t, ω), {0} × F0 lies in σ-field
(a).

If X = 1(u,v]×F for F ∈ Fu, let

hn(t) =


n(t− u), u ≤ t < u+ 1/n

1, u+ 1/n ≤ t < v

1− n(t− v), v ≤ t ≤ v + 1/n

0, t < u or t > v + 1/n.

Consider only n large enough so that 1/n < v − u. Define Xn(t, ω) =
1F (ω)hn(t), and adapt the previous argument. We leave the missing details
as Exercise 5.3. �

The previous lemma tells us that all continuous adapted processes, all
left-continuous adapted processes, and any process that is a pointwise limit
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[at each (t, ω)] of a sequence of such processes, is predictable. It is impor-
tant to note that left and right continuity are not treated equally in this
theory. The difference arises from the adaptedness requirement. Not all
right continuous processes are predictable. However, an arbitrary determin-
istic process, one that does not depend on ω, is predictable. (See Exercises
5.2 and 5.4).

Given a square-integrable cadlag martingale M , we define its Doléans
measure µM on the predictable σ-field P by

(5.1) µM (A) = E

∫
[0,∞)

1A(t, ω)d[M ]t(ω), A ∈ P.

The meaning of formula (5.1) is that first, for each fixed ω, the function
t 7→ 1A(t, ω) is integrated by the Lebesgue-Stieltjes measure Λ[M ](ω) of the
nondecreasing right-continuous function t 7→ [M ]t(ω). The resulting integral
is a measurable function of ω, which is then averaged over the probability
space (Ω,F , P ) (Exercise 3.13). Recall that our convention for the measure
Λ[M ](ω){0} of the origin is

Λ[M ](ω){0} = [M ]0(ω)− [M ]0−(ω) = 0− 0 = 0.

Consequently integrals over (0,∞) and [0,∞) coincide in (5.1).

Formula (5.1) would make sense for any A ∈ BR+ ⊗ F . But we shall
see that when we want to extend µM beyond P in a useful manner, formula
(5.1) does not always provide the right extension. Since

(5.2) µM ([0, T ]× Ω) = E([M ]T ) = E(M2
T −M2

0 ) <∞

for all T <∞, the measure µM is σ-finite.

Example 5.2 (Brownian motion). If M = B, standard Brownian motion,
we saw in Proposition 2.42 that [B]t = t. Then

µB(A) = E

∫
[0,∞)

1A(t, ω)dt = m⊗ P (A)

where m denotes Lebesgue measure on R+. So the Doléans measure of
Brownian motion is m ⊗ P , the product of Lebesgue measure on R+ and
the probability measure P on Ω.

Example 5.3 (Compensated Poisson process). Let N be a homogeneous
rate α Poisson process on R+ with respect to the filtration {Ft}. Let Mt =
Nt − αt. We claim that the Doléans measure of µM is αm ⊗ P , where as
above m is Lebesgue measure on R+. We have seen that [M ] = N (Example
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3.26). For a predictable rectangle A = (s, t]× F with F ∈ Fs,

µM (A) = E

∫
[0,∞)

1A(u, ω)d[M ]u(ω) = E

∫
[0,∞)

1F (ω)1(s,t](u)dNu(ω)

= E
[
1F · (Nt −Ns)

]
= E

[
1F
]
E
[
(Nt −Ns)

]
= P (F )α(t− s) = αm⊗ P (A).

A crucial step above used the independence of Nt − Ns and Fs which is
part of the definition of a Poisson process. Both measures µM and αm⊗ P
give zero measure to sets of the type {0} × F0. We have shown that µM
and αm⊗ P agree on the class R of predictable rectangles. By Lemma B.5
they then agree on P. For the application of Lemma B.5, note that the
space R+ × Ω can be written as a countable disjoint union of predictable
rectangles: R+ × Ω =

(
{0} × Ω

)
∪
⋃
n≥0(n, n+ 1]× Ω.

For predictable processes X, we define the L2 norm over the set [0, T ]×Ω
under the measure µM by

‖X‖µM ,T =

(∫
[0,T ]×Ω

|X|2 dµM
)1/2

=

(
E

∫
[0,T ]
|X(t, ω)|2d[M ]t(ω)

)1/2

.

(5.3)

Let L2 = L2(M,P) denote the collection of all predictable processes X
such that ‖X‖µM ,T < ∞ for all T < ∞. A metric on L2 is defined by
dL2(X,Y ) = ‖X − Y ‖L2 where

(5.4) ‖X‖L2 =

∞∑
k=1

2−k
(
1 ∧ ‖X‖µM ,k

)
.

L2 is not an L2 space, but instead a local L2 space of sorts. The discussion
following definition (3.20) of the metric on martingales can be repeated
here with obvious changes. In particular, to satisfy the requirement that
dL2(X,Y ) = 0 iff X = Y , we have to regard two processes X and Y in L2

as equal if

(5.5) µM{(t, ω) : X(t, ω) 6= Y (t, ω)} = 0.

Let us say processes X and Y are µM -equivalent if (5.5) holds.

Example 5.4. For both Brownian motion and the compensated Poisson
process, the form of µM tells us that a predictable process X lies in L2 if
and only if

E

∫ T

0
X(s, ω)2 ds <∞ for all T <∞.
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For Brownian motion this is the same integrability requirement as imposed
for the space L2(B) in Chapter 4, except that now we are restricted to
predictable integrands while in Chapter 4 we were able to integrate more
general measurable, adapted processes. This shortcoming will be fixed in
Section 5.5.

Example 5.5. Suppose X is predictable and bounded on bounded time
intervals, in other words there exist constants CT <∞ such that, for almost
every ω and all T < ∞, |Xt(ω)| ≤ CT for 0 ≤ t ≤ T . Then X ∈ L2(M,P)
because

E

∫
[0,T ]

X(s)2 d[M ]s ≤ C2
TE{[M ]T } = C2

TE{M2
T −M2

0 } <∞.

5.1.2. Construction of the stochastic integral. In this section we de-
fine the stochastic integral process (X · M)t =

∫
(0,t]X dM for integrands

X ∈ L2. There are two steps: first an explicit definition of integrals for a
class of processes with a particularly simple structure, and then an approx-
imation step that defines the integral for a general X ∈ L2.

A simple predictable process is a process of the form

(5.6) Xt(ω) = ξ0(ω)1{0}(t) +

n−1∑
i=1

ξi(ω)1(ti,ti+1](t)

where n is a finite integer, 0 = t0 = t1 < t2 < · · · < tn are time points, ξi is
a bounded Fti-measurable random variable on (Ω,F , P ) for 0 ≤ i ≤ n − 1.
We set t1 = t0 = 0 for convenience, so the formula for X covers the interval
[0, tn] without leaving a gap at the origin.

Lemma 5.6. A process of type (5.6) is predictable.

Proof. Immediate from Lemma 5.1 and the left-continuity of X.

Alternatively, here is an elementary argument that shows that X is P-
measurable. For each ξi we can find Fti-measurable simple functions

ηNi =

m(i,N)∑
j=1

βi,Nj 1
F i,Nj

such that ηNi (ω) → ξi(ω) as N → ∞. Here βi,Nj are constants and F i,Nj ∈
Fti . Adding these up, we have that

Xt(ω) = lim
N→∞

{
ηN0 (ω)1{0}(t) +

n−1∑
i=1

ηNi (ω)1(ti,ti+1](t)

}

= lim
N→∞

{m(0,N)∑
j=1

β0,N
j 1{0}×F 0,N

j
(t, ω) +

n−1∑
i=1

m(i,N)∑
j=1

βi,Nj 1
(ti,ti+1]×F i,Nj

(t, ω)

}
.
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The last function is clearly P-measurable, being a linear combination of indi-
cator functions of predictable rectangles. Consequently X is P-measurable
as a pointwise limit of P-measurable functions. �

Definition 5.7. For a simple predictable process of the type (5.6), the
stochastic integral is the process X ·M defined by

(5.7) (X ·M)t(ω) =
n−1∑
i=1

ξi(ω)
(
Mti+1∧t(ω)−Mti∧t(ω)

)
.

Note that our convention is such that the value of X at t = 0 does not
influence the integral. We also write I(X) = X ·M when we need a symbol
for the mapping I : X 7→ X ·M .

Let S2 denote the subspace of L2 consisting of simple predictable pro-
cesses. Any particular element X of S2 can be represented in the form (5.6)
with many different choices of random variables and time intervals. The
first thing to check is that the integral X ·M depends only on the process X
and not on the particular representation (5.6) used. Also, let us check that
the space S2 is a linear space and the integral behaves linearly, since these
properties are not immediately clear from the definitions.

Lemma 5.8. (a) Suppose the process X in (5.6) also satisfies

Xt(ω) = η0(ω)1{0}(t) +

m−1∑
j=1

ηj(ω)1(si,si+1](t)

for all (t, ω), where 0 = s0 = s1 < s2 < · · · < sm < ∞ and ηj is Fsj -
measurable for 0 ≤ j ≤ m− 1. Then for each (t, ω),

n−1∑
i=1

ξi(ω)
(
Mti+1∧t(ω)−Mti∧t(ω)

)
=

m−1∑
j=1

ηi(ω)
(
Msi+1∧t(ω)−Msi∧t(ω)

)
.

In other words, X ·M is independent of the representation.

(b) S2 is a linear space, in other words for X,Y ∈ S2 and reals α and
β, αX + βY ∈ S2. The integral satisfies

(αX + βY ) ·M = α(X ·M) + β(Y ·M).

Proof. Part (a). We may assume sm = tn. For if say tn < sm, replace n
by n + 1, define tn+1 = sm and ξn(ω) = 0, and add the term ξn1(tn,tn+1]

to the {ξi, ti}-representation (5.6) of X. X did not change because the
new term is zero. The stochastic integral X · M then acquires the term
ξn(Mtn+1∧t −Mtn∧t) which is identically zero. Thus the new term in the
representation does not change the value of either Xt(ω) or (X ·M)t(ω).
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Let T = sm = tn, and let 0 = u1 < u2 < · · · < up = T be an ordered
relabeling of the union {sj : 1 ≤ j ≤ m} ∪ {ti : 1 ≤ i ≤ n}. Then for each
1 ≤ k ≤ p− 1 there are unique indices i and j such that

(uk, uk+1] = (ti, ti+1] ∩ (sj , sj+1].

For t ∈ (uk, uk+1], Xt(ω) = ξi(ω) and Xt(ω) = ηj(ω). So for these particular
i and j, ξi = ηj .

The proof now follows from a reordering of the sums for the stochastic
integrals.

n−1∑
i=1

ξi(Mti+1∧t −Mti∧t)

=

n−1∑
i=1

ξi

p−1∑
k=1

(Muk+1∧t −Muk∧t)1{(uk, uk+1] ⊆ (ti, ti+1]}

=

p−1∑
k=1

(Muk+1∧t −Muk∧t)
n−1∑
i=1

ξi1{(uk, uk+1] ⊆ (ti, ti+1]}

=

p−1∑
k=1

(Muk+1∧t −Muk∧t)
m−1∑
j=1

ηj1{(uk, uk+1] ⊆ (sj , sj+1]}

=
m−1∑
j=1

ηj

p−1∑
k=1

(Muk+1∧t −Muk∧t)1{(uk, uk+1] ⊆ (sj , sj+1]}

=

m−1∑
j=1

ηj(Msj+1∧t −Msj∧t).

Part (b). Suppose we are given two simple predictable processes

Xt = ξ01{0}(t) +
n−1∑
i=1

ξi1(ti,ti+1](t)

and

Yt = η01{0}(t) +
m−1∑
j=1

ηj1(si,si+1](t).

As above, we can assume that T = tn = sm by adding a zero term to one of
these processes. As above, let {uk : 1 ≤ k ≤ p} be the common refinement
of {sj : 1 ≤ j ≤ m} and {ti : 1 ≤ i ≤ n}, as partitions of [0, T ]. Given
1 ≤ k ≤ p− 1, let i = i(k) and j = j(k) be the indices defined by

(uk, uk+1] = (ti, ti+1] ∩ (sj , sj+1].
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Define ρk(ω) = ξi(k)(ω) and ζk(ω) = ηj(k)(ω). Then

Xt = ξ01{0}(t) +

p−1∑
k=1

ρk1(uk,uk+1](t)

and

Yt = η01{0}(t) +

p−1∑
k=1

ζk1(uk,uk+1](t).

The representation

αXt + βYt = (αξ0 + βη0)1{0}(t) +

p−1∑
k=1

(αρk + βζk)1(uk,uk+1](t)

shows that αX + βY is a member of S2. According to part (a) proved
above, we can write the stochastic integrals based on these representations,
and then linearity of the integral is clear. �

To build a more general integral on definition (5.7), we need some con-
tinuity properties.

Lemma 5.9. Let X ∈ S2. Then X ·M is a square-integrable cadlag mar-
tingale. If M is continuous, then so is X ·M . These isometries hold: for
all t > 0

(5.8) E
[
(X ·M)2

t

]
=

∫
[0,t]×Ω

X2 dµM

and

(5.9) ‖X ·M‖M2 = ‖X‖L2 .

Proof. The cadlag property for each fixed ω is clear from the definition
(5.7) of X ·M , as is the continuity if M is continuous to begin with.

Linear combinations of martingales are martingales. So to prove that
X ·M is a martingale it suffices to check this statement: if M is a mar-
tingale, u < v and ξ is a bounded Fu-measurable random variable, then
Zt = ξ(Mt∧v −Mt∧u) is a martingale. The boundedness of ξ and integrabil-
ity of M guarantee integrability of Zt. Take s < t.

First, if s < u, then

E[Zt|Fs] = E
[
ξ(Mt∧v −Mt∧u)

∣∣ Fs]
= E

[
ξE{Mt∧v −Mt∧u|Fu}

∣∣ Fs]
= 0 = Zs
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because Mt∧v −Mt∧u = 0 for t ≤ u, and for t > u the martingale property
of M gives

E{Mt∧v −Mt∧u|Fu} = E{Mt∧v|Fu} −Mu = 0.

Second, if s ≥ u, then also t > s ≥ u, and it follows that ξ is Fs-
measurable and Mt∧u = Mu = Ms∧u is also Fs-measurable. Then

E[Zt|Fs] = E
[
ξ(Mt∧v −Mt∧u)

∣∣ Fs]
= ξE

[
Mt∧v −Ms∧u

∣∣ Fs]
= ξ
(
E[Mt∧v|Fs]−Ms∧u

)
= ξ(Ms∧v −Ms∧u) = Zs.

In the last equality above, either s ≥ v in which case Mt∧v = Mv = Ms∧v
is Fs-measurable, or s < v in which case we use the martingale property of
M .

We have proved that X ·M is a martingale.

Next we prove (5.8). After squaring,

(X ·M)2
t =

n−1∑
i=1

ξ2
i

(
Mt∧ti+1 −Mt∧ti

)2
+ 2

∑
i<j

ξiξj(Mt∧ti+1 −Mt∧ti)(Mt∧tj+1 −Mt∧tj ).

We claim that each term of the last sum has zero expectation. Since i < j,
ti+1 ≤ tj and both ξi and ξj are Ftj -measurable.

E
[
ξiξj(Mt∧ti+1 −Mt∧ti)(Mt∧tj+1 −Mt∧tj )

]
= E

[
ξiξj(Mt∧ti+1 −Mt∧ti)E{Mt∧tj+1 −Mt∧tj |Ftj}

]
= 0

because the conditional expectation vanishes, either trivially if t ≤ tj , or by
the martingale property of M if t > tj .

Now we can compute the mean of the square. Let t > 0. The key point
of the next calculation is the fact that M2 − [M ] is a martingale.

E
[
(X ·M)2

t

]
=

n−1∑
i=1

E
[
ξ2
i

(
Mt∧ti+1 −Mt∧ti

)2]
=

n−1∑
i=1

E
[
ξ2
iE
{

(Mt∧ti+1 −Mt∧ti)
2
∣∣ Fti}]

=

n−1∑
i=1

E
[
ξ2
iE
{
M2
t∧ti+1

−M2
t∧ti

∣∣ Fti}]
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=

n−1∑
i=1

E
[
ξ2
iE
{

[M ]t∧ti+1 − [M ]t∧ti
∣∣ Fti}]

=
n−1∑
i=1

E
[
ξ2
i

(
[M ]t∧ti+1 − [M ]t∧ti

)]
=

n−1∑
i=1

E
[
ξ2
i

∫
[0,t]

1(ti,ti+1](s) d[M ]s

]
= E

[∫
[0,t]

(
ξ2

01{0}(s) +

n−1∑
i=1

ξ2
i 1(ti,ti+1](s)

)
d[M ]s

]

= E

[∫
[0,t]

(
ξ01{0}(s) +

n−1∑
i=1

ξi1(ti,ti+1](s)
)2
d[M ]s

]
=

∫
[0,t]×Ω

X2dµM .

In the third last equality we added the term ξ2
01{0}(s) inside the d[M ]s-

integral because this term integrates to zero (recall that Λ[M ]{0} = 0). In
the second last equality we used the equality

ξ2
01{0}(s) +

n−1∑
i=1

ξ2
i 1(ti,ti+1](s) =

(
ξ01{0}(s) +

n−1∑
i=1

ξi1(ti,ti+1](s)
)2

which is true due to the pairwise disjointness of the time intervals.

The above calculation checks that

‖(X ·M)t‖L2(P ) = ‖X‖µM ,t
for any t > 0. Comparison of formulas (3.20) and (5.4) then proves (5.9). �

Let us summarize the message of Lemmas 5.8 and 5.9 in words. The
stochastic integral I : X 7→ X · M is a linear map from the space S2 of
predictable simple processes into M2. Equality (5.9) says that this map is
a linear isometry that maps from the subspace (S2, dL2) of the metric space
(L2, dL2), and into the metric space (M2, dM2). In case M is continuous,
the map goes into the space (Mc

2, dM2).

A consequence of (5.9) is that if X and Y satisfy (5.5) then X ·M and
Y ·M are indistinguishable. For example, we may have Yt = Xt+ ζ1{t = 0}
for a bounded F0-measurable random variable ζ. Then the integrals X ·M
and Y ·M are indistinguishable, in other words the same process. This is
no different from the analytic fact that changing the value of a function f
on [a, b] at a single point (or even at countably many points) does not affect

the value of the integral
∫ b
a f(x) dx.
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We come to the approximation step.

Lemma 5.10. For any X ∈ L2 there exists a sequence Xn ∈ S2 such that
‖X −Xn‖L2 → 0.

Proof. Let L̃2 denote the class of X ∈ L2 for which this approximation is

possible. Of course S2 itself is a subset of L̃2.

Indicator functions of time-bounded predictable rectangles are of the
form

1{0}×F0
(t, ω) = 1F0(ω)1{0}(t),

or

1(u,v]×F (t, ω) = 1F (ω)1(u,v](t),

for F0 ∈ F0, 0 ≤ u < v < ∞, and F ∈ Fu. They are elements of S2 due to
(5.2). Furthermore, since S2 is a linear space, it contains all simple functions
of the form

(5.10) X(t, ω) =
n∑
i=0

ci1Ri(t, ω)

where {ci} are finite constants and {Ri} are time-bounded predictable rect-
angles.

The approximation of predictable processes proceeds from constant mul-
tiples of indicator functions of predictable sets through P-measurable simple
functions to the general case.

Step 1. Let G ∈ P be an arbitrary set and c ∈ R. We shall show that

X = c1G lies in L̃2. We can assume c 6= 0, otherwise X = 0 ∈ S2. Again by
(5.2) c1G ∈ L2 because

‖c1G‖µM ,T = |c| · µ
(
G ∩ ([0, T ]× Ω)

)1/2
<∞

for all T <∞.

Given ε > 0 fix n large enough so that 2−n < ε/2. Let Gn = G∩([0, n]×
Ω). Consider the restricted σ-algebra

Pn = {A ∈ P : A ⊆ [0, n]× Ω} = {B ∩ ([0, n]× Ω) : B ∈ P}.

Pn is generated by the collection Rn of predictable rectangles that lie in
[0, n]×Ω (Exercise 1.8 part (d)). Rn is a semialgebra in the space [0, n]×Ω.
(For this reason it is convenient to regard ∅ as a member ofRn.) The algebra
An generated by Rn is the collection of all finite disjoint unions of members
ofRn (Lemma B.1). Restricted to [0, n]×Ω, µM is a finite measure. Thus by
Lemma B.2 there exists R ∈ An such that µM (Gn4R) < |c|−2ε2/4. We can
write R = R1∪· · ·∪Rp as a finite disjoint union of time-bounded predictable
rectangles.
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Let Z = c1R. By the disjointness,

Z = c1R = c1
{ p⋃
i=1

Ri

}
=

p∑
i=1

c1Ri

so in fact Z is of type (5.10) and a member of S2. The L2-distance between
Z = c1R and X = c1G is now estimated as follows.

‖Z −X‖L2 ≤
n∑
k=1

2−k‖c1R − c1G‖µM ,k + 2−n

≤
n∑
k=1

2−k|c|
(∫

[0,k]×Ω
|1R − 1G|2 dµM

)1/2

+ ε/2

≤ |c|
(∫

[0,n]×Ω
|1R − 1Gn |2 dµM

)1/2

+ ε/2

= |c|µM (Gn4R)1/2 + ε/2 ≤ ε.

Above we bounded integrals over [0, k]×Ω with the integral over [0, n]×Ω
for 1 ≤ k ≤ n, then noted that 1G(t, ω) = 1Gn(t, ω) for (t, ω) ∈ [0, n] × Ω,
and finally used the general fact that

|1A − 1B| = 1A4B

for any two sets A and B.

To summarize, we have shown that given G ∈ P, c ∈ R, and ε > 0,
there exists a process Z ∈ S2 such that ‖Z − c1G‖L2 ≤ ε. Consequently

c1G ∈ L̃2.

Let us observe that L̃2 is closed under addition. Let X,Y ∈ L̃2 and
Xn, Yn ∈ S2 be such that ‖Xn − X‖L2 and ‖Yn − Y ‖L2 vanish as n → ∞.
Then Xn + Yn ∈ S2 and by the triangle inequality

‖(X + Y )− (Xn + Yn)‖L2 ≤ ‖Xn −X‖L2 + ‖Xn −X‖L2 → 0.

From this and the proof for c1G we conclude that all simple functions of the
type

(5.11) X =

n∑
i=1

ci1Gi , with ci ∈ R and Gi ∈ P,

lie in L̃2.

Step 2. Let X be an arbitrary process in L2. Given ε > 0, pick n so
that 2−n < ε/3. Find simple functions Xm of the type (5.11) such that |X−
Xm| ≤ |X| and Xm(t, ω)→ X(t, ω) for all (t, ω). This is just an instance of
the general approximation of measurable functions with simple functions, as
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for example in (1.3). Since X ∈ L2([0, n]×Ω,Pn, µM ), Lebesgue’s dominated
convergence theorem implies for 1 ≤ k ≤ n that

lim sup
m→∞

‖X −Xm‖µM ,k ≤ lim
m→∞

(∫
[0,n]×Ω

|X −Xm|2 dµM
)1/2

= 0.

Consequently

lim sup
m→∞

‖X −Xm‖L2 ≤
n∑
k=1

2−k lim sup
m→∞

‖X −Xm‖µM ,k + ε/3 = ε/3.

Fix m large enough so that ‖X−Xm‖L2 ≤ ε/2. Using Step 1 find a process
Z ∈ S2 such that ‖Xm − Z‖L2 < ε/2. Then by the triangle inequality
‖X − Z‖L2 ≤ ε. We have shown that an arbitrary process X ∈ L2 can be
approximated by simple predictable processes in the L2-distance. �

Now we can state formally the definition of the stochastic integral.

Definition 5.11. Let M be a square-integrable cadlag martingale on a
probability space (Ω,F , P ) with filtration {Ft}. For any predictable process
X ∈ L2(M,P), the stochastic integral I(X) = X ·M is the square-integrable
cadlag martingale that satisfies

lim
n→∞

‖X ·M −Xn ·M‖M2 = 0

for every sequence Xn ∈ S2 of simple predictable processes such that ‖X −
Xn‖L2 → 0. The process I(X) is unique up to indistinguishability. If M is
continuous, then so is X ·M .

Justification of the definition. Here is the argument that justifies the
claims implicit in the definition. It is really the classic argument about
extending a uniformly continuous map into a complete metric space to the
closure of its domain.

Existence. Let X ∈ L2. By Lemma 5.10 there exists a sequence Xn ∈ S2

such that ‖X − Xn‖L2 → 0. From the triangle inequality it then follows
that {Xn} is a Cauchy sequence in L2: given ε > 0, choose n0 so that
‖X −Xn‖L2 ≤ ε/2 for n ≥ n0. Then if m,n ≥ n0,

‖Xm −Xn‖L2 ≤ ‖Xm −X‖L2 + ‖X −Xn‖L2 ≤ ε.

For Xn ∈ S2 the stochastic integral Xn ·M was defined in (5.7). By the
isometry (5.9) and the additivity of the integral,

‖Xm ·M −Xn ·M‖M2 = ‖(Xm −Xn) ·M‖M2 = ‖Xm −Xn‖L2 .

Consequently {Xn ·M} is a Cauchy sequence in the spaceM2 of martingales.
If M is continuous this Cauchy sequence lies in the spaceMc

2. By Theorem
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3.41 these spaces are complete metric spaces, and consequently there exists
a limit process Y = limn→∞Xn ·M . This process Y we call I(X) = X ·M .

Uniqueness. Let Zn be another sequence in S2 that converges to X in
L2. We need to show that Zn ·M converges to the same Y = X ·M inM2.
This follows again from the triangle inequality and the isometry:

‖Y − Zn ·M‖M2 ≤ ‖Y −Xn ·M‖M2 + ‖Xn ·M − Zn ·M‖M2

= ‖Y −Xn ·M‖M2 + ‖Xn − Zn‖L2
≤ ‖Y −Xn ·M‖M2 + ‖Xn −X‖L2 + ‖X − Zn‖L2 .

All terms on the last line vanish as n → ∞. This shows that Zn ·M → Y ,
and so there is only one process Y = X ·M that satisfies the description of
the definition.

Note that the uniqueness of the stochastic integral cannot hold in a sense
stronger than indistinguishability. If W is a process that is indistinguishable
from X ·M , which meant that

P{ω : Wt(ω) = (X ·M)t(ω) for all t ∈ R+} = 1,

then W also has to be regarded as the stochastic integral. This is built into
the definition of I(X) as the limit: if ‖X ·M −Xn ·M‖M2 → 0 and W is
indistinguishable from X ·M , then also ‖W −Xn ·M‖M2 → 0. �

The definition of the stochastic integral X ·M feels somewhat abstract
because the approximation happens in a space of processes, and it may not
seem obvious how to produce the approximating predictable simple processes
Xn. When X is caglad, one can use Riemann sum type approximations
with X-values evaluated at left endpoints of partition intervals. To get L2

approximation, one must truncate the process, and then let the mesh of the
partition shrink fast enough and the number of terms in the simple process
grow fast enough. See Proposition 5.32 and Exercise 5.13.

We took the approximation step in the space of martingales to avoid
separate arguments for the path properties of the integral. The completeness
of the space of cadlag martingales and the space of continuous martingales
gives immediately a stochastic integral with the appropriate path regularity.

As for the style of convergence in the definition of the integral, let us
recall that convergence in the spaces of processes actually reduces back to
familiar mean-square convergence. ‖Xn−X‖L2 → 0 is equivalent to having∫

[0,T ]×Ω
|Xn −X|2 dµM → 0 for all T <∞.
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Convergence inM2 is equivalent to L2(P ) convergence at each fixed time t:

for martingales N (j), N ∈M2,

‖N (j) −N‖M2 → 0

if and only if

E
[

(N
(j)
t −Nt)

2
]
→ 0 for each t ≥ 0.

In particular, at each time t ≥ 0 the integral (X ·M)t is the mean-square
limit of the integrals (Xn ·M)t of approximating simple processes. These
observations are used in the extension of the isometric property of the inte-
gral.

Proposition 5.12. Let M ∈ M2 and X ∈ L2(M,P). Then we have the
isometries

(5.12) E
[
(X ·M)2

t

]
=

∫
[0,t]×Ω

X2 dµM for all t ≥ 0,

and

(5.13) ‖X ·M‖M2 = ‖X‖L2 .

In particular, if X,Y ∈ L2(M,P) are µM -equivalent in the sense (5.5), then
X ·M and Y ·M are indistinguishable.

Proof. As already observed, the triangle inequality is valid for the distance
measures ‖ · ‖L2 and ‖ · ‖M2 . From this we get a continuity property. Let
Z,W ∈ L2.

‖Z‖L2 − ‖W‖L2 ≤ ‖Z −W‖L2 + ‖W‖L2 − ‖W‖L2
≤ ‖Z −W‖L2 .

This and the same inequality with Z and W switched give

(5.14)
∣∣ ‖Z‖L2 − ‖W‖L2 ∣∣ ≤ ‖Z −W‖L2 .

This same calculation applies to ‖ · ‖M2 also, and of course equally well to
the L2 norms on Ω and [0, T ]× Ω.

Let Xn ∈ S2 be a sequence such that ‖Xn −X‖L2 → 0. As we proved
in Lemma 5.9, the isometries hold for Xn ∈ S. Consequently to prove the
proposition we need only let n→∞ in the equalities

E
[
(Xn ·M)2

t

]
=

∫
[0,t]×Ω

X2
n dµM

and

‖Xn ·M‖M2 = ‖Xn‖L2
that come from Lemma 5.9. Each term converges to the corresponding term
with Xn replaced by X.
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The last statement of the proposition follows because ‖X − Y ‖L2 = 0
iff X and Y are µM -equivalent, and ‖X ·M − Y ·M‖M2 = 0 iff X ·M and
Y ·M are indistinguishable. �

Remark 5.13 (Enlarging the filtration). Throughout we assume that M
is a cadlag martingale. By Proposition 3.2, if our original filtration {Ft}
is not already right-continuous, we can replace it with the larger filtration
{Ft+}. Under the filtration {Ft+} we have more predictable rectangles than
before, and hence P+ (the predictable σ-field defined in terms of {Ft+})
is potentially larger than our original predictable σ-field P. The relevant
question is whether switching to {Ft+} and P+ gives us more processes X
to integrate? The answer is essentially no. Only the value at t = 0 of a P+-
measurable process differentiates it from a P-measurable process (Exercise
5.5). And as already seen, the value X0 is irrelevant for the stochastic
integral.

5.1.3. Properties of the stochastic integral. We prove here basic prop-
erties of the L2 integral X ·M constructed in Definition 5.11. Many of these
properties really amount to saying that the notation works the way we would
expect it to work. Those properties that take the form of an equality between
two stochastic integrals are interpreted in the sense that the two processes
are indistinguishable. Since the stochastic integrals are cadlag processes,
indistinguishability follows from showing almost sure equality at all fixed
times (Lemma 2.5).

The stochastic integral X ·M was defined as a limit Xn ·M → X ·M
inM2-space, where Xn ·M are stochastic integrals of approximating simple
predictable processes Xn. Recall that this implies that for a fixed time t, (X ·
M)t is the L2(P )-limit of the random variables (Xn ·M)t. And furthermore,
there is uniform convergence in probability on compact intervals:

(5.15) lim
n→∞

P
{

sup
0≤t≤T

∣∣(Xn ·M)t − (X ·M)t
∣∣ ≥ ε} = 0

for each ε > 0 and T < ∞. By the Borel-Cantelli lemma, along some
subsequence {nj} there is almost sure convergence uniformly on compact
time intervals: for P -almost every ω

lim
n→∞

sup
0≤t≤T

∣∣(Xnj ·M)t(ω)− (X ·M)t(ω)
∣∣ = 0 for each T <∞.

These last two statements are general properties of M2-convergence, see
Lemma 3.42.

A product of functions of t, ω, and (t, ω) is regarded as a process in
the obvious sense: for example, if X is a process, Z is a random variable
and f is a function on R+, then fZX is the process whose value at (t, ω)
is f(t)Z(ω)X(t, ω). This just amounts to taking some liberties with the
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notation: we do not distinguish notationally between the function t 7→ f(t)
on R+ and the function (t, ω) 7→ f(t) on R+ × Ω.

Throughout these proofs, when Xn ∈ S2 approximates X ∈ L2, we write
Xn generically in the form

(5.16) Xn(t, ω) = ξ0(ω)1{0}(t) +
k−1∑
i=1

ξi(ω)1(ti,ti+1](t).

We introduce the familiar integral notation through the definition

(5.17)

∫
(s,t]

X dM = (X ·M)t − (X ·M)s for 0 ≤ s ≤ t.

To explicitly display either the time variable (the integration variable), or
the sample point ω, this notation has variants such as∫

(s,t]
X dM =

∫
(s,t]

Xu dMu =

∫
(s,t]

Xu(ω) dMu(ω).

When the martingale M is continuous, we can also write∫ t

s
X dM

because then including or excluding endpoints of the interval make no dif-
ference (Exercise 5.6). We shall alternate freely between the different nota-
tions for the stochastic integral, using whichever seems more clear, compact
or convenient.

Since (X ·M)0 = 0 for any stochastic integral,∫
(0,t]

X dM = (X ·M)t.

It is more accurate to use the interval (0, t] above rather than [0, t] because
the integral does not take into consideration any jump of the martingale at

the origin. Precisely, if ζ is an F0-measurable random variable and M̃t =

ζ + Mt, then [M̃ ] = [M ], the spaces L2(M̃,P) and L(M,P) coincide, and

X · M̃ = X ·M for each admissible integrand. (It starts with definition
(5.7).)

An integral of the type∫
(u,v]

G(s, ω) d[M ]s(ω)

is interpreted as a path-by-path Lebesgue-Stieltjes integral (in other words,
evaluated as an ordinary Lebesgue-Stieltjes integral over (u, v] separately for
each fixed ω).
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Proposition 5.14. (a) Linearity:

(αX + βY ) ·M = α(X ·M) + β(Y ·M).

(b) For any 0 ≤ u ≤ v,

(5.18)

∫
(0,t]

1[0,v]X dM =

∫
(0,v∧t]

X dM

and ∫
(0,t]

1(u,v]X dM = (X ·M)v∧t − (X ·M)u∧t

=

∫
(u∧t,v∧t]

X dM.

(5.19)

The inclusion or exclusion of the origin in the interval [0, v] is immaterial be-
cause a process of the type 1{0}(t)X(t, ω) for X ∈ L2(M,P) is µM -equivalent
to the identically zero process, and hence has zero stochastic integral.

(c) For s < t, we have a conditional form of the isometry:

(5.20) E
[(

(X ·M)t − (X ·M)s
)2 ∣∣ Fs] = E

[∫
(s,t]

X2
u d[M ]u

∣∣∣∣ Fs].
This implies that

(X ·M)2
t −

∫
(0,t]

X2
u d[M ]u

is a martingale.

Proof. Part (a). Take limits in Lemma 5.8(b).

Part (b). If Xn ∈ S2 approximate X, then

1[0,v](t)Xn(t) = ξ01{0}(t) +
k−1∑
i=1

ξi1(ti∧v,ti+1∧v](t)

are simple predictable processes that approximate 1[0,v]X.

(
(1[0,v]Xn) ·M

)
t

=
k−1∑
i=1

ξi(Mti+1∧v∧t −Mti∧v∧t)

= (Xn ·M)v∧t.

Letting n → ∞ along a suitable subsequence gives in the limit the almost
sure equality (

(1[0,v]X) ·M
)
t

= (X ·M)v∧t

which is (5.18). The second part (5.19) comes from 1(u,v]X = 1[0,v]X −
1[0,u]X, the additivity of the integral, and definition (5.17).
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Part (c). First we check this for the simple process Xn in (5.16). This
is essentially a redoing of the calculations in the proof of Lemma 5.9. Let
s < t. If s ≥ sk then both sides of (5.20) are zero. Otherwise, fix an index
1 ≤ m ≤ k − 1 such that tm ≤ s < tm+1. Then

(Xn ·M)t − (Xn ·M)s = ξm(Mtm+1∧t −Ms) +
k−1∑

i=m+1

ξi(Mti+1∧t −Mti∧t)

=
k−1∑
i=m

ξi(Mui+1∧t −Mui∧t)

where we have temporarily defined um = s and ui = ti for i > m. After
squaring,

((Xn ·M)t − (Xn ·M)s)
2 =

k−1∑
i=m

ξ2
i

(
Mui+1∧t −Mui∧t

)2
+ 2

∑
m≤i<j<k

ξiξj(Mui+1∧t −Mui∧t)(Muj+1∧t −Muj∧t).

We claim that the cross terms vanish under the conditional expectation.
Since i < j, ui+1 ≤ uj and both ξi and ξj are Fuj -measurable.

E
[
ξiξj(Mui+1∧t −Mui∧t)(Muj+1∧t −Muj∧t)

∣∣ Fs]
= E

[
ξiξj(Mui+1∧t −Mui∧t)E{Muj+1∧t −Muj∧t|Fuj}

∣∣ Fs] = 0

because the inner conditional expectation vanishes by the martingale prop-
erty of M .

Now we can compute the conditional expectation of the square.

E
[(

(Xn ·M)t − (Xn ·M)s
)2 ∣∣ Fs] =

k−1∑
i=m

E
[
ξ2
i

(
Mui+1∧t −Mui∧t

)2 ∣∣ Fs]
=

k−1∑
i=m

E
[
ξ2
iE
{

(Mui+1∧t −Mui∧t)
2
∣∣ Fui} ∣∣ Fs]

=

k−1∑
i=m

E
[
ξ2
iE
{
M2
ui+1∧t −M

2
ui∧t

∣∣ Fui} ∣∣ Fs]
=

k−1∑
i=m

E
[
ξ2
iE
{

[M ]ui+1∧t − [M ]ui∧t
∣∣ Fui} ∣∣ Fs]

=

k−1∑
i=m

E
[
ξ2
i

(
[M ]ui+1∧t − [M ]ui∧t

) ∣∣ Fs]
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=
k−1∑
i=m

E
[
ξ2
i

∫
(s,t]

1(ui,ui+1](u) d[M ]u

∣∣∣ Fs]

= E

[∫
(s,t]

(
ξ01{0}(u) +

k−1∑
i=1

ξ2
i 1(ti,ti+1](u)

)
d[M ]u

∣∣∣∣ Fs]

= E

[∫
(s,t]

(
ξ01{0}(u) +

k−1∑
i=1

ξi1(ti,ti+1](u)
)2
d[M ]u

∣∣∣∣ Fs]
= E

[∫
(s,t]

Xn(u, ω)2 d[M ]u(ω)

∣∣∣∣ Fs]
Inside the d[M ]u integral above we replaced the ui’s with ti’s because for
u ∈ (s, t], 1(ui,ui+1](u) = 1(ti,ti+1](u). Also, we brought in the terms for
i < m because these do not influence the integral, as they are supported on
[0, tm] which is disjoint from (s, t].

Next let X ∈ L2 be general, and Xn → X in L2. The limit n → ∞ is
best taken with expectations, so we rewrite the conclusion of the previous
calculation as

E
[
((Xn ·M)t − (Xn ·M)s)

21A
]

= E

[
1A

∫
(s,t]

X2
n(u) d[M ]u

]
for an arbitrary A ∈ Fs. Rewrite this once again as

E
[
(Xn ·M)2

t 1A
]
− E

[
(Xn ·M)2

s 1A
]

=

∫
(s,t]×A

X2
n dµM .

All terms in this equality converge to the corresponding integrals with Xn

replaced by X, because (Xn ·M)t → (X ·M)t in L2(P ) and Xn → X in
L2((0, t] × Ω, µM ) (see Lemma A.16 in the Appendix for the general idea).
As A ∈ Fs is arbitrary, (5.20) is proved. �

Given stopping times σ and τ we can define various stochastic intervals.
These are subsets of R+ ×Ω. Here are two examples which are elements of
P:

[0, τ ] = {(t, ω) ∈ R+ × Ω : 0 ≤ t ≤ τ(ω)},
and

(σ, τ ] = {(t, ω) ∈ R+ × Ω : σ(ω) < t ≤ τ(ω)}.
If τ(ω) = ∞, the ω-section of [0, τ ] is [0,∞), because (∞, ω) is not a point
in the space R+×Ω. If σ(ω) =∞ then the ω-section of (σ, τ ] is empty. The
path t 7→ 1[0,τ ](t, ω) = 1[0,τ(ω)](t) is adapted and left-continuous with right
limits. Hence by Lemma 5.1 the indicator function 1[0,τ ] is P-measurable.
The same goes for 1(σ,τ ]. If X is a predictable process, then so is the product
1[0,τ ]X.
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Recall also the notion of a stopped process M τ defined by M τ
t = Mτ∧t.

If M ∈M2 then also M τ ∈M2, because Lemma 3.5 implies

E[M2
τ∧t] ≤ 2E[M2

t ] + E[M2
0 ].

We insert a lemma on the effect of stopping on the Doléans measure.

Lemma 5.15. Let M ∈ M2 and τ a stopping time. Then for any P-
measurable nonnegative function Y ,

(5.21)

∫
R+×Ω

Y dµMτ =

∫
R+×Ω

1[0,τ ]Y dµM .

Proof. Consider first a nondecreasing cadlag function G on [0,∞). For
u > 0, define the stopped function Gu by Gu(t) = G(u ∧ t). Then the
Lebesgue-Stieltjes measures satisfy∫

(0,∞)
h dΛGu =

∫
(0,∞)

1(0,u]hΛG

for every nonnegative Borel function h. This can be justified by the π-λ
Theorem. For any interval (a, b],

ΛGu(s, t] = Gu(t)−Gu(s) = G(u ∧ t)−G(u ∧ s) = ΛG
(
(s, t] ∩ (0, u]

)
.

Then by Lemma B.5 the measures ΛGu and ΛG( · ∩ (0, u]) coincide on all
Borel sets of (0,∞). The equality extends to [0,∞) if we set G(0−) = G(0)
so that the measure of {0} is zero under both measures.

Now fix ω and apply the preceding. By Lemma 3.28, [M τ ] = [M ]τ , and
so ∫

[0,∞)
Y (s, ω) d[M τ ]s(ω) =

∫
[0,∞)

Y (s, ω) d[M ]τs(ω)

=

∫
[0,∞)

1[0,τ(ω)](s)Y (s, ω) d[M ]s(ω).

Taking expectation over this equality gives the conclusion. �

The lemma implies that the measure µMτ is absolutely continuous with
respect to µM , and furthermore that L2(M,P) ⊆ L2(M τ ,P).

Proposition 5.16. Let M ∈ M2, X ∈ L2(M,P), and let τ be a stopping
time.

(a) Let Z be a bounded Fτ -measurable random variable. Then Z1(τ,∞)X
and 1(τ,∞)X are both members of L2(M,P), and

(5.22)

∫
(0,t]

Z1(τ,∞)X dM = Z

∫
(0,t]

1(τ,∞)X dM.
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(b) The integral behaves as follows under stopping:

(5.23)
(
(1[0,τ ]X) ·M

)
t

= (X ·M)τ∧t = (X ·M τ )t.

(c) Let also N ∈ M2 and Y ∈ L2(N,P). Suppose there is a stopping
time σ such that Xt(ω) = Yt(ω) and Mt(ω) = Nt(ω) for 0 ≤ t ≤ σ(ω). Then
(X ·M)σ∧t = (Y ·N)σ∧t for all t ≥ 0.

Remark 5.17. Equation (5.23) implies that τ can appear in any subset of
the three locations. For example,

(X ·M)τ∧t = (X ·M)τ∧τ∧t = (X ·M τ )τ∧t

= (X ·M τ )τ∧τ∧t =
(
(1[0,τ ]X) ·M τ

)
τ∧t.

(5.24)

Proof. (a) Z1(τ,∞) is P-measurable because it is an adapted caglad process.
(This process equals Z if t > τ , otherwise it vanishes. If t > τ then Fτ ⊆ Ft
which implies that Z is Ft-measurable.) This takes care of the measurability
issue. Multiplying X ∈ L2(M,P) by something bounded and P-measurable
creates a process in L2(M,P).

Assume first τ = u, a deterministic time. Let Xn as in (5.16) approxi-
mate X in L2. Then

1(u,∞)Xn =

k−1∑
i=1

ξi1(u∨ti,u∨ti+1]

approximates 1(u,∞)X in L2. And

Z1(u,∞)Xn =

k−1∑
i=1

Zξi1(u∨ti,u∨ti+1]

are elements of S2 that approximate Z1(u,∞)X in L2. Their integrals are

(
(Z1(u,∞)Xn) ·M

)
t

=

k−1∑
i=1

Zξi(M(u∨ti+1)∧t −M(u∨ti)∧t)

= Z
(
(1(u,∞)Xn) ·M

)
t
.

Letting n→∞ along a suitable subsequence gives almost sure convergence
of both sides of this equality to the corresponding terms in (5.22) at time t,
in the case τ = u.

Now let τ be a general stopping time. Define τm by

τm =

{
i2−m, if (i− 1)2−m ≤ τ < i2−m for some 1 ≤ i ≤ 2mm

∞, if τ ≥ m.

Pointwise τm ↘ τ as m↗∞, and 1(τm,∞) ↗ 1(τ,∞). Both

1{(i−1)2−m≤τ<i2−m} and 1{(i−1)2−m≤τ<i2−m}Z
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are Fi2−m-measurable for each i. (The former by definition of a stopping
time, the latter by Exercise 2.9.) The first part proved above applies to each
such random variable with u = i2−m.

(Z1(τm,∞)X) ·M =

( 2mm∑
i=1

1{(i−1)2−m≤τ<i2−m}Z1(i2−m,∞)X

)
·M

= Z

2mm∑
i=1

1{(i−1)2−m≤τ<i2−m}
(
1(i2−m,∞)X

)
·M

= Z

( 2mm∑
i=1

1{(i−1)2−m≤τ<i2−m}1(i2−m,∞)X

)
·M

= Z
(
(1(τm,∞)X) ·M

)
.

Let m → ∞. Because Z1(τm,∞)X → Z1(τ,∞)X and 1(τm,∞)X → 1(τ,∞)X
in L2, both extreme members of the equalities above converge inM2 to the
corresponding martingales with τm replaced by τ . This completes the proof
of part (a).

Part (b). We prove the first equality in (5.23). Let τn = 2−n(b2nτc+ 1)
be the usual discrete approximation that converges down to τ as n → ∞.
Let `(n) = b2ntc+ 1. Since τ ≥ k2−n iff τn ≥ (k + 1)2−n,

(X ·M)τn∧t =

`(n)∑
k=0

1{τ ≥ k2−n}
(
(X ·M)(k+1)2−n∧t − (X ·M)k2−n∧t

)
=

`(n)∑
k=0

1{τ ≥ k2−n}
∫

(0,t]
1(k2−n,(k+1)2−n]X dM

=

`(n)∑
k=0

∫
(0,t]

1{τ ≥ k2−n}1(k2−n,(k+1)2−n]X dM

=

∫
(0,t]

(
1{0}X +

`(n)∑
k=0

1{τ ≥ k2−n}1(k2−n,(k+1)2−n]X
)
dM

=

∫
(0,t]

1[0,τn]X dM.

In the calculation above, the second equality comes from (5.19), the third
from (5.22) where Z is the Fk2−n-measurable 1{τ ≥ k2−n}. The next to
last equality uses additivity and adds in the term 1{0}X that integrates to
zero. The last equality comes from the observation that for s ∈ [0, t]

1[0,τn](s, ω) = 1{0}(s) +

`(n)∑
k=0

1{τ≥k2−n}(ω)1(k2−n,(k+1)2−n](s).
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Now let n → ∞. By right-continuity, (X ·M)τn∧t → (X ·M)τ∧t. To show
that the last term of the string of equalities converges to

(
(1[0,τ ]X) ·M

)
t
, it

suffices to show, by the isometry (5.12), that

lim
n→∞

∫
[0,t]×Ω

∣∣1[0,τn]X − 1[0,τ ]X
∣∣2 dµM = 0.

This follows from dominated convergence. The integrand vanishes as n→∞
because

1[0,τn](t, ω)− 1[0,τ ](t, ω) =

{
0, τ(ω) =∞
1{τ(ω) < t ≤ τn(ω)}, τ(ω) <∞

and τn(ω)↘ τ(ω). The integrand is bounded by |X|2 for all n, and∫
[0,t]×Ω

|X|2 dµM <∞

by the assumption X ∈ L2. This completes the proof of the first equality in
(5.23).

We turn to proving the second equality of (5.23). Let Xn ∈ S2 as in
(5.16) approximate X in L2(M,P). By (5.21), X ∈ L2(M τ ,P) and the
processes Xn approximate X also in L2(M τ ,P). Comparing their integrals,
we get

(Xn ·M τ )t =
∑
i

ξi(M
τ
ti+1∧t −M

τ
ti∧t)

=
∑
i

ξi(Mti+1∧t∧τ −Mti∧t∧τ )

= (Xn ·M)t∧τ

By the definition of the stochastic integral X ·M τ , the random variables
(Xn ·M τ )t converge to (X ·M τ )t in L2 as n→∞.

We cannot appeal to the definition of the integral to assert the con-
vergence of (Xn ·M)t∧τ to (X ·M)t∧τ because the time point is random.
However, martingales afford strong control of their paths. Yn(t) = (Xn ·
M)t − (X ·M)t is an L2 martingale with Yn(0) = 0. Lemma 3.5 applied to
the submartingale Y 2

n (t) implies

E[Y 2
n (t ∧ τ)] ≤ 2E[Y 2

n (t)] = 2E
[(

(Xn ·M)t − (X ·M)t
)2]

and this last expectation vanishes as n → ∞ by the definition of X ·M .
Consequently

(Xn ·M)t∧τ → (X ·M)t∧τ in L2.

This completes the proof of the second equality in (5.23).
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Part (c). Since 1[0,σ]X = 1[0,σ]Y and Mσ = Nσ,

(X ·M)t∧σ =
(
(1[0,σ]X) ·Mσ

)
t

=
(
(1[0,σ]Y ) ·Nσ

)
t

= (Y ·N)t∧σ. �

Example 5.18. Let us record some simple integrals as consequences of the
properties.

(a) Let σ ≤ τ be two stopping times, and ξ a bounded Fσ-measurable
random variable. Define X = ξ1(σ,τ ], or more explicitly,

Xt(ω) = ξ(ω)1(σ(ω),τ(ω)](t).

As an adapted caglad process, X is predictable. Let M be an L2-martingale.
Pick a constant C ≥ |ξ(ω)|. Then for any T <∞,∫

[0,T ]×Ω
X2 dµM = E

{
ξ2
(
[M ]τ∧T − [M ]σ∧T

)}
≤ C2E

{
[M ]τ∧T

}
= C2E{M2

τ∧T } ≤ C2E{M2
T } <∞.

Thus X ∈ L2(M,P). By (5.22) and (5.23),

X ·M = (ξ1(σ,∞)1[0,τ ]) ·M = ξ
(
(1(σ,∞)1[0,τ ]) ·M

)
= ξ
(
(1[0,τ ] − 1[0,σ]) ·M

)
= ξ
(
(1 ·M)τ − (1 ·M)σ

)
= ξ(M τ −Mσ).

Above we used 1 to denote the function or process that is identically one.

(b) Continuing the example, consider a sequence 0 ≤ σ1 ≤ σ2 ≤ · · · ≤
σi ↗∞ of stopping times, and random variables {ηi : i ≥ 1} such that ηi is
Fσi-measurable and C = supi,ω|ηi(ω)| <∞. Let

X(t) =

∞∑
i=1

ηi1(σi,σi+1](t).

As a bounded caglad process, X ∈ L2(M,P) for any L2-martingale M . Let

Xn(t) =
n∑
i=1

ηi1(σi,σi+1](t).

By part (a) of the example and the additivity of the integral,

Xn ·M =

n∑
i=1

ηi(M
σi+1 −Mσi).

Xn → X pointwise. And since |X −Xn| ≤ 2C,∫
[0,T ]×Ω

|X −Xn|2 dµM −→ 0

for any T < ∞ by dominated convergence. Consequently Xn → X in
L2(M,P), and then by the isometry, Xn ·M → X ·M in M2. From the
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formula for Xn ·M it is clear where it converges pointwise, and this limit
must agree with the M2 limit. The conclusion is

X ·M =

∞∑
i=1

ηi(M
σi+1 −Mσi).

As the last issue of this section, we consider integrating a given process
X with respect to more than one martingale.

Proposition 5.19. Let M,N ∈ M2, α, β ∈ R, and X ∈ L2(M,P) ∩
L2(N,P). Then X ∈ L2(αM + βN,P), and

(5.25) X · (αM + βN) = α(X ·M) + β(X ·N).

Lemma 5.20. For a predictable process Y ,{∫
[0,T ]×Ω

|Y |2 dµαM+βN

}1/2

≤ |α|
{∫

[0,T ]×Ω
|Y |2 dµM

}1/2

+ |β|
{∫

[0,T ]×Ω
|Y |2 dµN

}1/2

.

Proof. The linearity

[αM + βN ] = α2[M ] + 2αβ[M,N ] + β2[N ]

is inherited by the Lebesgue-Stieltjes measures. By the Kunita-Watanabe
inequality (2.22),∫

[0,T ]
|Ys|2 d[αM + βN ]s = α2

∫
[0,T ]
|Ys|2 d[M ]s + 2αβ

∫
[0,T ]
|Ys|2 d[M,N ]s

+ β2

∫
[0,T ]
|Ys|2 d[N ]s

≤ α2

∫
[0,T ]
|Ys|2 d[M ]s + 2|α||β|

{∫
[0,T ]
|Ys|2 d[M ]s

}1/2{∫
[0,T ]
|Ys|2 d[N ]s

}1/2

+ β2

∫
[0,T ]
|Ys|2 d[N ]s.

The above integrals are Lebesgue-Stieltjes integrals over [0, T ], evaluated at
a fixed ω. Take expectations and apply Schwarz inequality to the middle
term. �

Proof of Proposition 5.19. The Lemma shows thatX ∈ L2(αM+βN,P).
Replace the measure µM in the proof of Lemma 5.10 with the measure
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µ̃ = µM + µN . The proof works exactly as before, and gives a sequence of
simple predictable processes Xn such that∫

[0,T ]×Ω
|X −Xn|2 d(µM + µN )→ 0

for each T <∞. This combined with the previous lemma says that Xn → X
simultaneously in spaces L2(M,P), L2(N,P), and L2(αM +βN,P). (5.25)
holds for Xn by the explicit formula for the integral of a simple predictable
process, and the general conclusion follows by taking the limit. �
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5.2. Local square-integrable martingale integrator

Recall that a cadlag process M is a local L2-martingale if there exists a
nondecreasing sequence of stopping times {σk} such that σk ↗ ∞ almost
surely, and for each k the stopped process Mσk = {Mσk∧t : t ∈ R+} is an
L2-martingale. The sequence {σk} is a localizing sequence for M . M2,loc is
the space of cadlag, local L2-martingales.

We wish to define a stochastic integral X ·M where M can be a local L2-
martingale. The earlier approach via an L2 isometry will not do because the
whole point is to get rid of integrability assumptions. We start by defining
the class of integrands. Even for an L2-martingale this gives us integrands
beyond the L2-space of the previous section.

Definition 5.21. Given a local square-integrable martingaleM , let L(M,P)
denote the class of predictable processes X which have the following prop-
erty: there exists a sequence of stopping times 0 ≤ τ1 ≤ τ2 ≤ τ3 ≤ · · · ≤
τk ≤ · · · such that

(i) P{τk ↗∞} = 1,

(ii) M τk is a square-integrable martingale for each k, and

(iii) the process 1[0,τk]X lies in L2(M τk ,P) for each k.

Let us call such a sequence of stopping times a localizing sequence for the
pair (X,M).

By our earlier development, for each k the stochastic integral

Y k = (1[0,τk]X) ·M τk

exists as an element ofM2. The idea will be now to exploit the consistency
in the sequence of stochastic integrals Y k, which enables us to define (X ·
M)t(ω) for a fixed (t, ω) by the recipe “take Y k

t (ω) for a large enough k.”
First a lemma that justifies the approach.

Lemma 5.22. Let M ∈ M2,loc and let X be a predictable process. Sup-
pose σ and τ are two stopping times such that Mσ and M τ are cadlag
L2-martingales, 1[0,σ]X ∈ L2(Mσ,P) and 1[0,τ ]X ∈ L2(M τ ,P). Let

Zt =

∫
(0,t]

1[0,σ]X dMσ and Wt =

∫
(0,t]

1[0,τ ]X dM τ

denote the stochastic integrals, which are cadlag L2-martingales. Then

Zt∧σ∧τ = Wt∧σ∧τ

where we mean that the two processes are indistinguishable.
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Proof. A short derivation based on (5.23)–(5.24) and some simple ob-
servations: (Mσ)τ = (M τ )σ = Mσ∧τ , and 1[0,σ]X, 1[0,τ ]X both lie in
L2(Mσ∧τ ,P).

Zt∧σ∧τ =
(
(1[0,σ]X) ·Mσ

)
t∧σ∧τ =

(
(1[0,τ ]1[0,σ]X) · (Mσ)τ

)
t∧σ∧τ

=
(
(1[0,σ]1[0,τ ]X) · (M τ )σ

)
t∧σ∧τ =

(
(1[0,τ ]X) ·M τ

)
t∧σ∧τ

= Wt∧σ∧τ . �

Let Ω0 be the following event:

Ω0 = {ω : τk(ω)↗∞ as k ↗∞, and for all (k,m),

Y k
t∧τk∧τm(ω) = Y m

t∧τk∧τm(ω) for all t ∈ R+.}
(5.26)

P (Ω0) = 1 by the assumption P{τk ↗∞} = 1, by the previous lemma, and
because there are countably many pairs (k,m). To rephrase this, on the
event Ω0, if k and m are indices such that t ≤ τk ∧ τm, then Y k

t = Y m
t . This

makes the definition below sensible.

Definition 5.23. Let M ∈M2,loc, X ∈ L(M,P), and let {τk} be a localiz-
ing sequence for (X,M). Define the event Ω0 as in the previous paragraph.
The stochastic integral X ·M is the cadlag local L2-martingale defined as
follows: on the event Ω0 set

(X ·M)t(ω) =
(
(1[0,τk]X) ·M τk

)
t
(ω)

for any k such that τk(ω) ≥ t.
(5.27)

Outside the event Ω0 set (X ·M)t = 0 for all t.

This definition is independent of the localizing sequence {τk} in the sense
that using any other localizing sequence of stopping times gives a process
indistinguishable from X ·M defined above.

Justification of the definition. The process X ·M is cadlag on any boun-
ded interval [0, T ] for the following reasons. If ω /∈ Ω0 the process is constant
in time. If ω ∈ Ω0, pick k large enough so that τk(ω) > T , and note that
the path t 7→ (X ·M)t(ω) coincides with the cadlag path t 7→ Y k

t (ω) on the
interval [0, T ]. Being cadlag on all bounded intervals is the same as being
cadlag on R+, so it follows that X ·M is cadlag process.

The stopped process satisfies

(X ·M)τkt = (X ·M)τk∧t = Y k
τk∧t = (Y k)τkt

because by definition X · M = Y k (almost surely) on [0, τk]. Y k is an
L2-martingale, hence so is (Y k)τk . Consequently (X ·M)τk is a cadlag L2-
martingale. This shows that X ·M is a cadlag local L2-martingale.
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To take up the last issue, let {σj} be another localizing sequence of
stopping times for (X,M). Let

W j
t =

∫
(0,t]

1[0,σj ]X dMσj .

Corresponding to the event Ω0 and definition (5.27) from above, based on
{σj} we define an event Ω1 with P (Ω1) = 1, and on Ω1 an “alternative”
stochastic integral by

(5.28) Wt(ω) = W j
t (ω) for j such that σj(ω) ≥ t.

Lemma 5.22 implies that the processes W j
t∧σj∧τk and Y k

t∧σj∧τk are indistin-

guishable. Let Ω2 be the set of ω ∈ Ω0 ∩ Ω1 for which

W j
t∧σj∧τk(ω) = Y k

t∧σj∧τk(ω) for all t ∈ R+ and all pairs (j, k).

P (Ω2) = 1 because it is an intersection of countably many events of proba-
bility one. We claim that for ω ∈ Ω2, (X ·M)t(ω) = Wt(ω) for all t ∈ R+.
Given t, pick j and k so that σj(ω) ∧ τk(ω) ≥ t. Then, using (5.27), (5.28)
and ω ∈ Ω2,

(X ·M)t(ω) = Y k
t (ω) = W j

t (ω) = Wt(ω).

We have shown that X ·M and W are indistinguishable, so the definition
of X ·M does not depend on the particular localizing sequence used.

We have justified all the claims made in the definition. �

Remark 5.24 (Irrelevance of the time origin). The value X0 does not af-
fect anything above because µZ({0} × Ω) = 0 for any L2-martingale Z. If

a predictable X is given and X̃t = 1(0,∞)(t)Xt, then µZ{X 6= X̃} = 0. In
particular, {τk} is a localizing sequence for (X,M) iff it is a localizing se-

quence for (X̃,M), and X ·M = X̃ ·M if a localizing sequence exists. Also,
in part (iii) of Definition 5.21 we can equivalently require that 1(0,τk]X lies
in L2(M τk ,P).

Remark 5.25 (Path continuity). If the local L2-martingale M has continu-
ous paths to begin with, then so do M τk , hence also the integrals 1[0,τk]M

τk

have continuous paths, and the integral X ·M has continuous paths.

Example 5.26. Compared with Example 5.4, with Brownian motion and
the compensated Poisson process we can now integrate predictable processes
X that satisfy∫ T

0
X(s, ω)2 ds <∞ for all T <∞, for P -almost every ω.

(Exercise 5.7 asks you to verify this.) Again, we know from Chapter 4
that predictability is not really needed for integrands when the integrator is
Brownian motion.
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Property (iii) of Definition 5.21 made the localization argument of the
definition of X ·M work. In important special cases property (iii) follows
from this stronger property:

there exist stopping times {σk} such that σk ↗∞ almost

surely and 1(0,σk]X is a bounded process for each k.
(5.29)

Let M be an arbitrary local L2-martingale with localizing sequence {νk},
and assume X is a predictable process that satisfies (5.29). A bounded
process is in L2(Z,P) for any L2-martingale Z, and consequently 1(0,σk]X ∈
L2(Mνk ,P). By Remark 5.24 the conclusion extends to 1[0,σk]X. Thus the
stopping times τk = σk ∧ νk localize the pair (X,M), and the integral X ·M
is well-defined.

The time origin is left out of 1(0,σk]X because 1[0,σk]X cannot be bounded
unless X0 is bounded. This would be unnecessarily restrictive.

The next proposition lists the most obvious types of predictable pro-
cesses that satisfy (5.29). In certain cases demonstrating the existence of
the stopping times may require a right-continuous filtration. Then one re-
places {Ft} with {Ft+}. As observed in the beginning of Chapter 3, this
can be done without losing any cadlag martingales (or local martingales).

Recall also the definition

(5.30) X∗T (ω) = sup
0≤t≤T

|Xt(ω)|

which is FT -measurable for any left- or right-continuous process X, provided
we make the filtration complete. (See discussion after (3.10) in Chapter 3.)

Proposition 5.27. The following cases are examples of processes with stop-
ping times {σk} that satisfy condition (5.29).

(i) X is predictable, and for each T <∞ there exists a constant CT <∞
such that, with probability one, Xt ≤ CT for all 0 < t ≤ T . Take σk = k.

(ii) X is adapted and has almost surely continuous paths. Take

σk = inf{t ≥ 0 : |Xt| ≥ k}.

(iii) X is adapted, and there exists an adapted, cadlag process Y such
that X(t) = Y (t−) for t > 0. Take

σk = inf{t > 0 : |Y (t)| ≥ k or |Y (t−)| ≥ k}.

(iv) X is adapted, has almost surely left-continuous paths, and X∗T <∞
almost surely for each T <∞. Assume the underlying filtration {Ft} right-
continuous. Take

σk = inf{t ≥ 0 : |Xt| > k}.



5.2. Local square-integrable martingale integrator 165

Remark 5.28. Category (ii) is a special case of (iii), and category (iii) is a
special case of (iv). Category (iii) seems artificial but will be useful. Notice
that every caglad X satisfies X(t) = Y (t−) for the cadlag process Y defined
by Y (t) = X(t+), but this Y may fail to be adapted. Y is adapted if {Ft}
is right-continuous. But then we find ourselves in Category (iv).

Let us state the most important special case of continuous processes as
a corollary in its own right. It follows from Lemma 3.20 and from case (ii)
above.

Corollary 5.29. For any continuous local martingale M and continuous,
adapted process X, the stochastic integral X ·M is well-defined.

Proof of Proposition 5.27. Case (i): nothing to prove.

Case (ii). By Lemma 2.10 this σk is a stopping time. A continuous path
t 7→ Xt(ω) is bounded on compact time intervals. Hence for almost every
ω, σk(ω) ↗ ∞. Again by continuity, |Xs| ≤ k for 0 < s ≤ σk. Note that
if |X0| > k then σk = 0, so we cannot claim 1[0,σk]|X0| ≤ k. This is why
boundedness cannot be required at time zero.

Case (iii). By Lemma 2.9 this σk is a stopping time. A cadlag path is
locally bounded just like a continuous path (Exercise A.1), and so σk ↗∞.
If σk > 0, then |X(t)| < k for t < σk, and by left-continuity |X(σk)| ≤ k.
Note that |Y (σk)| ≤ k may fail so we cannot adapt this argument to Y .

Case (iv). By Lemma 2.7 σk is a stopping time since we assume {Ft}
right-continuous. As in case (iii), by left-continuity |Xs| ≤ k for 0 < s ≤
σk. Given ω such that X∗T (ω) < ∞ for all T < ∞, we can choose kT >
sup0≤t≤T |Xt(ω)| and then σk(ω) ≥ T for k ≥ kT . Thus σk ↗ ∞ almost
surely. �

Example 5.30. Let us repeat Example 5.18 without boundedness assump-
tions. 0 ≤ σ1 ≤ σ2 ≤ · · · ≤ σi ↗ ∞ are stopping times, ηi is a finite
Fσi-measurable random variable for i ≥ 1, and

Xt =

∞∑
i=1

ηi1(σi,σi+1](t).

X is a caglad process, and satisfies the hypotheses of case (iii) of Proposition
5.27. We shall define a concrete localizing sequence. Fix M ∈ M2,loc and
let {ρk} be a localizing sequence for M . Define

ζk =

{
σj , if max1≤i≤j−1|ηi| ≤ k < |ηj | for some j

∞, if |ηi| ≤ k for all i.
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That ζk is a stopping time follows directly from

{ζk ≤ t} =
∞⋃
j=1

({
max

1≤i≤j−1
|ηi| ≤ k < |ηj |

}
∩
{
σj ≤ t

})
.

Also ζk ↗ ∞ since σi ↗ ∞. The stopping times τk = ρk ∧ ζk localize the
pair (X,M).

Truncate η
(k)
i = (ηi∧k)∨ (−k). If t ∈ (σi∧ τk, σi+1∧ τk] then necessarily

σi < τk. This implies ζk ≥ σi+1 which happens iff η` = η
(k)
` for 1 ≤ ` ≤ i.

Hence

1[0,τk](t)Xt =
∞∑
i=1

η
(k)
i 1(σi∧τk,σi+1∧τk](t).

This process is bounded, so by Example 5.18,(
(1[0,τk]X) ·M τk

)
t

=
∞∑
i=1

η
(k)
i (Mσi+1∧τk∧t −Mσi∧τk∧t).

Taking k so that τk ≥ t, we get

(X ·M)t =
∞∑
i=1

ηi(Mσi+1∧t −Mσi∧t).

We use the integral notation∫
(s,t]

X dM = (X ·M)t − (X ·M)s

and other notational conventions exactly as for the L2 integral. The stochas-
tic integral with respect to a local martingale inherits the path properties
of the L2 integral, as we observe in the next proposition. Expectations and
conditional expectations of (X ·M)t do not necessarily exist any more so we
cannot even contemplate their properties.

Proposition 5.31. Let M,N ∈ M2,loc, X ∈ L(M,P), and let τ be a
stopping time.

(a) Linearity continues to hold: if also Y ∈ L(M,P), then

(αX + βY ) ·M = α(X ·M) + β(Y ·M).

(b) Let Z be a bounded Fτ -measurable random variable. Then Z1(τ,∞)X
and 1(τ,∞)X are both members of L(M,P), and

(5.31)

∫
(0,t]

Z1(τ,∞)X dM = Z

∫
(0,t]

1(τ,∞)X dM.

Furthermore,

(5.32)
(
(1[0,τ ]X) ·M

)
t

= (X ·M)τ∧t = (X ·M τ )t.
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(c) Let Y ∈ L(N,P). Suppose Xt(ω) = Yt(ω) and Mt(ω) = Nt(ω) for
0 ≤ t ≤ τ(ω). Then

(X ·M)τ∧t = (Y ·N)τ∧t.

(d) Suppose X ∈ L(M,P)∩L(N,P). Then for α, β ∈ R, X ∈ L(αM +
βN,P) and

X · (αM + βN) = α(X ·M) + β(X ·N).

Proof. The proofs are short exercises in localization. We show the way by
doing (5.31) and the first equality in (5.32).

Let {σk} be a localizing sequence for the pair (X,M). Then {σk} is
a localizing sequence also for the pairs (1(σ,∞)X,M) and (Z1(σ,∞)X,M).
Given ω and t, pick k large enough so that σk(ω) ≥ t. Then by the definition
of the stochastic integrals for localized processes,

Z
(
(1(τ,∞)X) ·M)t(ω) = Z

(
(1[0,σk]1(τ,∞)X) ·Mσk)t(ω)

and (
(Z1(τ,∞)X) ·M)t(ω) =

(
(1[0,σk]Z1(τ,∞)X) ·Mσk)t(ω).

The right-hand sides of the two equalities above coincide, by an application
of (5.22) to the L2-martingale Mσk and the process 1[0,σk]X in place of X.
This verifies (5.31).

The sequence {σk} works also for (1[0,τ ]X,M). If t ≤ σk(ω), then(
(1[0,τ ]X) ·M

)
t

=
(
(1[0,σk]1[0,τ ]X) ·Mσk

)
t

=
(
(1[0,σk]X) ·Mσk

)
τ∧t

= (X ·M)τ∧t.

The first and the last equality are the definition of the local integral, the
middle equality an application of (5.23). This checks the first equality in
(5.32). �

We come to a very helpful result for later development. The most im-
portant processes are usually either caglad or cadlag. The next proposition
shows that for left-continuous processes the integral can be realized as a
limit of Riemann sum-type approximations. For future benefit we include
random partitions in the result.

However, a cadlag process X is not necessarily predictable and therefore
not an admissible integrand. The Poisson process is a perfect example, see
Exercise 5.4. It is intuitively natural that the Poisson process cannot be
predictable, for how can we predict when the process jumps? But it turns
out that the Riemann sums still converge for a cadlag integrand. They just
cannot converge to X ·M because this integral might not exist. Instead,
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these sums converge to the integral X− ·M of the caglad process X− defined
by

X−(0) = X(0) and X−(t) = X(t−) for t > 0.

We leave it to the reader to verify that X− has caglad paths (Exercise 5.9).

The limit in the next proposition is not a mere curiosity. It will be
important when we derive Itô’s formula. Note the similarity with Lemma
1.12 for Lebesgue-Stieltjes integrals.

Proposition 5.32. Let X be an adapted process and M ∈M2,loc. Suppose
0 = τn0 ≤ τn1 ≤ τn2 ≤ τn3 ≤ · · · are stopping times such that for each n,
τni → ∞ almost surely as i → ∞, and δn = supi(τ

n
i+1 − τni ) tends to zero

almost surely as n→∞. Define the process

(5.33) Rn(t) =

∞∑
i=0

X(τni )
(
M(τni+1 ∧ t)−M(τni ∧ t)

)
.

(a) Assume X is left-continuous and satisfies (5.29). Then for each fixed
T <∞ and ε > 0,

lim
n→∞

P
{

sup
0≤t≤T

|Rn(t)− (X ·M)t| ≥ ε
}

= 0.

In other words, Rn converges to X ·M in probability, uniformly on compact
time intervals.

(b) If X is a cadlag process, then Rn converges to X− ·M in probability,
uniformly on compact time intervals.

Proof. Since X− = X for a left-continuous process, we can prove parts (a)
and (b) simultaneously.

Assume first X0 = 0. This is convenient for the proof. At the end we lift
this assumption. By left- or right-continuity X is progressively measurable
(Lemma 2.4) and therefore X(τni ) is Fτni -measurable on the event τni < ∞
(Lemma 2.3). Define

Yn(t) =

∞∑
i=0

X(τni )1(τni ,τ
n
i+1](t)−X−(t).

By the hypotheses and by Example 5.30, Yn is an element of L(M,P) and
its integral is

Yn ·M = Rn −X− ·M.

Consequently we need to show that Yn ·M → 0 in probability, uniformly on
compacts.

Let {σk} be a localizing sequence for (X−,M) such that 1(0,σk]X− is
bounded. In part (a) existence of {σk} is a hypothesis. For part (b) apply
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part (iii) of Proposition 5.27. As explained there, it may happen that X(σk)
is not bounded, but X(t−) will be bounded for 0 < t ≤ σk.

Pick constants bk such that |X−(t)| ≤ bk for 0 ≤ t ≤ σk (here we rely on

the assumption X0 = 0). Define X(k) = (X ∧ bk) ∨ (−bk) and

Y (k)
n (t) =

∞∑
i=0

X(k)(τni )1(τni ,τ
n
i+1](t)−X

(k)
− (t).

In forming X
(k)
− (t), it is immaterial whether truncation follows the left limit

or vice versa.

We have the equality

1[0,σk]Yn(t) = 1[0,σk]Y
(k)
n (t).

For the sum in Yn this can be seen term by term:

1[0,σk](t)1(τni ,τ
n
i+1](t)X(τni ) = 1[0,σk](t)1(τni ,τ

n
i+1](t)X

(k)(τni )

because both sides vanish unless τni < t ≤ σk and |X(s)| ≤ bk for 0 ≤ s < σk.

Thus {σk} is a localizing sequence for (Yn,M). On the event {σk > T},
for 0 ≤ t ≤ T , by definition (5.27) and Proposition 5.16(b)–(c),

(Yn ·M)t =
(
(1[0,σk]Yn) ·Mσk)t = (Y (k)

n ·Mσk)t.

Fix ε > 0. In the next bound we apply martingale inequality (3.8) and
the isometry (5.12).

P
{

sup
0≤t≤T

|(Yn ·M)t| ≥ ε
}
≤ P{σk ≤ T}

+ P
{

sup
0≤t≤T

∣∣(Y (k)
n ·Mσk

)
t

∣∣ ≥ ε}
≤ P{σk ≤ T}+ ε−2E

[
(Y (k)
n ·Mσk)2

T

]
≤ P{σk ≤ T}+ ε−2

∫
[0,T ]×Ω

|Y (k)
n (t, ω)|2 µMσk (dt, dω).

Let ε1 > 0. Fix k large enough so that P{σk ≤ T} < ε1. As n → ∞,

Y
(k)
n (t, ω) → 0 for all t, if ω is such that the path s 7→ X−(s, ω) is left-

continuous and the assumption δn(ω) → 0 holds. This excludes at most a
zero probability set of ω’s, and so this convergence happens µMσk -almost

everywhere. By the bound |Y (k)
n | ≤ 2bk and dominated convergence,∫

[0,T ]×Ω
|Y (k)
n |2 dµMσk −→ 0 as n→∞.

Letting n→∞ in the last string of inequalities gives

lim
n→∞

P
{

sup
0≤t≤T

|(Yn ·M)t| ≥ ε
}
≤ ε1.
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Since ε1 > 0 can be taken arbitrarily small, the limit above must actually
equal zero.

At this point we have proved

(5.34) lim
n→∞

P
{

sup
0≤t≤T

|Rn(t)− (X− ·M)t| ≥ ε
}

= 0

under the extra assumption X0 = 0. Suppose X̃ satisfies the hypotheses

of the proposition, but X̃0 is not identically zero. Then (5.34) is valid

for Xt = 1(0,∞)(t)X̃t. Changing value at t = 0 does not affect stochastic

integration, so X̃ ·M = X ·M . Let

R̃n(t) =
∞∑
i=0

X̃(τni )
(
M(τni+1 ∧ t)−M(τni ∧ t)

)
.

The conclusion follows for X̃ if we can show that

sup
0≤t<∞

|R̃n(t)−Rn(t)| → 0 as n→∞.

Since R̃n(t)−Rn(t) = X̃(0)
(
M(τn1 ∧ t)−M(0)

)
, we have the bound

sup
0≤t<∞

|R̃n(t)−Rn(t)| ≤ |X̃(0)| · sup
0≤t≤δn

|M(t)−M(0)|.

The last quantity vanishes almost surely as n → ∞, by the assumption
δn → 0 and the cadlag paths of M . In particular it converges to zero in
probability.

To summarize, (5.34) now holds for all processes that satisfy the hy-
potheses. �

Remark 5.33 (Doléans measure). We discuss here briefly the Doléans mea-
sure of a local L2-martingale. It provides an alternative way to define the
space L(M,P) of admissible integrands. The lemma below will be used to
extend the stochastic integral beyond predictable integrands, but that point
is not central to the main development, so the remainder of this section can
be skipped.

Fix a local L2-martingale M and stopping times σk ↗ ∞ such that
Mσk ∈M2 for each k. By Theorem 3.27 the quadratic variation [M ] exists
as a nondecreasing cadlag process. Consequently Lebesgue-Stieltjes integrals
with respect to [M ] are well-defined. The Doléans measure µM can be
defined for A ∈ P by

(5.35) µM (A) = E

∫
[0,∞)

1A(t, ω)d[M ]t(ω),
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exactly as for L2-martingales earlier. The measure µM is σ-finite: the union
of the stochastic intervals {[0, σk ∧ k] : k ∈ N} exhausts R+ × Ω, and

µM ([0, σk ∧ k]) = E

∫
[0,∞)

1[0,σk(ω)∧k](t) d[M ]t(ω) = E{[M ]σk∧k}

= E{[Mσk ]k} = E{(Mσk
k )2 − (Mσk

0 )2} <∞.

Along the way we used Lemma 3.28 and then the square-integrability of
Mσk .

The following alternative characterization of membership in L(M,P) will
be useful for extending the stochastic integral to non-predictable integrands
in Section 5.5.

Lemma 5.34. Let M be a local L2-martingale and X a predictable process.
Then X ∈ L(M,P) iff there exist stopping times ρk ↗ ∞ (a.s.) such that
for each k, ∫

[0,T ]×Ω
1[0,ρk]|X|2 dµM <∞ for all T <∞.

We leave the proof of this lemma as an exercise. The key point is that
for both L2-martingales and local L2-martingales, and a stopping time τ ,
µMτ (A) = µM (A ∩ [0, τ ]) for A ∈ P. (Just check that the proof of Lemma
5.15 applies without change to local L2-martingales.)

Furthermore, we leave as an exercise proof of the result that if X,Y ∈
L(M,P) are µM -equivalent, which means again that

µM{(t, ω) : X(t, ω) 6= Y (t, ω)} = 0,

then X ·M = Y ·M in the sense of indistinguishability.

5.3. Semimartingale integrator

First a reminder of some terminology and results. A cadlag semimartingale
is a process Y that can be written as Yt = Y0 +Mt+Vt where M is a cadlag
local martingale, V is a cadlag FV process, and M0 = V0 = 0. To define the
stochastic integral, we need M to be a local L2-martingale. If we assume
the filtration {Ft} complete and right-continuous (the “usual conditions”),
then by Corollary 3.22 we can always select the decomposition so that M is
a local L2-martingale. Thus usual conditions for {Ft} need to be assumed in
this section, unless one works with a semimartingale Y for which it is known
that M can be chosen a local L2-martingale. If g is a function of bounded
variation on [0, T ], then the Lebesgue-Stieltjes measure Λg of g exists as a
signed Borel measure on [0, T ] (Section 1.1.9).
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In this section the integrands will be predictable processes X that satisfy
this condition:

there exist stopping times {σn} such that σn ↗∞ almost

surely and 1(0,σn]X is a bounded process for each n.
(5.36)

In particular, the categories listed in Proposition 5.27 are covered. We
deliberately ask for 1(0,σn]X to be bounded instead of 1[0,σn]X because X0

might not be bounded.

Definition 5.35. Let Y be a cadlag semimartingale. Let X be a predictable
process that satisfies (5.36). Then we define the integral of X with respect
to Y as the process

(5.37)

∫
(0,t]

Xs dYs =

∫
(0,t]

Xs dMs +

∫
(0,t]

Xs ΛV (ds).

Here Y = Y0 +M+V is some decomposition of Y into a local L2-martingale
M and an FV process V ,∫

(0,t]
Xs dMs = (X ·M)t

is the stochastic integral of Definition 5.23, and∫
(0,t]

Xs ΛV (ds) =

∫
(0,t]

Xs dVs

is the path-by-path Lebesgue-Stieltjes integral of X with respect to the
function s 7→ Vs. The process

∫
X dY thus defined is unique up to indistin-

guishability and it is a semimartingale.

As before, we shall use the notations X ·Y and
∫
X dY interchangeably.

Justification of the definition. The first item to check is that the inte-
gral does not depend on the decomposition of Y chosen. Suppose Y =

Y0 + M̃ + Ṽ is another decomposition of Y into a local L2-martingale M̃

and an FV process Ṽ . We need to show that∫
(0,t]

Xs dMs +

∫
(0,t]

Xs ΛV (ds) =

∫
(0,t]

Xs dM̃s +

∫
(0,t]

Xs Λ
Ṽ

(ds)

in the sense that the processes on either side of the equality sign are indistin-
guishable. By Proposition 5.31(d) and the additivity of Lebesgue-Stieltjes
measures, this is equivalent to∫

(0,t]
Xs d(M − M̃)s =

∫
(0,t]

Xs Λ
Ṽ−V (ds).

From Y = M + V = M̃ + Ṽ we get

M − M̃ = Ṽ − V
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and this process is both a local L2-martingale and an FV process. The
equality we need is a consequence of the next proposition.

Proposition 5.36. Suppose Z is a cadlag local L2-martingale and an FV
process. Let X be a predictable process that satisfies (5.36). Then for almost
every ω

(5.38)

∫
(0,t]

X(s, ω)dZs(ω) =

∫
(0,t]

X(s, ω)ΛZ(ω)(ds) for all 0 ≤ t <∞.

On the left is the stochastic integral, on the right the Lebesgue-Stieltjes in-
tegral evaluated separately for each fixed ω.

Proof. Both sides of (5.38) are right-continuous in t, so it suffices to check
that for each t they agree with probability 1.

Step 1. Start by assuming that Z is an L2-martingale. Fix 0 < t <∞.
Let

H = {X : X is a bounded predictable process and (5.38) holds for t}.

By the linearity of both integrals, H is a linear space.

Indicators of predictable rectangles lie in H because we know explicitly
what integrals on both sides of (5.38) look like. If X = 1(u,v]×F for F ∈ Fu,
then the left side of (5.38) equals 1F (Zv∧t−Zu∧t) by the first definition (5.7)
of the stochastic integral. The right-hand side equals the same thing by the
definition of the Lebesgue-Steltjes integral. If X = 1{0}×F0

for F0 ∈ F0,
both sides of (5.38) vanish, on the left by the definition (5.7) of the stochastic
integral and on the right because the integral is over (0, t] and hence excludes
the origin.

Let X be a bounded predictable process, Xn ∈ H and Xn → X pointwise
on R+ × Ω. We wish to argue that at least along some subsequence {nj},
both sides of

(5.39)

∫
(0,t]

Xn(s, ω) dZs(ω) =

∫
(0,t]

Xn(s, ω) ΛZ(ω)(ds)

converge for almost every ω to the corresponding integrals with X. This
would imply that X ∈ H. Then we would have checked that the space H
satisfies the hypotheses of Theorem B.4. (The π-system for the theorem is
the class of predictable rectangles.)

On the right-hand side of (5.39) the desired convergence follows from
dominated convergence. For a fixed ω, the BV function s 7→ Zs(ω) on [0, t]
can be expressed as the difference Zs(ω) = f(s)− g(s) of two nondecreasing
functions. Hence the signed measure ΛZ(ω) is the difference of two finite
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positive measures: ΛZ(ω) = Λf − Λg. Then

lim
n→∞

∫
(0,t]

Xn(s, ω) ΛZ(ω)(ds)

= lim
n→∞

∫
(0,t]

Xn(s, ω) Λf (ds)− lim
n→∞

∫
(0,t]

Xn(s, ω) Λg(ds)

=

∫
(0,t]

X(s, ω) Λf (ds)−
∫

(0,t]
X(s, ω) Λg(ds)

=

∫
(0,t]

X(s, ω) ΛZ(ω)(ds).

The limits are applications of the usual dominated convergence theorem,
because −C ≤ X1 ≤ Xn ≤ X ≤ C for some constant C.

Now the left side of (5.39). For a fixed T < ∞, by dominated conver-
gence,

lim
n→∞

∫
[0,T ]×Ω

|X −Xn|2 dµZ = 0.

Hence ‖Xn−X‖L2(Z,P) → 0, and by the isometry Xn ·Z → X ·Z inM2, as
n→∞. Then for a fixed t, (Xnj · Z)t → (X · Z)t almost surely along some
subsequence {nj}. Thus taking the limit along {nj} on both sides of (5.39)
gives ∫

(0,t]
X(s, ω) dZs(ω) =

∫
(0,t]

X(s, ω) ΛZ(ω)(ds)

almost surely. By Theorem B.4, H contains all bounded P-measurable pro-
cesses.

This completes Step 1: (5.38) has been verified for the case where Z ∈
M2 and X is bounded.

Step 2. Now consider the case of a local L2-martingale Z. By the
assumption on X we may pick a localizing sequence {τk} such that Zτk is
an L2-martingale and 1(0,τk]X is bounded. Then by Step 1,

(5.40)

∫
(0,t]

1(0,τk](s)X(s) dZτks =

∫
(0,t]

1(0,τk](s)X(s) ΛZτk (ds).

We claim that on the event {τk ≥ t} the left and right sides of (5.40) coincide
almost surely with the corresponding sides of (5.38).

The left-hand side of (5.40) coincides almost surely with
(
(1[0,τk]X)·Zτk

)
t

due to the irrelevance of the time origin. By (5.27) this is the definition of
(X · Z)t on the event {τk ≥ t}.

On the right-hand side of (5.40) we only need to observe that if τk ≥
t, then on the interval (0, t], 1(0,τk](s)X(s) coincides with X(s) and Zτks
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coincides with Zs. So it is clear that the integrals on the right-hand sides of
(5.40) and (5.38) coincide.

The union over k of the events {τk ≥ t} equals almost surely the whole
space Ω. Thus we have verified (5.38) almost surely, for this fixed t. �

Returning to the justification of the definition, we now know that the
process

∫
X dY does not depend on the choice of the decomposition Y =

Y0 +M + V .

X ·M is a local L2-martingale, and for a fixed ω the function

t 7→
∫

(0,t]
Xs(ω) ΛV (ω)(ds)

has bounded variation on every compact interval (Lemma 1.15). Thus the
definition (5.37) provides the semimartingale decomposition of

∫
X dY . �

As in the previous step of the development, we want to check the Rie-
mann sum approximations. Recall that for a cadlag X, the caglad process
X− is defined by X−(0) = X(0) and X−(t) = X(t−) for t > 0. The hy-
potheses for the integrand in the next proposition are exactly the same as
earlier in Proposition 5.32.

Parts (a) and (b) below could be subsumed under a single statement
since X = X− for a left-continuous process. We prefer to keep them separate
to avoid confusing the issue that for a cadlag process X the limit is not
necessarily the stochastic integral of X. The integral X · Y may fail to
exist, and even if it exists, it does not necessarily coincide with X− · Y .
This is not a consequence of the stochastic aspect, but can happen also for
Lebesgue-Stieltjes integrals. (Find examples!)

Proposition 5.37. Let X be an adapted process and Y a cadlag semimartin-
gale. Suppose 0 = τn0 ≤ τn1 ≤ τn2 ≤ τn3 ≤ · · · are stopping times such that
for each n, τni →∞ almost surely as i→∞, and δn = sup0≤i<∞(τni+1− τni )
tends to zero almost surely as n→∞. Define

(5.41) Sn(t) =

∞∑
i=0

X(τni )
(
Y (τni+1 ∧ t)− Y (τni ∧ t)

)
.

(a) Assume X is left-continuous and satisfies (5.36). Then for each fixed
T <∞ and ε > 0,

lim
n→∞

P
{

sup
0≤t≤T

|Sn(t)− (X · Y )t| ≥ ε
}

= 0.

In other words, Sn converges to X · Y in probability, uniformly on compact
time intervals.
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(b) If X is an adapted cadlag process, then Sn converges to X− · Y in
probability, uniformly on compacts.

Proof. Pick a decomposition Y = Y0 + M + V . We get the corresponding
decomposition Sn = Rn + Un by defining

Rn(t) =
∞∑
i=0

X(τni )
(
Mτni+1∧t −Mτni ∧t

)
as in Proposition 5.32, and

Un(t) =

∞∑
i=0

X(τni )
(
Vτni+1∧t − Vτni ∧t

)
.

Proposition 5.32 gives the convergence Rn → X− · M . Lemma 1.12
applied to the Lebesgue-Stieltjes measure of Vt(ω) tells us that, for almost
every fixed ω

lim
n→∞

sup
0≤t≤T

∣∣∣∣Un(t, ω)−
∫

(0,t]
X(s−, ω) ΛV (ω)(ds)

∣∣∣∣ = 0.

The reservation “almost every ω” is needed in case there is an exceptional
zero probability event on which X or V fails to have the good path proper-
ties. Almost sure convergence implies convergence in probability. �

Remark 5.38. Matrix-valued integrands and vector-valued integra-
tors. In order to consider equations for vector-valued processes, we need to
establish the (obvious componentwise) conventions regarding the integrals
of matrix-valued processes with vector-valued integrators. Let a probabil-
ity space (Ω,F , P ) with filtration {Ft} be given. If Qi,j(t), 1 ≤ i ≤ d
and 1 ≤ j ≤ m, are predictable processes on this space, then we regard
Q(t) = (Qi,j(t)) as a d ×m-matrix valued predictable process. And if Y1,
. . . , Ym are semimartingales on this space, then Y = (Y1, . . . , Ym)T is an
Rm-valued semimartingale. The stochastic integral Q · Y =

∫
QdY is the

Rd-valued process whose ith component is

(Q · Y )i(t) =

n∑
j=1

∫
(0,t]

Qi,j(s) dYj(s)

assuming of course that all the componentwise integrals are well-defined.

One note of caution: the definition of a d-dimensional standard Brownian
motion B(t) = [B1(t), . . . , Bd(t)]

T includes the requirement that the coordi-
nates be independent of each other. For a vector-valued semimartingale, it
is only required that each coordinate be marginally a semimartingale.
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5.4. Further properties of stochastic integrals

Now that we have constructed the stochastic integral, subsequent chapters
on Itô’s formula and stochastic differential equations develop techniques that
can be applied to build models and study the behavior of those models. In
this section we develop further properties of the integral as groundwork for
later chapters. The content of Sections 5.4.2–5.4.4 is fairly technical and
is used only in the proof of existence and uniqueness for a semimartingale
equation in Section 7.4.

The usual conditions on {Ft} need to be assumed only insofar as this is
needed for a definition of the integral with respect to a semimartingale. For
the proofs of this section right-continuity of {Ft} is not needed. (Complete-
ness we assume always.)

The properties listed in Proposition 5.31 extend readily to the semi-
martingale intergal. Each property is linear in the integrator, holds for the
martingale part by the proposition, and can be checked path by path for
the FV part. We state the important ones for further reference and leave
the proofs as exercises.

Proposition 5.39. Let Y and Z be semimartingales, G and H predictable
processes that satisfy the local boundedness condition (5.36), and let τ be a
stopping time.

(a) Let U be a bounded Fτ -measurable random variable. Then

(5.42)

∫
(0,t]

U1(τ,∞)GdY = U

∫
(0,t]

1(τ,∞)GdY.

Furthermore,

(5.43)
(
(1[0,τ ]G) · Y

)
t

= (G · Y )τ∧t = (G · Y τ )t.

(b) Suppose Gt(ω) = Ht(ω) and Yt(ω) = Zt(ω) for 0 ≤ t ≤ τ(ω). Then

(G · Y )σ∧t = (H · Z)σ∧t.

5.4.1. Jumps of a stochastic integral. For any cadlag process Z, ∆Z(t)
= Z(t)− Z(t−) denotes the jump at t. First a strengthening of the part of
Proposition 2.16 that identifies the jumps of the quadratic variation. The
strengthening is that the “almost surely” qualifier is not applied separately
to each t.

Lemma 5.40. Let Y be a semimartingale. Then the quadratic variation
[Y ] exists. For almost every ω, ∆[Y ]t = (∆Yt)

2 for all 0 < t <∞.



178 5. Stochastic Integral

Proof. Fix 0 < T < ∞. By Proposition 5.37, we can pick a sequence of
partitions πn = {tni } of [0, T ] such that the process

Sn(t) = 2
∑
i

Ytni (Ytni+1∧t − Ytni ∧t) = Y 2
t − Y 2

0 −
∑
i

(Ytni+1∧t − Ytni ∧t)
2

converges to the process

S(t) = 2

∫
(0,t]

Y (s−) dY (s),

uniformly for t ∈ [0, T ], for almost every ω. This implies the convergence of
the sum of squares, so the quadratic variation [Y ] exists and satisfies

[Y ]t = Y 2
t − Y 2

0 − S(t).

It is true in general that a uniform bound on the difference of two func-
tions gives a bound on the difference of the jumps: if f and g are cadlag
and |f(x)− g(x)| ≤ ε for all x, then

|∆f(x)−∆g(x)| = lim
y↗x, y<x

|f(x)− f(y)− g(x) + g(y)| ≤ 2ε.

Fix an ω for which the uniform convergence Sn → S holds. Then for
each t ∈ (0, T ], the jump ∆Sn(t) converges to ∆S(t) = ∆(Y 2)t −∆[Y ]t.

Directly from the definition of Sn one sees that ∆Sn(t) = 2Ytnk∆Yt for

the index k such that t ∈ (tnk , t
n
k+1]. Here is the calculation in detail: if s < t

is close enough to t, also s ∈ (tnk , t
n
k+1], and then

∆Sn(t) = lim
s↗t, s<t

{
Sn(t)− Sn(s)

}
= lim

s↗t, s<t

{
2
∑
i

Ytni (Ytni+1∧t − Ytni ∧t) − 2
∑
i

Ytni (Ytni+1∧s − Ytni ∧s)
}

= lim
s↗t, s<t

{
2Ytnk (Yt − Ytnk ) − 2Ytnk (Ys − Ytnk )

}
= lim

s↗t, s<t
2Ytnk (Yt − Ys) = 2Ytnk∆Yt.

By the cadlag path of Y , ∆Sn(t)→ 2Yt−∆Yt. Equality of the two limits
of Sn(t) gives

2Yt−∆Yt = ∆(Y 2)t −∆[Y ]t

which rearranges to ∆[Y ]t = (∆Yt)
2. �

Theorem 5.41. Let Y be a cadlag semimartingale, X a predictable process
that satisfies the local boundedness condition (5.36), and X ·Y the stochastic
integral. Then for all ω in a set of probability one,

∆(X · Y )(t) = X(t)∆Y (t) for all 0 < t <∞.
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We prove this theorem in stages. The reader may be surprised by the
appearance of the point value X(t) in a statement about integrals. After all,
one of the lessons of integration theory is that point values of functions are
often irrelevant. But implicit in the proof below is the notion that a point
value of the integrand X influences the integral exactly when the integrator
Y has a jump.

Lemma 5.42. Let M be a cadlag local L2-martingale and X ∈ L(M,P).
Then for all ω in a set of probability one, ∆(X ·M)(t) = X(t)∆M(t) for all
0 < t <∞.

Proof. Suppose the conclusion holds if M ∈ M2 and X ∈ L2(M,P). Pick
a sequence {σk} that localizes (X,M) and let Xk = 1[0,σk]X. Fix ω such
that definition (5.27) of the integral X ·M works and the conclusion above
holds for each integral Xk ·Mσk . Then if σk > t,

∆(X ·M)t = ∆(Xk ·M τk)t = Xk(t)∆M
τk
t = X(t)∆Mt.

For the remainder of the proof we may assume that M ∈ M2 and
X ∈ L2(M,P). Pick simple predictable processes

Xn(t) =

m(n)−1∑
i=1

ξni 1(tni ,t
n
i+1](t)

such that Xn → X in L2(M,P). By the definition of Lebesgue-Stieltjes
integrals, and because by Lemma 5.40 the processes ∆[M ]t and (∆Mt)

2 are
indistinguishable,

E

[ ∑
s∈(0,T ]

∣∣Xn(s)∆Ms −X(s)∆Ms

∣∣2] = E

[ ∑
s∈(0,T ]

∣∣Xn(s)−X(s)
∣∣2∆[M ]s

]

≤ E
∫

(0,T ]

∣∣Xn(s)−X(s)
∣∣2 d[M ]s

and by hypothesis the last expectation vanishes as n → ∞. Thus there
exists a subsequence nj along which almost surely

lim
j→∞

∑
s∈(0,T ]

∣∣Xnj (s)∆Ms −X(s)∆Ms

∣∣2 = 0.

In particular, on this event of full probability, for any t ∈ (0, T ]

(5.44) lim
j→∞

∣∣Xnj (t)∆Mt −X(t)∆Mt

∣∣2 = 0.

On the other hand, Xnj ·M → X ·M inM2 implies that along a further
subsequence (which we denote by the same nj), almost surely,

(5.45) lim
j→∞

sup
t∈[0,T ]

∣∣(Xnj ·M)t − (X ·M)t
∣∣ = 0.
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Fix an ω on which both almost sure limits (5.44) and (5.45) hold. For
any t ∈ (0, T ], the uniform convergence in (5.45) implies ∆(Xnj ·M)t →
∆(X ·M)t. Also, since a path of Xnj ·M is a step function, ∆(Xnj ·M)t =
Xnj (t)∆Mt. (The last two points were justified explicitly in the proof of
Lemma 5.40 above.) Combining these with the limit (5.44) shows that, for
this fixed ω and all t ∈ (0, T ],

∆(X ·M)t = lim
j→∞

∆(Xnj ·M)t = lim
j→∞

Xnj (t)∆Mt = X(t)∆Mt.

In other words, the conclusion holds almost surely on [0, T ]. To finish,
consider countably many T that increase up to ∞. �

Lemma 5.43. Let f be a bounded Borel function and U a BV function on
[0, T ]. Denote the Lebesgue-Stieltjes integral by

(f · U)t =

∫
(0,t]

f(s) dU(s).

Then ∆(f · U)t = f(t)∆U(t) for all 0 < t ≤ T .

Proof. By the rules concerning Lebesgue-Stieltjes integration,

(f · U)t − (f · U)s =

∫
(s,t]

f(r) dU(r)

=

∫
(s,t)

f(r) dU(r) + f(t)∆U(t)

and ∣∣∣∣∫
(s,t)

f(s) dU(s)

∣∣∣∣ ≤ ‖f‖∞ ΛVU (s, t).

VU is the total variation function of U . As s ↗ t, the set (s, t) decreases
down to the empty set. Since ΛVU is a finite positive measure on [0, T ],
ΛVU (s, t)↘ 0 as s↗ t. �

Proof of Theorem 5.41 follows from combining Lemmas 5.42 and 5.43.
We introduce the following notation for the left limit of a stochastic integral:

(5.46)

∫
(0,t)

H dY = lim
s↗t, s<t

∫
(0,s]

H dY

and then we have this identity:

(5.47)

∫
(0,t]

H dY =

∫
(0,t)

H dY +H(t)∆Y (t).
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5.4.2. Convergence theorem for stochastic integrals. The next the-
orem is a dominated convergence theorem of sorts for stochastic integrals.
We will use it in the existence proof for solutions of stochastic differential
equations.

Theorem 5.44. Let {Hn} be a sequence of predictable processes and Gn a
sequence of nonnegative adapted cadlag processes. Assume |Hn(t)| ≤ Gn(t−)
for all 0 < t <∞, and the running maximum

G∗n(T ) = sup
0≤t≤T

Gn(t)

converges to zero in probability, for each fixed 0 < T < ∞. Then for any
cadlag semimartingale Y , Hn · Y → 0 in probability, uniformly on compact
time intervals.

Proof. Let Y = Y0 + M + U be a decomposition of Y into a local L2-
martingale M and an FV process U . We show that both terms in Hn · Y =
Hn ·M +Hn ·U converge to zero in probability, uniformly on compact time
intervals. The FV part is immediate:

sup
0≤t≤T

∣∣∣∣∫
(0,t]

Hn(s) dU(s)

∣∣∣∣ ≤ sup
0≤t≤T

∫
(0,t]
|Hn(s)| dVU (s) ≤ G∗n(T )VU (T )

where we applied inequality (1.15). Since VU (T ) is a finite random variable,
the last bound above converges to zero in probability.

For the local martingale part Hn ·M , pick a sequence of stopping times
{σk} that localizes M . Let

ρn = inf{t ≥ 0 : Gn(t) ≥ 1} ∧ inf{t > 0 : Gn(t−) ≥ 1}.

These are stopping times by Lemma 2.9. By left-continuity, Gn(t−) ≤ 1 for
0 < t ≤ ρn. For any T <∞,

P{ρn ≤ T} ≤ P{G∗n(T ) > 1/2} → 0 as n→∞.

Let H
(1)
n = (Hn ∧ 1) ∨ (−1) denote the bounded process obtained by trun-

cation. If t ≤ σk ∧ ρn then Hn ·M = H
(1)
n ·Mσk by part (c) of Proposition

5.31. As a bounded process H
(1)
n ∈ L2(Mσk ,P), so by martingale inequality
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(3.8) and the stochastic integral isometry (5.12),

P
{

sup
0≤t≤T

|(Hn ·M)t| ≥ ε
}
≤ P{σk ≤ T}+ P{ρn ≤ T}

+ P
{

sup
0≤t≤T

∣∣(H(1)
n ·Mσk

)
t

∣∣ ≥ ε}
≤ P{σk ≤ T}+ P{ρn ≤ T}+ ε−2E

[
(H(1)

n ·Mσk)2
T

]
= P{σk ≤ T}+ P{ρn ≤ T}+ ε−2E

∫
[0,T ]
|H(1)

n (t)|2 d[Mσk ]t

≤ P{σk ≤ T}+ P{ρn ≤ T}+ ε−2E

∫
[0,T ]

(
Gn(t−) ∧ 1

)2
d[Mσk ]t

≤ P{σk ≤ T}+ P{ρn ≤ T}+ ε−2E
{

[Mσk ]T
(
G∗n(T ) ∧ 1

)2}
.

As k and T stay fixed and n→∞, the last expectation above tends to zero.
This follows from the dominated convergence theorem under convergence in
probability (Theorem B.12). The integrand is bounded by the integrable
random variable [Mσk ]T . Given δ > 0, pick K > δ so that

P
{

[Mσk ]T ≥ K
}
< δ/2.

Then

P
{

[Mσk ]T
(
G∗n(T ) ∧ 1

)2 ≥ δ} ≤ δ/2 + P
{
G∗n(T ) ≥

√
δ/K

}
where the last probability vanishes as n → ∞, by the assumption that
G∗n(T )→ 0 in probability.

Returning to the string of inequalities and letting n→∞ gives

lim
n→∞

P
{

sup
0≤t≤T

|(Hn ·M)t| ≥ ε
}
≤ P{σk ≤ T}.

This last bound tends to zero as k → ∞, and so we have proved that
Hn ·M → 0 in probability, uniformly on [0, T ]. �

5.4.3. Restarting at a stopping time. Let Y be a cadlag semimartingale
and G a predictable process that satisfies the local boundedness condition
(5.36). Let σ be a bounded stopping time with respect to the underlying
filtration {Ft}. We take a bounded stopping time in order to get moment
bounds from Lemma 3.5. Define a new filtration F̄t = Fσ+t. Let P̄ be the
predictable σ-field under the filtration {F̄t}. In other words, P̄ is the σ-field
generated by sets of the type (u, v]×Γ for Γ ∈ F̄u and {0}×Γ0 for Γ0 ∈ F̄0.

Define new processes

Ȳ (t) = Y (σ + t)− Y (σ) and Ḡ(s) = G(σ + s).

For Ȳ we could define just as well Ȳ (t) = Y (σ + t) without changing the
statements below. The reason is that Ȳ appears only as an integrator, so
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only its increments matter. Sometimes it might be convenient to have initial
value zero, that is why we subtract Y (σ) from Ȳ (t).

Theorem 5.45. Let σ be a bounded stopping time with respect to {Ft}.
Under the filtration {F̄t}, the process Ḡ is predictable and Ȳ is an adapted
semimartingale. We have this equality of stochastic integrals:∫

(0,t]
Ḡ(s) dȲ (s) =

∫
(σ,σ+t]

G(s) dY (s)

=

∫
(0,σ+t]

G(s) dY (s)−
∫

(0,σ]
G(s) dY (s).

(5.48)

The second equality in (5.48) is the definition of the integral over (σ, σ+
t]. The proof of Theorem 5.45 follows after two lemmas.

Lemma 5.46. For any P-measurable function G, Ḡ(t, ω) = G(σ(ω) + t, ω)
is P̄-measurable.

Proof. Let U be the space of P-measurable functions G such that Ḡ is
P̄-measurable. U is a linear space and closed under pointwise limits since
these operations preserve measurability. Since any P-measurable function
is a pointwise limit of bounded P-measurable functions, it suffices to show
that U contains all bounded P-measurable functions. According to Theorem
B.4 we need to check that U contains indicator functions of predictable
rectangles. We leave the case {0} × Γ0 for Γ0 ∈ F0 to the reader.

Let Γ ∈ Fu and G = 1(u,v]×Γ. Then

Ḡ(t) = 1(u,v](σ + t)1Γ(ω) =

{
1Γ(ω), u < σ + t ≤ v
0, otherwise.

For a fixed ω, Ḡ(t) is a caglad process. By Lemma 5.1, P̄-measurability of
Ḡ follows if it is adapted to {F̄t}. Since {Ḡ(t) = 1} = Γ ∩ {u < σ + t ≤ v},
Ḡ is adapted to {F̄t} if Γ∩{u < σ+ t ≤ v} ∈ F̄t. This is true by Lemma 2.3
because u, v and σ+t can be regarded as stopping times and F̄t = Fσ+t. �

Lemma 5.47. Let M be a local L2-martingale with respect to {Ft}. Then
M̄t = Mσ+t − Mσ is a local L2-martingale with respect to {F̄t}. If G ∈
L(M,P), then Ḡ ∈ L(M̄, P̄), and

(Ḡ · M̄)t = (G ·M)σ+t − (G ·M)σ.

Proof. Let {τk} localize (G,M). Let νk = (τk − σ)+. For any 0 ≤ t <∞,

{νk ≤ t} = {τk ≤ σ + t} ∈ Fσ+t = F̄t by Lemma 2.3(ii)
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so νk is a stopping time for the filtration {F̄t}. If σ ≤ τk,

M̄νk
t = M̄νk∧t = Mσ+(νk∧t) −Mσ = M(σ+t)∧τk −Mσ∧τk = M τk

σ+t −M τk
σ .

If σ > τk, then νk = 0 and M̄νk
t = M̄0 = Mσ −Mσ = 0. The earlier formula

also gives zero in case σ > τk, so in both cases we can write

(5.49) M̄νk
t = M τk

σ+t −M τk
σ .

Since M τk is an L2-martingale, the right-hand side above is an L2-martingale
with respect to {F̄t}. See Corollary 3.9 and point (ii) after the corollary.
Consequently M̄νk is an L2-martingale with respect to {F̄t}, and hence M̄
is a local L2-martingale.

Next we show that {νk} localizes (Ḡ, M̄). We fix k temporarily and
write Z = M τk to lessen the notational burden. Then (5.49) shows that

M̄νk
t = Z̄t ≡ Zσ+t − Zσ,

in other words obtained from Z by the operation of restarting at σ. We
turn to look at the measure µZ̄ = µM̄νk . Let Γ ∈ Fu. Then 1(u,v]×Γ is

P-measurable, while 1(u,v]×Γ(σ + t, ω) is P̄-measurable.∫
1Γ(ω)1(u,v](σ + t)µZ̄(dt, dω) = E

[
1Γ(ω)

(
[Z̄](v−σ)+ − [Z̄](u−σ)+

)]
= E

[
1Γ(ω)

(
Z̄(v−σ)+ − Z̄(u−σ)+

)2]
= E

[
1Γ(ω)

(
Zσ+(v−σ)+ − Zσ+(u−σ)+

)2]
= E

[
1Γ(ω)

(
[Z]σ∨v − [Z]σ∨u

)]
= E

[
1Γ(ω)

∫
1(σ(ω),∞)(t)1(u,v](t) d[Z]t

]
=

∫
1(σ,∞)(t, ω)1Γ(ω)1(u,v](t) dµZ .

Several observations go into the calculation. First, (u − σ)+ is a stopping
time for {F̄t}, and Γ ∈ F̄(u−σ)+ . We leave checking these as exercises. This

justifies using optional stopping for the martingale Z̄2− [Z̄]. Next note that
σ + (u − σ)+ = σ ∨ u, and again the martingale property is justified by
Γ ∈ Fσ∨u. Finally (σ ∨ u , σ ∨ v] = (σ,∞) ∩ (u, v].

From predictable rectangles (u, v]×Γ ∈ P this integral identity extends
to nonnegative predictable processes X to give, with X̄(t) = X(σ + t),

(5.50)

∫
X̄ dµZ̄ =

∫
1(σ,∞)X dµZ .

Let T <∞ and apply this to X = 1(σ,σ+T ](t)1(0,τk](t)|G(t)|2. Then

X̄(t) = 1[0,T ](t)1(0,νk](t)Ḡ(t)
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and∫
[0,T ]×Ω

1(0,νk](t)|Ḡ(t)|2 dµZ̄ =

∫
1(σ,σ+T ](t)1(0,τk](t)|G(t)|2 dµZ <∞,

where the last inequality is a consequence of the assumptions that {τk}
localizes (G,M) and σ is bounded.

To summarize thus far: we have shown that {νk} localizes (Ḡ, M̄). This
checks Ḡ ∈ L(M̄, P̄).

Fix again k and continue denoting the L2-martingales by Z = M τk and
Z̄ = M̄νk . Consider a simple P-predictable process

Hn(t) =
m−1∑
i=0

ξi1(ui,ui+1](t).

Let k denote the index that satisfies uk+1 > σ ≥ uk. (If there is no such k
then H̄n = 0.) Then

H̄n(t) =
∑
i≥k

ξi1(ui−σ,ui+1−σ](t).

The stochastic integral is

( H̄n · Z̄ )t =
∑
i≥k

ξi
(
Z̄(ui+1−σ)∧t − Z̄(ui−σ)+∧t

)
=
∑
i>k

ξi
(
Zσ+(ui+1−σ)∧t − Zσ+(ui−σ)∧t

)
+ ξk

(
Zσ+(uk+1−σ)∧t − Zσ

)
.

The i = k term above develops differently from the others because Z̄(uk−σ)+∧t =

Z̄0 = 0. Observe that{
σ + (ui − σ) ∧ t = (σ + t) ∧ ui for i > k

(σ + t) ∧ ui = σ ∧ ui = ui for i ≤ k.

Now continue from above:

( H̄n · Z̄ )t =
∑
i>k

ξi
(
Z(σ+t)∧ui+1

− Z(σ+t)∧ui
)

+ ξk
(
Z(σ+t)∧uk+1

− Zσ
)

=
∑
i

ξi
(
Z(σ+t)∧ui+1

− Z(σ+t)∧ui
)
−
∑
i

ξi
(
Zσ∧ui+1 − Zσ∧ui

)
= (Hn · Z)σ+t − (Hn · Z)σ.

Next we take an arbitrary process H ∈ L2(Z,P), and wish to show

(5.51) (H̄ · Z̄)t = (H · Z)σ+t − (H · Z)σ.
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Take a sequence {Hn} of simple predictable processes such that Hn → H
in L2(Z,P). Equality (5.50), along with the boundedness of σ, then implies
that H̄n → H̄ in L2(Z̄, P̄). Consequently we get the convergence H̄n · Z̄ →
H̄ ·Z̄ and Hn ·Z → H ·Z in probability, uniformly on compact time intervals.
Identity (5.51) was verified above for simple predictable processes, hence the
convergence passes it on to general processes. Boundedness of σ is used here
because then the time arguments σ+ t and σ on the right side of (5.51) stay
bounded. Since (H · Z)σ =

(
(1[0,σ]H) · Z

)
σ+t

we can rewrite (5.51) as

(5.52) (H̄ · Z̄)t =
(
(1(σ,∞)H) · Z

)
σ+t

.

At this point we have proved the lemma in the L2 case and a localization
argument remains. Given t, pick νk > t. Then τk > σ+ t. Use the fact that
{νk} and {τk} are localizing sequences for their respective integrals.

(Ḡ · M̄)t =
(
(1(0,νk]Ḡ) · M̄νk

)
t

=
(
(1(σ,∞)1[0,τk]G) ·M τk

)
σ+t

=
(
(1(σ,∞)G) ·M

)
σ+t

= (G ·M)σ+t − (G ·M)σ.

This completes the proof of the lemma. �

Proof of Theorem 5.45. Ȳ is a semimartingale because by Lemma 5.47
the restarting operation preserves the local L2-martingale part, while the
FV part is preserved by a direct argument. If Y were an FV process, the
integral identity (5.48) would be evident as a path-by-path identity. And
again Lemma 5.47 takes care of the local L2-martingale part of the integral,
so (5.48) is proved for a semimartingale Y . �

5.4.4. Stopping just before a stopping time. Let τ be a stopping time
and Y a cadlag process. The process Y τ− is defined by

(5.53) Y τ−(t) =


Y (0), t = 0 or τ = 0

Y (t), 0 < t < τ

Y (τ−), 0 < τ ≤ t.
In other words, the process Y has been stopped just prior to the stopping
time. This type of stopping is useful for processes with jumps. For example,
if

τ = inf{t ≥ 0 : |Y (t)| ≥ r or |Y (t−)| ≥ r}
then |Y τ | ≤ r may fail if Y jumped exactly at time τ , but |Y τ−| ≤ r is true.

For continuous processes Y τ− and Y τ coincide. More precisely, the
relation between the two stoppings is that

Y τ (t) = Y τ−(t) + ∆Y (τ)1{t ≥ τ}.
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In other words, only a jump of Y at τ can produce a difference, and that is
not felt until t reaches τ .

The next example shows that stopping just before τ can fail to preserve
the martingale property. But it does preserve a semimartingale, because a
single jump can be moved to the FV part, as evidenced in the proof of the
lemma after the example.

Example 5.48. Let N be a rate α Poisson process and Mt = Nt − αt.
Let τ be the time of the first jump of N . Then N τ− = 0, from which
M τ−
t = −αt1{τ>t}−ατ1{τ≤t}. This process cannot be a martingale because

M τ−
0 = 0 while M τ−

t < 0 for all t. One can also check that the expectation
of M τ−

t is not constant in t, which violates martingale behavior.

Lemma 5.49. Let Y be a semimartingale and τ a stopping time. Then
Y τ− is a semimartingale.

Proof. Let Y = Y0 + M + U be a decomposition of Y into a local L2-
martingale M and an FV process U . Then

(5.54) Y τ−
t = Y0 +M τ

t + U τ−t −∆Mτ1{t ≥ τ}.

M τ is a local L2-martingale, and the remaining part

Gt = U τ−t −∆Mτ1{t ≥ τ}

is an FV process. �

Next we state some properties of integrals stopped just before τ .

Proposition 5.50. Let Y and Z be semimartingales, G and J predictable
processes locally bounded in the sense (5.36), and τ a stopping time.

(a) (G · Y )τ− = (1[0,τ ]G) · (Y τ−) = G · (Y τ−).

(b) If G = J on [0, τ ] and Y = Z on [0, τ), then (G · Y )τ− = (J ·Z)τ−.

Proof. It suffices to check (a), as (b) is an immediate consequence. Using
the semimartingale decomposition (5.54) for Y τ− we have

(1[0,τ ]G) · Y τ− = (1[0,τ ]G) ·M τ + (1[0,τ ]G) · U τ− −G(τ)∆Mτ1[τ,∞)

= (G ·M)τ + (G · U)τ− −G(τ)∆Mτ1[τ,∞),

and the same conclusion also without the factor 1[0,τ ]:

G · Y τ− = G ·M τ +G · U τ− −G(τ)∆Mτ1[τ,∞)

= (G ·M)τ + (G · U)τ− −G(τ)∆Mτ1[τ,∞).

In the steps above, the equalities

(1[0,τ ]G) ·M τ = G ·M τ = (G ·M)τ .
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were obtained from (5.32). The equality

(1[0,τ ]G) · U τ− = G · U τ− = (G · U)τ−

comes from path by path Lebesgue-Stieltjes integration: since U τ− froze
just prior to τ , its Lebesgue-Stieltjes measure satisfies ΛUτ−(A) = 0 for any
Borel set A ⊆ [τ,∞), and so for any bounded Borel function g and any
t ≥ τ , ∫

[0,t]
g dΛUτ− =

∫
[0,τ)

g dΛUτ− .

Lastly, note that by Theorem 5.41

(G ·M)τt −G(τ)∆Mτ1[τ,∞)(t) = (G ·M)τt −∆(G ·M)τ1[τ,∞)(t)

= (G ·M)τ−t .

Applying this change above gives

(1[0,τ ]G) · Y τ− = (G ·M)τ− + (G · U)τ− = (G · Y )τ−

and completes the proof. �

5.5. Integrator with absolutely continuous Doléans measure

This section stands somewhat apart from the main development, and can
be skipped.

In Chapter 4 we saw that any measurable, adapted process can be in-
tegrated with respect to Brownian motion, provided the process is locally
in L2. On the other hand, the integral of Sections 5.1 and 5.2 is restricted
to predictable processes. How does the more general Brownian integral fit
in the general theory? Do we need to develop separately a more general
integral for other individual processes besides Brownian motion?

In this section we partially settle the issue by showing that when the
Doléans measure µM of a local L2-martingale M is absolutely continuous
with respect to m ⊗ P , then all measurable adapted processes can be inte-
grated (subject to the localization requirement). In particular, this applies
to Brownian motion to give all the integrals defined in Section 4, and also
applies to the compensated Poisson process Mt = Nt − αt.

The extension is somewhat illusory though. We do not obtain genuinely
new integrals. Instead we show that every measurable adapted process X
is equivalent, in a sense to be made precise below, to a predictable process
X̄. Then we define X ·M = X̄ ·M . This will be consistent with our earlier
definitions because it was already the case that µM -equivalent processes have
equal stochastic integrals.
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For the duration of this section, fix a local L2-martingaleM with Doléans
measure µM . The Doléans measure of a local L2-martingale is defined ex-
actly as for L2-martingales, see Remark 5.33. We assume that µM is ab-
solutely continuous with respect to m ⊗ P on the predictable σ-algebra P.
Recall that absolute continuity, abbreviated µM � m ⊗ P , means that if
m⊗ P (D) = 0 for some D ∈ P, then µM (D) = 0.

Let P∗ be the σ-algebra generated by the predictable σ-algebra P and
all sets D ∈ BR+ ⊗ F with m ⊗ P (D) = 0. Equivalently, as checked in
Exercise 1.8(e),

P∗ = {G ∈ BR+ ⊗F : there exists A ∈ P
such that m⊗ P (G4A) = 0}.

(5.55)

Definition 5.51. Suppose µM is absolutely continuous with respect to m⊗
P on the predictable σ-algebra P. By the Radon-Nikodym Theorem, there
exists a P-measurable function fM ≥ 0 on R+ × Ω such that

(5.56) µM (A) =

∫
A
fM d(m⊗ P ) for A ∈ P.

Define a measure µ∗M on the σ-algebra P∗ by

(5.57) µ∗M (G) =

∫
G
fM d(m⊗ P ) for G ∈ P∗.

The measure µ∗M is an extension of µM from P to the larger σ-algebra P∗.

Firstly, definition (5.57) makes sense because fM and G are BR+ ⊗ F-
measurable, so they can be integrated against the product measure m⊗ P .
Second, if G ∈ P, comparison of (5.56) and (5.57) shows µ∗M (G) = µM (G),
so µ∗M is an extension of µM .

Note also the following. Suppose G and A are in the relationship (5.55)
that characterizes P∗. Then µ∗M (G) = µM (A). To see this, write

µ∗M (G) = µ∗M (A) + µ∗M (G \A)− µ∗M (A \G)

= µM (A) +

∫
G\A

fM d(m⊗ P )−
∫
A\G

fM d(m⊗ P )

= µM (A)

where the last equality follows from

m⊗ P (G \A) +m⊗ P (A \G) = m⊗ P (G4A) = 0.

The key facts that underlie the extension of the stochastic integral are
assembled in the next lemma.
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Lemma 5.52. Let X be an adapted, measurable process. Then there exists
a P-measurable process X̄ such that

(5.58) m⊗ P{(t, ω) ∈ R+ × Ω : X(t, ω) 6= X̄(t, ω)} = 0.

In particular, all measurable adapted processes are P∗-measurable.

Under the assumption µM � m⊗ P , we also have

(5.59) µ∗M{(t, ω) ∈ R+ × Ω : X(t, ω) 6= X̄(t, ω)} = 0.

Following our earlier conventions, we say that X and X̄ are µ∗M -equivalent.

Proof. Let X be a bounded, adapted, measurable process. By Lemma 4.2
there exists a sequence of simple predictable processes Xn such that

(5.60) E

∫
[0,T ]×Ω

|X −Xn|2 ds→ 0

for all T <∞.

We claim that there exists a subsequence {Xnk} such that Xnk(t, ω)→
X(t, ω) m⊗P -almost everywhere on R+×Ω. We perform this construction
with the usual diagonal argument. In general, L2 convergence implies almost
everywhere convergence along some subsequence. Thus from (5.60) for T =
1 we can extract a subsequence {Xn1

j
: j ∈ N} such that Xn1

j
→ X m⊗ P -

almost everywhere on the set [0, 1] × Ω. Inductively, suppose we have a
subsequence {Xn`j

: j ∈ N} such that limj→∞Xn`j
= X m ⊗ P -almost

everywhere on the set [0, `]×Ω. Then apply (5.60) for T = `+ 1 to extract

a subsequence {n`+1
j : j ∈ N} of {n`j : j ∈ N} such that limj→∞Xn`+1

j
= X

m⊗ P -almost everywhere on the set [0, `+ 1]× Ω.

From the array {n`j : `, j ∈ N} thus constructed, take the diagonal

nk = nkk for k ∈ N. For any `, {nk : k ≥ `} is a subsequence of {n`j : j ∈ N},
and consequently Xnk → X m⊗ P -almost everywhere on the set [0, `]× Ω.
Let

A = {(t, ω) ∈ R+ × Ω : Xnk(t, ω)→ X(t, ω) as k →∞}.
The last observation on {nk} implies that

Ac =

∞⋃
`=1

{(t, ω) ∈ [0, `]× Ω : Xnk(t, ω) does not converge to X(t, ω)}

is a countable union of sets of m⊗P -measure zero. Thus Xnk → X m⊗P -
almost everywhere on R+ × Ω.

Set

X̄(t, ω) = lim sup
k→∞

Xnk(t, ω).
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The processes Xnk are P-measurable by construction. Consequently X̄ is
P-measurable. On the set A, X̄ = X. Since m⊗ P (Ac) = 0, (5.58) follows
for this X.

For a Borel set B ∈ BR,

{(t, ω) ∈ R+ × Ω : X(t, ω) ∈ B}
= {(t, ω) ∈ A : X(t, ω) ∈ B} ∪ {(t, ω) ∈ Ac : X(t, ω) ∈ B}
= {(t, ω) ∈ A : X̄(t, ω) ∈ B} ∪ {(t, ω) ∈ Ac : X(t, ω) ∈ B}.

This expresses {X ∈ B} as a union of a set in P and a set in BR+ ⊗F with
m⊗ P -measure zero. So {X ∈ B} ∈ P∗.

The lemma has now been proved for a bounded adapted measurable
process X.

Given an arbitrary adapted measurable process X, let X(k) = (X ∧
k) ∨ (−k). By the previous part, X(k) is P∗-measurable, and there exist

P-measurable processes X̄k such that X(k) = X̄k m⊗P -almost everywhere.
Define (again) X̄ = lim supk→∞ X̄k. Since X(k) → X pointwise, X is also
P∗-measurable, and X = X̄ m⊗ P -almost everywhere. �

A consequence of the lemma is that it makes sense to talk about the
µ∗M -measure of any event involving measurable, adapted processes.

Definition 5.53. Assume M is a local L2-martingale whose Doléans mea-
sure µM satisfies µM � m⊗P on P. Define the extension µ∗M of µM to P∗
as in Definition 5.51.

Let L(M,P∗) be the class of measurable adapted processes X for which
there exists a nondecreasing sequence of stopping times ρk such that ρk ↗∞
almost surely, and for each k,∫

[0,T ]×Ω
1[0,ρk]|X|2 dµ∗M <∞ for all T <∞.

ForX ∈ L(M,P∗), the stochastic integralX·M is the local L2-martingale
given by X̄ ·M , where X̄ is the P-measurable process that is µ∗M -equivalent
to X in the sense (5.59). This X̄ will lie in L(M,P) and so the process X̄ ·M
exists. The process X ·M thus defined is unique up to indistinguishability.

Justification of the definition. Since X̄ = X µ∗M -almost everywhere,
their µ∗M -integrals agree, and in particular∫

[0,T ]×Ω
1[0,ρk]|X̄|2 dµM =

∫
[0,T ]×Ω

1[0,ρk]|X|2 dµ∗M <∞ for all T <∞.
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By Lemma 5.34, this is just another way of expressing X̄ ∈ L(M,P). It fol-
lows that the integral X̄ ·M exists and is a member ofM2,loc. In particular,
we can define X ·M = X̄ ·M as an element of M2,loc.

If we choose another P-measurable process Ȳ that is µ∗M -equivalent to
X, then X̄ and Ȳ are µM -equivalent, and the integrals X̄ ·M and Ȳ ·M are
indistinguishable by Exercise 5.10. �

If M is an L2-martingale to begin with, such as Brownian motion or the
compensated Poisson process, we naturally define L2(M,P∗) as the space
of measurable adapted processes X such that∫

[0,T ]×Ω
|X|2 dµ∗M <∞ for all T <∞.

The integral extended to L(M,P∗) or L2(M,P∗) enjoys all the properties
derived before, because the class of processes that appear as stochastic in-
tegrals has not been expanded.

A technical point worth noting is that once the integrand is not pre-
dictable, the stochastic integral does not necessarily coincide with the Lebes-
gue-Stieltjes integral even if the integrator has paths of bounded variation.
This is perfectly illustrated by the Poisson process in Exercise 5.12. While
this may seem unnatural, we must remember that the theory of Itô stochas-
tic integrals is so successful because integrals are martingales.

5.6. Quadratic variation

This final section of the chapter extends our earlier treatment of quadratic
variation and covariation, partly as preparation for Itô’s formula. The
section contains three main points. In Theorem 5.63 we reach the for-
mula for quadratic covariation of stochastic integrals: [

∫
GdY,

∫
H dZ] =∫

GH d[Y, Z]. Corollary 5.60 gives the substitution rule G · (H · Y ) =
(GH) · Y . A stochastic integration by parts formula which is a special case
of Itô’s formula arrives in Theorem 5.61. As a consequence in Proposition
5.64 we prove a Riemann sum approximation for d[Y,Z]-integrals that will
be used in the proof of Itô’s formula. The reader who wishes to get quickly
to the proof of Itô’s formula can glance at Proposition 5.64 and move on to
Section 6.1.

Recall from Section 2.2 that the quadratic variation [X] of a process X,
when it exists, is by definition a nondecreasing process with [X]0 = 0 whose
value at time t is determined, up to a null event, by the limit in probability

(5.61) [X]t = lim
mesh(π)→0

∑
i

(Xti+1 −Xti)
2.
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Here π = {0 = t0 < t1 < · · · < tm(π) = t} is a partition of [0, t]. Quadratic
covariation [X,Y ] of two processes X and Y was defined as the FV process

(5.62) [X,Y ] = [(X + Y )/2]− [(X − Y )/2],

assuming the processes on the right exist. Again there is a limit in proba-
bility:

(5.63) lim
mesh(π)→0

∑
i

(Xti+1 −Xti)(Yti+1 − Yti) = [X,Y ]t.

Identity [X] = [X,X] holds. For cadlag semimartingales X and Y , [X] and
[X,Y ] exist and have cadlag versions (Corollary 3.32).

Limit (5.63) shows that, for processes X, Y and Z and reals α and β,

(5.64) [αX + βY, Z] = α[X,Z] + β[Y,Z]

provided these processes exist. The equality can be taken in the sense of
indistinguishability for cadlag versions, provided such exist. Consequently
[ · , · ] operates somewhat in the manner of an inner product.

Lemma 5.54. Suppose Mn, M , Nn and N are L2-martingales. Fix 0 ≤
T < ∞. Assume Mn(T ) → M(T ) and Nn(T ) → N(T ) in L2 as n → ∞.
Then

E
{

sup
0≤t≤T

∣∣ [Mn, Nn]t − [M,N ]t
∣∣ }→ 0 as n→∞.

Proof. It suffices to consider the case where Mn = Nn and M = N because
the general case then follows from (5.62). Apply inequality (2.20) and note
that [X]t is nondecreasing in t.∣∣ [Mn]t − [M ]t

∣∣ ≤ [Mn −M ]t + 2[Mn −M ]
1/2
t [M ]

1/2
t

≤ [Mn −M ]T + 2[Mn −M ]
1/2
T [M ]

1/2
T .

Take expectations, apply Schwarz and recall (3.15).

E
[

sup
0≤t≤T

∣∣ [Mn]t − [M ]t
∣∣ ] ≤ ‖Mn(T )−M(T )‖2L2(P )

+ 2‖Mn(T )−M(T )‖L2(P ) · ‖M(T )‖L2(P ).

Letting n→∞ completes the proof. �

Proposition 5.55. Let M,N ∈ M2,loc, G ∈ L(M,P), and H ∈ L(N,P).
Then

[G ·M,H ·N ]t =

∫
(0,t]

GsHs d[M,N ]s.
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Proof. It suffices to show

(5.65) [G ·M,L]t =

∫
(0,t]

Gs d[M,L]s

for an arbitrary L ∈M2,loc. This is because then (5.65) applied to L = H ·N
gives

[M,L]t =

∫
(0,t]

Hs d[M,N ]s

so the Lebesgue-Stieltjes measures satisfy d[M,L]t = Ht d[M,N ]t. Substi-
tute this back into (5.65) to get the desired equality

[G ·M,L]t =

∫
(0,t]

Gs d[M,L]s =

∫
(0,t]

GsHs d[M,N ]s.

Step 1. Assume L,M ∈ M2. First consider G = ξ1(u,v] for a bounded
Fu-measurable random variable ξ. Then G ·M = ξ(Mv −Mu). By the
bilinearity (5.64) of quadratic covariation,

[G ·M,L]t = ξ
(
[Mv, L]t − [Mu, L]t

)
= ξ
(
[M,L]v∧t − [M,L]u∧t

)
=

∫
(0,t]

ξ1(u,v](s) d[M,L]s =

∫
(0,t]

Gs d[M,L]s.

The second equality above used Lemma 3.30. ξ moves freely in and out of
the integrals because they are path-by-path Lebesgue-Stieltjes integrals. By
additivity of the covariation conclusion (5.65) follows for G that are simple
predictable processes of the type (5.6).

Now take a general G ∈ L2(M,P). Pick simple predictable processes
Gn such that Gn → G in L2(M,P). Then (Gn ·M)t → (G ·M)t in L2(P ).
By Lemma 5.54 [Gn ·M,L]t → [G ·M,L]t in L1(P ). On the other hand the
previous lines showed

[Gn ·M,L]t =

∫
(0,t]

Gn(s) d[M,L]s.

The desired equality

[G ·M,L]t =

∫
(0,t]

G(s) d[M,L]s

follows if we can show the L1(P ) convergence∫
(0,t]

Gn(s) d[M,L]s −→
∫

(0,t]
G(s) d[M,L]s.

The first step below is a combination of the Kunita-Watanabe inequal-
ity (2.22) and the Schwarz inequality. Next, the assumption Gn → G in
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L2(M,P) implies Gn → G in L2([0, t]× Ω, µM ).

E

{ ∣∣∣∣ ∫
(0,t]

(
Gn(s)−G(s)

)
d[M,L]s

∣∣∣∣ }
≤
(
E

∫
(0,t]
|Gn(s)−G(s)|2 d[M ]s

)1/2(
E
{

[L]t
})1/2

=

(∫
(0,t]×Ω

|Gn −G|2 dµM
)1/2(

E
{
L2
t − L2

0

})1/2 −→ 0 as n→∞.

We have shown (5.65) for the case L,M ∈M2 and G ∈ L2(M,P).

Step 2. Now the case L,M ∈ M2,loc and G ∈ L(M,P). Pick stopping

times {τk} that localize both L and (G,M). Abbreviate Gk = 1(0,τk]G.
Then if τk(ω) ≥ t,

[G ·M,L]t = [G ·M,L]τk∧t = [(G ·M)τk , Lτk ]t = [(Gk ·M τk), Lτk ]t

=

∫
(0,t]

Gks d[M τk , Lτk ]s =

∫
(0,t]

Gs d[M,L]s.

We used Lemma 3.30 to move the τk superscript in and out of covariations,
and the definition (5.27) of the integral G ·M . Since τk(ω) ≥ t, we have
Gk = G on [0, t], and consequently Gk can be replaced by G on the last line.
This completes the proof. �

We can complement part (c) of Proposition 5.14 with this result.

Corollary 5.56. Suppose M,N ∈ M2, G ∈ L2(M,P), and H ∈ L2(N,P).
Then

(G ·M)t(H ·N)t −
∫

(0,t]
GsHs d[M,N ]s

is a martingale. If we weaken the hypotheses to M,N ∈ M2,loc, G ∈
L(M,P), and H ∈ L(N,P), then the process above is a local martingale.

Proof. Follows from Proposition 5.55 above, and a general property of
[M,N ] for (local) L2-martingales M and N , stated as Theorem 3.31 in
Section 3.4. �

Since quadratic variation functions like an inner product for local L2-
martingales, we can use the previous result as a characterization of the
stochastic integral. According to this characterization, to verify that a given
process is the stochastic integral, it suffices to check that it behaves the right
way in the quadratic covariation.
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Lemma 5.57. Let M ∈M2,loc and assume M0 = 0.

(a) For any 0 ≤ t < ∞, [M ]t = 0 almost surely iff sup0≤s≤t|Ms| = 0
almost surely.

(b) Let G ∈ L(M,P). The stochastic integral G ·M is the unique process
Y ∈M2,loc that satisfies Y0 = 0 and

[Y, L] =

∫
(0,t]

Gs d[M,L]s almost surely

for each 0 ≤ t <∞ and each L ∈M2,loc.

Proof. Part (a). Fix t. Let {τk} be a localizing sequence for M . Then for
s ≤ t, [M τk ]s ≤ [M τk ]t = [M ]τk∧t ≤ [M ]t = 0 almost surely by Lemma 3.28
and the t-monotonicity of [M ]. Consequently E{(M τk

s )2} = E{[M τk ]s} = 0,
from which M τk

s = 0 almost surely. Taking k large enough so that τk(ω) ≥ s,
Ms = M τk

s = 0 almost surely. Since M has cadlag paths, there is a single
event Ω0 such that P (Ω0) = 1 and Ms(ω) = 0 for all ω ∈ Ω0 and s ∈ [0, t].

Conversely, if M vanishes on [0, t] then so does [M ] by its definition.

Part (b). We checked that G ·M satisfies (5.65) which is the property
required here. Conversely, suppose Y ∈ M2,loc satisfies the property. Then
by the additivity,

[Y −G ·M,L]t = [Y, L]− [G ·M,L] = 0

for any L ∈M2,loc. Taking L = Y −G ·M gives [Y −G ·M,Y −G ·M ] = 0,
and then by part (a) Y = G ·M . �

Remark 5.58. Part (a) of Lemma 5.57 cannot hold for semimartingales.
Any continuous BV function will have a vanishing quadratic variation.

The next change-of-integrator or substitution property could have been
proved in Chapter 5 with a case-by-case argument, from simple predictable
integrands to localized integrals. At this point we can give a quick proof,
since we already did the tedious work in the previous proofs.

Proposition 5.59. Let M ∈ M2,loc, G ∈ L(M,P), and let N = G ·M ,
also a member of M2,loc. Suppose H ∈ L(N,P). Then HG ∈ L(M,P) and
H ·N = (HG) ·M .

Proof. Let {τk} be a localizing sequence for (G,M) and (H,N). By part
(b) of Proposition 5.31 N τk = (G · M)τk = G · M τk , and so Proposition
5.55 gives the equality of Lebesgue-Stieltjes measures d[N τk ]s = G2

s d[M τk ]s.
Then for any T <∞,

E

∫
[0,T ]

1[0,τk](t)H
2
tG

2
t d[M τk ]t = E

∫
[0,T ]

1[0,τk](t)H
2
t d[N τk ]t <∞
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because {τk} is assumed to localize (H,N). This checks that {τk} localizes
(HG,M) and so HG ∈ L(M,P).

Let L ∈M2,loc. Equation (5.65) gives Gs d[M,L]s = d[N,L]s, and so

[(HG) ·M,L]t =

∫
(0,t]

HsGs d[M,L]s =

∫
(0,t]

Hs d[N,L]s = [H ·N,L]t.

By Lemma 5.57(b), (HG) ·M must coincide with H ·N . �

We proceed to extend some of these results to semimartingales, begin-
ning with the change of integrator. Recall some notation and terminology.
The integral

∫
GdY with respect to a cadlag semimartingale Y was defined

in Section 5.3 for predictable integrands G that satisfy this condition:

there exist stopping times {σn} such that σn ↗∞ almost

surely and 1(0,σn]G is a bounded process for each n.
(5.66)

If X is a cadlag process, we defined the caglad process X− by X−(0) = X(0)
and X−(t) = X(t−) for t > 0. The notion of uniform convergence on
compact time intervals in probability first appeared in our discussion of
martingales (Lemma 3.42) and then with integrals (Propositions 5.32 and
5.37).

Corollary 5.60. Let Y be a cadlag semimartingale, G and H predictable
processes that satisfy (5.66), and X =

∫
H dY , also a cadlag semimartingale.

Then ∫
GdX =

∫
GH dY.

Proof. Let Y = Y0 + M + U be a decomposition of Y into a local L2-
martingale M and an FV process U . Let Vt =

∫
(0,t]Hs dUs, another FV

process. This definition entails that, for a fixed ω, Hs is the Radon-Nikodym
derivative dΛV /dΛU of the Lebesgue-Stieltjes measures on the time line
(Lemma 1.15). X = H ·M + V is a semimartingale decomposition of X.
By definition of the integral

∫
GdX and Proposition 5.59,∫

(0,t]
Gs dXs =

(
G · (H ·M)

)
t
+

∫
(0,t]

Gs dVs

=
(
(GH) ·M

)
t
+

∫
(0,t]

GsHs dUs

=

∫
(0,t]

GsHs dYs.

The last equality is the definition of the semimartingale integral
∫
GH dY .

�
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In terms of “stochastic differentials” we can express the conclusion as
dX = H dY . These stochastic differentials do not exist as mathematical
objects, but the rule dX = H dY tells us that dX can be replaced by H dY
in the stochastic integral.

Theorem 5.61. Let Y and Z be cadlag semimartingales. Then [Y,Z] exists
as a cadlag, adapted FV process and satisfies

(5.67) [Y,Z]t = YtZt − Y0Z0 −
∫

(0,t]
Ys− dZs −

∫
(0,t]

Zs− dYs.

The product Y Z is a semimartingale, and for a predictable process H that
satisfies (5.66),∫

(0,t]
Hs d(Y Z)s =

∫
(0,t]

HsYs− dZs +

∫
(0,t]

HsZs− dYs

+

∫
(0,t]

Hs d[Y,Z]s.

(5.68)

Proof. We can give here a proof of the existence [Y,Z] independent of
Corollary 3.32. Take a countably infinite partition π = {0 = t1 < t2 < t3 <
· · · < ti < · · · } of R+ such that ti ↗ ∞, and in fact take a sequence of
such partitions with mesh(π) → 0. (We omit the index for the sequence of
partitions.) For t ∈ R+ consider

(5.69)

Sπ(t) =
∑

(Yti+1∧t − Yti∧t)(Zti+1∧t − Zti∧t)

=

{∑
(Yti+1∧tZti+1∧t − Yti∧tZti∧t)

−
∑

Yti(Zti+1∧t − Zti∧t)−
∑

Zti(Yti+1∧t − Yti∧t)
}

−→
mesh(π)→0

YtZt − Y0Z0 −
∫

(0,t]
Ys− dZs −

∫
(0,t]

Zs− dYs.

Proposition 5.37 implies that the convergence takes place in probability,
uniformly on any compact time interval [0, T ], and also gives the limit in-
tegrals. By the usual Borel-Cantelli argument we then get the limit almost
surely, uniformly on [0, T ], along some subsequence of the original sequence
of partitions. The limit process is cadlag.

From this limit we get all the conclusions. Take first Y = Z. Suppose
s < t. Once the mesh is smaller than t− s we have indices k < ` such that
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tk < s ≤ tk+1 and t` < t ≤ t`+1. Then

Sπ(t)− Sπ(s) = (Yt − Yt`)
2 +

`−1∑
i=k

(Yti+1 − Yti)2 − (Ys − Ytk)2

≥ (Ytk+1
− Ytk)2 − (Ys − Ytk)2

−→ (∆Ys)
2 − (∆Ys)

2 = 0.

Since this limit holds almost surely simultaneously for all s < t in [0, T ],
we can conclude that the limit process is nondecreasing. We have satisfied
Definition 2.14 and now know that every cadlag semimartingale Y has a
nondecreasing, cadlag quadratic variation [Y ].

Next Definition 2.15 gives the existence of a cadlag, FV process [Y, Z].
By the limits (2.13), [Y,Z] coincides with the cadlag limit process in (5.69)
almost surely at each fixed time, and consequently these processes are in-
distinguishable. We have verified (5.67).

We can turn (5.67) around to say

Y Z = Y0Z0 +

∫
Y− dZ +

∫
Z− dY + [Y,Z]

which represents Y Z as a sum of semimartingales, and thereby Y Z itself is
a semimartingale.

Equality (5.68) follows from the additivity of integrals, and the change-
of-integrator formula applied to the semimartingales

∫
Y− dZ and

∫
Z− dY .

�

Remark 5.62. Identity (5.67) gives an integration by parts rule for stochas-
tic integrals. It generalizes the integration by parts rule of Lebesgue-Stieltjes
integrals that is part of standard real analysis [8, Section 3.5].

Next we extend Proposition 5.55 to semimartingales.

Theorem 5.63. Let Y and Z be cadlag semimartingales and G and H
predictable processes that satisfy (5.66). Then

[G · Y,H · Z]t =

∫
(0,t]

GsHs d[Y, Z]s.

Proof. For the same reason as in the proof of Proposition 5.55, it suffices
to show

[G · Y,Z]t =

∫
(0,t]

Gs d[Y,Z]s.
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Let Y = Y0 + M + A and Z = Z0 + N + B be decompositions into local
L2-martingales M and N and FV processes A and B. By the linearity of
quadratic covariation,

[G · Y,Z] = [G ·M,N ] + [G ·M,B] + [G ·A,Z].

By Proposition 5.55 [G ·M,N ] =
∫
Gd[M,N ]. To handle the other two

terms, fix an ω such that the paths of the integrals and the semimartingales
are cadlag, and the characterization of jumps given in Theorem 5.41 is valid
for each integral that appears here. Then since B and G · A are FV pro-
cesses, Lemma A.10 applies. Combining Lemma A.10, Theorem 5.41, and
the definition of a Lebesgue-Stieltjes integral with respect to a step function
gives

[G ·M,B]t + [G ·A,Z]t =
∑
s∈(0,t]

∆(G ·M)s∆Bs +
∑
s∈(0,t]

∆(G ·A)s∆Zs

=
∑
s∈(0,t]

Gs∆Ms∆Bs +
∑
s∈(0,t]

Gs∆As∆Zs

=

∫
(0,t]

Gs d[M,B]s +

∫
(0,t]

Gs d[A,Z]s.

Combining terms gives the desired equation. �

As the last result we generalize the limit taken in (5.69) by adding a
coefficient to the sum. This is the technical lemma from this section that
we need for the proof of Itô’s formula.

Proposition 5.64. Let Y and Z be cadlag semimartingales, and G an
adapted cadlag process. Given a partition π = {0 = t1 < t2 < t3 < · · · <
ti ↗∞} of [0,∞), define

(5.70) Rt(π) =
∞∑
i=1

Gti(Yti+1∧t − Yti∧t)(Zti+1∧t − Zti∧t).

Then as mesh(π) → 0, R(π) converges to
∫
G− d[Y,Z] in probability, uni-

formly on compact time intervals.

Proof. Algebra gives

Rt(π) =
∑

Gti(Yti+1∧tZti+1∧t − Yti∧tZti∧t)

−
∑

GtiYti(Zti+1∧t − Zti∧t)−
∑

GtiZti(Yti+1∧t − Yti∧t).

We know from Theorem 5.61 that Y Z is a semimartingale. Applying Propo-
sition 5.37 to each sum gives the claimed type of convergence to the limit∫

(0,t]
Gs−d(Y Z)s −

∫
(0,t]

Gs−Ys− dZs −
∫

(0,t]
Gs−Zs− dYs
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which by (5.68) equals
∫

(0,t]Gs− d[Y,Z]s. �
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Exercises

Exercise 5.1. Recall the definition (2.6) of Ft−. Show that if X : R+ ×
Ω → R is P-measurable, then Xt(ω) = X(t, ω) is a process adapted to the
filtration {Ft−}.

Hint: Given B ∈ BR, let A = {(t, ω) : X(t, ω) ∈ B} ∈ P. The event
{Xt ∈ B} equals the t-section At = {ω : (t, ω) ∈ A}, so it suffices to show
that an arbitrary A ∈ P satisfies At ∈ Ft− for all t ∈ R+. This follows
from checking that predictable rectangles have this property, and that the
collection of sets in BR+ ⊗F with this property form a sub-σ-field.

Exercise 5.2. (a) Show that for any Borel function h : R+ → R, the
deterministic process X(t, ω) = h(t) is predictable. Hint: Intervals of the
type (a, b] generate the Borel σ-field of R+.

(b) Suppose X is an Rm-valued predictable process and g : Rm → Rd

a Borel function. Show that the process Zt = g(Xt) is predictable.

(c) Suppose X is an Rm-valued predictable process and f : R+×Rm →
Rd a Borel function. Show that the process Wt = f(t,Xt) is predictable.

Hint. Parts (a) and (b) imply that h(t)g(Xt) is predictable. Now appeal
to results around the π-λ Theorem.

Exercise 5.3. Fill in the missing details of the proof that P is generated
by continuous processes (see Lemma 5.1).

Exercise 5.4. Let Nt be a rate α Poisson process on R+ and Mt = Nt−αt.
In Example 5.3 we checked that µM = αm⊗P on P. Here we use this result
to show that the process N is not P-measurable.

(a) Evaluate the integral∫
[0,T ]×Ω

Ns(ω) (αm⊗ P )(ds, dω).

(b) Evaluate

E

∫
[0,T ]

Ns d[M ]s

where the inner integral is the pathwise Lebsgue-Stieltjes integral, in accor-
dance with the interpretation of definition (5.1) of µM . Conclude that N
cannot be P-measurable.

(c) For comparison, evaluate explicitly integrals

E

∫
(0,T ]

Ns− dNs and

∫
[0,T ]×Ω

Ns−(ω) (αm⊗ P )(ds, dω).

Here Ns−(ω) = limu↗sNu(ω) is the left limit. Explain why we know without
calculation that these integrals must agree.
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Exercise 5.5. Let {Ft} be a filtration, P the corresponding predictable
σ-field, {Ft+} defined as in (2.5), and P+ the predictable σ-field that cor-
responds to {Ft+}. In other words, P+ is the σ-field generated by the sets
{0} × F0 for F0 ∈ F0+ and (s, t]× F for F ∈ Fs+.

(a) Show that each (s, t]× F for F ∈ Fs+ lies in P.

(b) Show that a set of the type {0} × F0 for F ∈ F0+ \ F0 cannot lie in
P.

(c) Show that the σ-fields P and P+ coincide on the subspace (0,∞)×Ω
of R+ × Ω. Hint: Apply part (d) of Exercise 1.8.

(d) Suppose X is a P+-measurable process. Show that the process
Y (t, ω) = X(t, ω)1(0,∞)(t) is P-measurable.

Exercise 5.6. SupposeM is a continuous L2-martingale andX ∈ L2(M,P).
Show that (1(a,b)X) ·M = (1[a,b]X) ·M . Hint: [M ] is continuous.

Exercise 5.7. Let X be a predictable process. Show that∫ T

0
X(s, ω)2 ds <∞ for all T <∞, for P -almost every ω,

if and only if there exist stopping times τk ↗∞ such that

E

∫ τk(ω)∧T

0
X(s, ω)2 ds <∞ for all T <∞.

From this argue the characterization of L(M,P) for Brownian motion and
the compensated Poisson process claimed in Example 5.26.

Exercise 5.8. Finish the proof of Proposition 5.31.

Exercise 5.9. Let f be a cadlag function on R+ and define f− by f−(0) =
f(0) and f−(t) = f(t−) for t > 0. Show that f− is a caglad function.
Observe in passing that the right limits of f− recover f .

Exercise 5.10. Let M be a local L2 martingale. Show that if X,Y ∈
L(M,P) are µM -equivalent, namely

µM{(t, ω) : X(t, ω) 6= Y (t, ω)} = 0,

then X ·M and Y ·M are indistinguishable.

Exercise 5.11. (Computations with the Poisson process.) Let N be a
homogeneous rate α Poisson process, and Mt = Nt − αt the compensated
Poisson process which is an L2-martingale. Let 0 < τ1 < τ2 < . . . < τN(t)

denote the jump times of N in (0, t].

(a) Show that

E

[ N(t)∑
i=1

τi

]
=
αt2

2
.
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Hint: For a homogeneous Poisson process, given that there are n jumps in an
interval I, the locations of the jumps are n i.i.d. uniform random variables
in I.

(b) Compute the integral∫
(0,t]

N(s−) dM(s).

“Compute” means to find a reasonably simple formula in terms of Nt and
the τi’s. One way is to justify the evaluation of this integral as a Lebesgue-
Stieltjes integral.

(c) Use the formula you obtained in part (b) to check that the process∫
N(s−) dM(s) is a martingale. (Of course, this conclusion is part of the

theory but the point here is to obtain it through hands-on computation.
Part (a) and Exercise 2.28 take care of parts of the work.)

(d) Suppose N were predictable. Then the stochastic integral
∫
N dM

would exist and be a martingale. Show that this is not true and conclude
that N cannot be predictable.

Hints: It might be easiest to find∫
(0,t]

N(s) dM(s)−
∫

(0,t]
N(s−) dM(s) =

∫
(0,t]

(
N(s)−N(s−)

)
dM(s)

and use the fact that the integral of N(s−) is a martingale.

Exercise 5.12. (Extended stochastic integral of the Poisson process.) Let
Nt be a rate α Poisson process, Mt = Nt − αt and N−(t) = N(t−). Show
that N− is a modification of N , and

µ∗M{(t, ω) : Nt(ω) 6= Nt−(ω)} = 0.

Thus the stochastic integral N ·M can be defined according to the extension
in Section 5.5 and this N ·M must agree with N− ·M .

Exercise 5.13. (Riemann sum approximation in M2.) Let M be an L2

martingale, X ∈ L2(M,P), and assume X also satisfies the hypotheses of
Proposition 5.32. Let πm = {0 = tm1 < tm2 < tm3 < · · · } be partitions such

that meshπm → 0. Let ξk,mi = (Xtmi
∧ k) ∨ (−k), and define the simple

predictable processes

W k,m,n
t =

n∑
i=1

ξm,ki 1(tmi ,t
m
i+1](t).

Then there exists a subsequences {m(k)} and {n(k)} such that

lim
k→∞
‖X ·M −W k,m(k),n(k) ·M‖M2 = 0.
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Exercise 5.14. Let 0 < a < b < ∞ be constants and M ∈ M2,loc. Find
the stochastic integral ∫

(0,t]
1[a,b)(s) dMs.

Hint: Check that if M ∈ M2 then 1(a−1/n,b−1/n] converges to 1[a,b) in
L2(M,P).

Exercise 5.15. Does part (a) of Lemma 5.57 extend to semimartingales?

Exercise 5.16. (Space-time Poisson random measure.) In some applica-
tions the random occurrences modeled by a Poisson process also come with
a spatial structure. Let U be a subset of Rd and ν a finite Borel measure
on U . Let ξ be a Poisson random measure on U ×R+ with mean measure
ν ⊗m. Define the filtration Ft = σ{ξ(B) : B ∈ BU×[0,t]}. Fix a bounded
Borel function h on U ×R+. Define

Xt =

∫
U×[0,t]

h(x, s) ξ(dx, ds) , Ht =

∫ t

0

∫
U
h(x, s) ν(dx) ds

and Mt = Xt −Ht.

(a) Show that these are cadlag processes, M is a martingale, H is an FV
process and X is semimartingale.

(b) Show that for an adapted cadlag process Z,∫
(0,t]

Z(s−) dXs =

∫
U×[0,t]

Z(s−)h(x, s) ξ(dx, ds).

Hint. The Riemann sums in Proposition 5.37 would work.

(c) What moment assumption on an adapted cadlag process Z guaran-
tees that Z− ∈ L2(M,P)? Show that for these processes Z,

E

∫
(0,t]

Z(s−) dXs =

∫ t

0

∫
U
E[Z(s)]h(x, s) ν(dx) ds.

Hint. Recall that stochastic integrals of L2 integrands are themselves mean
zero martingales.





Chapter 6

Itô’s Formula

Itô’s formula works as a fundamental theorem of calculus in stochastic anal-
ysis. We are familiar from calculus with the fact that if x(t) is a continuously
differentiable function of time, then

f(x(t)) = f(x(0)) +

∫ t

0
f ′(x(s))x′(s) ds.

However, the exact analogue for Brownian motion

f(Bt) = f(B0) +

∫ t

0
f ′(Bs) dBs

is not true. The wild oscillation of a Brownian path brings a second order
term into the identity that involves quadratic variation d[B] = dt:

f(Bt) = f(B0) +

∫ t

0
f ′(Bs) dBs + 1

2

∫ t

0
f ′′(Bs) ds.

This is a special case of Itô’s formula. When the process in question possesses
jumps, even further terms need to be added on the right-hand side.

Right-continuity of the filtration {Ft} is not needed for the proofs of this
chapter. This property might be needed for defining the stochastic integral
with respect to a semimartingale one wants to work with. As explained in
the beginning of Section 5.3, under this assumption we can apply Theorem
3.21 (fundamental theorem of local martingales) to guarantee that every
semimartingale has a decomposition whose local martingale part is a local
L2-martingale. This L2 property was used for the construction of the sto-
chastic integral. The problem can arise only when the local martingale part
can have unbounded jumps. When the local martingale is continuous or its

207



208 6. Itô’s Formula

jumps have a uniform bound, it can be localized into an L2 martingale and
the fundamental theorem is not needed.

6.1. Itô’s formula: proofs and special cases

We prove Itô’s formula in two main stages, first for real-valued semimartin-
gales and then for vector-valued semimartingales. Additionally we state
several simplifications that result if the cadlag semimartingale specializes to
an FV process, a continuous semimartingale, or Brownian motion.

For an open set D ⊆ R, C2(D) is the space of functions f : D → R such
that the derivatives f ′ and f ′′ exist everywhere on D and are continuous
functions. For a real or vector-valued cadlag process X, the jump at time s
is denoted by

∆Xs = Xs −Xs−

as before. Recall also the notion of the closure of the path over a time
interval, for a cadlag process given by

X[0, t] = {X(s) : 0 ≤ s ≤ t} ∪ {X(s−) : 0 < s ≤ t}.

Itô’s formula contains a term which is a sum over the jumps of the
process. This sum has at most countably many terms because a cadlag path
has at most countably many discontinuities (Lemma A.7). It is also possible
to define rigorously what is meant by a convergent sum of uncountably many
terms, and arrive at the same value. See the discussion around (A.5) in the
appendix.

Theorem 6.1. Fix 0 < T < ∞. Let D be an open subset of R and f ∈
C2(D). Let Y be a cadlag semimartingale with quadratic variation process

[Y ]. Assume that for all ω outside some event of probability zero, Y [0, T ] ⊆
D. Then

f(Yt) = f(Y0) +

∫
(0,t]

f ′(Ys−) dYs + 1
2

∫
(0,t]

f ′′(Ys−) d[Y ]s

+
∑
s∈(0,t]

{
f(Ys)− f(Ys−)− f ′(Ys−)∆Ys − 1

2f
′′(Ys−)(∆Ys)

2
}
.

(6.1)

Part of the conclusion is that the last sum over s ∈ (0, t] converges absolutely
for almost every ω. Both sides of the equality above are cadlag processes,
and the meaning of the equality is that these processes are indistinguishable
on [0, T ]. In other words, there exists an event Ω0 of full probability such
that for ω ∈ Ω0, (6.1) holds for all 0 ≤ t ≤ T .
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Proof. The proof starts by Taylor expanding f . We formulate this in the
following way. Define the function γ on D×D by γ(x, x) = 0 for all x ∈ D,
and for x 6= y

(6.2) γ(x, y) =
1

(y − x)2

{
f(y)− f(x)− f ′(x)(y − x)− 1

2f
′′(x)(y − x)2

}
.

On the set {(x, y) ∈ D × D : x 6= y} γ is continuous as a quotient of
two continuous functions. That γ is continuous also at diagonal points
(z, z) follows from Taylor’s theorem (Theorem A.14 in the appendix). Given
z ∈ D, pick r > 0 small enough so that G = (z − r, z + r) ⊆ D. Then for
x, y ∈ G, x 6= y, there exists a point θx,y between x and y such that

f(y) = f(x) + f ′(x)(y − x) + 1
2f
′′(θx,y)(y − x)2.

So for these (x, y)

γ(x, y) = 1
2f
′′(θx,y)− 1

2f
′′(x).

As (x, y) converges to (z, z), θx,y converges to z, and so by the assumed
continuity of f ′′

γ(x, y) −→ 1
2f
′′(z)− 1

2f
′′(z) = 0 = γ(z, z).

We have verified that γ is continuous on D ×D.

Write

f(y)− f(x) = f ′(x)(y − x) + 1
2f
′′(x)(y − x)2 + γ(x, y)(y − x)2.

Given a partition π = {ti} of [0,∞), apply the above identity to each par-
tition interval to write

f(Yt) = f(Y0) +
∑
i

{
f(Yt∧ti+1)− f(Yt∧ti)

}
= f(Y0) +

∑
i

f ′(Yt∧ti)(Yt∧ti+1 − Yt∧ti)(6.3)

+ 1
2

∑
i

f ′′(Yt∧ti)(Yt∧ti+1 − Yt∧ti)2(6.4)

+
∑
i

γ(Yt∧ti , Yt∧ti+1)(Yt∧ti+1 − Yt∧ti)2.(6.5)

By Propositions 5.37 and 5.64 we can fix a sequence of partitions π` such
that mesh(π`) → 0, and so that the following limits happen almost surely,
uniformly for t ∈ [0, T ], as `→∞.

(i) The sum on line (6.3) converges to∫
(0,t]

f ′(Ys−) dYs.
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(ii) The term on line (6.4) converges to

1
2

∫
(0,t]

f ′′(Ys−) d[Y ]s.

(iii) The limit ∑
i

(Yt∧ti+1 − Yt∧ti)2 −→ [Y ]t

happens.

Fix ω so that the limits in items (i)–(iii) above happen. We apply
the scalar case of Lemma A.13, but simplified so that φ and γ in (A.8)
have no time variables, to the cadlag function s → Ys(ω) on [0, t] and the
sequence of partitions π` chosen above. For the closed set K in Lemma
A.13 take K = Y [0, T ]. For the continuous function φ in Lemma A.13 take
φ(x, y) = γ(x, y)(y− x)2. By hypothesis, K is a subset of D. Consequently,
as verified above, the function

γ(x, y) =

{
(x− y)−2φ(x, y), x 6= y

0, x = y

is continuous on K×K. Assumption (A.9) of Lemma A.13 holds by item (iii)
above. The hypotheses of Lemma A.13 have been verified. The conclusion
is that for this fixed ω and each t ∈ [0, T ], the sum on line (6.5) converges
to ∑

s∈(0,t]

φ(Ys−, Ys) =
∑
s∈(0,t]

γ(Ys−, Ys)
(
Ys − Ys−

)2
=
∑
s∈(0,t]

{
f(Ys)− f(Ys−)− f ′(Ys−)∆Ys − 1

2f
′′(Ys−)(∆Ys)

2
}
.

Lemma A.13 also contains the conclusion that this last sum is absolutely
convergent.

To summarize, given 0 < T < ∞, we have shown that for almost every
ω, (6.1) holds for all 0 ≤ t ≤ T . �

Remark 6.2. (Semimartingale property) A corollary of Theorem 6.1 is that
under the conditions of the theorem f(Y ) is a semimartingale. Equation
(6.1) expresses f(Y ) as a sum of semimartingales. The integral f ′′(Y−) d [Y ]
is an FV process. To see that the sum over jump times s ∈ (0, t] produces
also an FV process, fix ω such that Ys(ω) is a cadlag function and (6.1)
holds. Let {si} denote the (at most countably many) jumps of s 7→ Ys(ω)
in [0, T ]. The theorem gives the absolute convergence∑

i

∣∣∣∆f(Ysi(ω))− f ′(Ysi−(ω))∆Ysi(ω)− 1
2f
′′(Ysi−(ω))(∆Ysi(ω))2

∣∣∣ <∞.
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Consequently for this fixed ω the sum in (6.1) defines a function in BV [0, T ],
as in Example 1.13.

Let us state some simplifications of Itô’s formula.

Corollary 6.3. Under the hypotheses of Theorem 6.1 we have the following
special cases.

(a) If Y is continuous on [0, T ], then

(6.6) f(Yt) = f(Y0) +

∫ t

0
f ′(Ys) dYs + 1

2

∫ t

0
f ′′(Ys) d[Y ]s.

(b) If Y has bounded variation on [0, T ], then

f(Yt) = f(Y0) +

∫
(0,t]

f ′(Ys−) dYs

+
∑
s∈(0,t]

{
f(Ys)− f(Ys−)− f ′(Ys−)∆Ys

}(6.7)

(c) If Yt = Y0 +Bt, where B is a standard Brownian motion independent
of Y0, then

(6.8) f(Bt) = f(Y0) +

∫ t

0
f ′(Y0 +Bs) dBs + 1

2

∫ t

0
f ′′(Y0 +Bs) ds.

Proof. Part (a). Continuity eliminates the sum over jumps, and renders
endpoints of intervals irrelevant for integration.

Part (b). By Corollary A.11 the quadratic variation of a cadlag BV path
consists exactly of the squares of the jumps. Consequently

1
2

∫
(0,t]

f ′′(Ys−) d[Y ]s =
∑
s∈(0,t]

1
2f
′′(Ys−)(∆Ys)

2

and we get cancellation in the formula (6.1).

Part (c). Specialize part (a) to [B]t = t. �

The open set D in the hypotheses of Itô’s formula does not have to be
an interval, so it can be disconnected.

The important hypothesis Y [0, T ] ⊆ D prevents the process from reach-
ing the boundary. Precisely speaking, the hypothesis implies that for some
δ > 0, dist(Y (s), Dc) ≥ δ for all s ∈ [0, T ]. To prove this, assume the
contrary, namely the existence of si ∈ [0, T ] such that dist(Y (si), D

c) → 0.
Since [0, T ] is compact, we may pass to a convergent subsequence si → s.
And then by the cadlag property, Y (si) converges to some point y. Since

dist(y,Dc) = 0 and Dc is a closed set, y ∈ Dc. But y ∈ Y [0, T ], and we have

contradicted Y [0, T ] ⊆ D.
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But note that the δ (the distance to the boundary of D) can depend on

ω. So the hypothesis Y [0, T ] ⊆ D does not require that there exists a fixed
closed subset H of D such that P{Y (t) ∈ H for all t ∈ [0, T ]} = 1.

Hypothesis Y [0, T ] ⊆ D is needed because otherwise a “blow-up” at
the boundary can cause problems. The next example illustrates why we
need to assume the containment in D of the closure Y [0, T ], and not merely
Y [0, T ] ⊆ D.

Example 6.4. Let D = (−∞, 1) ∪ (3
2 ,∞), and define

f(x) =

{√
1− x, x < 1

0, x > 3
2 ,

a C2-function on D. Define the deterministic process

Yt =

{
t, 0 ≤ t < 1

1 + t, t ≥ 1.

Yt ∈ D for all t ≥ 0. However, if t > 1,∫
(0,t]

f ′(Ys−) dYs =

∫
(0,1)

f ′(s) ds+ f ′(Y1−) +

∫
(1,t]

f ′(s) ds

= −1 + (−∞) + 0.

As the calculation shows, the integral is not finite. The problem is that the
closure Y [0, t] contains the point 1 which lies at the boundary of D, and the
derivative f ′ blows up there.

We extend Itô’s formula to vector-valued semimartingales. For purposes
of matrix multiplication we think of points x ∈ Rd as column vectors, so
with T denoting transposition,

x = [x1, x2, . . . , xd]
T .

Let Y1(t), Y2(t), . . . , Yd(t) be cadlag semimartingales with respect to a com-
mon filtration {Ft}. We write Y (t) = [Y1(t), . . . , Yd(t)]

T for the column vec-
tor with coordinates Y1(t), . . . , Yd(t), and call Y an Rd-valued semimartin-
gale. Its jump is the vector of jumps in the coordinates:

∆Y (t) = [∆Y1(t),∆Y2(t), . . . ,∆Yd(t)]
T .

For 0 < T <∞ and an open subset D of Rd, C1,2([0, T ]×D) is the space
of continuous functions f : [0, T ]×D → R whose partial derivatives ft, fxi ,
and fxi,xj exist and are continuous in the interior (0, T ) × D, and extend

as continuous functions to [0, T ]×D. So the superscript in C1,2 stands for
one continuous time derivative and two continuous space derivatives. For
f ∈ C1,2([0, T ]×D) and (t,x) ∈ [0, T ]×D, the spatial gradient

Df(t,x) =
[
fx1(t,x), fx2(t,x), . . . , fxd(t,x)

]T
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is the column vector of first-order partial derivatives in the space variables,
and the Hessian matrix D2f(t,x) is the d×d matrix of second-order spatial
partial derivatives:

D2f(t,x) =


fx1,x1(t,x) fx1,x2(t,x) · · · fx1,xd(t,x)
fx2,x1(t,x) fx2,x2(t,x) · · · fx2,xd(t,x)

...
...

. . .
...

fxd,x1(t,x) fxd,x2(t,x) · · · fxd,xd(t,x)

 .
Theorem 6.5. Fix d ≥ 2 and 0 < T < ∞. Let D be an open subset of
Rd and f ∈ C1,2([0, T ]×D). Let Y be an Rd-valued cadlag semimartingale

such that outside some event of probability zero, Y [0, T ] ⊆ D. Then

f(t, Y (t)) = f(0, Y (0)) +

∫ t

0
ft(s, Y (s)) ds

+
d∑
j=1

∫
(0,t]

fxj (s, Y (s−)) dYj(s)

+ 1
2

∑
1≤j,k≤d

∫
(0,t]

fxj ,xk(s, Y (s−)) d[Yj , Yk](s)

+
∑
s∈(0,t]

{
f(s, Y (s))− f(s, Y (s−))

−Df(s, Y (s−))T∆Y (s)− 1
2∆Y (s)TD2f(s, Y (s−))∆Y (s)

}

(6.9)

Proof. Let us write Y k
t = Yk(t) in the proof. The pattern is the same as in

the scalar case. Define a function φ on [0, T ]2 ×D2 by the equality

f(t,y)− f(s,x) = ft(s,x)(t− s) +Df(s,x)T (y − x)

+ 1
2(y − x)TD2f(s,x)(y − x) + φ(s, t,x,y).

(6.10)

Apply this to partition intervals to write

f(t, Yt) = f(0, Y0) +
∑
i

{
f(t ∧ ti+1, Yt∧ti+1)− f(t ∧ ti, Yt∧ti)

}
= f(0, Y0)

+
∑
i

ft(t ∧ ti, Yt∧ti)
(
(t ∧ ti+1)− (t ∧ ti)

)
(6.11)

+

d∑
k=1

∑
i

fxk(t ∧ ti, Yt∧ti)
(
Y k
t∧ti+1

− Y k
t∧ti
)

(6.12)

+ 1
2

∑
1≤j,k≤d

∑
i

fxj ,xk(t ∧ ti, Yt∧ti)
(
Y j
t∧ti+1

− Y j
t∧ti
)(
Y k
t∧ti+1

− Y k
t∧ti
)

(6.13)
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+
∑
i

φ(t ∧ ti, t ∧ ti+1, Yt∧ti , Yt∧ti+1).(6.14)

By Propositions 5.37 and 5.64 we can fix a sequence of partitions π` such
that mesh(π`) → 0, and so that the following limits happen almost surely,
uniformly for t ∈ [0, T ], as `→∞.

(i) Line (6.11) converges to∫
(0,t]

ft(s, Ys) ds.

(ii) Line (6.12) converges to

d∑
k=1

∫
(0,t]

fxk(s, Ys−) dY k
s .

(iii) Line (6.13) converges to

1
2

∑
1≤j,k≤d

∫
(0,t]

fxj ,xk(s, Ys−) d[Y j , Y k]s.

(iv) The limit ∑
i

(
Y k
t∧ti+1

− Y k
t∧ti
)2 −→ [Y k]t

happens for 1 ≤ k ≤ d.

In (i)–(iii) the integrand is the left limit process, for example in (ii)

lim
r↘s

fxk(r, Yr) = fxk
(
lim
r↘s

(r, Yr)
)

= fxk(s, Ys−).

However in (i) the ds integral does not distinguish between Ys− and Ys
because a cadlag path has at most countably many jumps.

Fix ω such that Y [0, T ] ⊆ D and the limits in items (i)–(iv) hold. By the
above paragraph and by hypothesis these conditions hold for almost every
ω.

To treat the sum on line (6.14), we apply Lemma A.13 to the Rd-valued
cadlag function s 7→ Ys(ω) on [0, T ], with the function φ defined by (6.10),

the closed set K = Y [0, T ], and the sequence of partitions π` chosen above.
We need to check that φ and the set K satisfy the hypotheses of Lemma
A.13. Continuity of φ follows from the definition (6.10). Next we argue that
if (sn, tn,xn,yn)→ (u, u, z, z) in [0, T ]2×K2 while for each n, either sn 6= tn
or xn 6= yn, then

(6.15)
φ(sn, tn,xn,yn)

|tn − sn|+ |yn − xn|2
→ 0.
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Given ε > 0, let I be an interval around u in [0, T ] and let B be an open
ball centered at z and contained in D such that

|ft(v,w)− ft(u, z)|+ |D2f(v,w)−D2f(u, z)| ≤ ε

for all v ∈ I,w ∈ B. Such an interval I and ball B exist by the openness of
D and by the assumption of continuity of derivatives of f in [0, T ]×D. For
large enough n, we have sn, tn ∈ I and xn,yn ∈ B. Since a ball is convex,
by Taylor’s formula (A.16) we can write

φ(sn, tn,xn,yn) =
(
ft(τn,yn)− ft(sn,xn)

)
(tn − sn)

+ 1
2(yn − xn)T

(
D2f(sn, ξn)−D2f(sn,xn)

)
(yn − xn),

where τn lies between sn and tn, and ξn is a point on the line segment
connecting xn and yn. Hence τn ∈ I and ξn ∈ B, and by Schwarz inequality
in the form (A.7),

|φ(sn, tn,xn,yn)| ≤
∣∣ft(τn,yn)− ft(sn,xn)

∣∣ · |tn − sn|
+
∣∣D2f(sn, ξn)−D2f(tn,xn)

∣∣ · |yn − xn|2

≤ 2ε ·
(
|tn − sn|+ |yn − xn|2

)
.

Thus
φ(sn, tn,xn,yn)

|tn − sn|+ |yn − xn|2
≤ 2ε

for large enough n, and we have verified (6.15).

The function

(s, t,x,y) 7→ φ(s, t,x,y)

|t− s|+ |y − x|2

is continuous at points where either s 6= t or x 6= y, as a quotient of two
continuous functions. Consequently the function γ defined by (A.8) is con-
tinuous on [0, T ]2 ×K2.

Hypothesis (A.9) of Lemma A.13 is a consequence of the limit in item
(iv) above.

The hypotheses of Lemma A.13 have been verified. By this lemma, for
this fixed ω and each t ∈ [0, T ], the sum on line (6.14) converges to∑

s∈(0,t]

φ(s, s, Ys−, Ys) =
∑
s∈(0,t]

{
f(s, Ys)− f(s, Ys−)

−Df(s, Ys−)∆Ys − 1
2∆Y T

s D
2f(s, Ys−)∆Ys

}
.

This completes the proof of Theorem 6.5. �

Remark 6.6. (Notation) Often Itô’s formula is expressed in terms of dif-
ferential notation which is more economical than the integral notation. As
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an example, if Y is a continuous Rd-valued semimartingale, equation (6.9)
can be written as

df(t, Y (t)) = ft(t, Y (t)) dt+
d∑
j=1

fxj (t, Y (t−)) dYj(t)

+ 1
2

∑
1≤j,k≤d

fxj ,xk(t, Y (t−)) d[Yj , Yk](t).

(6.16)

As mentioned already, these “stochastic differentials” have no rigorous mean-
ing. The formula above is to be regarded only as an abbreviation of the
integral formula (6.9).

We state the Brownian motion case as a corollary. For f ∈ C2(D) in
Rd, the Laplace operator ∆ is defined by

∆f = fx1,x1 + · · ·+ fxd,xd .

A function f is harmonic in D if ∆f = 0 on D.

Corollary 6.7. Let B(t) = (B1(t), . . . , Bd(t)) be Brownian motion in Rd,
with random initial point B(0), and f ∈ C2(Rd). Then

(6.17) f(B(t)) = f(B(0)) +

∫ t

0
Df(B(s))T dB(s) + 1

2

∫ t

0
∆f(B(s)) ds.

Suppose f is harmonic in an open set D ⊆ Rd. Let D1 be an open subset
of D such that dist(D1, D

c) > 0. Assume initially B(0) = z for some point
z ∈ D1, and let

(6.18) τ = inf{t ≥ 0 : B(t) ∈ Dc
1}

be the exit time for Brownian motion from D1. Then f(Bτ (t)) is a local
L2-martingale.

Proof. Formula (6.17) comes directly from Itô’s formula, because [Bi, Bj ] =
δi,jt.

The process Bτ is a (vector) L2 martingale that satisfies Bτ [0, T ] ⊆ D
for all T <∞. Thus Itô’s formula applies. Note that [Bτ

i , B
τ
j ]t = [Bi, Bj ]

τ
t =

δi,j(t ∧ τ). Hence ∆f = 0 in D eliminates the second-order term, and the
formula simplifies to

f(Bτ (t)) = f(z) +

∫ t

0
Df(Bτ (s))T dBτ (s)

which shows that f(Bτ (t)) is a local L2-martingale. �
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6.2. Applications of Itô’s formula

One can use Itô’s formula to find pathwise expressions for stochastic inte-
grals.

Example 6.8. To evaluate
∫ t

0 B
k
s dBs for standard Brownian motion and

k ≥ 1, take f(x) = (k + 1)−1xk+1, so that f ′(x) = xk and f ′′(x) = kxk−1.
Itô’s formula gives∫ t

0
Bk
s dBs = (k + 1)−1Bk+1

t − k

2

∫ t

0
Bk−1
s ds.

The integral on the right is a familiar Riemann integral of the continuous
function s 7→ Bk−1

s .

Often Itô’s formula is used to find martingales, which can be useful for
calculations. Here is a systematic way to do this for Brownian motion.

Lemma 6.9. Suppose f ∈ C1,2(R+ × R) and ft + 1
2fxx = 0. Let Bt be

one-dimensional standard Brownian motion. Then f(t, Bt) is a local L2-
martingale. If

(6.19)

∫ T

0
E
[
fx(t, Bt)

2
]
dt <∞,

then f(t, Bt) is an L2-martingale on [0, T ].

Proof. Since [B]t = t, (6.9) specializes to

f(t, Bt) = f(0, 0) +

∫ t

0
fx(s,Bs) dBs +

∫ t

0

(
ft(s,Bs) + 1

2fxx(s,Bs)
)
ds

= f(0, 0) +

∫ t

0
fx(s,Bs) dBs

where the last line is a local L2-martingale. (The integrand fx(s,Bs) is a
continuous process, hence predictable, and satisfies the local boundedness
condition (5.29).)

The integrability condition (6.19) guarantees that fx(s,Bs) lies in the
space L2(B,P) of integrands on the interval [0, T ]. In our earlier develop-
ment of stochastic integration we always considered processes defined for all
time. To get an integrand process on the entire time line [0,∞), one can
extend fx(s,Bs) by declaring it identically zero on (T,∞). This does not
change the integral on [0, T ]. �

Example 6.10. Let µ ∈ R and σ 6= 0 be constants. Let a < 0 < b. Let
Bt be one-dimensional standard Brownian motion, and Xt = µt + σBt a
Brownian motion with drift. Question: What is the probability that Xt

exits the interval (a, b) through the point b?
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Define the stopping time

τ = inf{t > 0 : Xt = a or Xt = b}.
First we need to check that τ <∞ almost surely. For example, the events

{σBn+1 − σBn > b− a+ |µ|+ 1}, n = 0, 1, 2, . . .

are independent and have a common positive probability. Hence one of them
happens almost surely. Consequently Xn cannot remain in (a, b) for all n.

We seek a function h such that h(Xt) is a martingale. Then, if we could
justify Eh(Xτ ) = h(0), we could compute the desired probability P (Xτ = b)
from

h(0) = Eh(Xτ ) = h(a)P (Xτ = a) + h(b)P (Xτ = b).

To utilize Lemma 6.9, let f(t, x) = h(µt+ σx). The condition ft + 1
2fxx = 0

becomes
µh′ + 1

2σ
2h′′ = 0.

At this point we need to decide whether µ = 0 or not. Let us work the case
µ 6= 0. Solving for h gives

h(x) = C1 exp
{
−2µσ−2x

}
+ C2

for two constants of integration C1, C2. To check (6.19), from f(t, x) =
h(µt+ σx) derive

fx(t, x) = −2C2µσ
−1 exp

{
−2µσ−2(µt+ σx)

}
.

Since Bt is a mean zero normal with variance t, one can verify that (6.19)
holds for all T <∞.

Now

(6.20) Mt = h(Xt) = C1e
−2µ

σ
Bt−2(µ

σ
)2t + C2

is a martingale. By optional stopping, Mτ∧t is also a martingale, and so
EMτ∧t = EM0 = h(0). By path continuity and τ <∞, Mτ∧t →Mτ almost
surely as t → ∞. Furthermore, the process Mτ∧t is bounded, because up
to time τ process Xt remains in [a, b], and so |Mτ∧t| ≤ C ≡ supa≤x≤b|h(x)|.
Dominated convergence gives EMτ∧t → EMτ as t → ∞. We have verified
that Eh(Xτ ) = h(0).

Finally, we can choose the constants C1 and C2 so that h(b) = 1 and
h(a) = 0. After some details,

(6.21) P (Xτ = b) = h(0) =
e−2µa/σ2 − 1

e−2µa/σ2 − e−2µb/σ2 .

Can you explain what you see as you let either a→ −∞ or b→∞? (Decide
first whether µ is positive or negative.)

We leave the case µ = 0 as an exercise. You should get P (Xτ = b) =
(−a)/(b− a).
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Martingale (6.20) found above is a special case of the general exponential

martingale Mt = eαBt−α
2t/2 for one-dimensional Brownian motion and real

α. This is turn is a special case of the following: Mt = eXt−
1
2

[X]t is a
continuous local L2 martingale whenever X is. This is revealed by a quick
Itô computation:

dM = M dX − 1
2M d[X] + 1

2M d[X] = M dX,

where [X, [X]] = [[X]] = 0 due to continuity and bounded variation (Lemma

A.10). The computation reveals that Mt = M0 +
∫ t

0 Ms dXs, which is a local

L2 martingale by the construction of the stochastic integral on the right-
hand side.

Next we use Itô’s formula to investigate recurrence and transience of
Brownian motion, and whether Brownian motion ever hits a point. Let us
first settle these questions in one dimension.

Proposition 6.11. Let Bt be Brownian motion in R. Then limt→∞Bt =∞
and limt→∞Bt = −∞, almost surely. Consequently almost every Brownian
path visits every point infinitely often.

Proof. Let τ0 = 0 and τ(k + 1) = inf{t > τ(k) : |Bt − Bτ(k)| = 4k+1}. By
the strong Markov property of Brownian motion, for each k the restarted
process {Bτ(k)+s−Bτ(k) : s ≥} is a standard Brownian motion, independent
of Fτ(k). By symmetry, or by the case µ = 0 of Example 6.10,

P
[
Bτ(k+1) −Bτ(k) = 4k+1

]
= P

[
Bτ(k+1) −Bτ(k) = −4k+1

]
= 1

2 .

By the strong Markov property these random variables indexed by k are
independent. Thus, for almost every ω, there are arbitrarily large j and k
such that Bτ(j+1) − Bτ(j) = 4j+1 and Bτ(k+1) − Bτ(k) = −4k+1. But then
since

|Bτ(j)| ≤
j∑
i=1

4i =
4j+1 − 1

4− 1
≤ 4j+1

2
,

Bτ(j+1) ≥ 4j , and by the same argument Bτ(k+1) ≤ −4k. Thus limt→∞Bt =
∞ and limt→∞Bt = −∞ almost surely.

Almost every Brownian path visits every point infinitely often due to a
special property of one dimension: it is impossible to go “around” a point.

�

Proposition 6.12. Let Bt be Brownian motion in Rd, and let P z denote
the probability measure when the process Bt is started at point z ∈ Rd. Let

τr = inf{t ≥ 0 : |Bt| ≤ r}
be the first time Brownian motion hits the ball of radius r around the origin.

(a) If d = 2, P z(τr <∞) = 1 for all r > 0 and z ∈ Rd.
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(b) If d ≥ 3, then for z outside the ball of radius r,

P z(τr <∞) =

(
r

|z|

)d−2

.

There will be an almost surely finite time T such that |Bt| > r for all t ≥ T .

(c) For d ≥ 2 and any z,y ∈ Rd,

P z[ Bt 6= y for all 0 < t <∞] = 1.

Note that z = y is allowed. That is why t = 0 is not included in the event.

Proof. Observe that for (c) it suffices to consider y = 0, because

P z[ Bt 6= y for all 0 < t <∞] = P z−y[ Bt 6= 0 for all 0 < t <∞].

Then, it suffices to consider z 6= 0, because if we have the result for all z 6= 0,
then we can use the Markov property to restart the Brownian motion after
a small time s:

P 0[ Bt 6= 0 for all 0 < t <∞]

= lim
s↘0

P 0[ Bt 6= 0 for all s < t <∞]

= lim
s↘0

E0
[
PB(s){ Bt 6= 0 for all 0 < t <∞}

]
= 1.

The last equality is true because B(s) 6= 0 with probability one.

Now we turn to the actual proofs, and we can assume z 6= 0 and the
small radius r < |z|.

We start with dimension d = 2. The function g(x) = log|x| is harmonic
in D = R2 \ {0}. (Only in d = 2, check.) Let

σR = inf{t ≥ 0 : |Bt| ≥ R}

be the first time to exit the open ball of radius R. Pick r < |z| < R, and
define the annulus A = {x : r < |x| < R}. The time to exit the annulus is
ζ = τr ∧ σR. Since any coordinate of Bt has limsup ∞ almost surely, or by
the independent increments argument used in Example 6.10, the exit time
σR and hence also ζ is finite almost surely.

Apply Corollary 6.7 to the harmonic function

f(x) =
logR− log|x|
logR− log r

and the annulus A. We get that f(Bζ∧t) is a local L2-martingale, and since
f is bounded on the closure of A, it follows that f(Bζ∧t) is an L2-martingale.
The optional stopping argument used in Example 6.10, in conjunction with
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letting t→∞, gives again f(z) = Ezf(B0) = Ezf(Bζ). Since f = 1 on the
boundary of radius r but vanishes at radius R,

P z(τr < σR) = P z( |Bζ | = r) = Ezf(Bζ) = f(z),

and so

(6.22) P z(τr < σR) =
logR− log|z|
logR− log r

.

From this we can extract both part (a) and part (c) for d = 2. First,
σR ↗ ∞ as R ↗ ∞ because a fixed path of Brownian motion is bounded
on bounded time intervals. Consequently

P z(τr <∞) = lim
R→∞

P z(τr < σR)

= lim
R→∞

logR− log|z|
logR− log r

= 1.

Secondly, consider r = r(k) = (1/k)k and R = R(k) = k. Then we get

P z(τr(k) < σR(k)) =
log k − log|z|
(k + 1) log k

which vanishes as k → ∞. Let τ = inf{t ≥ 0 : Bt = 0} be the first hitting
time of 0. For 0 < r < |z|, τr ≤ τ because Bt cannot hit zero without first
entering the ball of radius r. Again since σR(k) ↗∞ as k ↗∞,

P z(τ <∞) = lim
k→∞

P z(τ < σR(k))

≤ lim
k→∞

P z(τr(k) < σR(k)) = 0.

For dimension d ≥ 3 we use the harmonic function g(x) = |x|2−d, and
apply Itô’s formula to the function

f(x) =
R2−d − |x|2−d

R2−d − r2−d .

The annulus A and stopping times σR and ζ are defined as above. The same
reasoning now leads to

(6.23) P z(τr < σR) =
R2−d − |z|2−d

R2−d − r2−d .

Letting R→∞ gives

P z(τr <∞) =
|z|2−d

r2−d =

(
r

|z|

)d−2

as claimed. Part (c) follows now because the quantity above tends to zero
as r → 0.
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It remains to show that after some finite time, the ball of radius r is no
longer visited. Let r < R. Define σ1

R = σR, and for n ≥ 2,

τnr = inf{t > σn−1
R : |Bt| ≤ r}

and

σnR = inf{t > τnr : |Bt| ≥ R}.
In other words, σ1

R < τ2
r < σ2

R < τ3
r < · · · are the successive visits to radius

R and back to radius r. Let α = (r/R)d−2 < 1. We claim that for n ≥ 2,

P z(τnr <∞) = αn−1.

For n = 2, since σ1
R < τ2

r , use the strong Markov property to restart the
Brownian motion at time σ1

R.

P z(τ2
r <∞) = P z(σ1

R < τ2
r <∞)

= Ez
[
PB(σ1

R){τr <∞}
]

= α.

Then by induction.

P z(τnr <∞) = P z(τn−1
r < σn−1

R < τnr <∞)

= Ez
[
1{τn−1

r < σn−1
R <∞}PB(σn−1

R ){τr <∞}
]

= P z(τn−1
r <∞) · α = αn−1.

Above we used the fact that if τn−1
r < ∞, then necessarily σn−1

R < ∞
because each coordinate of Bt has limsup ∞.

The claim implies ∑
n

P z(τnr <∞) <∞.

By Borel-Cantelli, τnr < ∞ can happen only finitely many times, almost
surely. �

Remark 6.13. We see here an example of an uncountable family of events
with probability one whose intersection must vanish. Namely, the inter-
section of the events that Brownian motion does not hit a particular point
would be the event that Brownian motion never hits any point. Yet Brow-
nian motion must reside somewhere.

Theorem 6.14. (Lévy’s Characterization of Brownian Motion.) Let M =
[M1, . . . ,Md]

T be a continuous Rd-valued local martingale and X(t) = M(t)−
M(0). Then X is a standard Brownian motion relative to {Ft} iff [Xi, Xj ]t =
δi,jt. In particular, in this case process X is independent of F0.

Proof. We already know that a d-dimensional standard Brownian motion
satisfies [Bi, Bj ]t = δi,jt.
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What we need to show is that X with the assumed covariance is Brown-
ian motion. As a continuous local martingale, X is also a local L2-martingale.
Fix a vector θ = (θ1, . . . , θd)

T ∈ Rd and

f(t,x) = exp(iθTx + 1
2 |θ|

2t).

Let Zt = f(t,X(t)). Itô’s formula applies equally well to complex-valued
functions, and so

Zt = 1 +
|θ|2

2

∫ t

0
Zs ds+

d∑
j=1

iθj

∫ t

0
Zs dXj(s)

− 1

2

d∑
j=1

θ2
j

∫ t

0
Zs ds

= 1 +
d∑
j=1

iθj

∫ t

0
Zs dXj(s).

This shows that Z is a local L2-martingale. On any bounded time interval
Z is bounded because the random factor exp(iθTX(t)) has absolute value
one. Consequently Z is an L2-martingale. For s < t, E[Zt|Fs] = Zs can be
rewritten as

(6.24) E
[
exp
{
iθT (X(t)−X(s))

} ∣∣ Fs] = exp
{
−1

2 |θ|
2(t− s)

}
.

By Lemma B.18 in the appendix, conditioned on Fs, the increment X(t)−
X(s) has normal distribution with mean zero and covariance matrix iden-
tity. In particular, X(t) − X(s) is independent of Fs. Thus X has all the
properties of Brownian motion relative to {Ft} . �

Here is an application of Lévy’s criterion.

Example 6.15. (Bessel processes.) Let d ≥ 2 andB(t) = [B1(t), B2(t), . . . , Bd(t)]
T

a d-dimensional Brownian motion. Set

(6.25) Rt = |B(t)| =
(
B1(t)2 +B2(t)2 + · · ·+Bd(t)

2
)1/2

.

We find the semimartingale decomposition of Rt. Start B(t) at a point z 6= 0
so that R0 = |z| > 0. Let D = Rd r {0} and f(x) = |x|. Then f ∈ C2(D)
with fxi = xi|x|−1 and ∆f = (d − 1)|x|−1. By Proposition 6.12(c) with
probability 1 the path B[0, T ] is a closed subset of D, for any T <∞. Thus
Itô’s formula applies and gives

(6.26) Rt = |z|+
d∑
i=1

∫ t

0

Bi(s)

|B(s)|
dBi(s) +

d− 1

2

∫ t

0
R−1
s ds.
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It turns out that the stochastic integral term is simply a 1-dimensional
Brownian motion. Let

Wt =
d∑
i=1

∫ t

0

Bi(s)

|B(s)|
dBi(s).

Wt is a continuous local L2 martingale with quadratic variation

[W ]t =

[ d∑
i=1

∫
Bi
|B|

dBi ,

d∑
j=1

∫
Bj
|B|

dBj

]
t

=
∑
i,j

∫ t

0

BiBj
|B|2

d[Bi, Bj ] =
∑
i

∫ t

0

Bi(s)
2

|B(s)|2
ds =

∫ t

0
1 ds = t.

Thus by Lévy’s criterion Wt is a standard Brownian motion. We can rewrite
(6.26) in the form

(6.27) Rt = |z|+ d− 1

2

∫ t

0
R−1
s ds+Wt.

Process Rt is the Bessel process with dimension d, or with parameter d−1
2 .

By Proposition 6.12 we know that if d = 2 Rt returns infinitely often to
any neighborhood of the origin, while if d ≥ 3 then Rt drifts off to +∞ as
t→∞.

Next we prove a useful moment inequality. It is one case of the Burkholder-
Davis-Gundy inequalities. Recall the notation M∗t = sup0≤s≤t|Ms|.

Proposition 6.16. Let p ∈ [2,∞) and Cp = (p(p − 1)e)
p
2 . Then for all

continuous local martingales M with M0 = 0 and all 0 < t <∞,

(6.28) E[(M∗t )p] ≤ CpE
(
[M ]

p/2
t

)
.

Proof. Check that f(x) = |x|p is a C2 function on all of R, with derivatives
f ′(x) = sign(x)p|x|p−1 and f ′′(x) = p(p − 1)|x|p−2. (The origin needs a
separate check. The sign function is sign(x) = x/|x| for nonzero x, and here
the convention at x = 0 is immaterial.) Version (6.6) of Itô’s formula gives

|Mt|p =

∫ t

0
sign(Ms)p|Ms|p−1 dMs + 1

2p(p− 1)

∫ t

0
|Ms|p−2 d[M ]s.
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Assume M is bounded. Then M is an L2 martingale and M ∈ L2(M,P).

Consequently the term
∫ t

0 sign(Ms)p|Ms|p−1 dMs is a mean zero L2 martin-
gale. Take expectations and apply Hölder’s inequality:

E
(
|Mt|p

)
= 1

2p(p− 1)E

∫ t

0
|Ms|p−2 d[M ]s

≤ 1
2p(p− 1)E

(
(M∗t )p−2[M ]t

)
≤ 1

2p(p− 1)
{
E
(
(M∗t )p

)}1− 2
p
{
E
(
[M ]

p/2
t

)} 2
p
.

Combining the above with Doob’s inequality (3.11) gives

E[(M∗t )p] ≤ 2eE
(
|Mt|p

)
≤ ep(p− 1)

{
E
(
(M∗t )p

)}1− 2
p
{
E
(
[M ]

p/2
t

)} 2
p
.

Rearranging the above inequality gives the conclusion for a bounded mar-
tingale.

The general case comes by localization. Let τk = inf{t ≥ 0 : |Mt| ≥ k},
a stopping time by Corollary 2.10. By continuity M τk is bounded, so we
can apply the already proved result to claim

E[(M∗τk∧t)
p] ≤ CpE

(
[M ]

p/2
τk∧t

)
.

On both sides monotone convergence leads to (6.28) as k ↗∞. �

Exercises

Exercise 6.1. (a) Let Y be a cadlag semimartingale with Y0 = 0. Check
that Itô’s formula gives 2

∫
Y−dY = Y 2 − [Y ], as already follows from the

intregration by parts formula (5.67).

(b) Let N be a rate α Poisson process and Mt = Nt − αt. Apply part
(a) to show that M2

t −Nt is a martingale.

Exercise 6.2. This exercise gives an instance of an important connection
between stochastic analysis and partial differential equations known as the
Feynman-Kac formula. Let h and V be bounded continuous functions on
Rd. Suppose u is continuous on R+ ×Rd, bounded on [0, T ]×Rd for each
T <∞, and u ∈ C1,2((0,∞)×Rd). Let u satisfy the initial value problem

(6.29)

∂

∂t
u(t, x) = 1

2∆u(t, x) + V (x)u(t, x) on (0,∞)×Rd

u(0, x) = h(x) x ∈ Rd.

Show that

(6.30) u(t, x) = Ex
[
h(B(t)) e

∫ t
0 V (B(s)) ds

]
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where B(·) is Brownian motion on Rd and Ex is expectation under the
path measure of B(·) started at B(0) = x. Hint. Consider the process

Zt = u(t0 − t, B(t))e
∫ t
0 V (B(s)) ds for t ∈ [0, t0 − ε], ε > 0.

Exercise 6.3. Let a < 0 < b, θ ∈ R, and

Xt = f(t) cosh
(
θBt − θ a+b

2

)
where Bt is a standard Brownian motion on R and f(t) is a deterministic
function.

(a) Use Itô’s formula to find f(t) such that Xt is a local L2 martingale.
Show that Xt is actually a martingale.

(b) Find the Laplace transform of the hitting time τ = inf{t ≥ 0 : Bt =
a or Bt = b}. Namely,

E(e−λτ ) =
cosh(−

√
2λa+b

2 )

cosh(
√

2λ b−a2 )
for λ ≥ 0.

Exercise 6.4. Let Bt be standard Brownian motion and Mt = B2
t − t.

(a) Justify the identity [M ] = [B2]. (Use the linearity (5.64).)

(b) Apply Itô’s formula to B2
t and from that find a representation for

[B2] in terms of a single ds-integal.

(c) Using Itô’s formula and your answer to (b), check that M2 − [B2]
is a martingale, as it should. (Of course without appealing to the fact that
M2 − [B2] = M2 − [M ] is a martingale.)

(d) Use integration by parts (5.67) to find another representation of
[B2]. Then use Itô’s formula to show that this representation agrees with
the answer in (b).

Exercise 6.5. (a) Check that for a rate α Poisson process N Itô’s formula
reduces to an obvious identity, namely a telescoping sum over jumps that
can be written as

(6.31) f(Nt) = f(0) +

∫
(0,t]

(
f(Ns)− f(Ns−)

)
dNs.

(b) Suppose E
∫ T

0 |f(Ns)|2 ds <∞. Show that for t ∈ [0, T ]

(6.32) E[f(Nt)] = f(0) + E

∫ t

0

(
f(Ns + 1)− f(Ns)

)
αds.

Warning. Do not attempt to apply stochastic calculus to non-predictable
integrands.

Exercise 6.6. Suppose X is a nondecreasing cadlag process such that
X(0) = 0, all jumps are of size 1 (that is, Xs − Xs− = 0 or 1), between
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jumps X is constant, and Mt = Xt − αt is a martingale. Show that X is a
rate α Poisson process. Hint. Imitate the proof of Theorem 6.14.

Exercise 6.7. Suppose X and Y are adapted cadlag processes, X is Z+-
valued and its jumps are of size 1, and X(0) = 0. (Such an X is called a
counting process.) Suppose

Mt = Xt −
∫ t

0
Ys ds

is a martingale. Show that

M2
t −

∫ t

0
Ys ds

is also a martingale. That is, 〈M〉t =
∫ t

0 Ys ds. Hint. Apply Itô’s formula to

M2
t .

Exercise 6.8. Let B be standard one-dimensional Brownian motion. Show
that for a continuously differentiable nonrandom function φ,∫ t

0
φ(s) dBs = φ(t)Bt −

∫ t

0
Bsφ

′(s) ds.

Exercise 6.9. Define

V1(t) =

∫ t

0
Bs ds, V2(t) =

∫ t

0
V1(s) ds,

and generally

Vn(t) =

∫ t

0
Vn−1(s) ds =

∫ t

0
ds1

∫ s1

0
ds2 · · ·

∫ sn−1

0
dsnBsn .

Vn is known as n times integrated Brownian motion, and appears in appli-
cations in statistics. Show that

Vn(t) =
1

n!

∫ t

0
(t− s)n dBs.

Then show that the process

Mn(t) = Vn(t)−
n∑
j=1

tj

j!(n− j)!

∫ t

0
(−s)n−j dBs

is a martingale.

Exercise 6.10. Let X and Y be independent rate α Poisson processes.

(a) Show that

P{X and Y have no jumps in common} = 1.

Find the covariation [X,Y ].
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(b) Find a process U such that XtYt − Ut is a martingale.

Exercise 6.11. Let D = R3 r {0}, the complement of the origin in R3.
Define f ∈ C2(D) by

f(x) =
1

|x|
=

1

(x2
1 + x2

2 + x2
3)1/2

.

Let B(t) = (B1(t), B2(t), B3(t)) be standard Brownian motion in R3. Show
that Xt = f(B1+t) is an L2-bounded, hence uniformly integrable, local L2

martingale, but not a martingale. L2-bounded means that supt≥0E[X2
t ] <

∞. Hint. To show thatX[0, T ] is a closed subset ofD use P z{Bt 6= 0 ∀t} = 1
from Proposition 6.12. Itô’s formula can be applied. If Xt were a martingale,
EXt would have to be constant in time.

Exercise 6.12. Let Bt be Brownian motion in Rk started at point z ∈ Rk.
As before, let

σR = inf{t ≥ 0 : |Bt| ≥ R}
be the first time the Brownian motion leaves the ball of radius R. Compute
the expectation Ez[σR] as a function of z, k and R.

Hint. Start by applying Itô’s formula to f(x) = x2
1 + · · ·+ x2

k.

Exercise 6.13 (Hölder continuity of a stochastic integral). Let X be an
adapted measurable process, T <∞, and assume that

(6.33) sup
t∈[0,T ]

E(|Xt|p ) <∞

for some 2 < p <∞. How much Hölder continuity can you get for the paths

of the process Mt =
∫ t

0 Xs dBs from a combination of inequality (6.28) and
Theorem B.20? What if (6.33) holds for all p <∞?

Exercise 6.14 (Fisk-Stratonovich integral). Let X = X0 + M + U and
Y = Y0 + N + V be two semimartingales with continuous local martingale
parts M and N and continuous finite variation parts U and V . The Fisk-
Stratonovich integral is defined by

(6.34)

∫ t

0
Ys ◦ dXs =

∫ t

0
Ys dXs + 1

2 [X,Y ]t

where the first integral on the right-hand side is the Itô integral from Defi-
nition 5.35. Since

n∑
i=1

Yti+Yti+1

2 (Xti+1 −Xti)

=
n∑
i=1

Yti(Xti+1 −Xti) + 1
2

n∑
i=1

(Yti+1 − Yti)(Xti+1 −Xti),
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Propositions 5.37 and 5.64 give the limit

(6.35)

∫ t

0
Ys ◦ dXs = lim

mesh(π)→0

n∑
i=1

Yti+Yti+1

2 (Xti+1 −Xti)

in probability, uniformly over compact time intervals.

Let X(t) = (X1(t), . . . , Xd(t)) be a vector-valued semimartingale, with
continuous local martingale and finite variation parts, and f ∈ C3(Rd).
Show that

(6.36) f(X(t)) = f(X(0)) +
d∑
i=1

∫ t

0
fxi(X(s)) ◦ dXi(s).

In other words, the Fisk-Stratonovich integral obeys the normal rules of
calculus, without the second-order correction term needed for Itô’s formula.
Hint. Do not attempt to prove this from first principles. Use Itô’s formula
and our knowledge of quadratic variation.





Chapter 7

Stochastic Differential
Equations

In this chapter we study equations of the type

(7.1) X(t, ω) = H(t, ω) +

∫
(0,t]

F (s, ω,X(ω)) dY (s, ω)

for an unknown Rd-valued process X. In the equation, Y is a given Rm-
valued cadlag semimartingale and H is a given Rd-valued adapted cadlag
process. The coefficient F (t, ω, η) is a d ×m-matrix valued function of the
time variable t, the sample point ω, and a cadlag path η. The integral∫
F dY with a matrix-valued integrand and vector-valued integrator has a

natural componentwise interpretation, as explained in Remark 5.38.

Underlying the equation is a probability space (Ω,F , P ) with a filtration
{Ft}, on which the ingredients H, Y and F are defined. A solution X is
an Rd-valued cadlag process that is defined on this given probability space
(Ω,F , P ) and adapted to {Ft}, and that satisfies the equation in the sense
that the two sides of (7.1) are indistinguishable. This notion is the so-called
strong solution which means that the solution process can be constructed on
the given probability space, adapted to the given filtration. Later we shall
also address weak solutions where the probability space and the filtration
are part of the solution, not prescribed ahead of time.

In order for the integral
∫
F dY to be sensible, F (t, ω, η) has to have

the property that, whenever an adapted cadlag process X is substituted
for η, the resulting process (t, ω) 7→ F (t, ω,X(ω)) is predictable and locally
bounded in the sense (5.36). We list precise assumptions on F when we
state and prove an existence and uniqueness theorem.

231
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Since the integral term vanishes at time zero, equation (7.1) contains
the initial value X(0) = H(0). The integral equation (7.1) can be written
in the differential form

(7.2) dX(t) = dH(t) + F (t,X) dY (t), X(0) = H(0)

where the initial value must then be displayed explicitly. The notation can
be further simplified by dropping the superfluous time variables:

(7.3) dX = dH + F (t,X) dY, X(0) = H(0).

Equations (7.2) and (7.3) have no other interpretation except as abbrevia-
tions for (7.1). Equations such as (7.3) are known as SDEs (stochastic differ-
ential equations) even though precisely speaking they are integral equations.

7.1. Examples of stochastic equations and solutions

7.1.1. Itô equations. Let Bt be a standard Brownian motion in Rm with
respect to a filtration {Ft}. Let ξ be an Rd-valued F0-measurable ran-
dom variable. Often ξ is a nonrandom point x0. The assumption of F0-
measurability implies that ξ is independent of the Brownian motion. An Itô
equation has the form

(7.4) dXt = b(t,Xt) dt+ σ(t,Xt) dBt, X0 = ξ

or in integral form

(7.5) Xt = ξ +

∫ t

0
b(s,Xs) ds+

∫ t

0
σ(s,Xs) dBs.

The coefficients b(t, x) and σ(t, x) are Borel measurable functions of (t, x) ∈
[0,∞)×Rd. The drift vector b(t, x) is Rd-valued, and the dispersion matrix
σ(t, x) is d×m-matrix valued. The d× d matrix a(t, x) = σ(t, x)σ(t, x)T is
called the diffusion matrix. X is the unknown Rd-valued process.

Linear Itô equations can be explicitly solved by a technique from basic
theory of ODEs (ordinary differential equations) known as the integrating
factor. See Exercise 7.2 for the general case. Here in the text we go through
important special cases that describe commonly studied processes. We begin
with the nonrandom case from elementary calculus.

Example 7.1. (Integrating factor for linear ODEs.) Let a(t) and g(t) be
given functions. Suppose we wish to solve

(7.6) x′ + a(t)x = g(t)

for an unknown function x = x(t). The trick is to multiply through the
equation by the integrating factor

(7.7) z(t) = e
∫ t
0 a(s) ds
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and then identify the left-hand side zx′ + azx as the derivative (zx)′. The
equation becomes

d

dt

(
x(t)e

∫ t
0 a(s) ds

)
= g(t)e

∫ t
0 a(s) ds.

Integrating from 0 to t gives

x(t)e
∫ t
0 a(s) ds − x(0) =

∫ t

0
g(s)e

∫ s
0 a(u) du ds

which rearranges into

x(t) = x(0)e−
∫ t
0 a(s) ds + e−

∫ t
0 a(s) ds

∫ t

0
g(s)e

∫ s
0 a(u) du ds.

Now one can check by differentiation that this formula gives a solution.

We apply this idea to the most basic Itô equation.

Example 7.2. (Ornstein-Uhlenbeck process.) Let α > 0 and 0 ≤ σ < ∞
be constants, and consider the SDE

(7.8) dXt = −αXt dt+ σ dBt

with a given initial value X0 independent of the one-dimensional Brownian
motion Bt. Formal similarity with the linear ODE (7.6) suggests we try the
integrating factor Zt = eαt. For the ODE the key was to take advantage of
the formula d(zx) = x dz + z dx for the derivative of a product. Here we
attempt the same, but differentiation rules from calculus have to be replaced
by Itô’s formula. The integration by parts rule which is a special case of
Itô’s formula gives

d(ZX) = Z dX +X dZ + d[Z,X].

The definition of Z gives dZ = αZ dt. Since Z is a continuous FV process,
[Z,X] = 0. Assuming X satisfies (7.8), we get

d(ZX) = −αZX dt+ σZ dB + αZX dt = σZ dB

which in integrated form becomes (note Z0 = 1)

ZtXt = X0 + σ

∫ t

0
eαs dBs

and we can solve for X to get

(7.9) Xt = X0e
−αt + σe−αt

∫ t

0
eαs dBs.

Since we arrived at this formula by assuming the solution of the equation,
now we turn around and verify that (7.9) defines a solution of (7.8). This is
a straightforward Itô calculation. It is conveniently carried out in terms of
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formal stochastic differentials (but could just as well be recorded in terms
of integrals):

dX = −αX0e
−αtdt− ασe−αt

(∫ t

0
eαs dB

)
dt+ σe−αteαt dB

+ d

[
ασe−αt,

∫
eαs dB

]
= −α

(
X0e

−αt + σe−αt
∫ t

0
eαs dB

)
dt+ σ dB

= −αX dt+ σ dB.

The quadratic covariation vanishes by Lemma A.10 because ασe−αt is a
continuous BV function. Notice that we engaged in slight abuse of notation
by putting ασe−αt inside the brackets, though of course we do not mean
the point value but rather the process, or function of t. By the same token,∫
eαs dB stands for the process

∫ t
0 e

αs dB.

The process defined by the SDE (7.8) or by the formula (7.9) is known
as the Ornstein-Uhlenbeck process.

If the equation had no noise (σ = 0) the solution would be Xt = X0e
−αt

which simply decays to 0 as t→∞. Let us observe that in contrast to this,
when the noise is turned on (σ > 0), the process Xt is not driven to zero
but instead to a nontrivial statistical steady state.

Consider first the random variable Yt = σe−αt
∫ t

0 e
αs dBs that captures

the dynamical noise part in the solution (7.9). Yt is a mean zero martingale.
From the construction of stochastic integrals we know that Yt is a limit (in
probability, or almost sure along a particular sequence) of sums:

Yt = lim
mesh(π)→0

σe−αt
m(π)−1∑
k=0

eαsk(Bsk+1
−Bsk).

From this we can find the distribution of Yt by computing its characteristic
function. By the independence of Brownian increments, for θ ∈ R,

E(eiθYt) = lim
mesh(π)→0

E
[
exp
{
iθσe−αt

m(π)−1∑
k=0

eαsk(Bsk+1
−Bsk)

}]

= lim
mesh(π)→0

exp
{
− 1

2θ
2σ2e−2αt

m(π)−1∑
k=0

e2αsk(sk+1 − sk)
}

= exp
(
− 1

2θ
2σ2e−2αt

∫ t

0
e2αs ds

)
= exp

(
− θ

2σ2

4α
(1− e−2αt)

)
.
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This says that Yt is a mean zero Gaussian with variance σ2

2α(1 − e−2αt). In

the t → ∞ limit Yt converges weakly to the N (0, σ
2

2α) distribution. Then
from (7.9) we see that this distribution is the weak limit of Xt as t→∞.

Suppose we take the initial point X0 ∼ N (0, σ
2

2α), independent of B.
Then (7.9) represents Xt as the sum of two independent mean zero Gaus-
sians, and we can add the variances to see that for each t ∈ R+, Xt ∼
N (0, σ

2

2α).

Xt is in fact a Markov process. This can be seen from

Xt+s = e−αsXt + σe−α(t+s)

∫ t+s

t
eαu dBu.

Our computations above show that as t→∞, for every choice of the initial

state X0, Xt converges weakly to its invariant distribution N (0, σ
2

2α).

We continue with another example of a linear equation where the inte-
grating factor needs to take into consideration the stochastic part.

Example 7.3. (Geometric Brownian motion.) Let µ, σ be constants, B
one-dimensional Brownian motion, and consider the SDE

(7.10) dX = µX dt+ σX dB

with a given initial value X0 independent of the Brownian motion. Since
the equation rewrites as

dX −X(µdt+ σ dB) = 0

a direct adaptation of (7.7) would suggest multiplication by exp(−µt−σBt).
The reader is invited to try this. Some trial and error with Itô’s formula
reveals that the quadratic variation must be taken into account, and the
useful integrating factor turns out to be

Zt = exp
(
−µt− σBt + 1

2σ
2t
)
.

Itô’s formula gives first

(7.11) dZ = (−µ+ σ2)Z dt− σZ dB.
(Note that a second σ2/2 factor comes from the quadratic variation term.)
Then, assuming X satisfies (7.10), one can check that d(ZX) = 0. For this
calculation, note that the only nonzero contribution to the covariation of
X and Z comes from the dB-terms of their semimartingale representations
(7.11) and (7.10):

[Z,X]t =
[
−σ
∫
Z dB , σ

∫
X dB

]
t

= −σ2

∫ t

0
XsZs d[B,B]s = −σ2

∫ t

0
XsZs ds.
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Above we used Proposition 5.55. In differential form the above is simply
d[Z,X] = −σ2ZX dt.

Continuing with the solution of equation (7.10), d(ZX) = 0 and Z0 = 1
give ZtXt = Z0X0 = X0, from which Xt = X0Z

−1
t . More explicitly, our

tentative solution is

Xt = X0 exp
{

(µ− 1
2σ

2)t+ σBt
}

whose correctness can again be verified with Itô’s formula. This process is
called geometric Brownian motion, although some texts reserve the term for
the case µ = 0.

Solutions of the previous two equations are defined for all time. In the
next example this is not the case.

Example 7.4. (Brownian bridge.) Fix 0 < T < 1. The SDE is now

(7.12) dX = − X

1− t
dt+ dB, for 0 ≤ t ≤ T , with X0 = 0.

The integrating factor

Zt = exp
(∫ t

0

ds

1− s

)
=

1

1− t
works, and we arrive at the solution

(7.13) Xt = (1− t)
∫ t

0

1

1− s
dBs.

To check that this solves (7.12), apply the product formula d(UV ) = U dV +
V dU + d[U, V ] with U = 1− t and V =

∫
(1− s)−1 dBs = (1− t)−1X. With

dU = −dt, dV = (1− t)−1 dB and [U, V ] = 0 this gives

dX = d(UV ) = (1− t)(1− t)−1 dB − (1− t)−1Xdt

= dB − (1− t)−1Xdt

which is exactly (7.12).

The solution (7.13) is defined for 0 ≤ t < 1. One can show that it
converges to 0 as t↗ 1, along almost every path of Bs (Exercise 7.1).

7.1.2. Stochastic exponential. The exponential function g(t) = ect can
be characterized as a the unique function g that satisfies the equation

g(t) = 1 + c

∫ t

0
g(s) ds.

The stochastic exponential generalizes the dt-integral to a semimartingale
integral.
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Theorem 7.5. Let Y be a real-valued cadlag semimartingale such that Y0 =
0. Define

(7.14) Zt = exp
{
Yt − 1

2 [Y ]t
} ∏
s∈(0,t]

(1 + ∆Ys) exp
{
−∆Ys + 1

2(∆Ys)
2
}
.

Then the process Z is a cadlag semimartingale, and it is the unique cadlag
semimartingale Z that satisfies the equation

(7.15) Zt = 1 +

∫
(0,t]

Zs− dYs.

Proof. The uniqueness of the solution of (7.15) will follow from the general
uniqueness theorem for solutions of semimartingale equations.

We start by showing that Z defined by (7.14) is a semimartingale. The
definition can be reorganized as

Zt = exp

{
Yt − 1

2 [Y ]t + 1
2

∑
s∈(0,t]

(∆Ys)
2

} ∏
s∈(0,t]

(1 + ∆Ys) exp
{
−∆Ys

}
.

The continuous part

[Y ]ct = [Y ]t −
∑
s∈(0,t]

(∆Ys)
2

of the quadratic variation is an increasing process (cadlag, nondecreasing),
hence an FV process. Since ex is a C2 function, the factor

(7.16) exp(Wt) ≡ exp

{
Yt − 1

2 [Y ]t + 1
2

∑
s∈(0,t]

(∆Ys)
2

}
is a semimartingale by Itô’s formula. It remains to show that for a fixed ω
the product

(7.17) Ut ≡
∏
s∈(0,t]

(1 + ∆Ys) exp
{
−∆Ys

}
converges and has paths of bounded variation. The part∏

s∈(0,t]:|∆Y (s)|≥1/2

(1 + ∆Ys) exp
{
−∆Ys

}
has only finitely many factors because a cadlag path has only finitely many
jumps exceeding a given size in a bounded time interval. Hence this part is
piecewise constant, cadlag and in particular FV. Let ξs = ∆Ys1{|∆Y (s)|<1/2}
denote a jump of magnitude below 1

2 . It remains to show that

Ht =
∏
s∈(0,t]

(1 + ξs) exp
{
−ξs

}
= exp

{ ∑
s∈(0,t]

(
log(1 + ξs)− ξs

)}
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is an FV process. For |x| < 1/2,∣∣log(1 + x)− x
∣∣ ≤ x2.

Hence the sum above is absolutely convergent:∑
s∈(0,t]

∣∣log(1 + ξs)− ξs
∣∣ ≤ ∑

s∈(0,t]

ξ2
s ≤ [Y ]t <∞.

It follows that logHt is a cadlag FV process (see Example 1.13 in this con-
text). Since the exponential function is locally Lipschitz, Ht = exp(logHt)
is also a cadlag FV process (Lemma A.6).

To summarize, we have shown that eWt in (7.16) is a semimartingale
and Ut in (7.17) is a well-defined real-valued FV process. Consequently
Zt = eWtUt is a semimartingale.

The second part of the proof is to show that Z satisfies equation (7.15).
Let f(w, u) = ewu, and find

fw = f , fu = ew, fuu = 0, fuw = ew and fww = f .

Note that ∆Ws = ∆Ys because the jump in [Y ] at s equals exactly (∆Ys)
2.

A straight-forward application of Itô gives

Zt = 1 +

∫
(0,t]

eW (s−) dUs +

∫
(0,t]

Zs− dWs

+ 1
2

∫
(0,t]

Zs− d[W ]s +

∫
(0,t]

eW (s−) d[W,U ]s

+
∑
s∈(0,t]

{
∆Zs − Zs−∆Ys − eW (s−)∆Us − 1

2Zs−(∆Ys)
2 − eW (s−)∆Ys∆Us

}
.

Since

Wt = Yt − 1
2

(
[Y ]t −

∑
s∈(0,t]

(∆Ys)
2
)

where the part in parentheses is FV and continuous, linearity of covariation
and Lemma A.10 imply [W ] = [Y ] and [W,U ] = [Y,U ] =

∑
∆Y∆U .

Now match up and cancel terms. First,∫
(0,t]

eW (s−) dUs −
∑
s∈(0,t]

eW (s−)∆Us = 0
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because U is an FV process whose paths are step functions so the integral
reduces to a sum over jumps. Second,∫

(0,t]
Zs− dWs + 1

2

∫
(0,t]

Zs− d[W ]s −
∑
s∈(0,t]

Zs−(∆Ys)
2

=

∫
(0,t]

Zs− dYs

by the definition of W and the observation [W ] = [Y ] from above. Then∫
(0,t]

eW (s−) d[W,U ]s −
∑
s∈(0,t]

eW (s−)∆Ys∆Us = 0

by the observation [W,U ] =
∑

∆Y∆U from above. Lastly, ∆Zs−Zs−∆Ys =
0 directly from the definition of Z.

After the cancelling we are left with

Zt = 1 +

∫
(0,t]

Zs− dYs,

the desired equation. �

The semimartingale Z defined in the theorem is called the stochastic
exponential of Y , and denoted by E(Y ).

Example 7.6. Let Yt = λBt where B is Brownian motion. The stochastic
exponential Z = E(λB), given by Zt = exp(λBt − 1

2λ
2t), another instance

of geometric Brownian motion. The equation

Zt = 1 + λ

∫ t

0
Zs dBs

and moment bounds show that geometric Brownian motion is a continuous
L2-martingale.

7.2. Itô equations

We present the existence and uniqueness results for SDEs in two stages.
This section covers the standard strong existence and uniqueness result for
Itô equations contained in every stochastic analysis book. In addition we
prove weak uniqueness and the strong Markov property of the solution. In
the subsequent two sections we undertake a much more technical existence
and uniqueness proof for a cadlag semimartingale equation. On Rd we use
the Euclidean norm |x| = (

∑
|xi|2)1/2, and similarly for a matrix A = (ai,j)

the norm is |A| = (
∑
|ai,j |2)1/2.

Let Bt be a standard Rm-valued Brownian motion with respect to the
complete filtration {Ft} on the complete probability space (Ω,F , P ). The
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given data are coefficient functions b : R+ × Rd → Rd and σ : R+ ×
Rd → Rd×m and an Rd-valued F0-measurable random variable ξ that gives
the initial position. The assumptions imply that the initial position ξ is
independent of the driving Brownian motion B.

The goal is to prove that on (Ω,F , P ) there exists an Rd-valued process
X that is adapted to {Ft} and satisfies the integral equation

(7.18) Xt = ξ +

∫ t

0
b(s,Xs) ds+

∫ t

0
σ(s,Xs) dBs

in the sense that the processes on the right and left of the equality sign
are indistinguishable. Part of the requirement is that the integrals are well-
defined, for which we require that

(7.19) P

{
∀ T <∞ :

∫ T

0
|b(s,Xs)| ds+

∫ T

0
|σ(s,Xs)|2 ds <∞

}
= 1.

Such a process X on (Ω,F , P ) is called a strong solution because it exists
on the given probability space and is adapted to the given filtration. Strong
uniqueness then means that if Y is another process adapted to {Ft} that
satisfies (7.18)– (7.19), then X and Y are indistinguishable.

Next we state the standard Lipschitz assumption on the coefficient func-
tions and then the strong existence and uniqueness theorem.

Assumption 7.7. Assume the Borel functions b : R+ × Rd → Rd and
σ : R+ ×Rd → Rd×m satisfy the Lipschitz condition

(7.20) |b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ L|x− y|

and the bound

(7.21) |b(t, x)|+ |σ(t, x)| ≤ L(1 + |x|)

for a constant L <∞ and all t ∈ R+ and x, y ∈ Rd.

Theorem 7.8. Let Assumption 7.7 be in force and let ξ be an Rd-valued F0-
measurable random variable. Then there exists a continuous process X on
(Ω,F , P ) adapted to {Ft} that satisfies integral equation (7.18) and property
(7.19). The process X with these properties is unique up to indistinguisha-
bility.

Before turning to the proofs we present simple examples from ODE
theory that illustrate the loss of existence and uniqueness when the Lipschitz
assumption on the coefficient is weakened.

Example 7.9. (a) Consider the equation

x(t) =

∫ t

0
2
√
x(s) ds.
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The function b(x) =
√
x is not Lipschitz on [0, 1] because b′(x) blows up at

the origin. The equation has infinitely many solutions. Two of them are
x(t) = 0 and x(t) = t2.

(b) The equation

x(t) = 1 +

∫ t

0
x2(s) ds

does not have a solution for all time. The unique solution starting at t = 0
is x(t) = (1− t)−1 which exists only for 0 ≤ t < 1. The function b(x) = x2 is
locally Lipschitz. This is enough for uniqueness, as determined in Exercise
7.4.

We prove Theorem 7.8 in stages, and begin with existence under an L2

assumption on the initial state. Part (b) of the next theorem will be used
later to establish regularity of solutions as functions of the initial state.

Theorem 7.10. Let Assumption 7.7 be in force and the F0-measurable ini-
tial point satisfy

E(|ξ|2) <∞.

(a) There exists a continuous process X adapted to {Ft} that satisfies
integral equation (7.18) and this moment bound: for each T <∞ there exists
a constant C = C(T, L) <∞ such that

(7.22) E
(

sup
t∈[0,T ]

|Xt|2
)
≤ C

(
1 + E(|ξ|2)

)
for t ∈ [0, T ].

In particular, the integrand σ(s,Xs) is a member of L2(B) and

E

∫ T

0
|b(s,Xs)|2 ds <∞ for each T <∞.

(b) Let ξ̃ ∈ L2(P ) be also F0-measurable, and let X̃ be the solution

constructed in part (a) with initial condition ξ̃. Then there exists a constant
C <∞ such that for all t <∞,

(7.23) E
[

sup
0≤s≤t

|Xs − X̃s|2
]
≤ 9eCt

2
E[ |ξ − ξ̃|2 ].

Proof of Theorem 7.10. (a) The existence proof uses classic Picard itera-
tion. We define a sequence of processes Xn indexed by n ∈ Z+ by X0(t) = ξ
and then for n ≥ 0

(7.24) Xn+1(t) = ξ +

∫ t

0
b(s,Xn(s)) ds+

∫ t

0
σ(s,Xn(s)) dBs.
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Step 1. We show that for each n the process Xn is well-defined, con-
tinuous, and satisfies

(7.25) E
(

sup
s∈[0,t]

|Xn(s)|2
)
<∞ for all t ∈ R+.

Bound (7.25) is clear in the case n = 0 by the definition X0(t) = ξ and
assumption ξ ∈ L2(P ).

Assume (7.25) for n. That process Xn+1 is well-defined by the integrals
in (7.24) follows from

(7.26)

E

[ ∫ t

0
|b(s,Xn(s))|2 ds+

∫ t

0
|σ(s,Xn(s))|2 ds

]
≤ 4L2t

(
1 + sup

s∈[0,t]
E|Xn(s)|2

)
<∞

where we used assumption (7.21) and then (7.25) for n.

Property (7.26) implies that the first (Lebesgue) integral on the right of
(7.24) is a continuous L2 process and that the second (stochastic) integral
is a continuous L2 martingale because the integrand lies in L2(B).

Now we know that Xn+1(t) is a well-defined continuous square-integrable
process. Take supremum over time in equation (7.24). To bound the second
moment, use first (a+ b+ c)2 ≤ 9(a2 + b2 + c2), then Schwarz inequality to
the first integral, and apply Doob’s inequality (Theorem (3.12)) followed by
the isometry of stochastic integration to the second integral.

(7.27)

E
(

sup
s∈[0,t]

|Xn+1(s)|2
)
≤ 9E(|ξ|2) + 9E

[
sup
s∈[0,t]

∣∣∣∣∫ s

0
b(u,Xn(u)) du

∣∣∣∣2 ]
+ 9E

[
sup
s∈[0,t]

∣∣∣∣∫ s

0
σ(u,Xn(u)) dBu

∣∣∣∣2 ]
≤ 9E(|ξ|2) + 9tE

∫ t

0
|b(s,Xn(s))|2 ds+ 36E

∫ t

0
|σ(s,Xn(s))|2 ds

≤ 9E(|ξ|2) + 90L2(1 + t)t+ 90L2(1 + t)

∫ t

0
E|Xn(s)|2 ds.

In the last step we applied assumption (7.21). Now it is clear that (7.25) is
passed from n to n+ 1.

Step 2. For each T <∞ there exists a constant A = A(T, L) <∞ such
that

(7.28) E
(

sup
s∈[0,t]

|Xn(s)|2
)
≤ A

(
1 + E(|ξ|2)

)
for all n and t ∈ [0, T ].
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To prove Step 2, restrict t to [0, T ] and introduce a constant C =
C(T, L) ∈ [1,∞) to rewrite the outcome of (7.27) as

E
(

sup
s∈[0,t]

|Xn+1(s)|2
)
≤ C

(
1 + E(|ξ|2)

)
+ C

∫ t

0
E
(

sup
u∈[0,s]

|Xn(u)|2
)
ds.

Thus with yn(t) = E
(
sups∈[0,t]|Xn(s)|2

)
and B = C

(
1 + E(|ξ|2)

)
we have

this situation:

(7.29) y0(t) ≤ B and yn+1(t) ≤ B + C

∫ t

0
yn(s) ds.

This assumption gives inductively

(7.30) yn(t) ≤ B
n∑
k=0

Cktk

k!
≤ BeCt.

This translates into (7.28).

Step 3. There exists a continuous, adapted process X such that Xn →
X uniformly on compact time intervals both almost surely and in this L2

sense: for each T <∞

(7.31) lim
n→∞

E
[

sup
0≤s≤T

|X(s)−Xn(s)|2
]

= 0.

Furthermore, X satisfies moment bound (7.22).

We isolate a part of this step as a lemma for later use.

Lemma 7.11. Let Assumption 7.7 be in force. Let X and Y be continuous,
adapted L2 processes that satisfy estimate (7.25), ξ and η L2(P ) random
variables, and processes X̄ and Ȳ defined by

X̄t = ξ +

∫ t

0
b(s,Xs) ds+

∫ t

0
σ(s,Xs) dBs

and

Ȳt = η +

∫ t

0
b(s, Ys) ds+

∫ t

0
σ(s, Ys) dBs.

Then there exists a constant C = C(L) <∞ such that for all 0 ≤ t ≤ T <∞

(7.32)

E
[

sup
0≤s≤t

|X̄s − Ȳs|2
]

≤ 9E|ξ − η|2 + CT

∫ t

0
E
[

sup
0≤u≤s

|Xu − Yu|2
]
ds.
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Proof. Assuming (7.25) for X and Y ensures that all integrals are well-
defined.

(7.33)

X̄t − Ȳt = ξ − η +

∫ t

0

[
b(s,Xs)− b(s, Ys)

]
ds

+

∫ t

0

[
σ(s,Xs)− σ(s, Ys)

]
dBs

≡ ξ − η +G(t) +M(t)

where G is an FV process and M an L2 martingale. Schwarz inequality and
the Lipschitz assumption (7.20) give

(7.34)

E
[

sup
0≤s≤t

|G(s)|2
]
≤ t
∫ t

0
E
∣∣b(s,Xs)− b(s, Ys)

∣∣2 ds
≤ L2t

∫ t

0
E|Xs − Ys|2 ds ≤ L2t

∫ t

0
E
[

sup
0≤u≤s

|Xu − Yu|2
]
ds

The isometry of stochastic integration and Doob’s inequality (Theorem 3.12)
give

(7.35)

E
[

sup
0≤s≤t

|M(s)|2
]
≤ 4E[ |M(t)|2 ]

= 4

∫ t

0
E
∣∣σ(s,Xs)− σ(s, Ys)

∣∣2 ds
≤ 4L2

∫ t

0
E|Xs − Ys|2 ds ≤ 4L2

∫ t

0
E
[

sup
0≤u≤s

|Xu − Yu|2
]
ds.

Collect the estimates. �

Return to the proof of Step 3. Restrict t to [0, T ]. Lemma 7.11 applied
to X̄ = Xn+1, Ȳ = X = Xn and Y = Xn−1 gives

(7.36)

E
[

sup
0≤s≤t

|Xn+1(s)−Xn(s)|2
]

≤ C
∫ t

0
E
[

sup
0≤u≤s

|Xn(u))−Xn−1(u)|2
]
ds.

For yn(t) = E
[

sup0≤s≤t|Xn+1(s) − Xn(s)|2
]

we have constants B,C such
that these inequalities hold for t ∈ [0, T ]:

(7.37) y0(t) ≤ B and yn+1(t) ≤ C
∫ t

0
yn(s) ds.
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The inequality for y0(t) is checked separately:

y0(t) = E
[

sup
0≤s≤t

|X1(s)−X0(s)|2
]

= E

[
sup

0≤s≤t

∣∣∣∣∫ s

0
b(u, ξ) du+

∫ s

0
σ(u, ξ) dBu

∣∣∣∣2 ]
and reason as above once again.

Bounds (7.37) develop inductively into

(7.38) yn(t) ≤ BC
ntn

n!
.

An application of Chebyshev’s inequality gives us a summable bound that
we can feed into the Borel-Cantelli lemma:

P
{

sup
0≤s≤t

|Xn+1(s)−Xn(s)| ≥ 2−n
}
≤ 4nE

[
sup

0≤s≤t
|Xn+1(s)−Xn(s)|2

]
≤ B 4nCntn

n!
.

Consider now T ∈ N. From∑
n

P
{

sup
0≤s≤T

|Xn+1(s)−Xn(s)| ≥ 2−n
}
<∞

and the Borel-Cantelli lemma we conclude that for almost every ω and each
T ∈ N there exists a finite NT (ω) <∞ such that n ≥ NT (ω) implies

sup
0≤s≤T

|Xn+1(s)−Xn(s)| < 2−n.

Thus for almost every ω the paths {Xn} form a Cauchy sequence in the space
C[0, T ] of continuous functions with supremum distance, for each T ∈ N.
This space is complete (Lemma A.5). Consequently there exists a continuous
path {Xs(ω) : s ∈ R+}, defined for almost every ω, such that

(7.39) sup
0≤s≤T

|X(s)−Xn(s)| → 0 as n→∞

for all T ∈ N and almost every ω. This defines X and proves the almost sure
convergence part of Step 3. Adaptedness of X comes from Xn(t) → X(t)
a.s. and the completeness of the σ-algebra Ft.

From the uniform convergence we get

sup
0≤s≤T

|X(s)−Xn(s)| = lim
m→∞

sup
0≤s≤T

|Xm(s)−Xn(s)|.

Abbreviate ηn = sup0≤s≤T |Xn+1(s) −Xn(s)| and let ‖ηn‖2 = E(η2
n)1/2 de-

note L2 norm. By Fatou’s lemma and the triangle inequality for the L2
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norm, ∥∥ sup
0≤s≤T

|X(s)−Xn(s)|
∥∥

2
≤ lim

m→∞

∥∥ sup
0≤s≤T

|Xm(s)−Xn(s)|
∥∥

2

≤ lim
m→∞

m−1∑
k=n

‖ηk‖2 =

∞∑
k=n

‖ηk‖2.

By estimate (7.38) the last expression vanishes as n→∞. This gives (7.31).
Finally, L2 convergence (or Fatou’s lemma) converts (7.28) into (7.22). This
completes the proof of Step 3.

Step 4. Process X satisfies (7.18).

The integrals in (7.18) are well-defined continuous processes because
we have established the L2 bound on X that gives the L2 bounds on the
integrands as in the last step of (7.27). To prove Step 4 we show that the
terms in (7.24) converge to those of (7.18) in L2. We have derived the
required estimates already. For example, by the Lipschitz assumption and
(7.31), for every T <∞,

E

∫ T

0

∣∣σ(s,Xn(s))− σ(s,X(s))
∣∣2 ds ≤ L2E

∫ T

0
|Xn(s)−X(s)|2 ds→ 0.

This says that the integrand σ(s,Xn(s)) converges to σ(s,X(s)) in the space
L2(B). Consequently we have the L2 convergence of stochastic integrals:∫ t

0
σ(s,Xn(s)) dBs →

∫ t

0
σ(s,X(s)) dBs

which also holds uniformly on compact time intervals.

We leave the argument for the other integral as an exercise. Proof of
part (a) of Theorem 7.10 is complete.

(b) Apply Lemma 7.11 to η = ξ̃, X̄ = X and Ȳ = Y = X̃. The
conclusion (7.32) justifies an application of Gronwall’s inequality (Lemma
A.20) which gives the conclusion. �

At this point we prove strong uniqueness. We prove a slightly more
general result which we can use also to extend the existence result beyond
ξ ∈ L2(P ). Let η be another initial condition and Y a process that satisfies

(7.40) Yt = η +

∫ t

0
b(s, Ys) ds+

∫ t

0
σ(s, Ys) dBs.

Theorem 7.12. Let ξ and η be Rd-valued F0-measurable random variables
without any integrability assumptions. Assume that coefficients b and σ are
Borel functions that satisfy Lipschitz condition (7.20). Let X and Y be
two continuous processes on (Ω,F , P ) adapted to {Ft}. Assume X satisfies
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integral equation (7.18) and condition (7.19). Assume Y satisfies integral
equation (7.40) and condition (7.19) with X replaced by Y . Then on the
event {ξ = η} processes X and Y are indistinguishable. That is, for almost
every ω such that ξ(ω) = η(ω), Xt(ω) = Yt(ω) for all t ∈ R+.

In the case η = ξ we get the strong uniqueness. The uniqueness state-
ment is actually true with a weaker local Lipschitz condition (Exercise 7.4).

Corollary 7.13. Let ξ be an Rd-valued F0-measurable random variable.
Assume that b and σ are Borel functions that satisfy Lipschitz condition
(7.20). Then up to indistinguishability there is at most one continuous pro-
cess X on (Ω,F , P ) adapted to {Ft} that satisfies (7.18)–(7.19).

Proof of Theorem 7.12. In order to use L2 bounds we stop the processes
before they get too large. Fix n ∈ N for the time being and define

ν = inf{t ≥ 0 : |Xt − ξ| ≥ n or |Yt − η| ≥ n}.

This is a stopping time by Corollary 2.10. Processes Xν − ξ and Y ν − η are
bounded.

The bounded F0-measurable random variable 1{η = ξ} moves freely
in and out of stochastic integrals. This can be seen for example from the
constructions of stochastic integrals. By subtracting the equations for Xt

and Yt and then stopping we get this equation:

(7.41)

(Xν
t − Y ν

t ) · 1{η = ξ}

=

∫ ν∧t

0

[
b(s,Xs)− b(s, Ys)

]
1{η = ξ} ds

+

∫ ν∧t

0

[
σ(s,Xs)− σ(s, Ys)

]
1{η = ξ} dBs

=

∫ ν∧t

0

[
b(s,Xν

s )− b(s, Y ν
s )
]
1{η = ξ} ds

+

∫ ν∧t

0

[
σ(s,Xν

s )− σ(s, Y ν
s )
]
1{η = ξ} dBs

≡ G(t) +M(t).

The last equality defines the processes G and M . The next to last equality
comes from the fact that if integrands agree up to a stopping time, then so
do stochastic integrals (Proposition 4.10(c) for Brownian motion). We have
the constant bound∣∣σ(s,Xν

s )− σ(s, Y ν
s )
∣∣ · 1{η = ξ} ≤ L|Xν

s − Y ν
s | · 1{η = ξ}

≤ L|(Xν
s − ξ)− (Y ν

s − η)| · 1{η = ξ} ≤ 2Ln
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and similarly for the other integrand. Consequently G is an L2 FV process
and M an L2 martingale.

Schwarz inequality, bounding ν ∧ t above with t, and the Lipschitz as-
sumption (7.20) give

E
[
|G(t)|2

]
≤ t
∫ t

0
E
[
|b(s,Xν

s )− b(s, Y ν
s )|2 1{η = ξ}

]
ds

≤ L2t

∫ t

0
E
[
|Xν

s − Y ν
s |2 1{η = ξ}

]
ds.

The isometry of stochastic integration gives

E
[
|M(t)|2

]
= E

[(∫ ν∧t

0

[
σ(s,Xν

s )− σ(s, Y ν
s )
]
1{η = ξ} dBs

)2 ]
= E

[(∫ t

0
1[0,ν](t)

[
σ(s,Xν

s )− σ(s, Y ν
s )
]
1{η = ξ} dBs

)2 ]
=

∫ t

0
E
[
1[0,ν](t)|σ(s,Xν

s )− σ(s, Y ν
s )|2 1{η = ξ}

]
ds

≤ L2

∫ t

0
E
[
|Xν

s − Y ν
s |2 1{η = ξ}

]
ds.

In the second equality above we moved the cut-off at ν from the upper limit
into the integrand in accordance with (5.23) from Proposition 5.16. (Strictly
speaking we have proved this only for predictable integrands but naturally
the same property can be proved for the more general Brownian motion
integral.)

Combine the above bounds into

E
[
|Xν

t − Y ν
t |2 1{η = ξ}

]
≤ 2L2(t+ 1)

∫ t

0
E
[
|Xν

s − Y ν
s |2 1{η = ξ}

]
ds.

If we restrict t to [0, T ] we can replace 2L2(t + 1) with the constant B =
2L2(T + 1) above. Then Gronwall’s inequality (Lemma A.20) implies

E
[
|Xν

t − Y ν
t |2 1{η = ξ}

]
= 0 for t ∈ [0, T ].

We can repeat this argument for each T ∈ N and so extend the conclusion to
all t ∈ R. Thus on the event η = ξ the continuous processesXν and Y ν agree
almost surely at each fixed time. It follows that they are indistinguishable.
Now we have this statement for each n that appears in the definition of ν.
With continuous paths we have ν ↗∞ as we take n to infinity. In the end
we can conclude that X and Y are indistinguishable on the event η = ξ. �

Completion of the proof of Theorem 7.8. It remains to remove the as-
sumption ξ ∈ L2(P ) from the existence proof. Let Xm(t) be the solution
given by Theorem 7.10 for the initial point ξ1{|ξ| ≤ m}. By Theorem
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7.12, for m < n processes Xm and Xn are indistinguishable on the event
{|ξ| ≤ m}. Thus we can consistently define

X(t) = Xm(t) on the event {|ξ| ≤ m}.

X has continuous paths because each Xm does, and adaptedness of X can
be checked because {|ξ| ≤ m} ∈ F0. X satisfies (7.19) because each Xm

does. Thus the integrals in (7.18) are well-defined for X.

To verify equation (7.18) we can again pass the F0-measurable indicator
1{|ξ| ≤ m} in and out of stochastic integrals, and then use the equality
of processes b(s,X(s))1{|ξ| ≤ m} = b(s,Xm(s))1{|ξ| ≤ m} with the same
property for σ:

X(t)1{|ξ| ≤ m} = Xm(t)1{|ξ| ≤ m}

= ξ1{|ξ| ≤ m}+

∫ t

0
b(s,Xm(s))1{|ξ| ≤ m} ds

+

∫ t

0
σ(s,Xm(s))1{|ξ| ≤ m} dBs

= ξ1{|ξ| ≤ m}+

∫ t

0
b(s,X(s))1{|ξ| ≤ m} ds

+

∫ t

0
σ(s,X(s))1{|ξ| ≤ m} dBs

= 1{|ξ| ≤ m}
(
ξ +

∫ t

0
b(s,X(s)) ds+

∫ t

0
σ(s,X(s)) dBs

)
.

Since the union of the events {|ξ| ≤ m} is the entire space (almost surely),
we have the equation for X. �

Let us also address weak uniqueness or uniqueness in distribution.
This concerns solutions on possibly different probability spaces. As above,
assume given a Brownian motion B relative to a complete filtration {Ft} on a
probability space (Ω,F , P ), and an F0-measurable random variable ξ. Let X
be a continuous {Ft}-adapted process that satisfies integral equation (7.18)

and condition (7.19). Let (Ω̃, F̃ , P̃ ), {F̃t}, B̃, ξ̃ be another system with

exactly the same properties, and let X̃ be a continuous process on (Ω̃, F̃ , P̃ )

adapted to {F̃t} that satisfies the analogue of (7.19) and the equation

(7.42) X̃t = ξ̃ +

∫ t

0
b(s, X̃s) ds+

∫ t

0
σ(s, X̃s) dB̃s.

The point is that the coefficient functions b and σ are shared. The theorem
says that the probability distribution of the solution process X is uniquely
determined by the distribution of ξ and the functions b and σ.
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Theorem 7.14. Let Assumption 7.7 be in force and assume b and σ are

continuous functions of (t, x). Assume ξ
d
= ξ̃. Then processes X and X̃

have the same probability distribution. That is, for any measurable subset A

of CRd [0,∞), P (X ∈ A) = P̃ (X̃ ∈ A).

Proof. Assume first that ξ and ξ̃ are L2 variables. Follow the recipe (7.24)
of the proof of Theorem 7.10 to construct the two sequences of processes,

Xn on Ω and X̃n on Ω̃, that converge in the sense of (7.31) and (7.39) to

solution processes. By the strong uniqueness, Xn → X and X̃n → X̃ in
the sense mentioned. Thus it suffices to show the distributional equality

Xn
d
= X̃n of the approximating processes. We do this inductively.

(X0, B)
d
= (X̃0, B̃) follows from ξ

d
= ξ̃ and the fact that both pairs (ξ,B)

and (ξ̃, B̃) are independent.

Suppose (Xn, B)
d
= (X̃n, B̃). Since the integrands are continuous and

satisfy uniform estimates of the type (7.28), we can fix the partitions ski =
i2−k of the time axis and realize the integrals on the right-hand side of (7.24)
as limits of integrals of simple functions:

Xn+1(t) = ξ + lim
k→∞

{∑
i≥0

b(ski , Xn(ski ))(t ∧ ski+1 − t ∧ ski )

+
∑
i≥0

σ(ski , Xn(ski ))(Bt∧ski+1
−Bt∧ski )

}
and

X̃n+1(t) = ξ̃ + lim
k→∞

{∑
i≥0

b(ski , X̃n(ski ))(t ∧ ski+1 − t ∧ ski )

+
∑
i≥0

σ(ski , X̃n(ski ))(B̃t∧ski+1
− B̃t∧ski )

}
.

These limits are uniform over bounded time intervals and L2 or in probability
over the probability space. By passing to a subsequence, the limit is also
almost sure.

Fix time points 0 ≤ t1 < · · · < tm. The induction assumption (Xn, B)
d
=

(X̃n, B̃) and the limits above imply that the vectors

(Xn+1(t1), . . . , Xn+1(tm), Bt1 , . . . , Btm)

and (X̃n+1(t1), . . . , X̃n+1(tm), B̃t1 , . . . , B̃tm)

have identical distributions. Finite-dimensional distributions determine the

distribution of an entire process, and we may conclude that (Xn+1, B)
d
=

(X̃n+1, B̃).
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This concludes the proof for the case of square integrable ξ and ξ̃. For
the general case do an approximation through ξ1{|ξ| ≤ m} and ξ̃1{|ξ̃| ≤ m},
as in the previous proof. �

For x ∈ Rd, let P x be the distribution on C = CRd [0,∞) of the process
X that solves the SDE (7.18) with deterministic initial point ξ = x. Ex de-
notes expectation under P x. The family of probability measures {P x}x∈Rd

is well defined on account of Theorem 7.14. Let xj → x in Rd. Then es-
timate (7.23) implies that P xj → P x in the weak topology of the space
M1(C) of Borel probability measures on C. Continuous mappings are in
general Borel measurable. Consequently x 7→ P x is a measurable mapping
from Rd into M1(C). This implies that x 7→ Ex(G) is a Borel function for
any bounded Borel function G : C → R.

Thus we can inquire about the Markov property of the solution of an
Itô equation. Since we only discussed time-homogeneous Markov processes,
let us assume that the coefficient functions b and σ do not depend explicitly
on the time-coordinate. This is not really a restriction because the time
coordinate can always be included in the state of the system; that is, Xt can
be replaced by X̄t = (t,Xt). So now the equation whose solution uniquely
determines distribution P x on C is

(7.43) Xt = x+

∫ t

0
b(Xs) ds+

∫ t

0
σ(Xs) dBs.

Theorem 7.15. Let Assumption 7.7 be in force. Then the family {P x}x∈Rd

of probability measures on C defined by the solutions of the Itô equations
(7.43) forms a Markov process that also possesses the strong Markov prop-
erty.

Proof. The continuity of x 7→ P x gives the Feller property, so by Theorem
2.23 all we need to verify is the Markov property itself: namely, for any
bounded measurable function G : C → R and r ∈ [0,∞),

(7.44) Ex[G(Xr+·) | Fr] = EXr [G] P x-a.s.,

where (Xt) now denotes the coordinate process on C, Ft = σ{Xs : 0 ≤ s ≤ t}
is the filtration on C generated by the coordinates, and Xr+· = (Xr+t)t∈[0,∞)

is the coordinate process from time r onwards. To check this we take the
calculation back to a space where we solve the SDE.

Fix x ∈ Rd and r ∈ [0,∞). Let (Ω,H,P) be a probability space with
complete filtration {Ht}, and B an Rm-valued Brownian motion with re-
spect to the filtration {Ht}. Let Y denote the a.s. unique solution of the Itô
equation (7.43) with deterministic initial point x and adapted to {Ht}.
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We condition on Hr on the space (Ω,H,P). We can take Ω Polish with
Borel σ-algebra H, for example simply by (Ω,H) = (C,BC). Conditional
probability measures exist on Polish spaces. Consequently we have a mea-
surable function ω 7→ Pω from Ω intoM1(Ω) such that Pω is the conditional
probability measure of P, given Hr. This means that the expectation Eω(f)
of f under Pω is a version of the conditional expectation E[f |Hr](ω) for
any bounded measurable f : Ω→ R.

Under P the process B̌t = Br+t − Br is a standard Brownian motion,
independent of Hr. Hence under Pω process B̌ is still a standard Brownian
motion. Next, there is an event Ω0 such that P(Ω0) = 1 and for each ω ∈ Ω0,
the variable Yr is Pω-a.s. equal to the constant Yr(ω). To see this, begin
with the P-a.s. identity

Pω(Yr ∈ U) = E[1U (Yr)|Hr](ω) = 1U (Yr(ω))

that follows from the Hr-measurability of Yr. Now let Ω0 be the set of ω
for which the above identity holds for all sets U in a countable base for the
topology of Rd: for example, U ranges over balls with rational centers and
radii.

Define the process Y̌t = Yr+t, adapted to the filtration Ȟt = Hr+t.
Increments of the new Brownian motion are shifts of the increments of the
original Brownian motion: B̌t − B̌s = Br+t − Br+s. Consequently we have

equality of stochastic integrals
∫ t

0 σ(Y̌s) dB̌s =
∫ r+t
r σ(Ys) dBs, and thereby

the equation

Y̌t = Yr +

∫ t

0
b(Y̌s) ds+

∫ t

0
σ(Y̌s) dB̌s.

The points above amount to the following. For ω ∈ Ω0, on the probability
space (Ω,H,Pω) process Y̌ is a solution of the SDE (7.43) with initial point
x = Yr(ω). Consequently the distribution of Y̌ under the measure Pω is

P Yr(ω).

We can now verify (7.44). Let A ∈ Fr on the space C. Note that then
1A(Y ) depends only on the segment Y[0,r] = (Ys : s ∈ [0, r]) and hence is
Hr-measurable. Under P process Y has distribution P x, so we can compute
as follows.

Ex[1AG(Xr+·)] = E[1A(Y )G(Y̌ )] = E
[
1A(Y ) Eω(G(Y̌ ))

]
= E

[
1A(Y )EYr(G)

]
= Ex

[
1AE

Xr(G)
]
.

The second equality followed from conditioning on Hr inside E[· · · ]. This
completes the proof of the strong Markov property. �
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7.3. A semimartingale equation

Fix a probability space (Ω,F , P ) with a filtration {Ft}. We consider the
equation

(7.45) X(t, ω) = H(t, ω) +

∫
(0,t]

F (s, ω,X(ω)) dY (s, ω)

where Y is a given Rm-valued cadlag semimartingale, H is a given Rd-
valued adapted cadlag process, and X is the unknown Rd-valued process.
The coefficient F is a d×m-matrix valued function of its arguments. (The
componentwise interpretation of the stochastic integral

∫
F dY appeared

Remark 5.38.) For the coefficient F we make these assumptions.

Assumption 7.16. The coefficient function F (s, ω, η) in equation (7.45) is
a measurable function from the space R+ × Ω × DRd [0,∞) into the space
Rd×m of d×m matrices, and satisfies the following requirements.

(i) F satisfies a spatial Lipschitz condition uniformly in the other vari-
ables: there exists a finite constant L such that this holds for all
(t, ω) ∈ R+ × Ω and all η, ζ ∈ DRd [0,∞):

(7.46) |F (t, ω, η)− F (t, ω, ζ)| ≤ L · sup
s∈[0,t)

|η(s)− ζ(s)|.

(ii) Given any adapted Rd-valued cadlag process X on Ω, the function
(t, ω) 7→ F (t, ω,X(ω)) is a predictable process.

(iii) Given any adapted Rd-valued cadlag process X on Ω, there exist
stopping times νk ↗ ∞ such that 1(0,νk](t)F (t,X) is bounded for
each k.

These conditions on F are rather technical. They are written to help
prove the next theorem. The proof is lengthy and postponed to the next
section. There are technical steps where we need right-continuity of the
filtration, hence we include this requirement in the hypotheses.

Theorem 7.17. Assume {Ft} is complete and right-continuous. Let H
be an adapted Rd-valued cadlag process and Y an Rm-valued cadlag semi-
martingale. Assume F satisfies Assumption 7.16. Then there exists a cadlag
process {X(t) : 0 ≤ t < ∞} adapted to {Ft} that satisfies equation (7.45),
and X is unique up to indistinguishability.

In the remainder of this section we discuss the assumptions on F and
state some consequences of the existence and uniqueness theorem.

Notice the exclusion of the endpoint t on the right-hand side of the
Lipschitz condition (7.46). This implies that F (t, ω, · ) is a function of the
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stopped path

ηt−(s) =


η(0), t = 0, 0 ≤ s <∞
η(s), 0 ≤ s < t

η(t−), s ≥ t > 0.

In other words, the function F (t, ω, · ) only depends on the path on the time
interval [0, t).

Parts (ii)–(iii) guarantees that the stochastic integral
∫
F (s,X) dY (s)

exists for an arbitrary adapted cadlag process X and semimartingale Y .
The existence of the stopping times {νk} in part (iii) can be verified via this
local boundedness condition.

Lemma 7.18. Assume F satisfies parts (i) and (ii) of Assumpotion 7.16.
Suppose there exists a path ζ̄ ∈ DRd [0,∞) such that for all T <∞,

(7.47) c(T ) = sup
t∈[0,T ], ω∈Ω

|F (t, ω, ζ̄ )| <∞.

Then for any adapted Rd-valued cadlag process X there exist stopping times
νk ↗∞ such that 1(0,νk](t)F (t,X) is bounded for each k.

Proof. Define

νk = inf{t ≥ 0 : |X(t)| ≥ k} ∧ inf{t > 0 : |X(t−)| ≥ k} ∧ k
These are bounded stopping times by Lemma 2.9. |X(s)| ≤ k for 0 ≤ s < νk,
but if νk = 0 we cannot claim that |X(0)| ≤ k. The stopped process

Xνk−(t) =


X(0), νk = 0

X(t), 0 ≤ t < νk

X(νk−), t ≥ νk > 0

is cadlag and adapted.

We show that 1(0,νk](s)F (s,X) is bounded. If s = 0 or νk = 0 then this
random variable vanishes. Suppose 0 < s ≤ νk. Since [0, s) ⊆ [0, νk), X
agrees with Xνk− on [0, s), and then F (s,X) = F (s,Xνk−) by (7.46).

|F (s,X)| = |F (s,Xνk−)| ≤ |F (s, ζ̄ )|+ |F (s,Xνk−)− F (s, ζ̄ )|
≤ c(k) + L · sup

0≤t<νk
|X(t)− ζ̄(t)|

≤ c(k) + L
(
k + sup

0≤t≤k
|ζ̄(t)|

)
.

The last line above is a finite quantity because ζ̄ is locally bounded, being
a cadlag path. �

Here is how to apply the theorem to an equation that is not defined for
all time.



7.3. A semimartingale equation 255

Corollary 7.19. Let 0 < T < ∞. Assume {Ft} is right-continuous, Y
is a cadlag semimartingale and H is an adapted cadlag process, all defined
for 0 ≤ t ≤ T . Let F satisfy Assumption 7.16 for (t, ω) ∈ [0, T ] × Ω. In
particular, part (ii) takes this form: if X is a predictable process defined
on [0, T ] × Ω, then so is F (t,X), and there is a nondecreasing sequence of
stopping times {σk} such that 1(0,σk](t)F (t,X) is bounded for each k, and
for almost every ω, σk = T for all large enough k.

Then there exists a unique solution X to equation (7.45) on [0, T ].

Proof. Extend the filtration, H, Y and F to all time in this manner: for
t ∈ (T,∞) and ω ∈ Ω define Ft = FT , Ht(ω) = HT (ω), Yt(ω) = YT (ω), and
F (t, ω, η) = 0. Then the extended processes H and Y and the coefficient F
satisfy all the original assumptions on all of [0,∞). Note in particular that
if G(t) = F (t,X) is a predictable process for 0 ≤ t ≤ T , then extending
it as a constant to (T,∞) produces a predictable process for 0 ≤ t < ∞.
And given a predictable process X on [0,∞), let {σk} be the stopping times
given by the assumption, and then define

νk =

{
σk, σk < T

∞, σk = T.

These stopping times satisfy part (iii) of Assumption 7.16 for [0,∞). Now
Theorem 7.45 gives a solution X for all time 0 ≤ t < ∞ for the extended
equation, and on [0, T ] X solves the equation with the original H, Y and F .

For the uniqueness part, given a solution X of the equation on [0, T ],
extend it to all time by defining Xt = XT for t ∈ (T,∞). Then we have
a solution of the extended equation on [0,∞), and the uniqueness theorem
applies to that. �

Another easy generalization is to the situation where the Lipschitz con-
stant is an unbounded function of time.

Corollary 7.20. Let the assumptions be as in Theorem 7.17, except that
the Lipschitz assumption is weakened to this: for each 0 < T < ∞ there
exists a finite constant L(T ) such that this holds for all (t, ω) ∈ [0, T ] × Ω
and all η, ζ ∈ DRd [0,∞):

(7.48) |F (t, ω, η)− F (t, ω, ζ)| ≤ L(T ) · sup
s∈[0,t)

|η(s)− ζ(s)|.

Then equation (7.45) has a unique solution X adapted to {Ft}.

Proof. For k ∈ N, the function 1{0≤t≤k}F (t, ω, η) satisfies the original hy-
potheses. By Theorem 7.17 there exists a process Xk that satisfies the
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equation

(7.49) Xk(t) = Hk(t) +

∫
(0,t]

1[0,k](s)F (s,Xk) dY
k(s).

The notation above is Hk(t) = H(k∧ t) for a stopped process as before. Let
k < m. Stopping the equation

Xm(t) = Hm(t) +

∫
(0,t]

1[0,m](s)F (s,Xm) dY m(s)

at time k gives the equation

Xk
m(t) = Hk(t) +

∫
(0,t∧k]

1[0,m](s)F (s,Xm) dY m(s),

valid for all t. By Proposition 5.39 stopping a stochastic integral can be
achieved by stopping the integrator or by cutting off the integrand with an
indicator function. If we do both, we get the equation

Xk
m(t) = Hk(t) +

∫
(0,t]

1[0,k](s)F (s,Xk
m) dY k(s).

Thus Xk and Xk
m satisfy the same equation, so by the uniqueness theorem,

Xk = Xk
m for k < m. Thus we can unambiguously define a process X by

setting X = Xk on [0, k]. Then for 0 ≤ t ≤ k we can substitute X for Xk in
equation (7.49) and get the equation

X(t) = Hk(t) +

∫
(0,k∧t]

F (s,X) dY (s), 0 ≤ t ≤ k.

Since this holds for all k, X is a solution to the original SDE (7.45).

Uniqueness works similarly. If X and X̃ solve (7.45), then X(k ∧ t) and

X̃(k ∧ t) solve (7.49). By the uniqueness theorem X(k ∧ t) = X̃(k ∧ t) for

all t, and since k can be taken arbitrary, X = X̃. �

Example 7.21. Here are ways by which a coefficient F satisfying the as-
sumptions of Corollary 7.20 can arise.

(i) Let f(t, ω, x) be a P ⊗BRd-measurable function from (R+×Ω)×Rd

into d×m-matrices. Assume f satisfies the Lipschitz condition

|f(t, ω, x)− f(t, ω, y)| ≤ L(T )|x− y|

for (t, ω) ∈ [0, T ]× Ω and x, y ∈ Rd, and the local boundedness condition

sup
{
|f(t, ω, 0)| : 0 ≤ t ≤ T, ω ∈ Ω

}
<∞

for all 0 < T <∞. Then put F (t, ω, η) = f(t, ω, η(t−)).

Satisfaction of the conditions of Assumption 7.16 is straight-forward,
except perhaps the predictability. Fix a cadlag process X and let U be
the space of P ⊗ BRd-measurable f such that (t, ω) 7→ f(t, ω,Xt−(ω)) is
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P-measurable. This space is linear and closed under pointwise convergence.
By Theorem B.4 it remains to check that U contains indicator functions
f = 1Γ×B of products of Γ ∈ P and B ∈ BRd . For such f , f(t, ω,Xt−(ω)) =
1Γ(t, ω)1B(Xt−(ω)). The first factor 1Γ(t, ω) is predictable by construction.
The second factor 1B(Xt−(ω)) is predictable because Xt− is a predictable
process, and because of the general fact that g(Zt) is predictable for any
predictable process Z and any measurable function g on the state space of
Z.

(ii) A special case of the preceding is a Borel measurable function f(t, x)
on [0,∞)×Rd with the required Lipschitz and boundedness conditions. In
other words, no dependence on ω.

(iii) Continuing with non-random functions, suppose a function G :
DRd [0,∞)→ DRd [0,∞) satisfies a Lipschitz condition in this form:

(7.50) G(η)t −G(ζ)t ≤ L · sup
s∈[0,t)

|η(s)− ζ(s)|.

Then F (t, ω, η) = G(η)t− satisfies Assumption 7.16.

Next, let us specialize to Itô equations to recover Theorem 7.8 proved in
Section 7.2.

Corollary 7.22. Let Bt be a standard Brownian motion in Rm with respect
to a right-continuous filtration {Ft} and ξ an Rd-valued F0-measurable ran-
dom variable. Fix 0 < T < ∞. Assume the functions b : [0, T ] ×Rd → Rd

and σ : [0, T ]×Rd → Rd×m satisfy the Lipschitz condition

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ L|x− y|

and the bound

|b(t, x)|+ |σ(t, x)| ≤ L(1 + |x|)
for a constant L and all 0 ≤ t ≤ T , x, y ∈ Rd.

Then there exists a unique continuous process X on [0, T ] that is adapted
to {Ft} and satisfies

(7.51) Xt = ξ +

∫ t

0
b(s,Xs) ds+

∫ t

0
σ(s,Xs) dBs

for 0 ≤ t ≤ T .

Proof. To fit this into Theorem 7.17, let Y (t) = [t, Bt]
T , H(t) = ξ, and

F (t, ω, η) =
[
b(t, η(t−)), σ(t, η(t−))

]
.

We write b(t, η(t−)) to get a predictable coefficient. For a continuous path
η this left limit is immaterial as η(t−) = η(t). The hypotheses on b and σ
establish the conditions required by the existence and uniqueness theorem.
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Once there is a cadlag solution X from the theorem, continuity of X follows
by observing that the right-hand side of (7.51) is a continuous process. �

7.4. Existence and uniqueness for a semimartingale equation

This section proves Theorem 7.17. The key part of both the existence and
uniqueness proof is a Gronwall-type estimate, which we derive after some
technical preliminaries. Note that we can assume the Lipschitz constant
L > 0. If L = 0 then F (s, ω,X) does not depend on X, equation (7.45)
directly defines the process X and there is nothing to prove.

7.4.1. Technical preliminaries.

Lemma 7.23. Let X be a cadlag process and Y a cadlag semimartingale.
Fix t > 0. Let γ be a nondecreasing continuous process on [0, t] such that
γ(0) = 0 and γ(u) is a stopping time for each u. Then

(7.52)

∫
(0,γ(t)]

X(s−) dY (s) =

∫
(0,t]

X ◦ γ(s−) d(Y ◦ γ)(s).

Remark 7.24. On the right the integrand is

X ◦ γ(s−) = lim
u↗s, u<s

X(γ(u))

which is not the same as X(γ(s−)) if the latter is interpreted as X evaluated
at γ(s−). To see this just think of γ(u) = u and imagine X has a jump at
s. Note that for the stochastic integral on the right in (7.52) the filtration
changed to {Fγ(u)}.

Proof. As {tni } goes through partitions of [0, t] with mesh tending to zero,
{γ(tni )} goes through partitions of [0, γ(t)] with mesh tending to zero. By
Proposition 5.37, both sides of (7.52) equal the limit of the sums∑

i

X(γ(tni ))
(
Y (tni+1)− Y (tni )

)
. �

Lemma 7.25. Suppose A is a nondecreasing cadlag function such that
A(0) = 0, and Z is a nondecreasing real-valued cadlag function. Then

γ(u) = inf{t ≥ 0 : A(t) > u}

defines a nondecreasing cadlag function with γ(0) = 0, and∫
(0,u]

Z ◦ γ(s−) d(A ◦ γ)(s) ≤
(
A(γ(u))− u

)
Z ◦ γ(u−)

+

∫
(0,u]

Z ◦ γ(s−) ds.

(7.53)
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Proof. That γ is nondecreasing is immediate. To see right-continuity, let
s > γ(u). Then A(s) > u. Pick ε > 0 so that A(s) > u + ε. Then for
v ∈ [u, u+ ε], γ(v) ≤ s.

Also, since A(t) > u for t > γ(u), by the cadlag property of A

(7.54) A(γ(u)) ≥ u.

Since Z ◦ γ is cadlag, the integrals (7.53) are limits of Riemann sums with
integrand evaluated at the left endpoint of partition intervals (Lemma 1.12).
Let {0 = s0 < s1 < · · · < sm = u} be a partition of [0, u]. Next algebraic
manipulations:

m−1∑
i=0

Z(γ(si))
(
A(γ(si+1))−A(γ(si))

)
=

m−1∑
i=0

Z(γ(si))(si+1 − si)

+
m−1∑
i=0

Z(γ(si))
(
A(γ(si+1))− si+1 −A(γ(si)) + si

)
=

m−1∑
i=0

Z(γ(si))(si+1 − si) + Z(γ(sm−1))
(
A(γ(u))− u

)
−

m−1∑
i=1

(
Z(γ(si))− Z(γ(si−1))

)(
A(γ(si))− si

)
.

The sum on the last line above is nonnegative by the nondecreasing mono-
tonicity of Z ◦ γ and by (7.54). Thus we have

m−1∑
i=0

Z(γ(si))
(
A(γ(si+1))−A(γ(si))

)
≤

m−1∑
i=0

Z(γ(si))(si+1 − si) + Z(γ(sm−1))
(
A(γ(u))− u

)
.

Letting the mesh of the partition to zero turns the inequality above into
(7.53). �

Let F be a cadlag BV function on [0, T ] and ΛF its Lebesgue-Stieltjes
measure. The total variation function of F was denoted by VF (t). The total
variation measure |ΛF | satisfies |ΛF | = ΛVF . For Lebesgue-Stieltjes integrals
the general inequality (1.12) for signed measures can be written in this form:

(7.55)

∣∣∣∣∫
(0,T ]

g(s) dF (s)

∣∣∣∣ ≤ ∫
(0,T ]
|g(s)| dVF (s).
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Lemma 7.26. Let X be an adapted cadlag process and α > 0. Let τ1 <
τ2 < τ3 < · · · be the times of successive jumps in X of magnitude above α:
with τ0 = 0,

τk = inf{t > τk−1 : |X(t)−X(t−)| > α}.
Then the {τk} are stopping times.

Proof. Fix k. We show {τk ≤ t} ∈ Ft. Consider the event

A =
⋃
`≥1

⋃
m≥1

⋃
N≥1

⋂
n≥N

{
there exist integers 0 < u1 < u2 < · · · < uk ≤ n

such that ui − ui−1 ≥ n/`, and∣∣∣X(uit
n

)
−X

(uit
n
− t

n

)∣∣∣ > α+
1

m

}
.

We claim that A = {τk ≤ t}.
Suppose ω ∈ A. Let sn,i = uit/n, 1 ≤ i ≤ k, be the points whose

existence follows for all n ≥ N . Pass to a subsequence {nj} such that for
each 1 ≤ i ≤ k we have convergence snj ,i → ti ∈ [0, t] as j → ∞. From
the description of A there is an 1 ≤ ` < ∞ such that ti − ti−1 ≥ t/`. The
convergence also forces snj ,i − t/n→ ti. Since the increment in the path X
cannot shrink below α + 1/m across the two points snj ,i − t/n and snj ,i, it
must be the case that |X(ti)−X(ti−)| ≥ α+ 1/m.

Consequently the points t1, t2, . . . , tk are times of jumps of magnitude
above α, and thereby τk ≤ t.

Conversely, suppose ω ∈ {τk ≤ t} and let t1 < t2 < · · · < tk be times of
jumps of magnitude above α in [0, t]. Pick ε > 0 so that |X(ti)−X(ti−)| ≥
α+2ε and ti−ti−1 > 4ε for 2 ≤ i ≤ k. Pick δ ∈ (0, ε) such that r ∈ [ti−δ, ti)
and s ∈ [ti, ti + δ] imply

|X(s)−X(r)| > α+ ε.

Now let ` > t/ε, m > 1/ε and N > t/δ. Then for n ≥ N find integers ui
such that

(ui − 1)
t

n
< ti ≤ ui

t

n
.

Then also

ti − δ < (ui − 1)
t

n
< ti ≤ ui

t

n
< ti + δ

from which ∣∣∣X(uit
n

)
−X

(uit
n
− t

n

)∣∣∣ > α+
1

m
.

This shows ω ∈ A. �

We need to consider equations for stopped processes, and also equations
that are “restarted” at a stopping time.
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Lemma 7.27. Suppose F satisfies Assumption 7.16 and let

ξ(t) =

∫
(0,t]

F (s,X) dY (s).

Let τ be a finite stopping time. Then

(7.56) ξτ−(t) =

∫
(0,t]

F (s,Xτ−) dY τ−(s).

In particular, suppose X satisfies equation (7.45). Then the equation con-
tinues to hold when all processes are stopped at τ−. In other words,

(7.57) Xτ−(t) = Hτ−(t) +

∫
(0,t]

F (s,Xτ−) dY τ−(s).

Proof. It suffices to check (7.56), the second conclusion is then immediate.
Apply part (b) of Proposition 5.50 with G(s) = F (s,Xτ−) and J(s) =
F (s,X). By the precise form of the Lipschitz property (7.46) of F , which is
true for each fixed ω, for 0 ≤ s ≤ τ we have

|F (s,Xτ−)− F (s,X)| ≤ L · sup
u∈[0,s)

|Xτ−
s −Xs|

≤ L · sup
u∈[0,τ)

|Xs −Xs| = 0.

Then first by part (b), then by part (a) of Proposition 5.50,

ξτ− = (J · Y )τ− = (G · Y )τ− = G · Y τ−. �

Lemma 7.28. Assume the filtration {Ft} is right-continuous. Let σ be a
finite stopping time for {Ft} and F̄t = Fσ+t.

(a) Let ν be a stopping time for {F̄t}. Then σ+ ν is a stopping time for
{Ft} and F̄ν ⊆ Fσ+ν .

(b) Suppose τ is a stopping time for {Ft}. Then ν = (τ − σ)+ is an
Fτ -measurable random variable, and an {F̄t}-stopping time.

(c) Let Z be a cadlag process adapted to {Ft} and Z̄ a cadlag process
adapted to {F̄t}. Define

X(t) =

{
Z(t), t < σ

Z(σ) + Z̄(t− σ), t ≥ σ.

Then X is a cadlag process adapted to {Ft}.

Proof. Part (a). Let A ∈ F̄ν . Observe that

A ∩ {σ + ν < t} =
⋃

r∈(0,t)∩Q

A ∩ {ν < r} ∩ {σ ≤ t− r}.
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(If ε > 0 satisfies σ+ ν < t− ε, then any rational r ∈ (ν, ν + ε) will do.) By
the definition of F̄ν ,

A ∩ {ν < r} =
⋃
m∈N

A ∩ {ν ≤ r − 1
m} ∈ F̄r = Fσ+r,

and consequently by the definition of Fσ+r,

A ∩ {ν < r} ∩ {σ + r ≤ t} ∈ Ft.

If A = Ω, we have showed that {σ + ν < t} ∈ Ft. By Lemma 2.6 and the
right-continuity of {Ft}, this implies that σ + ν is an {Ft}-stopping time.

For the general A ∈ F̄ν we have showed that

A ∩ {σ + ν ≤ t} =
⋂
m≥n

A ∩ {σ + ν < t+ 1
m} ∈ Ft+(1/n).

Since this is true for any n,

A ∩ {σ + ν ≤ t} ∈
⋂
n

Ft+(1/n) = Ft

where we used the right-continuity of {Ft} again.

Part (b). For 0 ≤ t < ∞, {(τ − σ)+ ≤ t} = {σ + t ≥ τ}. By part (ii)
of Lemma 2.3 this event lies in both Fτ and Fσ+t = F̄t. This second part
implies that ν = (τ − σ)+ is an {F̄t}-stopping time.

Part (c). Fix 0 ≤ t < ∞ and a Borel set B on the state space of these
processes.

{X(t) ∈ B} = {σ > t, Z(t) ∈ B} ∪ {σ ≤ t, Z(σ) + Z̄(t− σ) ∈ B}.

The first part {σ > t, Z(t) ∈ B} lies in Ft because it is the intersection of
two sets in Ft. Let ν = (t− σ)+. The second part can be written as

{σ ≤ t, Z(σ) + Z̄(ν) ∈ B}.

Cadlag processes are progressively measurable, hence Z(σ) is Fσ-measurable
and Z̄(ν) is F̄ν-measurable (part (iii) of Lemma 2.3). Since σ ≤ σ + ν,
Fσ ⊆ Fσ+ν . By part (a) F̄ν ⊆ Fσ+ν . Consequently Z(σ) + Z̄(ν) is Fσ+ν-
measurable. Since σ ≤ t is equivalent to σ+ν ≤ t, we can rewrite the second
part once more as

{σ + ν ≤ t} ∩ {Z(σ) + Z̄(ν) ∈ B}.

By part (i) of Lemma 2.3 applied to the stopping times σ+ ν and t, the set
above lies in Ft.

This concludes the proof that {X(t) ∈ B} ∈ Ft. �
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7.4.2. A Gronwall estimate for semimartingale equations. In this
section we prove a Gronwall-type estimate for SDE’s under fairly stringent
assumptions on the driving semimartingale. When the result is applied,
the assumptions can be relaxed through localization arguments. All the
processes are defined for 0 ≤ t <∞. F is assumed to satisfy the conditions
of Assumption 7.16, and in particular L is the Lipschitz constant of F .
In this section we work with a class of semimartingales that satisfies the
following definition.

Definition 7.29. Let 0 < δ,K < ∞ be constants. Let us say an Rm-
valued cadlag semimartingale Y = (Y1, . . . , Ym)T is of type (δ,K) if Y has a
decomposition Y = Y (0)+M+S where M = (M1, . . . ,Mm)T is an m-vector
of L2-martingales, S = (S1, . . . , Sm)T is an m-vector of FV processes, and

(7.58) |∆Mj(t)| ≤ δ, |∆Sj(t)| ≤ δ, and Vt(Sj) ≤ K

for all 0 ≤ t <∞ and 1 ≤ j ≤ m, almost surely.

This notion of (δ,K) type is of no general significance. We use it as a
convenient abbreviation in the existence and uniqueness proofs that follow.
As functions of the various constants that have been introduced, define the
increasing process

(7.59) A(t) = 16L2dm
m∑
j=1

[Mj ]t + 4KL2dm
m∑
j=1

VSj (t) + t,

the stopping times

(7.60) γ(u) = inf{t ≥ 0 : A(t) > u},

and the constant

(7.61) c = c(δ,K,L) = 16δ2L2dm2 + 4δKL2dm2.

Let us make some observations about A(t) and γ(u). The term t is
added to A(t) to give A(t) ≥ t and make A(t) strictly increasing. Then
A(u + ε) ≥ u + ε > u for all ε > 0 gives γ(u) ≤ u. To see that γ(u) is
a stopping time, observe that {γ(u) ≤ t} = {A(t) ≥ u}. First, assuming
γ(u) ≤ t, by (7.54) and monotonicity A(t) ≥ A(γ(u)) ≥ u. Second, if
A(t) ≥ u then by strict monotonicity A(s) > u for all s > t, which implies
γ(u) ≤ t.

Strict monotonicity of A gives continuity of γ. Right continuity of γ
was already argued in Lemma 7.25. For left continuity, let s < γ(u). Then
A(s) < u because A(s) ≥ u together with strict increasingness would imply
the existence of a point t ∈ (s, γ(u)) such that A(t) > u, contradicting
t < γ(u). Then γ(v) ≥ s for v ∈ (A(s), u) which shows left continuity.
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In summary: u 7→ γ(u) is a continuous nondecreasing function of bounded
stopping times such that γ(u) ≤ u. For any given ω and T , once u > A(T )
we have γ(u) ≥ T , and so γ(u)→∞ as u→∞.

If Y is of type (δ0,K0) for any δ0 ≤ δ and K0 ≤ K then all jumps of A
satisfy |∆A(t)| ≤ c. This follows because the jumps of quadratic variation
and total variation obey ∆[M ](t) = (∆M(t))2 and ∆VSj (t) = |∆Sj(t)|.

For ` = 1, 2, let H`, X`, and Z` be adapted Rd-valued cadlag processes.
Assume they satisfy the equations

(7.62) Z`(t) = H`(t) +

∫
(0,t]

F (s,X`) dY (s), ` = 1, 2,

for all 0 ≤ t <∞. Let

(7.63) DX(t) = sup
0≤s≤t

|X1(s)−X2(s)|2

and

(7.64) φX(u) = E
[
DX ◦ γ(u)

]
= E

[
sup

0≤s≤γ(u)
|X1(s)−X2(s)|2

]
.

Make the same definitions with X replaced by Z and H. DX , DZ , and
DH are nonnegative, nondecreasing cadlag processes. φX , φZ , and φH are
nonnegative nondecreasing functions, and cadlag at least on any interval on
which they are finite. We assume that

(7.65) φH(u) = E
[

sup
0≤s≤γ(u)

|H1(s)−H2(s)|2
]
<∞

for all 0 ≤ u <∞.

The proposition below is the key tool for both the uniqueness and exis-
tence proofs. Part (b) is a Gronwall type estimate for SDE’s.

Proposition 7.30. Suppose F satisfies Assumption 7.16 and Y is a semi-
martingale of type (δ,K−δ) in Definition 7.29. Furthermore, assume (7.65),
and let the pairs (X`, Z`) satisfy (7.62).

(a) For 0 ≤ u <∞,

(7.66) φZ(u) ≤ 2φH(u) + cφX(u) +

∫ u

0
φX(s) ds.

(b) Suppose Z` = X`, in other words X1 and X2 satisfy the equations

(7.67) X`(t) = H`(t) +

∫
(0,t]

F (s,X`) dY (s), ` = 1, 2.

Then φX(u) < ∞. If δ is small enough relative to K and L so that c < 1,
then for all u > 0,

(7.68) φX(u) ≤ 2φH(u)

1− c
exp
{ u

1− c

}
.
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Before starting the proof of the proposition, we establish an auxiliary
lemma.

Lemma 7.31. Let 0 < δ,K < ∞ and suppose Y is a semimartingale of
type (δ,K) as specified in Definition 7.29. Let G = {Gi,j} be a bounded
predictable d ×m-matrix valued process. Then for 0 ≤ u < ∞ we have the
bounds

E

[
sup

0≤t≤γ(u)

∣∣∣∣ ∫
(0,t]

G(s) dY (s)

∣∣∣∣2 ] ≤ 1
2L
−2E

∫
(0,γ(u)]

|G(s)|2 dA(s)

≤ 1
2L
−2(u+ c)‖G‖2∞.

(7.69)

Proof of Lemma 7.31. By the definition of Euclidean norm and by the
inequality (x+ y)2 ≤ 2x2 + 2y2,∣∣∣∣ ∫

(0,t]
G(s) dY (s)

∣∣∣∣2 ≤ 2
d∑
i=1

( m∑
j=1

∫
(0,t]

Gi,j(s) dMj(s)

)2

+ 2

d∑
i=1

( m∑
j=1

∫
(0,t]

Gi,j(s) dSj(s)

)2

.

(7.70)

The first sum inside parentheses after the inequality in (7.70) is an L2-
martingale by the boundedness ofG and because eachMj is an L2-martingale.
Take supremum over 0 ≤ t ≤ γ(u), on the right pass the supremum inside
the i-sums, and take expectations. By Doob’s inequality (3.13), Schwarz in-
equality in the form (

∑m
i=1 ai)

2 ≤ m
∑m

i=1 a
2
i , and by the isometric property

of stochastic integrals,

E

[
sup

0≤t≤γ(u)

( m∑
j=1

∫
(0,t]

Gi,j(s) dMj(s)

)2 ]

≤ 4E

[( m∑
j=1

∫
(0,γ(u)]

Gi,j(s) dMj(s)

)2 ]

≤ 4m

m∑
j=1

E

[(∫
(0,γ(u)]

Gi,j(s) dMj(s)

)2 ]

≤ 4m

m∑
j=1

E

∫
(0,γ(u)]

Gi,j(s)
2 d[Mj ](s).

(7.71)



266 7. Stochastic Differential Equations

Similarly handle the expectation of the last sum in (7.70). Instead of
quadratic variation, use (7.55) and Schwarz another time.

E

[
sup

0≤t≤γ(u)

( m∑
j=1

∫
(0,t]

Gi,j(s) dSj(s)

)2 ]

≤ m
m∑
j=1

E

[
sup

0≤t≤γ(u)

(∫
(0,t]

Gi,j(s) dSj(s)

)2 ]

≤ m
m∑
j=1

E

[(∫
(0,γ(u)]

∣∣Gi,j(s)∣∣ dVSj (s))2 ]

≤ m
m∑
j=1

E

[
VSj (γ(u))

∫
(0,γ(u)]

Gi,j(s)
2 dVSj (s)

]
.

(7.72)

Now we prove (7.69). Equations (7.70), (7.71) and (7.72), together with
the hypothesis VSj (t) ≤ K, imply that

E

[
sup

0≤t≤γ(u)

∣∣∣∣ ∫
(0,t]

G(s) dY (s)

∣∣∣∣2 ]

≤ 8dm

m∑
j=1

E

∫
(0,γ(u)]

|G(s)|2 d[Mj ](s)

+ 2Kdm
m∑
j=1

E

∫
(0,γ(u)]

|G(s)|2 dVSj (s)

≤ 1
2L
−2E

∫
(0,γ(u)]

|G(s)|2 dA(s)

≤ 1
2L
−2E

[
sup

0≤t≤γ(u)
|G(s)|2 ·A(γ(u))

]
≤ 1

2L
−2(u+ c)‖G‖2∞.

From A(γ(u)−) ≤ u and the bound c on the jumps in A came the bound
A(γ(u)) ≤ u+ c used above. This completes the proof of Lemma 7.31. �

Proof of Proposition 7.30. Step 1. We prove the proposition first under
the additional assumption that there exists a constant C0 such that |F | ≤ C0,
and under the relaxed assumption that Y is of type (δ,K). This small
relaxation accommodates the localization argument that in the end removes
the boundedness assumptions on F .
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Use the inequality (x+ y)2 ≤ 2x2 + 2y2 to write

|Z1(t)− Z2(t)|2 ≤ 2|H1(t)−H2(t)|2

+ 2

∣∣∣∣ ∫
(0,t]

(
F (s,X1)− F (s,X2)

)
dY (s)

∣∣∣∣2.(7.73)

We first check that

(7.74) φZ(u) = E
[

sup
0≤t≤γ(u)

|Z1(t)− Z2(t)|2
]
<∞ for all 0 ≤ u <∞.

Combine (7.69) with the hypothesis |F | ≤ C0 to get the bound

E

[
sup

0≤t≤γ(u)

∣∣∣∣ ∫
(0,t]

(
F (s,X1)− F (s,X2)

)
dY (s)

∣∣∣∣2 ]
≤ 2L−2(u+ c)C2

0 .

(7.75)

Now (7.74) follows from a combination of inequality (7.73), assumption
(7.65), and bound (7.75). Note that (7.74) does not require a bound on
X, due to the boundedness assumption on F and (7.65).

The Lipschitz assumption on F gives∣∣F (s,X1)− F (s,X2)
∣∣2 ≤ L2DX(s−).

Apply (7.69) together with the Lipschitz bound to get

E

[
sup

0≤t≤γ(u)

∣∣∣∣ ∫
(0,t]

(
F (s,X1)− F (s,X2)

)
dY (s)

∣∣∣∣2 ]
≤ 1

2L
−2E

∫
(0,γ(u)]

∣∣F (s,X1)− F (s,X2)
∣∣2 dA(s)

≤ 1
2E

∫
(0,γ(u)]

DX(s−) dA(s).

(7.76)

Now we prove part (a) under the assumption of bounded F . Take supre-
mum over 0 ≤ t ≤ γ(u) in (7.73), take expectations, and apply (7.76) to
write

φZ(u) = E
[
DZ ◦ γ(u)

]
= E

[
sup

0≤t≤γ(u)
|Z1(t)− Z2(t)|2

]
≤ 2φH(u) + E

∫
(0,γ(u)]

DX(s−) dA(s).

(7.77)

To the dA-integral above apply first the change of variable from Lemma 7.23
and then inequality (7.53). This gives

φZ(u) ≤ 2φH(u)

+ E
[(
A(γ(u))− u

)
DX ◦ γ(u−)

]
+ E

∫
(0,u]

DX ◦ γ(s−) ds.
(7.78)
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For a fixed ω, cadlag paths are bounded on bounded time intervals, so apply-
ing Lemmas 7.23 and 7.25 to the path-by-path integral

∫
(0,γ(u)]DX(s−) dA(s)

is not problematic. And then, since the resulting terms are nonnegative,
their expectations exist.

By the definition of γ(u), A(s) ≤ u for s < γ(u), and so A(γ(u)−) ≤ u.
Thus by the bound c on the jumps of A,

A(γ(u))− u ≤ A(γ(u))−A(γ(u)−) ≤ c.

Applying this to (7.78) gives

φZ(u) ≤ 2φH(u) + cE
[
DX ◦ γ(u−)

]
+

∫
(0,u]

E
[
DX ◦ γ(s−)

]
ds

≤ 2φH(u) + cφX(u) +

∫
(0,u]

φX(u) ds.

(7.79)

This is the desired conclusion (7.66), and the proof of part (a) for the case
of bounded F is complete.

We prove part (b) for bounded F . By assumption, Z` = X` and c < 1.
Now φX(u) = φZ(u), and by (7.74) this function is finite. Since it is nonde-
creasing, it is bounded on bounded intervals. Inequality (7.79) becomes

(1− c)φX(u) ≤ 2φH(u) +

∫ u

0
φX(s) ds.

An application of Gronwall’s inequality (Lemma A.20) gives the desired
conclusion (7.68). This completes the proof of the proposition for the case
of bounded F .

Step 2. Return to the original hypotheses: Assumption 7.16 for F
without additional boundedness and Definition 7.29 for Y with type (δ,K−
δ). By part (iii) of Assumption 7.16, we can pick stopping times σk ↗ ∞
and constants Bk such that∣∣1(0,σk](s)F (s,X`)

∣∣ ≤ Bk for ` = 1, 2.

Define truncated functions by

(7.80) FBk(s, ω, η) =
{
F (s, ω, η) ∧Bk

}
∨ (−Bk).

By Lemma 7.27, assumption (7.62) gives the equations

Zσk−` (t) = Hσk−
` (t) +

∫
(0,t]

F (s,Xσk−
` ) dY σk−(s), ` ∈ {1, 2}.

Since X` = Xσk−
` on [0, σk), F (s,Xσk−

` ) = F (s,X`) on [0, σk]. The trunca-
tion has no effect on F (s,X`) if 0 ≤ s ≤ σk, and so also

F (s,Xσk−
` ) = FBk(s,Xσk−

` ) on [0, σk].
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By part (b) of Proposition 5.50 we can perform this substitution in the
integral, and get the equations

Zσk−` (t) = Hσk−
` (t) +

∫
(0,t]

FBk(s,Xσk−
` ) dY σk−(s), ` ∈ {1, 2}.

Now we have equations with bounded coefficients in the integral as required
for Step 1.

We need to check what happens to the type in Definition 7.29 as we
replace Y with Y σk−. Originally Y was of type (δ,K−δ). Decompose Y σk−

as

Y σk−(t) = Y0 +Mσk(t) + Sσk−(t)−∆M(σk)1{t≥σk}.

The new martingale part Mσk is still an L2-martingale. Its jumps are a
subset of the jumps of M , hence bounded by δ. The jth component of the
new FV part is Gj(t) = Sσk−j (t) − ∆Mj(σk)1{t≥σk}. It has jumps of Sj
on [0, σk) and the jump of Mj at σk, hence all bounded by δ. The total
variation VGj is at most VSj + |∆Mj(σk)| ≤ K − δ + δ = K. We conclude

that Y σk− is of type (δ,K).

We have verified all the hypotheses of Step 1 for the stopped processes
and the function FBk . Consequently Step 1 applies and gives parts (a) and

(b) for the stopped processes Zσk−` , Hσk−
` , and Xσk−

` . Note that

E
[

sup
0≤s≤γ(u)

|Xσk−
1 (s)−Xσk−

2 (s)|2
]

= E
[

sup
0≤s≤γ(u), s<σk

|X1(s)−X2(s)|2
]

≤ E
[

sup
0≤s≤γ(u)

|X1(s)−X2(s)|2
]

= φX(u)

while

lim
k→∞

E
[

sup
0≤s≤γ(u)

|Xσk−
1 (s)−Xσk−

2 (s)|2
]

= φX(u)

by monotone convergence because σk ↗ ∞. Same facts hold of course for
Z and H too.

Using the previous inequality, the outcome from Step 1 can be written
for part (a) as

E
[

sup
0≤s≤γ(u)

|Zσk−1 (s)− Zσk−2 (s)|2
]

≤ 2φH(u) + cφX(u) +

∫ u

0
φX(s) ds.

and for part (b) as

E
[

sup
0≤s≤γ(u)

|Xσk−
1 (s)−Xσk−

2 (s)|2
]
≤ 2φH(u)

1− c
exp
{ u

1− c

}
.
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As k ↗ ∞ the left-hand sides of the inequalities above converge to the
desired expectations. Parts (a) and (b) both follow, and the proof is com-
plete. �

7.4.3. The uniqueness theorem.

Theorem 7.32. Let H be an Rd-valued adapted cadlag process and Y an
Rm-valued cadlag semimartingale. Assume F satisfies Assumption 7.16.
Suppose X1 and X2 are two adapted Rd-valued cadlag processes, and both
are solutions to the equation

(7.81) X(t) = H(t) +

∫
(0,t]

F (s,X) dY (s), 0 ≤ t <∞.

Then for almost every ω, X1(t, ω) = X2(t, ω) for all 0 ≤ t <∞.

Proof. At time zero X1(0) = H(0) = X2(0).

Step 1. We first show that there exists a stopping time σ, defined in
terms of Y , such that P{σ > 0} = 1, and for all choices of H and F , and
for all solutions X1 and X2, X1(t) = X2(t) for 0 ≤ t ≤ σ.

To prove this, we stop Y so that the hypotheses of Proposition 7.30 are
satisfied. Choose 0 < δ < K/3 < ∞ so that c < 1 for c defined by (7.61).
By Theorem 3.21 (fundamental theorem of local martingales) we can choose
the semimartingale decomposition Y = Y (0) + M + G so that the local
L2-martingale M has jumps bounded by δ/2. Fix a constant 0 < C < ∞.
Define the following stopping times:

τ1 = inf{t > 0 : |Y (t)− Y (0)| ≥ C or |Y (t−)− Y (0)| ≥ C},
τ2 = inf{t > 0 : |∆Y (t)| > δ/2},

and

τ3 = inf{t > 0 : VGj (t) ≥ K − 2δ for some 1 ≤ j ≤ m}.

Lemmas 2.9 and 7.26 guarantee that τ1 and τ2 are stopping times. For τ3,
observe that since VGj (t) is nondecreasing and cadlag,

{τ3 ≤ t} =
m⋃
j=1

{
VGj (t) ≥ K − 2δ

}
.

Each of τ1, τ2 and τ3 is strictly positive. A cadlag path satisfies |Y (s) −
Y (0)| < C for s ≤ δ for a positive δ that depends on the path, but then τ1 ≥
δ. The interval [0, 1] contains only finitely many jumps of Y of magnitude
above δ/2, so there must be a first one, and this occurs at some positive
time because Y (0+) = Y (0). Finally, total variation VGj is cadlag and so
VGj (0+) = VGj (0) = 0, hence τ3 > 0.
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Let T be an arbitrary finite positive number and

(7.82) σ = τ1 ∧ τ2 ∧ τ3 ∧ T.

P (σ > 0) = 1 by what was said above.

We claim that semimartingale Y σ− satisfies the hypotheses of Proposi-
tion 7.30. To see this, decompose Y σ− as

(7.83) Y σ−(t) = Y (0) +Mσ(t) +Gσ−(t)−∆M(σ) · 1{t≥σ}.

Stopping does not introduce new jumps, so the jumps ofMσ are still bounded
by δ/2. The jumps of Y σ− are bounded by δ/2 since σ ≤ τ2. On [0, σ) the
FV part S(t) = Gσ−(t)−∆M(σ) · 1{t≥σ} has the jumps of Gσ−. These are

bounded by δ because ∆Gσ−(t) = ∆Y σ−(t) −∆Mσ−(t). At time σ S has
the jump ∆M(σ), bounded by δ/2. The total variation of a component Sj
of S is

VSj (t) ≤ VGσ−j (t) + |∆Mj(σ)| ≤ VGj (τ3−) + δ/2 ≤ K − 2δ + δ/2

≤ K − δ.

Since |Y σ−−Y (0)| ≤ C and |Sj | ≤ |VSj | ≤ K, it follows that Mσ is bounded,

and consequently an L2-martingale.

We have verified that Y σ− is of type (δ,K − δ) according to Definition
7.29.

By assumption equation (7.81) is satisfied by both X1 and X2. By
Lemma 7.27, both Xσ−

1 and Xσ−
2 satisfy the equation

(7.84) X(t) = Hσ−(t) +

∫
(0,t]

F (s,X) dY σ−(s), 0 ≤ t <∞.

To this equation we apply Proposition 7.30. In the hypotheses of Proposition
7.30 take H1 = H2 = Hσ−, so φH(u) = 0 and assumption (7.65) is satisfied.
All the hypotheses of part (b) of Proposition 7.30 are satisfied, and we get

E
[

sup
0≤t≤γ(u)

|Xσ−
1 (t)−Xσ−

2 (t)|2
]

= 0

for any u > 0, where γ(u) is the stopping time defined by (7.60). As we
let u ↗ ∞ we get Xσ−

1 (t) = Xσ−
2 (t) for all 0 ≤ t < ∞. This implies that

X1(t) = X2(t) for 0 ≤ t < σ.

At time σ,

X1(σ) = H(σ) +

∫
(0,σ]

F (s,X1) dY (s)

= H(σ) +

∫
(0,σ]

F (s,X2) dY (s)

= X2(σ)

(7.85)
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because the integrand F (s,X1) depends only on {X1(s) : 0 ≤ s < σ} which
agrees with the corresponding segment of X2, as established in the previous
paragraph. Now we know that X1(t) = X2(t) for 0 ≤ t ≤ σ. This concludes
the proof of Step 1.

Step 2. Now we show that X1 and X2 agree up to an arbitrary finite
time T . At this stage we begin to make use of the assumption of right-
continuity of {Ft}. Define

(7.86) τ = inf{t ≥ 0 : X1(t) 6= X2(t)}.

The time when the cadlag process X1 −X2 first enters the open set {0}c is
a stopping time under a right-continuous filtration by Lemma 2.7. Hence
τ is a stopping time. Since X1 = X2 on [0, τ), if τ < ∞, a calculation like
the one in (7.85) shows that X1 = X2 on [0, τ ]. From Step 1 we also know
τ ≥ σ > 0.

The idea is to apply Step 1 again, starting from time τ . For this we need
a lemma that enables us to restart the equation.

Lemma 7.33. Assume F satisfies Assumption 7.16 and X satisfies equation
(7.45) on [0,∞). Let σ be a bounded stopping time. Define a new filtration,
new processes, and a new coefficient by F̄t = Fσ+t, X̄(t) = X(σ+ t)−X(σ),
Ȳ (t) = Y (σ + t)− Y (σ), H̄(t) = H(σ + t)−H(σ), and

F̄ (t, ω, η) = F (σ + t, ω, ζω,η)

where the cadlag path ζω,η ∈ DRd [0,∞) is defined by

ζω,η(s) =

{
X(s), 0 ≤ s < σ

X(σ) + η(s− σ), s ≥ σ.

Then under {F̄t}, X̄ and H̄ are adapted cadlag processes, Ȳ is a semimartin-
gale, and F̄ satisfies Assumption 7.16. X̄ is a solution of the equation

X̄(t) = H̄(t) +

∫
(0,t]

F̄ (s, X̄) dȲ (s).

Proof of Lemma 7.33. We check that the new F̄ satisfies all the hypothe-
ses. The Lipschitz property is immediate. Let Z̄ be a cadlag process adapted
to {F̄t}. Define the process Z by

Z(t) =

{
X(t), t < σ

X(σ) + Z̄(t− σ), t ≥ σ.

Then Z is a cadlag process adapted to {Ft} by Lemma 7.28. F̄ (t, Z̄) =
F (σ + t, Z) is predictable under {F̄t} by Lemma 5.46. Find stopping times
νk ↗ ∞ such that 1(0,νk](s)F (s, Z) is bounded for each k. Define ρk =
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(νk − σ)+. Then ρk ↗ ∞, by Lemma 7.28 ρk is a stopping time for {F̄t},
and 1(0,ρk](s)F̄ (s, Z̄) = 1(0,νk](σ + s)F (σ + s, Z) which is bounded.

Ȳ is a semimartingale by Theorem 5.45. X̄ and H̄ are adapted to {F̄t}
by part (iii) of Lemma 2.3 (recall that cadlag paths imply progressive mea-
surability).

The equation for X̄ checks as follows:

X̄(t) = X(σ + t)−X(σ)

= H(σ + t)−H(σ) +

∫
(σ,σ+t]

F (s,X) dY (s)

= H̄(t) +

∫
(0,t]

F (σ + s,X) dȲ (s)

= H̄(t) +

∫
(0,t]

F̄ (s, X̄) dȲ (s).

The next to last equality is from (5.48), and the last equality from the

definition of F̄ and ζω,X̄ = X. �

We return to the proof of the uniqueness theorem. Let 0 < T <∞. By
Lemma 7.33, we can restart the equations for X1 and X2 at time σ = τ ∧T .
Since X1 = X2 on [0, σ], both X1 and X2 lead to the same new coefficient
F̄ (t, ω, η) for the restarted equation. Consequently we have

X̄`(t) = H̄(t) +

∫
(0,t]

F̄ (s, X̄`) dȲ (s), ` = 1, 2.

Applying Step 1 to this restarted equation, we find a stopping time σ > 0
in the filtration {F(τ∧T )+t} such that X̄1 = X̄2 on [0, σ]. This implies that
X1 = X2 on [0, τ ∧ T + σ]. Hence by definition (7.86), τ ≥ τ ∧ T + σ, which
implies that τ ≥ T . Since T was arbitrary, τ = ∞. This says that X1 and
X2 agree for all time. �

Remark 7.34. Let us note the crucial use of the fundamental theorem of
local martingales in Step 1 of the proof above. Suppose we could not choose
the decomposition Y = Y (0) + M + G so that M has jumps bounded by
δ/2. Then to satisfy the hypotheses of Proposition 7.30, we could try to stop
before either M or S has jumps larger than δ/2. However, this attempt runs
into trouble. The stopped local martingale part Mσ in (7.83) might have
a large jump exactly at time σ. Replacing Mσ with Mσ− would eliminate
this problem, but there is no guarantee that the process Mσ− is a local
martingale.

7.4.4. Existence theorem. We begin with an existence theorem under
stringent assumptions on Y . These hypotheses are subsequently relaxed
with a localization argument.
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Proposition 7.35. A solution to (7.45) on [0,∞) exists under the following
assumptions:

(i) F satisfies Assumption 7.16.

(ii) There are constants 0 < δ < K < ∞ such that c defined by (7.61)
satisfies c < 1, and Y is of type (δ,K− δ) as specified by Definition
7.29.

We prove this proposition in several stages. The hypotheses are chosen
so that the estimate in Proposition 7.30 can be applied.

We define a Picard iteration as follows. Let X0(t) = H(t), and for n ≥ 0,

(7.87) Xn+1(t) = H(t) +

∫
(0,t]

F (s,Xn) dY (s).

We need to stop the processes in order to get bounds that force the iteration
to converge. By part (ii) of Assumption 7.16 fix stopping times νk ↗ ∞
and constants Bk such that 1(0,νk](s)|F (s,H)| ≤ Bk, for all k. By Lemma
7.27 equation (7.87) continues to hold for stopped processes:

(7.88) Xνk−
n+1(t) = Hνk−(t) +

∫
(0,t]

F (s,Xνk−
n ) dY νk−(s).

Fix k for a while. For n ≥ 0 let

Dn(t) = sup
0≤s≤t

|Xνk−
n+1(s)−Xνk−

n (s)|2.

Recall definition (7.60), and for 0 ≤ u <∞ let

φn(u) = E
[
Dn ◦ γ(u)

]
.

Lemma 7.36. The function φ0(u) is bounded on bounded intervals.

Proof. Because φ0 is nondecreasing it suffices to show that φ0(u) is finite
for any u. First,

|Xνk−
1 (t)−Xνk−

0 (t)|2 =

∣∣∣∣∫
(0,t]

F (s,Hνk−) dY νk−(s)

∣∣∣∣2
=

∣∣∣∣∫
(0,t]

FBk(s,Hνk−) dY νk−(s)

∣∣∣∣2
where FBk denotes the truncated function

FBk(s, ω, η) =
{
F (s, ω, η) ∧Bk

}
∨ (−Bk).

The truncation can be introduced in the stochastic integral because on [0, νk]

F (s,Hνk−) = F (s,H) = FBk(s,H) = FBk(s,Hνk−).
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We get the bound

φ0(u) = E
[

sup
0≤t≤γ(u)

|Xνk−
1 (t)−Xνk−

0 (t)|2
]

≤ E
[

sup
0≤t≤γ(u)

∣∣∣∣ ∫
(0,t]

FBk(s,H) dY (s)

∣∣∣∣ 2 ]
≤ 1

2L
−2(u+ c)B2

k.

The last inequality above is from Lemma 7.31. �

Part (a) of Proposition 7.30 applied to (Z1, Z2) = (Xνk−
n , Xνk−

n+1) and

(H1, H2) = (Hνk−, Hνk−) gives

(7.89) φn+1(u) ≤ cφn(u) +

∫ u

0
φn(s) ds.

Note that we need no assumption on H because only the difference Hνk−−
Hνk− = 0 appears in hypothesis (7.65) for Proposition 7.30. By the previous
lemma φ0 is bounded on bounded intervals. Then (7.89) shows inductively
that all φn are bounded functions on bounded intervals. The next goal is to
prove that

∑
n φn(u) <∞.

Lemma 7.37. Fix 0 < T < ∞. Let {φn} be nonnegative measurable func-
tions on [0, T ] such that φ0 ≤ B for some constant B, and inequality (7.89)
is satisfied for all n ≥ 0 and 0 ≤ u ≤ T . Then for all n and 0 ≤ u ≤ t,

(7.90) φn(u) ≤ B
n∑
k=0

1

k!

(
n

k

)
ukcn−k.

Proof. Use induction. (7.90) is true for n = 0 by hypothesis. Assume it is
true for n. By (7.89),

φn+1(u) ≤ cφn(u) +

∫ u

0
φn(s) ds

≤ B
n∑
k=0

cn+1−k

k!

(
n

k

)
uk +B

n∑
k=0

cn−k

k!

(
n

k

)∫ u

0
sk ds

= B

n∑
k=0

cn+1−k

k!

(
n

k

)
uk +B

n+1∑
k=1

cn+1−k

k!

(
n

k − 1

)
uk

= B

n+1∑
k=0

cn+1−k

k!

(
n+ 1

k

)
uk.

For the last step above, combine terms and use
(
n
k

)
+
(
n
k−1

)
=
(
n+1
k

)
. �

To (7.90) we apply the next limit.
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Lemma 7.38. For any 0 < δ < 1 and 0 < u <∞,
∞∑
n=0

n∑
k=0

1

k!

(
n

k

)
ukδn−k =

1

1− δ
· exp

{ u

1− δ

}
.

Proof. First check this auxiliary equality for 0 < x < 1 and k ≥ 0:

(7.91)
∞∑
m=0

(m+ 1)(m+ 2) · · · (m+ k)xm =
k!

(1− x)k+1
.

One way to see this is to write the left-hand sum as
∞∑
m=0

dk

dxk
xm+k =

dk

dxk

( ∞∑
m=0

xm+k

)
=

dk

dxk

(
xk

1− x

)

=

k∑
j=0

(
k

j

)
dj

dxj

(
1

1− x

)
· d

k−j

dxk−j
(
xk
)

=
k∑
j=0

(
k

j

)
j!

(1− x)j+1
· k(k − 1) · · · (j + 1)xj

=
k!

1− x

k∑
j=0

(
k

j

)
·
(

x

1− x

)j
=

k!

1− x

(
1 +

x

1− x

)k
=

k!

(1− x)k+1
.

For an alternative proof of (7.91) see Exercise 7.8.

After changing the order of summation, the sum in the statement of the
lemma becomes

∞∑
k=0

uk

(k!)2

∞∑
n=k

n(n− 1) · · · (n− k + 1)δn−k

=
∞∑
k=0

uk

(k!)2

∞∑
m=0

(m+ 1)(m+ 2) · · · (m+ k)δm

=
∞∑
k=0

uk

(k!)2
· k!

(1− δ)k+1
=

1

1− δ

∞∑
k=0

1

k!

(
u

1− δ

)k
=

1

1− δ
· exp

{ u

1− δ

}
. �

As a consequence of the last two lemmas we get

(7.92)

∞∑
n=0

φn(u) <∞.



7.4. Existence and uniqueness for a semimartingale equation 277

It follows by the next Borel-Cantelli argument that for almost every ω, the
cadlag functions {Xνk−

n (t) : n ∈ Z+} on the interval t ∈ [0, γ(u)] form a
Cauchy sequence in the uniform norm. (Recall that we are still holding k
fixed.) Pick α ∈ (c, 1). By Chebychev’s inequality and (7.90),

∞∑
n=0

P
{

sup
0≤t≤γ(u)

|Xνk−
n+1(t)−Xνk−

n (t)| ≥ αn/2
}
≤ B

∞∑
n=0

α−nφn(u)

≤ B
∞∑
n=0

n∑
k=0

1

k!

(
n

k

)(u
α

)k( c
α

)n−k
.

This sum converges by Lemma 7.38. By the Borel-Cantelli lemma there
exists an almost surely finite N(ω) such that for n ≥ N(ω),

sup
0≤t≤γ(u)

|Xνk−
n+1(t)−Xνk−

n (t)| < αn/2.

Consequently for p > m ≥ N(ω),

sup
0≤t≤γ(u)

|Xνk−
m (t)−Xνk−

p (t)| ≤
p−1∑
n=m

sup
0≤t≤γ(u)

|Xνk−
n+1(t)−Xνk−

n (t)|

≤
∞∑
n=m

αn/2 =
αm/2

1− α1/2
.

This last bound can be made arbitrarily small by taking m large enough.
This gives the Cauchy property. By the completeness of cadlag functions
under uniform distance (Lemma A.5), for almost every ω there exists a

cadlag function t 7→ X̃k(t) on the interval [0, γ(u)] such that

(7.93) lim
n→∞

sup
0≤t≤γ(u)

|X̃k(t)−Xνk−
n (t)| = 0.

By considering a sequence of u-values increasing to infinity, we get a single
event of probability one on which (7.93) holds for all 0 ≤ u < ∞. For any
fixed ω and T < ∞, γ(u) ≥ T for all large enough u. We conclude that,

with probability one, there exists a cadlag function X̃k on the interval [0,∞)
such that

(7.94) lim
n→∞

sup
0≤t≤T

|X̃k(t)−Xνk−
n (t)| = 0 for all T <∞.

Next we show, still with k fixed, that X̃k is a solution of

(7.95) X̃k(t) = Hνk−(t) +

∫
(0,t]

F (s, X̃k) dY
νk−(s).

For this we let n → ∞ in (7.88) to obtain (7.95) in the limit. The left
side of (7.88) converges to the left side of (7.95) almost surely, uniformly on
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compact time intervals by (7.94). For the the right side of (7.88) we apply
Theorem 5.44. From the Lipschitz property of F∣∣F (t, X̃k)− F (t,Xνk−

n )
∣∣ ≤ L · sup

0≤s<t
|X̃k(s)−Xνk−

n (s)|.

In Theorem 5.44 take Hn(t) = F (t, X̃k)− F (t,Xνk−
n ) and the cadlag bound

Gn(t) = L · sup
0≤s≤t

|X̃k(s)−Xνk−
n (s)|.

(Note the range of the supremum over s.) The convergence in (7.94) gives
the hypothesis in Theorem 5.44, and we conclude that the right side of
(7.88) converges to the right side of (7.95), in probability, uniformly over
t in compact time intervals. We can get almost sure convergence along a
subsequence. Equation (7.95) has been verified.

This can be repeated for all values of k. The limit (7.94) implies that if

k < m, then X̃m = X̃k on [0, νk). Since νk ↗∞, we conclude that there is a

single well-defined cadlag process X on [0,∞) such that X = X̃k on [0, νk).

On [0, νk) equation (7.95) agrees term by term with the equation

(7.96) X(t) = H(t) +

∫
(0,t]

F (s,X) dY (s).

For the integral term this follows from part (b) of Proposition 5.50 and

the manner of dependence of F on the path: since X = X̃k on [0, νk),

F (s,X) = F (s, X̃k) on [0, νk].

We have found a solution to equation (7.96). The proof of Proposition
7.35 is thereby complete.

The main result of this section is the existence of a solution without extra
assumptions on Y . This theorem will also complete the proof of Theorem
7.17.

Theorem 7.39. A solution to (7.45) on [0,∞) exists under Assumption
7.16 on F , for an arbitrary semimartingale Y and cadlag process H.

Given an arbitrary semimartingale Y and a cadlag process H, fix con-
stants 0 < δ < K/3 < ∞ so that c defined by (7.61) satisfies c < 1. Pick
a decomposition Y = Y0 + M + G such that the local L2-martingale M
has jumps bounded by δ/2. Fix a constant 0 < C < ∞. Define the fol-
lowing stopping times ρk, σk and τ ik for 1 ≤ i ≤ 3 and k ∈ Z+. First
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ρ0 = σ0 = τ i0 = 0 for 1 ≤ i ≤ 3. For k ≥ 1,

τ1
k = inf{t > 0 : |Y (ρk−1 + t)− Y (ρk−1)| ≥ C

or |Y ((ρk−1 + t)−)− Y (ρk−1)| ≥ C},
τ2
k = inf{t > 0 : |∆Y (ρk−1 + t)| > δ/2},
τ3
k = inf{t > 0 : VGj (ρk−1 + t)− VGj (ρk−1) ≥ K − 2δ

for some 1 ≤ j ≤ m},
σk = τ1

k ∧ τ2
k ∧ τ3

k ∧ 1, and ρk = σ1 + · · ·+ σk.

Each σk > 0 for the same reasons that σ defined by (7.82) was positive.
Consequently 0 = ρ0 < ρ1 < ρ2 < · · ·

We claim that ρk ↗ ∞. To see why, suppose to the contrary that
ρk(ω) ↗ u < ∞ for some sample point ω. By the existence of the limit
Y (u−) there exists β > 0 such that |Y (s)− Y (t)| ≤ δ/4 for s, t ∈ [u− β, u).
But then, once ρk ∈ [u − β/2, u), it must be that ρk + τ ik+1 ≥ u for both
i = 1, 2. (Tacitly assuming here that C > δ/4.) since VGj is nondecreasing,

τ3
km
↗ u would force VGj (u−) =∞.

By iterating part (a) of Lemma 7.28 one can conclude that for each
k, ρk is a stopping time for {Ft}, and then σk+1 is a stopping time for
{Fρk+t : t ≥ 0}. (Recall that we are assuming {Ft} right-continuous now.)

The heart of the existence proof is an iteration which we formulate with
the next lemma.

Lemma 7.40. For each k, there exists an adapted cadlag process Xk(t) such
that the equation

(7.97) Xk(t) = Hρk(t) +

∫
(0,t]

F (s,Xk) dY
ρk(s)

is satisfied.

Proof. The proof is by induction. After each ρk, we restart the equation
but stop before the hypotheses of Proposition 7.35 are violated. This way
we can apply Proposition 7.35 to construct a segment of the solution, one
interval (ρk, ρk+1) at a time. An explicit definition takes the solution up to
time ρk+1, and then we are ready for the next iteration.

For k = 1, ρ1 = σ1. The semimartingale Y σ1− satisfies the hypotheses
of Proposition 7.35. This argument is the same as in the uniqueness proof
of the previous section, at (7.83). Consequently by Proposition 7.35 there

exists a solution X̃ of the equation

(7.98) X̃(t) = Hρ1−(t) +

∫
(0,t]

F (s, X̃) dY ρ1−(s).
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Define

X1(t) =

{
X̃(t), 0 ≤ t < ρ1

X1(ρ1−) + ∆H(ρ1) + F (ρ1, X̃)∆Y (ρ1), t ≥ ρ1.

F (t, X̃) = F (t,X1) for 0 ≤ t ≤ ρ1 because X1 = X̃ on [0, ρ1). Then X1

solves (7.97) for k = 1 and 0 ≤ t < ρ1. For t ≥ ρ1, recalling (5.46)–(5.47)
for left limits and jumps of stochastic integrals:

X1(t) = X1(ρ1−) + ∆H(ρ1) + F (ρ1, X̃)∆Y (ρ1)

= H(ρ1) +

∫
(0,ρ1]

F (s,X1) dY (s)

= Hρ1(t) +

∫
(0,t]

F (s,X1) dY ρ1(s).

The equality of stochastic integrals of the last two lines above is an instance
of the general identity G · Y τ = (G · Y )τ (Proposition 5.39). The case k = 1
of the lemma has been proved.

Assume a process Xk(t) solves (7.97). Define F̄t = Fρk+t,

H̄(t) = H(ρk + t)−H(ρk),

Ȳ (t) = Y (ρk + t)− Y (ρk),

and F̄ (t, ω, η) = F (ρk + t, ω, ζω,η)

where the cadlag path ζω,η is defined by

ζω,η(s) =

{
Xk(s), 0 ≤ s < ρk

Xk(ρk) + η(s− ρk), s ≥ ρk.

Now we find a solution X̄ to the equation

(7.99) X̄(t) = H̄σk+1−(t) +

∫
(0,t]

F̄ (s, X̄) dȲ σk+1−(s)

under the filtration {F̄t}. We need to check that this equation is the type
to which Proposition 7.35 applies. Semimartingale Ȳ σk+1− satisfies the as-
sumption of Proposition 7.35, again by the argument already used in the
uniqueness proof. F̄ satisfies Assumption 7.16 exactly as was proved earlier
for Lemma 7.33.

The hypotheses of Proposition 7.35 have been checked, and so there
exists a process X̄ that solves (7.99). Note that X̄(0) = H̄(0) = 0. Define

Xk+1(t) =


Xk(t), t < ρk

Xk(ρk) + X̄(t− ρk), ρk ≤ t < ρk+1

Xk+1(ρk+1−) + ∆H(ρk+1)

+F (ρk+1, Xk+1)∆Y (ρk+1), t ≥ ρk+1.
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The last case of the definition above makes sense because it depends on the
segment {Xk+1(s) : 0 ≤ s < ρk+1} defined by the two preceding cases.

By induction Xk+1 satisfies the equation (7.97) for k+1 on [0, ρk]. From
the definition of F̄ , F̄ (s, X̄) = F (ρk + s,Xk+1) for 0 ≤ s ≤ σk+1. Then for
ρk < t < ρk+1,

Xk+1(t) = Xk(ρk) + X̄(t− ρk)

= Xk(ρk) + H̄(t− ρk) +

∫
(0,t−ρk]

F̄ (s, X̄) dȲ (s)

= Xk(ρk) +H(t)−H(ρk) +

∫
(ρk,t]

F (s,Xk+1) dY (s)

= H(t) +

∫
(0,t]

F (s,Xk+1) dY (s)

= Hρk+1(t) +

∫
(0,t]

F (s,Xk+1) dY ρk+1(s).

The last line of the definition of Xk+1 extends the validity of the equation
to t ≥ ρk+1:

Xk+1(t) = Xk+1(ρk+1−) + ∆H(ρk+1) + F (ρk+1, Xk+1)∆Y (ρk+1)

= H(ρk+1−) + ∆H(ρk+1)

+

∫
(0,ρk+1)

F (s,Xk+1) dY (s) + F (ρk+1, Xk+1)∆Y (ρk+1)

= H(ρk+1) +

∫
(0,ρk+1]

F (s,Xk+1) dY (s)

= Hρk+1(t) +

∫
(0,t]

F (s,Xk+1) dY ρk+1(s).

By induction, the lemma has been proved. �

We are ready to finish off the proof of Theorem 7.39. If k < m, stopping
the processes of the equation

Xm(t) = Hρm(t) +

∫
(0,t]

F (s,Xm) dY ρm(s)

at ρk gives the equation

Xρk
m (t) = Hρk(t) +

∫
(0,t]

F (s,Xρk
m ) dY ρk(s).

By the uniqueness theorem, Xρk
m = Xk for k < m. Consequently there exists

a process X that satisfies X = Xk on [0, ρk] for each k. Then for 0 ≤ t ≤ ρk,
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equation (7.97) agrees term by term with the desired equation

X(t) = H(t) +

∫
(0,t]

F (s,X) dY (s).

Hence this equation is valid on every [0, ρk], and thereby on [0,∞). The
existence and uniqueness theorem has been proved.



Exercises 283

Exercises

Exercise 7.1. (a) Show that for any g ∈ C[0, 1],

lim
t↗1

(1− t)
∫ t

0

g(s)

(1− s)2
ds = g(1).

(b) Let the process Xt be defined by (7.13) for 0 ≤ t < 1. Show that
Xt → 0 as t→ 1.

Hint. Apply Exercise 6.8 and then part (a).

Exercise 7.2. Assume a(t), b(t), g(t) and h(t) are given deterministic Borel
functions on R+ that are bounded on each compact time interval. Solve the
following linear SDE with a suitable integrating factor, and use Itô’s formula
to check that your tentative solution solves the equation:

(7.100) dXt =
(
a(t)Xt + b(t)

)
dt+

(
g(t)Xt + h(t)

)
dBt.

Hints. To guess at the right integrating factor, rewrite the equation as

dX −X(a dt+ g dB) = b dt+ h dB

and look at the examples in Section 7.1.1 for inspiration. You can also solve
an easier problem first by setting some of the coefficient functions equal to
constants or even zero.

Exercise 7.3. Generalize the integrating factor approach further to solve

(7.101) dXt = a(t)Xt d[Y ]t + b(t)Xt dYt

where Y is a given continuous semimartingale and functions a(t) and b(t)
are locally bounded Borel functions.

Exercise 7.4. Show that the proof of Theorem 7.12 continues to work if
the Lipschitz assumption on σ and b is weakened to this local Lipschitz
condition: for each n ∈ N there exists a constant Ln <∞ such that

(7.102) |b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ Ln|x− y|

for all t ∈ R+ and x, y ∈ Rd such that |x|, |y| ≤ n.

Exercise 7.5. Let a, b, ρ, σ be locally Lipschitz functions on Rd, G an open
subset of Rd, and assume that on G we have the equalities a = b and ρ = σ.
Let ξ ∈ G and let X and Y be continuous Rd-valued processes that satisfy

Xt = ξ +

∫ t

0
a(Xs) ds+

∫ t

0
ρ(Xs) dBs

and

Yt = ξ +

∫ t

0
b(Ys) ds+

∫ t

0
σ(Ys) dBs.
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Let
α = inf{t ≥ 0 : Xt ∈ Gc} and β = inf{t ≥ 0 : Yt ∈ Gc}.

Show that the processes Xα and Y β are indistinguishable. Hint. Use Gron-
wall’s inequality on a second moment, along the lines of the proof of Theorem
7.12. Note that if G is bounded, then the functions a, b, ρ, σ are bounded on
G.

Exercise 7.6. (a) Let Y be a cadlag semimartingale. Find [[Y ]] (the qua-
dratic variation of the quadratic variation) and the covariation [Y, [Y ]]. For
use in part (b) you should find the simplest possible formulas in terms of
the jumps of Y .

(b) Let Y be a continuous semimartingale. Show that

Xt = X0 exp(αt+ βYt − 1
2β

2[Y ]t )

solves the SDE
dX = αX dt+ βX dY.

Exercise 7.7 (Fisk-Stratonovich SDE). Recall the definition of the Fisk-
Stratonovich integral from Exercise 6.14. Let B� be standard Brownian
motion, b a continuous function on R and σ ∈ C2(R). Assume that X is
a continuous semimartingale. Show that these two integral equations are
equivalent:

(7.103) Xt = X0 +

∫ t

0
b(Xs) ds+

∫ t

0
σ(Xs) ◦ dBs

and

(7.104) Xt = X0 +

∫ t

0

(
b(Xs) + 1

2σ(Xs)σ
′(Xs)

)
ds+

∫ t

0
σ(Xs) dBs.

In other words, a Fisk-Stratonovich SDE corresponds to adding another drift
to an Itô equation.

Exercise 7.8. Here is an alternative inductive proof of the identity (7.91)
used in the existence proof for solutions of SDE’s. Fix −1 < x < 1 and let

ak =

∞∑
m=0

(m+ 1)(m+ 2) · · · (m+ k)xm

and

bk =
∞∑
m=0

m(m+ 1)(m+ 2) · · · (m+ k)xm.

Compute a1 explicitly, then derive the identities bk = xak+1 and ak+1 =
(k + 1)ak + bk.



Chapter 8

Applications of
Stochastic Calculus

8.1. Local time

In Section 8.1.1 we construct local time for Brownian motion and then in
Section 8.1.2 we derive Tanaka’s formula and the distribution of local time.

8.1.1. Existence of local time for Brownian motion. (Ω,F , P ) is a
fixed complete probability space with a complete filtration {Ft}, and B =
{Bt} a one-dimensional Brownian motion with respect to the filtration {Ft}
(Definition 2.26). By redefining B on an event of probability zero if necessary
we can assume that Bt(ω) is continuous in t for each ω ∈ Ω. The initial
point B0 is an arbitrary, possibly random point in R.

We construct the local time process L(t, x) of Brownian motion. This
process measures the time spent at point x up to time t. Note that it does not
make sense to look “literally” at the amount of time spent at x up to time t:

this would be the random variable
∫ t

0 1{Bs = x} ds which vanishes almost
surely (Exercise 8.1). The proper thing to look for is a Radon-Nikodym
derivative with respect to Lebesgue measure. This idea is captured by the
requirement that

(8.1)

∫ t

0
g(Bs(ω)) ds =

∫
R
g(x)L(t, x, ω) dx

for all bounded Borel functions g. Here is the existence theorem that sum-
marizes the main properties.

285
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Theorem 8.1. There exists a process {L(t, x, ω) : t ∈ R+, x ∈ R} on
(Ω,F , P ) and an event Ω0 such that P (Ω0) = 1 with the following properties.
L(t, x) is Ft-measurable for each (t, x). For each ω ∈ Ω0 the following
statements hold.

(a) L(t, x, ω) is jointly continuous in (t, x) and nondecreasing in t.

(b) Identity (8.1) holds for all t ∈ R+ and bounded Borel functions g on
R.

(c) For each fixed x ∈ R,

(8.2)

∫ ∞
0

1{Bt(ω) 6= x}L(dt, x, ω) = 0.

The integral in (8.2) is the Lebesgue-Stieltjes integral over time whose
integrator is the nondecreasing function t 7→ L(t, x, ω). The continuity of
L(t, x) and (8.1) imply a pointwise characterization of local time as

(8.3) L(t, x, ω) = lim
ε↘0

1

2ε

∫ t

0
1(x−ε,x+ε)(Bs(ω)) ds for ω ∈ Ω0.

We do not base the proof of Theorem 8.1 on a direct construction such as
(8.3), intuitively attractive as it is. But note that (8.3) does imply the claim
about the monotonicity of L(t, x, ω) as a function of t.

We shall first give a precise definition of L(t, x), give some intuitive
justification for it, and then prove Theorem 8.1. We use stochastic integrals

of the type
∫ t

0 1[x,∞)(Bs) dBs. To justify their well-definedness note that the
integrand 1[x,∞)(Bs(ω)) is predictable, by Exercise 5.2(b). Alternately, it is
enough to observe that the integrand is a measurable process and appeal to
the fact that measurability is enough for integration with Brownian motion
(Chapter 4 or Section 5.5).

To define L(t, x) we need a nice version of these integrals. We postpone
the proof of this lemma to the end of the section.

Lemma 8.2. There exists a process {I(t, x) : t ∈ R+, x ∈ R} such that
(t, x) 7→ I(t, x, ω) is continuous for all ω ∈ Ω and for each (t, x),

(8.4) I(t, x) =

∫ t

0
1[x,∞)(Bs) dBs with probability 1.

Define the process L(t, x) by the equation

(8.5) 1
2L(t, x, ω) = (Bt(ω)− x)+ − (B0(ω)− x)+ − I(t, x, ω).

L(t, x, ω) is continuous in (t, x) for each ω ∈ Ω because the terms on the
right are continuous.
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Heuristic justification. Let us explain informally the idea behind this
definition. The limit in (8.3) captures the idea of local time as a derivative
with respect to Lebesgue measure. But Brownian paths are rough so we
prefer to take the ε ↘ 0 limit in a situation with more regularity. Itô’s
formula gives us a way out. Among the terms that come out of applying

Itô’s formula to a function ϕ is the integral 1
2

∫ t
0 ϕ
′′(Bs) ds. So fix a small

ε > 0 and take ϕ′′(z) = (2ε)−11(x−ε,x+ε)(z) so that Itô’s formula captures
the integral on the right of (8.3). Two integrations show that ϕ should
satisfy

ϕ′(z) =


0, z < x− ε
(2ε)−1(z − x+ ε), x− ε ≤ z ≤ x+ ε

1, z > x+ ε

and

ϕ(z) =


0, z < x− ε
(4ε)−1(z − x+ ε)2, x− ε ≤ z ≤ x+ ε

z − x, z > x+ ε.

However, ϕ′′ is not continuous so we cannot apply Itô’s formula to ϕ. But
if we could, the outcome would be

(8.6)
1

4ε

∫ t

0
1(x−ε,x+ε)(Bs(ω)) ds = ϕ(Bt)− ϕ(B0)−

∫ t

0
ϕ′(B) dB.

As ε↘ 0, ϕ(z)→ (z− x)+ and ϕ′(z)→ 1[x,∞)(z), except at z = x, but this
single point would not make a difference to the stochastic integrals. The
upshot is that definition (8.5) represents the unjustified ε ↘ 0 limit of the
unjustified equation (8.6).

Returning to the rigorous proof, next we show that L(t, x) functions as
an occupation density.

Proposition 8.3. There exists an event Ω0 such that P (Ω0) = 1 and for all
ω ∈ Ω0 the process L(t, x, ω) defined by (8.5) satisfies (8.1) for all t ∈ R+

and all bounded Borel functions g on R.

Proof. We show that (8.1) holds for a special class of functions. The class
we choose comes from the proof given in [11]. The rest of the proof is the
usual clean-up.
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Step 1. We verify that (8.1) holds almost surely for a fixed t and a
fixed piecewise linear continuous function g = gq,r,η of the following type:

(8.7) g(x) =


0, x ≤ q − η or x ≥ r + η

(x− q + η)/η, q − η ≤ x ≤ q
1, q ≤ x ≤ r
(r + η − x)/η, r ≤ x ≤ r + η

where q < r and η > 0 are rationals. As η becomes small, g approximates
the indicator function of the closed interval [q, r]. Abbreviate a = q− η and
b = r + η so that g vanishes outside [a, b].

We need a Fubini theorem of sorts for stochastic integrals. We sketch
the proof of this lemma after the main proof.

Lemma 8.4. The equality

(8.8)

∫ t

0

(∫ b

a
g(x)1[x,∞)(Bs) dx

)
dBs =

∫ b

a
g(x) I(t, x) dx

holds almost surely.

The trick is now to write down a version of Itô’s formula where the
integral

∫ t
0 g(Bs) ds appears as the quadratic variation part. To this end,

define

f(z) =

∫ z

−∞
dy

∫ y

−∞
dx g(x) =

∫ b

a
g(x)(z − x)+ dx

and note that

f ′(z) =

∫ z

−∞
g(x) dx =

∫ b

a
g(x)1[x,∞)(z) dx and f ′′(z) = g(z).

By Itô’s formula

1
2

∫ t

0
g(Bs) ds = f(Bt)− f(B0)−

∫ t

0
f ′(Bs) dBs

=

∫ b

a
g(x)

[
(Bt − x)+ − (B0 − x)+

]
dx−

∫ t

0

(∫ b

a
g(x)1[x,∞)(Bs) dx

)
dBs

[by (8.8)]

=

∫ b

a
g(x)

[
(Bt − x)+ − (B0 − x)+ − I(t, x)

]
dx

[by (8.5)]

= 1
2

∫ b

a
g(x)L(t, x) dx.
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Comparing the first and last expressions of the calculation verifies (8.1)
almost surely for a particular g of type (8.7) and a fixed t.

Step 2. Let Ω0 be the event of full probability on which (8.1) holds for
all rational t ≥ 0 and the countably many gq,r,η for rational (q, r, η). For a
fixed gq,r,η both sides of (8.1) are continuous in t. (The right side because
L(t, x, ω) is uniformly continuous for (t, x) in a fixed rectangle which can be
taken large enough to contain the support of g.) Consequently on Ω0 (8.1)
extends from rational t to all t ∈ R+.

At this point we can see that L(t, x, ω) ≥ 0. If L(t, x, ω) < 0 then
by continuity there exists δ > 0 and an interval (a, b) around x such that
L(t, y, ω) ≤ −δ for y ∈ (a, b). But for g of type (8.7) supported inside (a, b)
we have ∫

R
g(x)L(t, x, ω) dx =

∫ t

0
g(Bs(ω)) ds ≥ 0,

a contradiction.

To extend (8.1) to all functions with ω ∈ Ω0 fixed, think of both sides
of (8.1) as defining a measure on R. By letting q ↘ −∞ and r ↗ ∞ in
gq,r,η we see that both sides define finite measures with total mass t. By
letting η ↘ 0 we see that the two measures agree on closed intervals [q, r]
with rational endpoints. These intervals form a π-system that generates BR.
By Lemma B.5 the two measures agree on all Borel sets, and consequently
integrals of bounded Borel functions agree also. �

It remains to prove claim (8.2). By Exercise 1.3 it suffices to show
that if t is a point of strict increase of L( · , x, ω) with x ∈ R and ω ∈ Ω0

fixed, then Bt(ω) = x. So suppose t is such a point, so that in particular
L(t, x, ω) < L(t1, x, ω) for all t1 > t. It follows from (8.3) that for all small
enough ε > 0,∫ t

0
1(x−ε,x+ε)(Bs(ω)) ds <

∫ t1

0
1(x−ε,x+ε)(Bs(ω)) ds

which would not be possible unless there exists s ∈ (t, t1) such that Bs(ω) ∈
(x − ε, x + ε). Take a sequence εj ↘ 0 and for each εj pick sj ∈ (t, t1)
such that Bsj (ω) ∈ (x − εj , x + εj). By compactness there is a convergent
subsequence sjk → s ∈ [t, t1]. By path-continuity Bsjk (ω) → Bs(ω) and by

choice of sj ’s, Bsjk (ω) → x. We conclude that for each t1 > t there exists

s ∈ [t, t1] such that Bs(ω) = x. Taking t1 ↘ t gives Bt(ω) = x.

We have now proved all the claims of Theorem 8.1. It remains to prove
the two lemmas used along the way.
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Proof of Lemma 8.4. Recall that we are proving the almost sure identity

(8.9)

∫ t

0

(∫ b

a
g(x)1[x,∞)(Bs) dx

)
dBs =

∫ b

a
g(x) I(t, x) dx

where g is given by (8.7), a = q − η and b = r + η, and g vanishes outside
[a, b].

The left-hand stochastic integral is well-defined because the integrand is
a bounded continuous process. The continuity can be seen from

(8.10)

∫ b

a
g(x)1[x,∞)(Bs) dx =

∫ Bs

−∞
g(x) dx.

Since g(x)I(t, x) is continuous the integral on the right of (8.9) can be
written as a limit of Riemann sums. Introduce partitions xi = a+ (i/n)(b−
a), 0 ≤ i ≤ n, with mesh δ = (b − a)/n. Stochastic integrals are linear, so
on the right of (8.9) we have almost surely

lim
n→∞

δ
n∑
i=1

g(xi)I(t, xi) = lim
n→∞

δ
n∑
i=1

g(xi)

∫ t

0
1[xi,∞)(Bs) dBs

= lim
n→∞

∫ t

0
δ

n∑
i=1

g(xi)1[xi,∞)(Bs) dBs.

By the L2 isometry of stochastic integration we can assert that this limit
equals the stochastic integral on the left of (8.9) if

lim
n→∞

∫ t

0
E

[(∫ b

a
g(x)1[x,∞)(Bs) dx − δ

n∑
i=1

g(xi) 1[xi,∞)(Bs)

)2 ]
ds = 0.

We leave this as an exercise. �

Proof of Lemma 8.2. Abbreviate M(t, x) =
∫ t

0 1[x,∞)(Bs) dBs. Recall
that the task is to establish the existence of a continuous version for M(t, x),
as a function of (t, x) ∈ R+ × R. We will show that for any T < ∞ and
m ∈ N there exists a finite constant C = C(T,m) so that

(8.11) E
[
|M(s, x)−M(t, y)|2m

]
≤ C|(s, x)− (t, y)|m

for (s, x), (t, y) ∈ [0, T ]×R. After (8.11) has been shown the lemma follows
from the Kolmogorov-Centsov criterion (Theorem B.20). Precisely speaking,
here is what needs to be said to derive the lemma from Theorem B.20.

The index set has dimension two. So if we take m > 2, Theorem B.20
implies that for each positive integer k the process M(t, x) has a continuous

version {Y (k)(t, x) : (t, x) ∈ [0, k]× [−k, k]} on the compact index set [0, k]×
[−k, k]. The processes Y (k) are then combined to yield a single continuous
process indexed by R+ ×R via the following reasoning. If k < `, then for
rational (t, x) ∈ [0, k]× [−k, k] the equality Y (k)(t, x) = M(t, x) = Y (`)(t, x)
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holds with probability 1. Since rationals are countable, there is a single event
Ωk,` such that P (Ωk,`) = 1 and for ω ∈ Ωk,`, Y

(k)(t, x, ω) = Y (`)(t, x, ω) for
all rational (t, x) ∈ [0, k] × [−k, k]. All values of a continuous function
are completely determined by the values on a dense set, hence for ω ∈ Ωk,`,

Y (k)(t, x, ω) = Y (`)(t, x, ω) for all (t, x) ∈ [0, k]×[−k, k]. Let Ω0 =
⋂
k<` Ωk,`.

Then P (Ω0) = 1 and for ω ∈ Ω0 we can consistently define I(t, x, ω) =

Y (k)(t, x, ω) for any k such that (t, x) ∈ [0, k]× [−k, k]. Outside Ω0 we can
define for example I(t, x, ω) ≡ 0 to get a process that is continuous in (t, x)
at all ω.

We turn to prove (8.11). We can assume s < t. First using additivity of
stochastic integrals and abbreviating a = x ∧ y, b = x ∨ y, almost surely

M(s, x)−M(t, y) = sign(y − x)

∫ s

0
1[a,b)(B) dB −

∫ t

s
1[y,∞)(B) dB.

Using |u+ v|k ≤ 2k(|u|k + |v|k) and then the inequality in Proposition 6.16

E|M(s, x)−M(t, y)|2m

≤ CE
[ ∣∣∣ ∫ s

0
1[a,b)(B) dB

∣∣∣2m ]+ CE

[ ∣∣∣ ∫ t

s
1[y,∞)(B) dB

∣∣∣2m ]
≤ CE

[(∫ s

0
1[a,b)(Bu) du

)m]
+ CE

[(∫ t

s
1[y,∞)(Bu) du

)m]
.(8.12)

The integrals on the last line above appear because the quadratic variation
of
∫ s

0 X dB is
∫ s

0 X
2 du (Proposition 5.55). For the second integral we need

to combine this with the step given in Theorem 5.45:∫ t

s
1[y,∞)(Bu) dBu =

∫ t−s

0
1[y,∞)(Bs+u) dB̄u

where B̄u = Bs+u − Bs is the restarted Brownian motion (which of course
is again a standard Brownian motion).

The second integral on line (8.12) is immediately bounded by |t−s|m. We
estimate the first integral with the help of independent Brownian increments.
Let us abbreviate du = dum · · · du1 for a multivariate integral and ∆uj =
uj −uj−1 for increments of the time variables, and introduce u0 = 0 so that
∆u1 = u1.

Suppose f is a symmetric function of m variables. This means that
permuting the variables does not change the value of f :

f(u1, u2, . . . , um) = f(ui1 , ui2 , . . . , uim)
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for any rearrangement (ui1 , ui2 , . . . , uim) of (u1, u2, . . . , um). Then∫ s

0
· · ·
∫ s

0
f(u1, u2, . . . , um) du

= m!

∫
· · ·
∫

0<u1<···<um<s

f(u1, u2, . . . , um) du.

Check this as an exercise.

Now for the first integral in (8.12) switch around the expectation and
the integration and use the above trick, to make it equal

E

∫ s

0
· · ·
∫ s

0

m∏
i=1

1[a,b)(Bui) du

= m!

∫
· · ·
∫

0<u1<···<um<s

E
[
1[a,b)(Bu1)1[a,b)(Bu2) · · ·1[a,b)(Bum)

]
du.(8.13)

We estimate the expectation one indicator at a time, beginning with a con-
ditioning step:

E
[
1[a,b)(Bu1) · · ·1[a,b)(Bum−1) 1[a,b)(Bum)

]
= E

[
1[a,b)(Bu1) · · ·1[a,b)(Bum−1)E

{
1[a,b)(Bum)

∣∣Fum−1

} ]
To handle the conditional expectation recall that the increment Bum−Bum−1

is independent of Fum−1 and has the N (0,∆um) distribution. Use property
(x) of conditional expectations given in Theorem 1.26.

E
{
1[a,b)(Bum)

∣∣Fum−1

}
= E

{
1[a,b)(Bum−1 +Bum −Bum−1)

∣∣Fum−1

}
=

∫ ∞
−∞

1[a,b)(Bum−1 + x)
e−x

2/(2∆um)

√
2π∆um

dx

≤ b− a√
2π∆um

.

In the last upper bound the exponential was simply dropped (it is ≤ 1) and
then the integral taken.

This step can be applied repeatedly to the expectation in (8.13) to re-
place each indicator with the upper bound (b− a)/

√
2π∆um. At the end of

this step

line (8.13) ≤ (2π)−m/2m!(b− a)m
∫
· · ·
∫

0<u1<···<um<s

1√
∆u1 · · ·∆um

du.

The integral can be increased by letting s increase to T , then integrated to
a constant that depends on T and m, and we get

line (8.13) ≤ C(m,T )(b− a)m.
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Tracing the development back up we see that this is an upper bound for the
first integral on line (8.12).

We now have for line (8.12) the upper bound |t− s|m +C(m,T )(b−a)m

which is bounded by C(m,T )|(s, x) − (t, y)|m. We have proved inequality
(8.11) and thereby the lemma. �

8.1.2. Tanaka’s formula and reflection. We begin the next develop-
ment by extending the defining equation (8.5) of local time to an Itô formula
for the convex function defined by the absolute value. The sign function is
defined by sign(u) = 1{u > 0} − 1{u < 0}.

Theorem 8.5 (Tanaka’s formula). For each x ∈ R we have the identity

(8.14) |Bt − x| − |B0 − x| =
∫ t

0
sign(Bs − x) dBs + L(t, x)

in the sense that the processes indexed by t ∈ R+ on either side of the
equality sign are indistinguishable.

Remark 8.6. Equation (8.14) does agree with the usual Itô formula

f(Bt)− f(B0) =

∫ t

0
f ′(Bs) dBs + 1

2

∫ t

0
f ′′(Bs) ds

if we allow ourselves to use weak derivatives f ′ and f ′′. Let f be a locally
integrable function on R. This means that

∫
K |f | dx < ∞ for any compact

set K ⊆ R. Then the measure µ is the weak derivative or distributional
derivative of f (and we write µ = f ′) if

(8.15)

∫
R
ϕdµ = −

∫
R
ϕ′(x)f(x) dx

for every ϕ ∈ C∞c (R) (compactly supported, infinitely differentiable ϕ).
This notion does generalize the classical pointwise derivative because if f ′

exists and is continuous, then integration parts gives the above identity for
µ(dx) = f ′(x)dx. Similarly, measure ν = f ′′ if

(8.16)

∫
R
ϕdν =

∫
R
ϕ′′(x)f(x) dx ∀ ϕ ∈ C∞c (R).

Note that integration by parts leaves no boundary terms because ϕ = 0
outside some bounded interval. Simple integration by parts exercises now
verify that if f(z) = |z − x| for a fixed x, then its weak derivatives are
f ′(z) = sign(z − x) and f ′′ = 2δx. Here δx denotes the pointmass at x, that
is, the measure defined for Borel sets A by δx(A) = 1A(x). The identity
that needs to be checked for f ′′ = 2δx is

2ϕ(x) =

∫
R
|z − x|ϕ′′(z) dz
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for ϕ ∈ C∞c (R). Now we see how (8.14) makes sense: the last term can be

thought of as 1
2

∫ t
0 f
′′(Bs) ds with f ′′(z) = 2δx(z) and the rigorous meaning

of
∫ t

0 δx(Bs) ds is L(t, x).

This remark is a minute glimpse into the theory of distributions where
all functions have derivatives in this weak sense. The term distribution is
used in a sense different from its probabilistic meaning. A synonym four
this distribution is the term generalized function. See textbooks [8] or [15]
for more.

Proof of Theorem 8.5. All the processes in (8.14) are continuous in t (the
stochastic integral by its construction as a limit inMc

2), hence it suffices to
show almost sure equality for a fixed t.

Let L− and I− denote the local time and the stochastic integral in (8.4)
associated to the Brownian motion−B defined on the same probability space
(Ω,F , P ) as B. Let Ω−0 be the full-probability event where the properties of
Theorem 8.1 hold for −B and L−. On Ω0 ∩ Ω−0 we can apply (8.3) to both
B and −B to get L−(t, x) = L(t,−x) as common sense would dictate.

L(t, x) = 1
2L(t, x) + 1

2L
−(t,−x)

= (Bt(ω)− x)+ − (B0(ω)− x)+ − I(t, x, ω)

+ (−Bt(ω) + x)+ − (−B0(ω) + x)+ − I−(t,−x, ω)

= |Bt(ω)− x| − |B0(ω)− x|

−
∫ t

0
1[x,∞)(Bs) dBs −

∫ t

0
1[−x,∞)(−Bs) d(−B)s.

The construction of the stochastic integral shows that if the signs of all the

B-increments are switched,
∫ t

0 X d(−B) = −
∫ t

0 X dB a.s. Consequently,
almost surely,∫ t

0
1[x,∞)(Bs) dBs +

∫ t

0
1[−x,∞)(−Bs) d(−B)s

=

∫ t

0

[
1[x,∞)(Bs)− 1(−∞,x](Bs)

]
dBs =

∫ t

0
sign(Bs − x) dBs.

In fact the convention of the sign function at 0 is immaterial because
∫∞

0 1{Bs =
x} ds = 0 almost surely for any fixed x. Substituting the last integral back
up finishes the proof. �

While local time is a subtle object, its distribution has a surprisingly
simple description. Considering a particular fixed Brownian motion B, let

(8.17) Mt = sup
0≤s≤t

Bs
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be its running maximum, and write L = {Lt = L(t, 0) : t ∈ R+} for the
local time process at the origin.

Theorem 8.7. Let B be a standard Brownian motion. Then we have this
equality in distribution of processes:

(M −B,M)
d
= (|B|, L).

The absolute value |Bt| is thought of as Brownian motion reflected at

the origin. The first equality M −B d
= |B| indicates that Brownian motion

reflects off its running maximum statistically in exactly the same way as off
the fixed point 0. Recall from (2.42) that the reflection principle of Brownian

motion gives the fixed time distributional equality Mt
d
= |Bt| but this does

not extend to a process-level equality.

To prove Theorem 8.7 we introduce Skorohod’s solution to the reflection
problem. C(R+) is the space of continuous functions on R+.

Lemma 8.8. Let b ∈ C(R+) such that b(0) ≥ 0. Then there is a unique
pair (a, `) of functions in C(R+) determined by these properties:

(i) a = b+ ` and a(t) ≥ 0 for all t ∈ R+.

(ii) `(0) = 0, ` is nondecreasing and

(8.18)

∫ ∞
0

a(t) d`(t) = 0.

Remark 8.9. Condition (8.18) is equivalent to Λ{t ∈ R+ : a(t) > 0} = 0
where Λ is the Lebesgue-Stieltjes measure of `. This follows from the basic
integration fact that for a nonnegative function a,

∫
a dΛ = 0 if and only if

a = 0 Λ-a.e. In particular, if a > 0 on (s, t), by the continuity of `,

0 = Λ(s, t) = `(t−)− `(s) = `(t)− `(s).

The point of (i)–(ii) is that ` provides the minimal amount of upward
push to keep a nonnegative. (8.18) says that no push happens when a >
0 which would be wasted effort. (See Exercise 8.2 on this point of the
optimality of the solution.) The pair (a, `) is said to solve the reflection
problem for b.

Proof of Lemma 8.8. Existence. Define

(8.19) `(t) = sup
s∈[0,t]

b−(s) and a(t) = b(t) + `(t).

We check that the functions ` and a defined above satisfy the required
properties. We leave it as an exercise to check that ` is continuous.
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For part (i) it remains only to observe that

a(t) = b(t) + `(t) ≥ b(t) + b−(t) = b+(t) ≥ 0.

For part (ii), b(0) ≥ 0 implies `(0) = b−(0) = 0 and the definition of `
makes it nondecreasing. By Exercise 1.3, to show (8.18) it suffices to show
that if t is a point of strict increase for ` then a(t) = 0. So fix t and suppose
that `(t1) > `(t) for all t1 > t. From the definition it then follows that for
each k ∈ N there exists sk ∈ [t, t+ k−1] such that

(8.20) 0 ≤ `(t) < b−(sk) ≤ `(t+ k−1).

Let k ↗∞ which will take sk → t. From b−(sk) > 0 it follows that b(sk) < 0
and then by continuity b(t) ≤ 0. Again by continuity, in the limit (8.20)
becomes `(t) = b−(t). Consequently a(t) = b(t) + `(t) = −b−(t) + b−(t) = 0.

Uniqueness. Suppose (a, `) and (ã, ˜̀) are two pairs of C(R+)-functions
that satisfy (i)–(ii), and ã(t) > a(t) for some t > 0. Let u = sup{s ∈ [0, t] :
ã(s) = a(s)}. By continuity ã(u) = a(u) and so u < t. Then ã(s) > a(s) for
all s ∈ (u, t] because (again by continuity) ã−a cannot change sign without
passing through 0.

Since a(s) ≥ 0 we see that ã(s) > 0 for all s ∈ (u, t], and then by

property (8.18) (or by its equivalent form in Remark 8.9), ˜̀(t) = ˜̀(u). Since

a− ` = b = ã− ˜̀ implies ã− a = ˜̀− `

and ` is nondecreasing, we get

ã(t)− a(t) = ˜̀(t)− `(t) ≤ ˜̀(u)− `(u) = ã(u)− a(u) = 0

contradicting ã(t) > a(t).

Thus ã ≤ a. The roles of ã and a can be switched in the argument, and
we conclude that ã = a. The above implication then gives ˜̀= `. �

Tanaka’s formula (8.14) and the properties of local time established in
Theorem 8.1 show that the pair (|B−x|, L(· , x)) solves the reflection problem
for the process

(8.21) B̃t = |B0 − x|+
∫ t

0
sign(Bs − x) dBs.

So by (8.19) and the uniqueness part of Lemma 8.8 we get the new identity

(8.22) L(t, x) = sup
0≤s≤t

B̃−s .

Lévy’s criterion (Theorem 6.14) tells us that B̃ is a Brownian motion.
For this we only need to check the quadratic variation of the stochastic



8.1. Local time 297

integral: [ ∫ �

0
sign(Bs − x) dBs

]
t

=

∫ t

0

(
sign(Bs − x)

)2
ds = t.

Proof of Theorem 8.7. Take B0 = x = 0 in (8.14) and (8.21) and let

B̄ = −B̃ which is now another standard Brownian motion. (8.14) takes the
form |B| = −B̄ +L. This together with property (8.2) of local time implies
that (|B|, L) solves the reflection problem for −B̄.

On the other hand, we can use (8.19) to obtain a solution (a, `) with

`(t) = sup
0≤s≤t

(−B̄)−s = sup
0≤s≤t

B̄s ≡ M̄t

where the last identity defines the running maximum process M̄t. Thus we
have two solutions for the reflection problem for −B̄, namely (|B|, L) and

(M̄ − B̄, M̄). By uniqueness (|B|, L) = (M̄ − B̄, M̄). Since (M̄ − B̄, M̄)
d
=

(M − B,M), we have the claimed distributional equality (|B|, L)
d
= (M −

B,M). �
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8.2. Change of measure

In this section we take up a new idea, changing a random variable to a
different one by changing the probability measure on the underlying sample
space. This elementary example illustrates. Let X be a N (0, 1) random
variable defined on a probability space (Ω,F , P ). Let α ∈ R. On Ω define
the random variable Z = exp(αX − α2/2). Then Z ≥ 0 and E(Z) = 1.
Consequently we can use Z as a Radon-Nikodym derivative to define a new
probability measureQ on (Ω,F) byQ(A) = E(Z1A) for measurable sets A ∈
F . Now that we have two measures P and Q on the same measurable space,
expectations under these two measures need to be distinguished notationally.
A common way to do this is to write EP (f) =

∫
f dP for expectation under

P , and similarly EQ for expectation under Q.

To see what happens to the distribution of X when we replace P with Q,
let us derive the density of X under Q. Let f be a bounded Borel function
on R. Using the density of X under P we see that

EQ[f(X)] = EP [Z · f(X)] = EP [eαX−α
2/2f(X)]

=
1√
2π

∫
R
f(x)eαx−α

2/2−x2/2 dx =
1√
2π

∫
R
f(x)e−(x−α)2/2 dx.

Consequently, under Q, X is a normal variable with mean α and variance
1. The switch from P to Q added a mean to X. The transformation works
also in the opposite direction. If we start with Q and then define P by
dP = Z−1dQ then the switch from P to Q removes the mean from X.

Our goal is to achieve the same with Brownian motion. By a change of
the underlying measure with an explicitly given Radon-Nikodym derivative
we can add a drift to a Brownian motion or change the initial drift.

Let now (Ω,F , P ) be a complete probability space with a complete filtra-
tion {Ft}, and B(t) = [B1(t), . . . , Bd(t)]

T a d-dimensional Brownian motion
with respect to the filtration {Ft}. B(0) can be an arbitrary Rd-valued
F0-measurable random variable. Let H(t) = (H1(t), . . . ,Hd(t)) be an Rd-
valued adapted, measurable process such that

(8.23)

∫ T

0
|H(t, ω)|2 dt <∞ for all T <∞, for P -almost every ω.

Under these conditions the real valued stochastic integral

∫ t

0
H(s) dB(s) =

d∑
i=1

∫ t

0
Hi(s) dBi(s)
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is well-defined, as explained in either Chapter 4 or Section 5.5. Define the
stochastic exponential

(8.24) Zt = exp
{∫ t

0
H(s) dB(s)− 1

2

∫ t

0
|H(s)|2 ds

}
.

Here it is important that |x| = (x2
1 + · · · + x2

d)
1/2 is the Euclidean norm.

By using a continuous version of the stochastic integral we see that Zt is a
continuous process. Itô’s formula shows that

(8.25) Zt = 1 +

∫ t

0
ZsH(s) dB(s)

and so Zt is a continuous local martingale. Let {τn} be a localizing sequence
for Zt. Since Zt ≥ 0, Fatou’s lemma can be applied to see that

(8.26) EZt = E( lim
n→∞

Zt∧τn) ≤ lim
n→∞

E(Zt∧τn) = EZ0 = 1.

If will be of fundamental importance for the sequel to make sure that Zt
is a martingale. This can be guaranteed by suitable assumptions on H. Let
us return to this point later and continue now under the assumption that
Zt is a martingale. Then

EZt = EZ0 = 1 for all t ≥ 0.

Thus as in the opening paragraph, each Zt qualifies as a Radon-Nikodym
derivative that gives a new probability measure Qt. If we restrict Qt to Ft,
the entire family {Qt}t∈R+ acquires a convenient consistency property. So
for each t ∈ R+ let us define a probability measure Qt on (Ω,Ft) by

(8.27) Qt(A) = EP [1AZt] for A ∈ Ft.

Then by the martingale property, for s < t and A ∈ Fs,

(8.28)
Qt(A) = EP [1AZt] = EP [1AE

P (Zt|Fs)] = EP [1AZs]

= Qs(A).

This is the consistency property.

Additional conditions are needed if we wish to work with a single measure
Q instead of the family {Qt}t∈R+ . But as long as our computations are
restricted to a fixed finite time horizon [0, T ] we have all that is needed.
The consistency property (8.28) allows us to work with just one measure
QT .

Continuing towards the main result, define the continuous, adapted Rd-
valued process W by

W (t) = B(t)−B(0)−
∫ t

0
H(s) ds.
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The theorem, due to Cameron, Martin and Girsanov, states that under the
transformed measure W is a Brownian motion.

Theorem 8.10. Fix 0 < T < ∞. Assume that {Zt : t ∈ [0, T ]} is a
martingale, H satisfies (8.23), and define the probability measure QT on FT
by (8.27). Then on the probability space (Ω,FT , QT ) the process {W (t) : t ∈
[0, T ]} is a d-dimensional standard Brownian motion relative to the filtration
{Ft}t∈[0,T ].

Remark 8.11. Here is a quick hand-waving proof of Theorem 8.10. Lévy’s
criterion (Theorem 6.14) is employed to check that W is a Brownian motion

under QT . [W ] = [B] because
∫ t

0 H(s) ds is a FV process. This works under
both P and QT because these measures are equivalent in the sense that they
have the same sets of measure zero. Under P

d(WZ) = W dZ + Z dW + d[W,Z]

= WZH dB + Z dB − ZH dt+ ZH dt

= Z(WH + 1) dB.

Thus WZ is a continuous local L2 martingale under P . Let us calculate
as if WZ were a martingale under P and W integrable under QT . Let
0 ≤ s < t ≤ T and A ∈ Fs.

EQT [1AWt] = EQt [1AWt] = EP [1AWtZt] = EP [1AWsZs]

= EQs [1AWs] = EQT [1AWs].

This would show that {Wt : t ∈ [0, T ]} is a martingale under QT . A mar-
tingale W with quadratic variation [W ]t = t is a Brownian motion. At the
end of the section we make this argument precise with localization, and also
generalize it to a statement about how local martingales under P turn into
semimartingales under QT .

Let us illustrate how Theorem 8.10 can be used in practice. We also see
that the restriction to finite time horizons is not necessarily a handicap.

Example 8.12. Let a < 0, µ ∈ R, and Bt a standard Brownian motion.
Let σ be the first time when Bt hits the space-time line x = a−µt. We find
the probability distribution of σ.

To apply Girsanov’s theorem we formulate the question in terms of Xt =
Bt + µt, Brownian motion with drift µ. We can express σ as

σ = inf{t ≥ 0 : Xt = a}.

Define Zt = e−µBt−µ
2t/2 and Qt(A) = EP (Zt1A). Check that Zt is a

martingale. Thus under Qt, {Xs : 0 ≤ s ≤ t} is a standard Brownian
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motion. Compute as follows.

P (σ > t) = EQ(Z−1
t 1{σ > t}) = e−µ

2t/2EQ
(
eµXt1{ inf

0≤s≤t
Xs > a}

)
= e−µ

2t/2EP
(
e−µBt1{Mt < −a}

)
.

On the last line we introduced a new standard Brownian motion B = −X
with running maximum Mt = sup0≤s≤tBs, and then switched back to using
the distribution P of standard Brownian motion. From (2.48) in Exercise
2.24 we can read off the density of (Bt,Mt). After some calculus

P (σ > t) =

−t−1/2a+µ
√
t∫

−∞

ex
2/2

√
2π

dx − e2µa

t−1/2a+µ
√
t∫

−∞

e−x
2/2

√
2π

dx

Let us ask for P (σ = ∞), that is, the probability that X stays forever
in (a,∞). By taking t→∞ above we get

P (σ =∞) =

{
0 µ ≤ 0

1− e2µa µ > 0.

We can deduce the same answer by letting b↗∞ in (6.21).

Before proving the theorem, let us address the question of when Zt is
a martingale. One sufficient hypothesis one can find in the literature is
Novikov’s condition

(8.29) E
[
exp
{

1
2

∫ T

0
|H(s)|2 ds

}]
<∞.

(See Section 3.5 in [11].) We give here proofs for two cases. First a simple
Gronwall argument for a bounded H. Then Itô arguments for a case where
H can be an unbounded function of Brownian motion.

Theorem 8.13. Suppose {H(s) : s ∈ [0, T ]} is a bounded, adapted, mea-
surable Rd-valued process. Then the stochastic exponential {Zs : s ∈ [0, T ]}
defined by (8.24) is an L2 bounded martingale.

Proof. Begin with (8.25), but stop it at σm = inf{t ≥ 0 : Zt ≥ m}.

Zt∧σm = 1 +

∫ t

0
Zs1[0,σm](s)H(s) dB(s).

Square both sides, use (a+ b)2 ≤ 2a2 + 2b2.

Z2
t∧σm ≤ 2 + 2

(∫ t

0
Zs1[0,σm](s)H(s) dB(s)

)2

.
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With a bounded integrand, the stochastic integral on the right is a martin-
gale. Use Doob’s inequality, the isometry of stochastic integration, and the
boundedness of H.

E
[

sup
s∈[0,t]

Z2
s∧σm

]
≤ 2 + 2E

[
sup
s∈[0,t]

(∫ s

0
Zu1[0,σm](u)H(u) dB(u)

)2 ]
≤ 2 + 2CE

[(∫ t

0
Zu1[0,σm](u)H(u) dB(u)

)2 ]
= 2 + 2CE

∫ t

0
Z2
u1[0,σm](u)|H(u)|2 du

≤ 2 + 2CE

∫ t

0
Z2
u∧σm du

≤ 2 + 2C

∫ t

0
E
[

sup
r∈[0,u]

Z2
r∧σm

]
du.

An application of Gronwall’s inequality (Lemma A.20) gives

E
[

sup
s∈[0,t]

Z2
s∧σm

]
≤ 2e2Ct, t ∈ [0, T ].

Let m↗∞ to obtain E[(Z∗T )2] ≤ 4e4CT . Exercise 3.8 gives the martingale
property of Zt. �

Next we extend the result above to a class of unbounded integrands.

Theorem 8.14. Let b : R+×Rd → Rd be a Borel function for which there
exist constants 0 < R,C <∞ such that, for all t ∈ R+,

(8.30) |b(t, x)| ≤ C for |x| ≤ R and |b(t, x)| ≤ C|x| for |x| > R.

Let B be a d-dimensional Brownian motion with B0 ∈ L2(P ). Then

(8.31) Zt = exp
{∫ t

0
b(s,B(s)) dB(s)− 1

2

∫ t

0
|b(s,B(s))|2 ds

}
is a martingale.

Proof. The integrals in the exponential in Zt are well-defined because B(s)
is continuous. For a fixed T < ∞ and ω the path {B(s, ω) : s ∈ [0, T ]} lies
in some compact ball. Consequently b(s,B(s)) is bounded as s varies over
[0, T ] and condition (8.23) is satisfied.

Define

τn = inf{t ≥ 0 : |Bt| ≥ n}.
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The localized process can be written as

Zt∧τn = exp
{∫ t∧τn

0
b(s,B(s)) dB(s)− 1

2

∫ t∧τn

0
|b(s,B(s))|2 ds

}
= exp

{∫ t

0
1(0,τn](s)b(s,B(s)) dB(s)− 1

2

∫ t

0
1(0,τn](s)|b(s,B(s))|2 ds

}
.

Theorem 8.13 applies to the bounded integrand H(s) = 1(0,τn](s)b(s,B(s)).

Hence Zt∧τn is an L2 martingale and thereby {τn} a localizing sequence of
stopping times for Zt.

By Exercise 3.9, to show that Zt is a martingale, it suffices to show that
for each fixed t > 0, the sequence {Zt∧τn}n∈N is uniformly integrable. The
case t = 0 is clear since Z0 = 1.

By assumption (8.30) we can fix a constant c such that

|x · b(t, x)| ≤ c(1 + |x|2).

Itô’s formula (6.9) (without the jump terms) applied to the process

f(t, Zt, B(t)) = Zt(1 + |B(t)|2)e−2(d+c)t

gives

(8.32)

Zt(1 + |B(t)|2)e−2(d+c)t = 1 + |B(0)|2

+

∫ t

0
(1 + |B(s)|2)e−2(d+c)s dZs + 2

d∑
i=1

∫ t

0
ZsBi(s)e

−2(d+c)s dBi(s)

− 2(d+ c)

∫ t

0
Zs(1 + |B(s)|2)e−2(d+c)s ds

+ 2d

∫ t

0
Zse

−2(d+c)s ds+ 2

d∑
i=1

∫ t

0
Bi(s)e

−2(d+c)s d[Z,Bi]s.

Rewrite and bound the last term as follows:

2

d∑
i=1

∫ t

0
Bi(s)e

−2(d+c)s d[Z,Bi]s = 2

∫ t

0
e−2(d+c)sZsB(s) · b(s,B(s)) ds

≤ 2c

∫ t

0
Zs(1 + |B(s)|2)e−2(d+c)s ds.
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This bound shows that the sum of three last terms in (8.32) is nonpositive.
Use (8.25) to substitute for dZ and we have the following inequality:

Zt(1 + |B(t)|2)e−2(d+c)t ≤ 1 + |B(0)|2

+

∫ t

0
(1 + |B(s)|2)e−2(d+c)sZs b(s,B(s)) dB(s)

+ 2

∫ t

0
Zse

−2(d+c)sB(s) dB(s).

Replace t with t ∧ τn, and use (5.32) to take the restriction to (0, τn] inside
the stochastic integrals:

Zt∧τn(1 + |B(t ∧ τn)|2)e−2(d+c)t∧τn ≤ 1 + |B(0)|2

+

∫ t

0
1(0,τn](s)(1 + |B(s)|2)e−2(d+c)sZs b(s,B(s)) dB(s)

+ 2

∫ t

0
1(0,τn](s)Zse

−2(d+c)sB(s) dB(s).

The integrands in the two stochastic integrals are members of L2(B) as de-
fined below (4.1). Consequently the integrals are mean zero L2 martingales,
and we can take expectations over the inequality above. We further restrict
the integral of the leftmost member to the event τn < t:

E
[
Zt∧τn(1 + |B(t ∧ τn)|2)e−2(d+c)t∧τn 1{τn < t}

]
≤ 1 + E[ |B(0)|2 ].

On the right we have a finite constant due to the assumption B(0) ∈ L2.
On the event τn < t,

|B(t ∧ τn)| = |B(τn)| ≥ n
where the possibility |B(τn)| > n can happen if τn = 0. Consequently

E
[
Zt∧τn 1{τn < t}

]
≤ (1 + E|B(0)|2)e2(d+c)t

1 + n2
≤ C(t)n−2.

Now we can show the required uniform integrability.

E
[
Zt∧τn 1{Zt∧τn ≥ r}

]
≤ E

[
Zt∧τn 1{τn < t}

]
+ E

[
Zt∧τn 1{Zt∧τn ≥ r}1{τn ≥ t}

]
≤ C(t)n−2 + E

[
Zt 1{Zt ≥ r}

]
.

Given ε > 0 pick n0 so that C(t)n−2
0 < ε/2. By the integrability of variables

Zt∧τn and Zt ((8.26) for Zt) we can pick 0 < r0 <∞ so that

max
1≤n≤n0

E
[
Zt∧τn 1{Zt∧τn ≥ r0}

]
≤ ε and E

[
Zt 1{Zt ≥ r}

]
≤ ε/2.

The combination of all the bounds gives

sup
n
E
[
Zt∧τn 1{Zt∧τn ≥ r}

]
≤ ε for r ≥ r0. �
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Having illustrated the result and the hypotheses, we turn to proving the
main result itself.

Proof of Theorem 8.10. Theorem 8.10 is proved with Lévy’s criterion, so
we need to check that {W (t) : t ∈ [0, T ]} is a local martingale under QT
with quadratic covariation [Wi,Wj ]t = δi,jt.

The covariation follows by collecting facts we know already. Since QT �
P on FT , any P -almost sure property on FT is also QT -almost sure. Con-

dition (8.23) implies that
∫ t

0 H(s) ds is a continuous BV process on [0, T ]
(Exercise 1.5). Thus by Lemma A.10 [Hi, Hj ] = [Bi, Hj ] = 0. We also get
[Bi, Bj ]t = δi,jt under Q in a few lines. Given a partition π = {tk} of [0, t]
with t ≤ T and ε > 0, define the event

Aπ =

{ ∣∣∣∣m(π)−1∑
k=0

(
Bi(tk+1)−Bi(tk)

)(
Bj(tk+1)−Bj(tk)

)
− δi,jt

∣∣∣∣ ≥ ε}.
Property [Bi, Bj ]t = δi,jt under P means precisely that, for any ε > 0,
P (Aπ) → 0 as mesh(π) → 0. Dominated convergence and the assumed
integrability of ZT give the same under QT : QT (Aπ) = EP [ZT1Aπ ] → 0.
The application of the dominated convergence theorem is not quite the usual
one. We can assert that the integrand ZT1Aπ → 0 in probability, because

P{ZT1Aπ ≥ δ} ≤ P (Aπ)→ 0 for any δ > 0.

Convergence in probability is a sufficient hypothesis for the dominated con-
vergence theorem (Theorem B.12).

It remains to check that {W (t) : t ∈ [0, T ]} is a local martingale under
QT . This follows by taking Mt = Bi(t) − Bi(0) in Lemma 8.15 below, for
each i in turn. With this we can consider Theorem 8.10 proved. �

The above proof is completed by addressing the question of how to trans-
form a local martingale under P so that it becomes a local martingale under
QT . Continuing with all the assumptions we have made, let {Mt : t ∈ [0, T ]}
be a continuous local martingale under P such that M0 = 0. Define

(8.33) Nt = Mt −
d∑
j=1

∫ t

0
Hj(s) d[M,Bj ]s.

By the Kunita-Watanable inequality (Proposition 2.19)

(8.34)

∣∣∣∣ ∫ t

0
Hj(s) d[M,Bj ]s

∣∣∣∣ ≤ [M ]
1/2
t

{∫ t

0
Hj(s)

2 ds

}1/2

so the integrals in the definition of Nt are finite. Furthermore, [M,Bj ]t is
continuous (Proposition 2.16 or Theorem 3.27) and consequently the inte-

gral
∫ t

0 Hj(s) d[M,Bj ]s is a continuous BV process (Exercise 1.5). When
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we switch measures from P to QT it turns out that M continues to be a
semimartingale. Equation (8.33) gives us the semimartingale decomposition
of M under QT because N is a local martingale as stated in the next lemma.

Lemma 8.15. {Nt : t ∈ [0, T ]} is a continuous local martingale under QT .

Proof. By its definition N is a semimartingale under P . Integration by
parts (Proposition 5.61), equation (8.25) for Z, and the substitution rules
(Corollary 5.60 and Theorem 5.63) give

NtZt =

∫ t

0
N dZ +

∫ t

0
Z dN + [N,Z]t

=

∫ t

0
NZH dB +

∫ t

0
Z dM −

∑
j

∫ t

0
ZHj d[M,Bj ]

+
∑
j

∫ t

0
ZHj d[M,Bj ]

=

∫ t

0
NZH dB +

∫ t

0
Z dM.

The last line shows that NZ is a continuous local martingale under P .

Now we split the remaining proof into two cases. Assume first that N is
uniformly bounded: |Nt(ω)| ≤ C for all t ∈ [0, T ] and ω ∈ Ω. We shall show
that in this case NZ is actually a martingale.

Let τn ↗ ∞ be stopping times that localize NZ under P . Let 0 ≤ s <
t ≤ T and A ∈ Fs. From the martingale property of (NZ)τn we have

(8.35) EP
[
1ANt∧τnZt∧τn

]
= EP

[
1ANs∧τnZs∧τn

]
.

We claim that

(8.36) lim
n→∞

EP
[
1ANt∧τnZt∧τn

]
= EP

[
1ANtZt

]
.

This follows from the generalized dominated convergence theorem (Theo-
rem A.15). We have the almost sure convergences Nt∧τn → Nt and Zt∧τn →
Zt and the domination |Nt∧τnZt∧τn | ≤ CZt∧τn . We also have the limit
EP [1AZt∧τn ] → EP [1AZt] by the following reasoning. We have assumed
that Zt is a martingale, hence by optional stopping (Theorem 3.6) Zt∧τn =
EP (Zt | Ft∧τn). Consequently by Lemma B.16 the sequence Zt∧τn is uni-
formly integrable. The limit E[1AZt∧τn ]→ E[1AZt] finally comes from the
almost sure convergence, uniform integrability and Theorem 1.20(iv).

Taking limit (8.36) on both sides of (8.35) verifies the martingale prop-
erty of NZ. Then we can check that N is a martingale under QT :

EQT [1ANt] = EP
[
1ANtZt

]
= EP

[
1ANsZs

]
= EQT [1ANs].
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Now the general case. Define

τn = inf
{
t ≥ 0 : |Mt|+ [M ]t +

∫ t

0
|H(s)|2 ds ≥ n

}
.

By the continuity of the processes in question, these are stopping times
(Corollary 2.10) such that, QT -almost surely, τn ≥ T for large enough n.

We apply the part already proved to M τn in place of M , and let N (n) denote
the process defined by (8.33) with M τn in place of M .

Observe that∫ t

0
Hj(s) d[M τn , Bj ]s =

∫ t

0
Hj(s) d[M,Bj ]

τn
s =

∫ t∧τn

0
Hj(s) d[M,Bj ]s.

This tells us two things. First, combined with inequality (8.34) and |M τn | ≤
n, we see from the definition (8.33) that N (n) is bounded. Thus the part of

the proof already done implies that N (n) is a martingale under QT . Second,
looking at the definition again we see that N (n) = N τn .

We have found a sequence of stopping times τn such that τn ≥ T for
large enough n QT -almost surely, and {N τn

t : t ∈ [0, T ]} is a martingale. In
other words, we have shown that N is a local martingale under QT . �

8.3. Weak solutions for Itô equations

Consider again the Itô equation

(8.37) dXt = b(t,Xt) dt+ σ(t,Xt) dBt

with given Borel functions b : R+ ×Rd → Rd and σ : R+ ×Rd → Rd×m.

A weak solution of (8.37) is a probability space (Ω,F , P ) with a filtration
{Ft} and two adapted processes X and B such that

(i) X is Rd-valued,

(ii) B is a standard Rm-valued Brownian motion under {Ft}, and

(iii) these two conditions are satisfied:

(8.38) P

{
∀ T <∞ :

∫ T

0
|b(s,Xs)| ds+

∫ T

0
|σ(s,Xs)|2 ds <∞

}
= 1.

and

(8.39) Xt = X0 +

∫ t

0
b(s,Xs) ds+

∫ t

0
σ(s,Xs) dBs, 0 ≤ t <∞,

in the sense that the processes on the right and left are indistinguishable. In
other words, to produce a weak solution, one must construct a probability
space on which a strong solution exists. (One such construction is enough
for existence of a weak solution, while strong existence requires that a so-
lution can be constructed for any Brownian motion and filtration.) We say
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that weak existence holds for equation (8.37) if for any Borel probability
distribution ν on Rd there exists a weak solution X with initial distribution
X0 ∼ ν.

Weak solutions can possess two types of uniqueness.

(i) Pathwise uniqueness means the following. Suppose in the description
above there is a single space (Ω,F , P ) with filtration {Ft} and Brownian

motion B, but two solution processes X and X̃. Then if X0 = X̃0 a.s., the

processes X and X̃ are indistinguishable.

(ii) Weak uniqueness, also called uniqueness in law, means that any two

weak solutions X and X̃ with the same initial distribution ν have the same
distribution as processes. That is, for any measurable set A on the path

space C, P{X ∈ A} = P̃{X̃ ∈ A}. Note that these statements assume
implicitly that in the background we have the structures necessary for two

weak solutions: (Ω,F , P ), {Ft}, X and B, and (Ω̃, F̃ , P̃ ), {F̃t}, X̃ and B̃.

Under Lipschitz assumption (7.20) Theorem 7.12 showed pathwise unique-
ness, and under both assumptions (7.20) and (7.21) Theorem 7.14 showed
weak uniqueness. The literature contains another formulation of path-

wise uniqueness that allows two distinct filtrations {Ft} and {F̃t}, with

X adapted to {Ft} and X̃ adapted to {F̃t}. (See for example [11, Section
5.3].) Our formulation agrees with [3, Section 10.4] and [14, Section IX.1].

Let us look at a well-known example of Tanaka where weak existence
and uniqueness hold but pathwise uniqueness and strong existence fail.

Example 8.16. Define the sign function now by

(8.40) sign(x) = 1{x ≥ 0} − 1{x < 0}

so that sign(x)2 = 1. Consider the SDE

(8.41) Xt =

∫ t

0
sign(Xs) dBs, 0 ≤ t <∞.

First we argue weak uniqueness. Let (X,B) be a given pair that solves
the equation. (Implicitly understood that there is a probability space and a
filtration in the background.) Since the integrand sign(Xs) is bounded, X
is a continuous martingale, and

[X]t =

∫ t

0
sign(Xs)

2 ds = t.

Thus by Lévy’s criterion (Theorem 6.14) X is a standard Brownian mo-
tion. We have conclusively characterized every weak solution as a standard
Brownian motion, and thereby weak uniqueness holds.
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Continue with a solution pair (X,B). Since X is a Brownian motion,∫ ∞
0

P (Xs = 0) ds = 0

and consequently the stochastic integral in (8.41) is indistinguishable from
the one with integrand 1{Xs > 0}−1{Xs < 0} (Proposition 4.10(c)). From
this we see that (−X,B) is also a solution. Thus pathwise uniqueness fails.

Next we show that a strong solution of (8.41) cannot exist. Suppose
B is a Brownian motion and let {Ft} be the augmentation of the filtration
generated by B. To get a contradiction, assume there exists a process X
adapted to {Ft} that satisfies (8.41). Then, as observed, X is a standard
Brownian motion and we can apply Tanaka’s formula (8.14) to it. Let L(t, x)
denote local time for X, as defined in Theorem 8.1. Since sign(X)dB = dX,

(8.42) Bt =

∫ t

0
sign(Xs)

2 dBs =

∫ t

0
sign(Xs) dXs = |Xt| − L(t, 0).

Formula (8.3) shows that L(t, 0) is measurable with respect to the σ-algebra
Gt = σ{|Xs| : s ∈ [0, t]}. Hence (8.42) above shows that Bt is Gt-measurable.
We conclude that Ft is contained in the augmentation of Gt. But this last
statement cannot hold. For example, the event {Xt ≥ 1} has positive prob-
ability and cannot lie in Gt because any function of {|Xs| : s ∈ [0, t]} would
give the same value for X and −X.

But note that weak solutions to (8.41) do exist. Simply turn the pre-
vious argument around. Start with a Brownian motion X and define an-

other Brownian motion Bt =
∫ t

0 sign(Xs) dXs. Then dXt = sign(Xt)
2 dXt =

sign(Xt) dBt which shows that X is a solution. What is the distinction be-
tween this and what was just done above? The point is that now B is not
any given Brownian motion and X is not adapted to the filtration of B.

We show how Theorem 8.10 enables us to go beyond Lipschitz drifts to
prove the existence of a weak solution to an SDE with a more general drift.
Let 0 < T < ∞, b : [0, T ] × Rd → Rd Borel measurable, and Bt denote
standard d-dimensional Brownian motion. Consider the following equation
on [0, T ]×Rd:

(8.43) dXt = b(t,Xt) dt+ dBt.

Theorem 8.17. Assume that b is a bounded Borel function. Then equation
(8.43) has a weak solution for any initial distribution ν on Rd.

Proof. Let Xt be d-dimensional Brownian motion on (Ω,F , P ) with respect
to filtration {Ft} and with initial distribution X0 ∼ ν. By the boundedness
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of b and Theorem 8.13,

(8.44) Zt = exp
{∫ t

0
b(s,Xs) dXs − 1

2

∫ t

0
|b(s,Xs)|2 ds

}
, 0 ≤ t ≤ T,

is a martingale. Define probability measure QT on FT by dQT = ZTdP . By
Theorem 8.10, the process

(8.45) Bt = Xt −X0 −
∫ t

0
b(s,Xs) ds, t ∈ [0, T ],

is a standard Brownian motion on the probability space (Ω,FT , QT ), under
the original filtration {Ft}t∈[0,T ]. Equation (8.45) is just the integral form of
(8.43). On F0 measures QT and P coincide because Z0 = 1. Consequently
X0 ∼ ν also under QT . To summarize, process (Xt)t∈[0,T ] and Brownian
motion (Bt)t∈[0,T ] with filtration {Ft}t∈[0,T ] on (Ω,FT , QT ) form a weak
solution of (8.43) with initial distribution ν. �

Next the above idea of using Girsanov’s theorem to create weak solutions
is applied to verify the invariant distribution of certain diffusion processes.
Let ϕ ∈ C2(Rd) have bounded second derivatives, and consider solutions X
to the SDE

(8.46) dXt = ∇ϕ(Xt)dt+Bt.

With bounded second derivatives ∇ϕ satisfies the Lipschitz and growth as-
sumptions (7.20) and (7.21). Hence solutions to this equation exist, possess
both weak and strong uniqueness, and are Markov processes.

We show that the evolution prescribed by (8.46) preserves the Borel

measure with density e2ϕ(x) on Rd. If
∫
Rd e

2ϕ(x) dx <∞ we can subtract a
constant from ϕ (without changing (8.46)) and have an invariant probability
distribution for the diffusion defined by (8.46). As before, let P x (with
expectation Ex) denote the probability distribution on C = CRd [0,∞) of
the process X that solves (8.46) with deterministic initial point X0 = x, for
x ∈ Rd.

Theorem 8.18. For any Borel function f ≥ 0 on Rd and t > 0,

(8.47)

∫
Rd

Ex[f(Xt)] e
2ϕ(x) dx =

∫
Rd

f(x) e2ϕ(x) dx.

For the proof we need a symmetry property of standard Brownian mo-
tion, namely that a Brownian path between two fixed points looks the same
in both directions. This is in fact a property of Brownian bridge.

Let Y be a real-valued random variable. Below we use a conditional
expectation of the type E[X |Y = y] which is a function of a point y ∈ R. It
is defined rigorously as follows. Since E(X |Y ) is a σ(Y )-measurable random
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variable, there exists a Borel function g such that E(X |Y ) = g(Y ). Then
let E[X |Y = y] = g(y). If Y has density fY on R, then this conditional
expectation can be characterized by the requirement

(8.48) E[X 1B(Y )] =

∫
B
E[X |Y = y]fY (y) dy

that should hold for all Borel sets B ⊆ R.

Lemma 8.19. Let P x denote the distribution of Rd-valued Brownian mo-
tion started at B0 = x. Fix T ∈ (0,∞) and let F ≥ 0 be a Borel function

on C[0, T ]. Let Bt denote the coordinate process on C, and B̃t = BT−t for
t ∈ [0, T ]. Then for a, b ∈ Rd

(8.49) Ea[F (B�) |BT = b ] = Eb[F (B̃�) |BT = a ]

Proof of Lemma 8.19. By the standard π-λ and limit arguments, it suf-
fices to consider a function F (ω) = F (ω(0), ω(s1), . . . , ω(sn), ω(T )) for finitely
many time points 0 = s0 < s1 < · · · < sn < sn+1 = T . (A function like this
is sometimes called a local or a cylinder function.) Then one can check
that the conditional expectation is given by the following formula:

(8.50)

Ea[F (B0, Bs1 , . . . , Bsn , BT ) |BT = b ]

=

∫
Rnd

F (a, x1, . . . , xn, b)

∏n+1
i=1 psi−si−1(xi − xi−1)

pT (b− a)
dx1,n

Utilizing the symmetries of the Gaussian kernel a change of variable shows
that the above equals

(8.51) Eb[F (B̃0, B̃s1 , . . . , B̃sn , B̃T ) |BT = a ]

The details of this proof are left for Exercise 8.4 �

Proof of Theorem 8.18. We need several probability measures and pro-
cesses here, so the notation needs to stretch a little. Ex[F (X�)] will refer to
the distributions of the solution X of the SDE (8.46), as defined above The-
orem 8.18. Ex[F (B�)] will refer to the distributions of Rd-valued Brownian
motion as in Lemma 8.19.

Note that Itô’s formula gives

(8.52) dϕ(Bt) = ∇ϕ(Bt)dBt + 1
2∆ϕ(Bt)dt.

We start by constructing a weak solution to (8.46) via Girsanov’s The-
orem. On a probability space (Ω,H,P) let Y be Brownian motion started
at x and adapted to the complete filtration {Ht}. Define

(8.53) Zt = e
∫ t
0 ∇ϕ(Ys) dYs−1

2

∫ t
0 |∇ϕ(Ys)|2 ds.
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Function b(x) = ∇ϕ(x) satisfies assumption (8.30) due to the assumption
of bounded second derivatives, and hence Zt is a martingale by Theorem
8.14. Define the probability measure QT on HT by QT (A) = EP[ZT1A]. By
Theorem 8.10, the process

(8.54) Wt = Yt − x−
∫ t

0
∇ϕ(Ys) dYs, t ∈ [0, T ]

is a standard Brownian motion. Equation (8.54) is the same as (8.46), and
so Y is a weak solution of (8.46) on time interval [0, T ]. By weak uniqueness,
{Yt}t∈[0,T ] has distribution P x from (8.47).

In the next calculation we represent the solution of (8.46) with Y under
QT . Then, since under P Y is Brownian motion started at x, we switch
notation to the Brownian path variable B� under its distribution P x. After
this condition on the endpoint y = Bt and in the last step use the symmetry
of the Gaussian kernel and (8.49).

Ex[f(Xt)] = EQT [f(Yt)] = EP[Ztf(Yt)]

= Ex
[
f(Bt)e

∫ t
0 ∇ϕ(Bs) dBs−1

2

∫ t
0 |∇ϕ(Bs)|2 ds]

= Ex
[
f(Bt)e

ϕ(Bt)−ϕ(x)−1
2

∫ t
0 (∆ϕ(Bs)+|∇ϕ(Bs)|2) ds]

=

∫
dy pt(y − x)f(y)eϕ(y)−ϕ(x)Ex

[
e−

1
2

∫ t
0 (∆ϕ(Bs)+|∇ϕ(Bs)|2) ds

∣∣Bt = y
]

=

∫
dy pt(x− y)f(y)eϕ(y)−ϕ(x)Ey

[
e−

1
2

∫ t
0 (∆ϕ(Bs)+|∇ϕ(Bs)|2) ds

∣∣Bt = x
]
.

Integrate against the density e2ϕ(x) and rearrange the integral.

(8.55)

∫
e2ϕ(x)Ex[f(Xt)] dx =

∫
dy f(y)e2ϕ(y)

∫
dx pt(x− y)eϕ(x)−ϕ(y)

× Ey
[
e−

1
2

∫ t
0 (∆ϕ(Bs)+|∇ϕ(Bs)|2) ds

∣∣Bt = x
]
.

Remove again the conditioning to see that the dx-integral above equals

Ey
[
eϕ(Bt)−ϕ(y)−1

2

∫ t
0 (∆ϕ(Bs)+|∇ϕ(Bs)|2) ds]

= Ey
[
e
∫ t
0 ∇ϕ(Bs) dBs−1

2

∫ t
0 |∇ϕ(Bs)|2 ds] = 1

where at the end we noticed that we have again an expectation of the martin-
gale Zt. Equality (8.55) simplifies to give the desired conclusion (8.47). �

Example 8.20. (Ornstein-Uhlenbeck process) Let α > 0 and take ϕ(x) =
−1

2α|x|
2. Then the SDE (8.46) becomes

(8.56) dXt = −αXt dt+Bt

and the invariant distribution is the d-dimensional Gaussian N (0, 1
2αI).
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Exercises

Exercise 8.1. Show that for a given x,
∫ t

0 1{Bs = x} ds = 0 for all t ∈ R+

almost surely. Hint. Simply take the expectation. Note that this example
again shows the interplay between countable and uncountable in probability:
in some sense the result says that “for any x, Brownian motion spends zero
time at x.” Yet of course Brownian motion is somewhere!

Exercise 8.2. Let (a, `) be the solution of the reflection problem in Lemma

8.8. If (ã, ˜̀) is a pair of C(R+)-functions such that ˜̀ is nondecreasing and

ã = b+ ˜̀≥ 0, show that ã ≥ a and ˜̀≥ `.

Exercise 8.3. Let B
(µ)
t = Bt + µt be standard Brownian motion with drift

µ and running maximum M
(µ)
t = sup0≤s≤tB

(µ)
s . Find the joint density of

(B
(µ)
t ,M

(µ)
t ). Naturally you will utilize (2.48).

Exercise 8.4. Fill in the details in the proof of Lemma 8.19. Namely, use
the convolution properties of the Gaussian kernel to check that the right-
hand side of (8.50) defines a probability measure on Rnd. Then check (8.50)
itself by verifying that the right-hand side satisfies

(8.57)

Ea
[
f(BT )F (B�)

]
=

∫
Rd

db pT (b− a) f(b)Ea[F (B0, Bs1 , . . . , Bsn , BT ) |BT = b ].

Finally check the equality of (8.50) and (8.51).





Chapter 9

White Noise and a
Stochastic Partial
Differential Equation

In the first section of this chapter we develop a stochastic integral over time
and space,

∫
(0,t]×Rd Y (s, x) dW (s, x), where the integrand is a real-valued

stochastic process Y (s, x, ω) indexed by time and space, and the integra-
tor W is white noise. White noise is a random assignment of Gaussian-
distributed signed mass on space-time so that masses on disjoint sets are
independent. This is a natural generalization of the independent increments
property of Brownian motion. In passing we define a multiparameter gen-
eralization of Brownian motion called the Brownian sheet. Armed with this
new integral, we can make rigorous sense of partial differential equations
with noise. In Section 9.2 we develop a key example of such a stochastic
partial differential equation (SPDE), namely a heat equation with stochastic
noise.

9.1. Stochastic integral with respect to white noise

9.1.1. White noise and the isonormal process. Let (X,B, λ) be a σ-
finite measure space. A white noise on the space X relative to the measure λ
is a mean zero Gaussian process {W (A) : A ∈ B, λ(A) <∞} with covariance

(9.1) E[W (A)W (B)] = λ(A ∩B).

We also say that W is a white noise based on the space (X,B, λ). Exercise
9.1 asks you to use Exercise 1.19 to establish the existence of such a process.

315
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White noise is a finitely additive random set function: if A ∩ B = ∅ then
W (A) and W (B) are independent and W (A ∪ B) = W (A) + W (B) a.s.
(Exercise 9.2). In particular W (∅) = 0 a.s., which can also be seen from

E[W (∅)2] = λ(∅) = 0.

White noise is an L2-valued measure, which means that countable addi-
tivity holds in the L2 sense: if {Ak} are pairwise disjoint, A =

⋃
k≥1Ak and

λ(A) <∞, then

(9.2)

E
[(
W (A)−

n∑
k=1

W (Ak)
)2 ]

= E
[(
W
( ∞⋃
k=n+1

Ak

))2 ]
= λ

( ∞⋃
k=n+1

Ak

)
−→
n→∞

0.

If we complement this with a standard result on random series (Theorem
B.11) we also get

(9.3)
∞∑
k=1

W (Ak) = W (A) almost surely.

In general, white noise is not a signed measure for any fixed ω. (Exercise
9.4).

White noise {W (A) : A ∈ B, λ(A) <∞} extends readily to a mean zero
Gaussian process {W (h) : h ∈ L2(λ)} with covariance

(9.4) E[W (g)W (h)] =

∫
X
gh dλ, g, h ∈ L2(λ).

This is the isonormal process on L2(λ). The construction uses the L2-
isometry inherent already in formula (9.1).

Suppose first h =
∑n

i=1 αi1Ai is a simple L2 function where the αi
are real and nonzero and the {Ai} are pairwise disjoint. The assumption
h ∈ L2(λ) then guarantees that λ(Ai) <∞ for each i. Define

(9.5) W (h) =
n∑
i=1

αiW (Ai).

Observe that W (h) is a mean zero Gaussian random variable with variance

(9.6) E[W (h)2] =
n∑
i=1

α2
iλ(Ai) = ‖h‖2L2(λ).

Here we have the isometry: for simple functions h, ‖W (h)‖L2(P ) = ‖h‖L2(λ).

Next we extend. Given h ∈ L2(λ), find simple functions hn ∈ L2(λ) such
that ‖h− hn‖L2(λ) → 0. Then {hn} is a Cauchy sequence in L2(λ), in other
words, given ε > 0 there exists n0 ∈ N such that ‖hm − hn‖L2(λ) < ε for
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m,n ≥ n0. Since ‖W (hm) −W (hn)‖L2(P ) = ‖hm − hn‖L2(λ), {W (hn)} is a

Cauchy sequence in L2(P ). By the completeness of L2(P ), W (hn) converges
in L2(P ) to a random variable which we call W (h). This constructs the
isonormal process, except for a few bits left to tidy up, relegated to Exercise
9.7.

It is quite obvious that we were really constructing an integral with
respect to the random L2 measure W , and consequently we could also use
the notation W (h) =

∫
h dW for the isonormal process. The shortcoming

here is that we did not treat random integrands. This will be achieved in
Section 9.1.3 with the help of martingale theory, in the spirit of Itô integrals.

9.1.2. White noise, Brownian motion and Brownian sheet. Let W
be a white noise on R+ with respect to Lebesgue measure m. Then Bt =
W (0, t] defines a Gaussian process with the covariance of Brownian motion:
EBsBt = m((0, s]∩ (0, t]) = s∧ t. Thus a continuous version of this process,
whose existence is given by the Kolmogorov-Centsov criterion Theorem B.20,
is standard Brownian motion.

The Brownian sheet is a generalization of Brownian motion to a process
with a multidimensional index set. Let Rd

+ = {t = (t1, . . . , td) ∈ Rd :
ti ≥ 0 ∀ i} denote the nonnegative quadrant of d-dimensional space and let
W be a white noise on (Rd

+,BRd
+
,m) where m is Lebesgue measure. The

Brownian sheet {Bt : t ∈ Rd
+} is defined by Bt = W ((0, t]) where for

t = (t1, . . . , td) ∈ Rd
+ the d-dimensional interval is (0, t] =

∏d
i=1(0, ti]. An

equivalent way to define the distribution of the Brownian sheet is to say
that {Bt : t ∈ Rd

+} is a mean zero Gaussian process with covariance

(9.7) E(BsBt) = (s1 ∧ t1) · (s2 ∧ t2) · · · (sd ∧ td).

It can be shown that, just like Brownian motion, Brownian sheet B� has a
continuous version (Exercise 9.8).

9.1.3. The stochastic integral with respect to white noise. To treat
SDEs rigorously we developed a stochastic integral with respect to processes
indexed by time. In order to treat SPDEs rigorously we need integration
for processes in space-time. This need gives rise to a theory of integration
with respect to martingale measures. We state some general definitions, but
treat thoroughly only the case of white noise.

Let (Ω,F , P ) be a probability space with a complete filtration {Ft}. We
take as our state space Rd, although a more general metric space would
do just as well. Let A be a collection of Borel subsets of Rd such that A
is closed under unions and set differences. That is, A,B ∈ A imply that
A ∪ B ∈ A and Ar B ∈ A. Such a collection is sometimes called a ring of
sets [4, Sect. 3.1]. A ring is not quite an algebra: a ring A is an algebra iff
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Rd ∈ A. An example of a ring is the collection of bounded Borel sets. (A
Borel set is bounded if it is contained in some cube [−m,m]d.)

Let U be a real-valued function on A×Ω such that for each set A ∈ A,
U(A,ω) is a square-integrable random variable: E[U(A)2] < ∞. U is an
L2-valued measure on A if the next two conditions are satisfied.

(i) U is finitely additive: U(A∪B) = U(A)+U(B) a.s. whenever A∩B =
∅.

(ii) U is countably additive on A in the L2 sense: whenever {Ak} are
pairwise disjoint elements of A and A =

⋃
k≥1Ak ∈ A, then

(9.8) lim
n→∞

E
[(
U(A)−

n∑
k=1

U(Ak)
)2 ]

= 0.

An L2-valued measure U is σ-finite if there exists a sequence {Bn}n∈N ⊆
A such that Rd =

⋃
Bn and

∀n ∈ N : sup{E[U(A)2] : A ∈ A, A ⊆ Bn} <∞.

White noise on a Borel subset of a Euclidean space with respect to
Lebesgue measure m is an obvious example of a σ-finite L2-valued measure.
The ring A could be the collection of bounded Borel sets, or the collection
of sets with finite Lebesgue measure.

Definition 9.1. A process {Mt(A) : t ∈ R+, A ∈ A} is a martingale mea-
sure if the following conditions are satisfied.

(i) For each t > 0, Mt(·) is a σ-finite L2-valued measure on A.

(ii) For each A ∈ A, Mt(A) is a martingale with respect to {Ft} with
initial value M0(A) = 0.

We get a martingale measure out of white noise as follows. Let W be
white noise based on R+×Rd with Lebesgue measure, defined on a complete
probability space (Ω,F , P ). Define W0(A) = 0 and Wt(A) = W ((0, t] × A)
for 0 < t < ∞ and bounded Borel sets A ⊆ Rd. The filtration {Ft} is
defined by augmenting FWt = σ{W (D) : D ∈ B(0,t]×Rd is bounded}. The
martingale property comes from independent increments: for 0 ≤ s < t,

Wt(A) = Ws(A) +W ((s, t]×A)

where Ws(A) is Fs-measurable and W ((s, t]×A) is independent of Fs (Ex-
ercise 9.3). Thus

(9.9)
E[Wt(A) | Fs] = E[Ws(A) | Fs] + E[W ((s, t]×A) | Fs]

= Ws(A) + E[W ((s, t]×A) ] = Ws(A).
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For s < t the random variable W ((s, t]×A) has N (0, (t− s)m(A)) distribu-
tion, and so Exercise 1.12 implies that

(9.10) E|Wt(A)−Ws(A)|p = E|W ((s, t]×A)|p = Cpm(A)p/2|t− s|p/2.

Together with Theorem B.20 this moment calculation shows that, for each
bounded set A, there exists a continuous version of the martingale W�(A).

A particularly useful class of martingale measures are the orthogonal
martingale measures. By definition, a martingale measure is orthogonal if
the productMt(A)Mt(B) is a martingale wheneverA∩B = ∅. This is equiv-
alent to saying that the covariations [M(A),M(B)]t and 〈M(A),M(B)〉t
vanish for disjoint A and B. That white noise is an orthogonal martingale
measure follows from the independence of the martingales W�(A) and W�(B)
for disjoint A and B (Exercise 9.9).

The goal is now to develop a stochastic integral of a time-space indexed
process Y (s, x, ω) with respect to white noise. Alternative notations for this
integral are

(9.11) (Y ·W )t(A) =

∫
(0,t]×A

Y (s, x)W (ds, dx) =

∫
(0,t]×A

Y (s, x) dW (s, x)

where t ∈ R+ is the time parameter and A ⊆ Rd a Borel subset. As the
notation indicates, the integral itself is also a martingale measure. For a
fixed set A it will be continuous t. The development parallels closely the

development of the Itô integral
∫ t

0 Y dB in Chapter 4, with the difference
that there is now an additional spatial variable to keep track of.

The covariance functional of a martingale measure M is defined by

(9.12) Q̄t(A,B) = 〈M(A),M(B)〉t.

As Exercise 9.9 shows, for white noise this is Q̄t(A,B) = tm(A∩B). Define
the covariance measure Q of white noise on R+ ×Rd ×Rd (time × space
× space) by

(9.13)

∫
R+×Rd×Rd

ϕ(s, x, y)Q(ds, dx, dy) =

∫
R+×Rd

ϕ(s, x, x) ds dx.

The covariance measure extends the definition of the covariance functional
Q̄ in the sense that Q̄t(A,B) = Q((0, t]×A×B).

The special pleasant property of white noise is that Q̄ extends effort-
lessly to a deterministic nonnegative measure Q. This is analogous to the
simple form of the Doléans measure of Brownian motion (Example 5.2).
For general martingale measures the covariance functional Q̄ is random and
takes both signs. To extend it to a (random) signed measure Q one assumes
the existence of a dominating measure. Martingale measures that satisfy
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this condition are called worthy. We refer to Walsh’s lectures [17] for the
general theory.

It is also convenient that Q is supported on R+×∆(Rd) where ∆(Rd) =
{(x, x) : x ∈ Rd} is the diagonal of Rd×Rd . This feature is common to all
orthogonal martingale measures. However, we do not need the covariance
measure for anything in the sequel, because we only discuss white noise and
things stay simple.

Our integrands will be real-valued functions on R+ ×Rd × Ω (time ×
space × probability space). Measurability of a function f : R+×Rd×Ω→ R
will mean measurability with respect to the completion of BR+ ⊗ BRd ⊗ F
under m⊗m⊗P . The L2-norm of such a function over the set [0, T ]×Rd×Ω
is

(9.14) ‖f‖2,T =

(
E

∫
[0,T ]×Rd

|f(t, x, ω)|2dt dx
)1/2

.

We also need a notion of adaptedness. Begin with the filtration {BRd ⊗
Ft}t∈R+ on the space Rd × Ω, and let {Gt}t∈R+ be its augmentation under
the measure m ⊗ P , as defined in Section 2.1. Call a measurable function
f : R+ × Rd × Ω → R an adapted process if (x, ω) 7→ f(t, x, ω) is Gt-
measurable for each t ∈ R+. Let L2(W ) be the space of such adapted
processes for which ‖f‖2,T < ∞ for all T < ∞. Analogously with our
development in Chapters 4 and 5, we define a metric on L2(W ) by

(9.15) dL2(W )(X,Y ) =
∞∑
k=1

2−k
(
1 ∧ ‖X − Y ‖2,k

)
.

A special class of adapted processes are simple predictable processes

(9.16) Y (t, x, ω) =
n∑
i=1

ξi(ω)1(ti,ti+1](t)1Ai(x)

where n is a finite integer, Ai is a bounded Borel subset of Rd, 0 ≤ ti < ti+1,
ξi is a bounded Fti-measurable random variable on (Ω,F , P ), and the sets
{(ti, ti+1] × Ai} are pairwise disjoint. Let S2 denote the space of simple
predictable processes.

We record the approximation step first.

Proposition 9.2. Suppose Y ∈ L2(W ). Then there exists a sequence of
simple predictable processes {Yn} such that dL2(W )(Y, Yn)→ 0.

Proof. As in earlier similar proofs (Lemmas 4.2 and 5.10), this goes in
stages. It suffices to consider a fixed T and find simple predictable {Yn}
such that ‖Y − Yn‖2,T → 0. Next, we may assume Y bounded and for the

x-coordinate supported on a fixed compact set K ⊆ Rd. That is, there
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exists a constant C < ∞ such that |Y (t, x, ω)| ≤ C for all (t, x, ω), and
Y (t, x, ω) = 0 unless x ∈ K. This follows from the dominated convergence
theorem: if

Y (m)(t, x, ω) = [(m ∧ Y (t, x, ω)) ∨ (−m)] · 1[−m,m]d(x)

then ‖Y − Y (m)‖2,T → 0 as m→∞.

For each n ∈ N and s ∈ [0, 1], define

Zn,s(t, x, ω) =
∑
j∈Z

Y (s+ 2−nj, x, ω)1(s+2−nj, s+2−n(j+1)](t) · 1(0,T ](t).

Zn,s is jointly measurable as a function of (s, t, x, ω) and it is an adapted
process, but it is not a simple predictable process due to the nature of the
dependence on x. Thus after approximating Y with a sequence of Zn,s

processes, we have to approximate Zn,s with a simple predictable process.
The formula above involves Y (t, x, ω) for t < 0, so we extend Y to negative
times by setting it equal to zero. The proof of Lemma 4.2 shows that

(9.17) lim
n→∞

E

∫
[0,T ]×K

dt dx

∫ 1

0
ds
∣∣Zn,s(t, x, ω)− Y (t, x, ω)

∣∣2 = 0.

This proof can be followed almost word for word: simply add the x-variables

inside the functions and replace integrals
∫ T

0 dt with
∫

[0,T ]×K dt dx.

Then, as justified in that proof, there exists a fixed s and a subsequence
Znk,s such that

(9.18) lim
k→∞

E

∫
[0,T ]×K

dt dx
∣∣Znk,s(t, x, ω)− Y (t, x, ω)

∣∣2 = 0.

As the last step we show that, given fixed (n, s) and δ > 0, we can find
a simple predictable process hn,s such that

(9.19) E

∫
[0,T ]×K

dt dx
∣∣Zn,s(t, x, ω)− hn,s(t, x, ω)

∣∣2 < δ.

For fixed (n, s, j) consider the Gs+2−nj-measurable, bounded L2 function

(x, ω) 7→ Y (s + 2−nj, x, ω) on K × Ω. Given δ0 > 0, we can find a simple
function

(9.20) gn,s,j(x, ω) =
∑̀
i=1

ci1Gi(x, ω),

where the {Gi} are Gs+2−nj-measurable subsets of K × Ω, such that

E

∫
K
|Y (s+ 2−nj, x, ω)− gn,s,j(x, ω)|2 dx < δ0.

Product sets {B × U : B ∈ BK , U ∈ Fs+2−nj} form a semialgebra that
generates the product σ-algebra BK ⊗Fs+2−nj . Each set Gi is a.e. equal to
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a set in BK ⊗ Fs+2−nj . By a combination of Lemmas B.1 and B.2, each Gi
in (9.20) can be approximated by a finite disjoint union Ḡi =

⋃
j Bi,j × Ui,j

such that, for a given δ1 > 0,

E

∫
K
|1Gi(x, ω)− 1Ḡi(x, ω)| dx < δ1.

Put these together, choose δ1 small enough, and rename the indices to create
a function ḡn,s,j(x, ω) =

∑m
i=1 1Bi(x)ξi(ω) such that

E

∫
K
|gn,s,j(x, ω)− ḡn,s,j(x, ω)|2 dx < δ0.

Each Bi is a Borel subset of K, hence a bounded set. Each ξi(ω) is a bounded
Fs+2−nj-measurable function and in fact of the form c1U (ω).

From these ingredients we construct the simple predictable process

hn,s(t, x, ω) =
∑
j∈Z

ḡn,s,j(x, ω)1(s+2−nj,s+2−n(j+1)](t) · 1(0,T ](t).

Inequality (9.19) can be satisfied by choosing δ0 small enough �

Now we define the stochastic integral, beginning with simple predictable
processes. For Y as in (5.6), the stochastic integral Y ·W is the martingale
measure defined, for 0 ≤ t <∞ and B ∈ BRd , by

(9.21)

(Y ·W )t(B) =

n∑
i=1

ξi(ω)
(
Wt∧ti+1(Ai ∩B)−Wt∧ti(Ai ∩B)

)
=

n∑
i=1

ξi(ω)W
(
(t ∧ ti, t ∧ ti+1]× (Ai ∩B)

)
.

Note that since the Ai are by assumption bounded Borel sets, we do not
need to impose that restriction on B. As in Lemma 4.4 or Lemma 5.8, at
this point we need to check that the integral Y ·W is linear in Y and does
not depend on the particular representation chosen for Y . We leave these
as exercises.

Lemma 9.3. Let Y be a simple predictable process as in (5.6) and B,G,H ⊆
Rd be Borel sets.

(i) Y · W is a finite martingale measure. For each Borel set B there
exists a t-continuous version of (Y ·W )t(B).

(ii) The process

(9.22) Zt = (Y ·W )t(G) · (Y ·W )t(H)−
∫

(0,t]×(G∩H)

Y (s, x)2 ds dx

is a martingale. (The middle dot above is ordinary multiplication.)
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(iii) We have this isometry and bound:

(9.23)
E[(Y ·W )t(G)2] = E

∫
(0,t]×G

Y (s, x, ω)2 ds dx = ‖Y ‖2L2((0,t]×G×Ω)

≤ ‖Y ‖22,t.

Proof. (i) The martingale property of the process (Y ·W )t(B) on the right-
hand side of (9.21) is checked, term by term, exactly as in the proof of
Lemma 5.9 in Chapter 5. Continuity in t is evident from formula (9.21) if
we choose continuous versions of the white noise martingales, as we can do
by the observation around (9.10).

That (Y · W )t is a finite L2-valued measure on Rd follows from the
corresponding properties of W . Let B =

⋃
Bk be a disjoint union of Borel

subsets of Rd. It suffices to consider a single term ξ1(u,v]1A of the type that
appears in (5.6), with 0 ≤ u < v < ∞, a fixed bounded Borel set A, and
bounded Fu-measurable ξ. The L2 convergence

m∑
k=1

ξW ((t ∧ u, t ∧ v]× (A ∩Bk))→ ξW ((t ∧ u, t ∧ v]× (A ∩B))

and the bound

E
[
ξ2W ((t ∧ u, t ∧ v]× (A ∩B))2

]
≤ E(ξ2)(v − u)m(A)

uniformly in B and t follow from properties of W , including the indepen-
dence of ξ and W ((t∧ u, t∧ v]× (A∩B)) if t ≥ u. (If t < u we simply have
ξW (∅) = 0.)

For the subsequent parts we separate two calculations as lemmas.

Lemma 9.4. Consider two simple predictable processes as in (5.6) that
consist of a single term:

f(s, x, ω) = η(ω)1(a,b](s)1A(x) and g(s, x, ω) = ξ(ω)1(u,v](s)1D(x).

Assume that one of these cases holds:

(9.24)
(i) (a, b] = (u, v] and A ∩D = ∅,

(ii) (a, b] ∩ (u, v] = ∅.

Then for any Borel sets G,H ⊆ Rd the product (f ·W )t(G) · (g ·W )t(H) is
a martingale. (Note indeed that the middle · is an ordinary product of real
numbers.)

Proof. The task is to check that, for s < t,

(9.25)
E
[
ηξ W ((t ∧ a, t ∧ b]× (A ∩G))W ((t ∧ u, t ∧ v]× (D ∩H))

∣∣Fs]
= ηξ W ((s ∧ a, s ∧ b]× (A ∩G))W ((s ∧ u, s ∧ v]× (D ∩H)).



324 9. White Noise and a Stochastic Partial Differential Equation

This is fairly straightforward, keeping in mind the independence properties
of white noise. The location of s splits the calculations into cases. For
example, if s > a then decompose the white noise values into sums according
to

(9.26) (t ∧ a, t ∧ b] = (a, s ∧ b] ∪ (s ∧ b, t ∧ b].

Furthermore, if s ≥ b then the second piece is empty. We leave the details
as Exercise 9.11. �

Lemma 9.5. With notation as in Lemma 9.4, for s < t

(9.27)

E
[
(f ·W )t(G) · (f ·W )t(H) | Fs

]
= E(η2 | Fs)(t ∧ b− t ∧ a)m(A ∩G ∩H)

+ (f ·W )s(G) · (f ·W )s(H) − η2(s ∧ b− s ∧ a)m(A ∩G ∩H).

Proof. Suppose first s ≤ a. Then on the right-hand side only the first term
is nonzero. If also t ≤ a then everything reduces to zero. If s ≤ a < t,
condition on Fa on the left-hand side and use independence to get

E
[
η2E

{
W ((a, t ∧ b]× (A ∩G))W ((a, t ∧ b]× (A ∩H))

∣∣Fa} ∣∣∣Fs]
= E(η2 | Fs)(t ∧ b− t ∧ a)m(A ∩G ∩H).

If s > a, split the white noise terms according to (9.26) and use inde-
pendence and the covariation of white noise to deduce

E
[
(f ·W )t(G) · (f ·W )t(H) | Fs

]
= η2E

[
W ((a, t ∧ b]× (A ∩G))W ((a, t ∧ b]× (A ∩H))

∣∣Fs]
= η2W ((a, s ∧ b]× (A ∩G))W ((a, s ∧ b]× (A ∩H))

+ η2(t ∧ b− s ∧ b)m(A ∩G ∩H)

= (f ·W )s(G) · (f ·W )s(H)

+ E(η2 | Fs) (t ∧ b− t ∧ a)m(A ∩G ∩H)

− η2(s ∧ b− s ∧ a)m(A ∩G ∩H).

In the last equality we simply identified the first term as (f ·W )s(G) · (f ·
W )s(H), used η2 = E(η2 | Fs) for a < s, and added 0 = s ∧ a− t ∧ a. �

We return to prove part (ii) of Lemma 9.3. To use Lemmas 9.4 and 9.5,
observe first that any simple predictable process Y as in (5.6) can be written
so that for each i < j, either

(9.28)
(i) (ti, ti+1] = (tj , tj+1] and Ai ∩Aj = ∅, or

(ii) ti+1 ≤ tj .
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To see this, suppose that initially

Y (t, x, ω) =
∑
i

ξ̃i(ω)1(t̃i,t̃i+1](t)1Ãi(x)

with {(t̃i, t̃i+1] × Ãi} pairwise disjoint. Let {t1 < · · · < tN} = {t̃i} be the
ordered set of time points that appear in the sum, and reorder the sum:

Y (t, x, ω) =
N∑
k=1

1(tk,tk+1](t)
∑

i:(t̃i,t̃i+1]⊃(tk,tk+1]

ξ̃i(ω)1(t̃i,t̃i+1](t)1Ãi(x).

Note that if (t̃i, t̃i+1] and (t̃j , t̃j+1] both contain (tk, tk+1], the disjointness

of (t̃i, t̃i+1] × Ãi and (t̃j , t̃j+1] × Ãj forces Ãi ∩ Ãj = ∅. Relabel everything
once more to get the representation

Y (t, x, ω) =
n∑
i=1

ξi(ω)1(ti,ti+1](t)1Ai(x)

subject to (9.28).

To prove that Zt of (9.22) is a martingale, take s < t and compute E
[
(Y ·

W )t(G) · (Y ·W )t(H) | Fs
]

by multiplying out inside the expectation and
applying Lemmas 9.4 and 9.5 to the terms. This results in the martingale
property of the following process:

(9.29) Z̃t = (Y ·W )t(G)·(Y ·W )t(H)−
n∑
i=1

ξ2
i (t ∧ ti+1−t ∧ ti)m(Ai∩G∩H)

Now observe that the last sum is
∫

(0,t]×(G∩H) Y (s, x)2 ds dx because, by the

disjointness of the sets (ti, ti+1]×Ai,

Y (s, x, ω)2 =

n∑
i=1

ξ2
i (ω)1(ti,ti+1](s)1Ai(x).

Thus Z̃t = Zt and we have checked part (ii).

Part (iii) follows by taking G = H and EZt = 0 in part (ii) �

We can now state the definition of the integral of L2(W )-integrands with
respect to white noise.

Definition 9.6. Let Wt be a white noise martingale measure on Rd defined
on a probability space (Ω,F , P ) with respect to a complete filtration {Ft}.
For any measurable adapted process Y ∈ L2(W ), the stochastic integral Y ·W
is the finite martingale measure that satisfies, for any Borel set B ⊆ Rd,

(9.30) lim
n→∞

‖(Y ·W )�(B)− (Yn ·W )�(B)‖Mc
2

= 0
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for any sequence Yn ∈ S2 of simple predictable processes such that dL2(W )(Yn, Y )→
0. The process Y ·W is unique in the sense that, for each B, up to indis-
tinguishability the limit (9.30) identifies a unique martingale (Y ·W )�(B).

Justification of the definition. For any fixed Borel B ⊆ Rd, M (n) =
(Yn ·W )�(B) is a Cauchy sequence in the space Mc

2 of continuous L2 mar-
tingales by virtue of the estimate

‖M (m)
t −M (n)

t ‖L2(P ) = E[((Ym − Yn) ·W )t(B)2] ≤ ‖Ym − Yn‖2,t.

By completeness (Theorem 3.41) there exists a continuous limit martingale
that we call (Y ·W )�(B).

In general on a measure space, if fn → f and gn → g in L2, then
fngn → fg in L1. This applied to the two terms below separately implies
the L1 convergence

(9.31)

(Yn ·W )t(G) · (Yn ·W )t(H)−
∫

(0,t]×(G∩H)

Yn(s, x)2 ds dx

−→ (Y ·W )t(G) · (Y ·W )t(H)−
∫

(0,t]×(G∩H)

Y (s, x)2 ds dx.

Consequently the limit process is also a martingale. Note that for ω in the
full probability event{

ω :

∫
(0,T ]×Rd

Y (s, x, ω)2 ds dx <∞ ∀T <∞
}

the function t 7→
∫

(0,t]×(G∩H) Y (s, x, ω)2 ds dx is continuous simply by virtue

of the dominated convergence theorem. Hence the limit martingale in (9.31)
has a.s. continuous paths.

To conclude that the limit martingales (Y ·W )�(B) form a finite mar-
tingale measure, it remains to check that for a fixed t, B 7→ (Y ·W )t(B) is
a finite L2-valued measure. For a finite disjoint union B = B1 ∪ · · · ∪ Bm,
additivity

(Y ·W )t(B) = (Y ·W )t(B1) + · · ·+ (Y ·W )t(Bm)

is inherited from the additivity of the approximating variables (Yn ·W )t(B).
Let B =

⋃
k≥1Bk be a countable disjoint union andGm = Br(B1∪· · ·∪Bm).

The required property is (Y ·W )t(Gm) → 0 as m → ∞ in L2. It follows
from the isometry and dominated convergence:

E[(Y ·W )t(Gm)2] = E

∫
(0,t]×Gm

Y (s, x, ω)2 ds dx→ 0.
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Similarly we have the bound over all Borel subsets:

sup
B⊆Rd

E[(Y ·W )t(B)2] ≤ E
∫

(0,t]×Rd

Y (s, x, ω)2 ds dx <∞.

The uniqueness claim is proved from estimate (9.23) as was done for Defi-
nition 5.11. �

In (9.11) we gave alternative notations for the integral. The martingale
property of the process in (9.31) can be equivalently expressed in terms of
the predictable bracket process as

(9.32)

〈∫
(0,·]×G

Y dW ,

∫
(0,·]×H

Y dW

〉
t

=

∫
(0,t]×(G∩H)

Y (s, x)2 ds dx.

For the next section on a stochastic heat equation we need an application of
the Burkholder-Davis-Gundy inequality that we state as the next lemma.

Lemma 9.7. Assumptions as in Definition 9.6. Let B ∈ BR and p ∈ [2,∞).
Then there exists a constant Cp < ∞ that does not depend on either Y or
B such that, for all T ∈ [0,∞),

(9.33)

E

[
sup
t∈[0,T ]

∣∣∣∣∫
(0,t]×B

Y (s, x) dW (s, x)

∣∣∣∣p ]

≤ CpE
[ (∫

(0,T ]×B
Y (s, x)2 ds dx

) p
2
]
.

Proof. Immediate application of (6.28) to the martingale (Y ·W )�(B), to-
gether with the fact that [M ] = 〈M〉 for a continuous L2 martingale M
(Proposition 3.34). �
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9.2. Stochastic heat equation

In Chapter 7 we took a basic ODE x′(t) = b(x(t)), added noise to it, and
studied the resulting SDE dX = b(X)dt + σ(X)dB. Here we do the same
for a basic partial differential equation (PDE), namely the heat equation.
We begin by introducing the heat equation in one space dimension.

The heat equation on the real line is the PDE

(9.34) ρt = 1
2ρxx

for an unknown real-valued function ρ(t, x) on R+ × R. Subscripts are
shorthands for partial derivatives: ρt = ∂ρ/∂t and ρxx = ∂2ρ/∂x2. This
equation is intimately tied to Brownian motion because of the role of the
Gaussian kernel p(t, x, y) = (2πt)−1/2 exp[ 1

2t(x − y)2] as the fundamental
solution of the heat equation. Namely, thinking of y fixed, for t > 0 the
function ρ(t, x) = p(t, x, y) satisfies (9.34), and, as t ↘ 0, as a probability
measure ρ(t, x)dx converges weakly to δy, the pointmass at y. Hence for
t = 0 it is natural to use the convention

(9.35)

∫
R
p(0, x, y)f(y) dy =

∫
R
p(0, y, x)f(y) dy = f(x).

Consider the initial value problem

(9.36) ρt = 1
2ρxx on (0,∞)×R , ρ(0, x) = f(x)

for the heat equation, with a given bounded continuous initial function f .
Define the convolution

(9.37) ρ(t, x) = (p(t) ∗ f)(x) =

∫
R
p(t, x, y)f(y) dy.

Then ρ is infinitely differentiable on (0,∞) × R, continuous on R+ × R,
and solves (9.36). This solution ρ is unique among solutions that satisfy an
exponential growth bound in space. (See Thm. 7 in Sect. 2.3 in [7]).

We add space-time white noise to the heat equation to get the stochastic
heat equation

(9.38) ut = 1
2uxx + σ(u)

�
W.

By allowing the coefficient function σ we give ourselves some additional
generality. Equation (9.38) is an example of a stochastic partial differential
equation (SPDE). The solution u is a function u(t, x, ω) of time, space, and
a sample point ω of the probability space on which the white noise W is
defined. If the coefficient function σ is a constant, (9.38) is quite simple.
When σ(u) is not identically 0 or 1 equation (9.38) is sometimes called the
stochastic heat equation with multiplicative noise.
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The setting is now more complex than for SDEs. As with SDEs, we
cannot expect our solution process u to be actually differentiable in the
variables t and x. We first embark on a discussion of how to make rigorous
mathematical sense of equation (9.38).

In the theory of partial differential equations there is a standard way of
dealing with equations where derivatives cannot immediately be expected
to exist in the classical (that is, calculus) sense. The original equation is
replaced by an integral equation via these steps: (i) multiply the original
equation by a smooth compactly supported test function ψ ∈ C∞c (R+×R),
(ii) integrate over [0, t]×R, and (iii) move all derivatives onto ψ through a
formal integration by parts. For (9.38) steps (i) and (ii) give

∫
[0,t]×R

ψ(s, x)ut(s, x) ds dx = 1
2

∫
[0,t]×R

ψ(s, x)uxx(s, x) ds dx

+

∫
[0,t]×R

ψ(s, x)σ(u(s, x))
�
W (s, x) ds dx.

Step (iii), and interpreting the integral against the “generalized function”
�
W (s, x) as a white-noise stochastic integral, leads to the equation

∫
R

ψ(t, x)u(t, x) dx −
∫
R

ψ(0, x)u(0, x) dx

−
∫

[0,t]×R

ψt(s, x)u(s, x) ds dx

(9.39)

= 1
2

∫
[0,t]×R

ψxx(s, x)u(s, x) ds dx+

∫
[0,t]×R

ψ(s, x)σ(u(s, x)) dW (s, x).

Compact support of ψ on R kills the boundary terms at x = ±∞. Note
the nature of this activity: we are not “solving” (9.38) but rather working
our way informally towards a reformulation of (9.38) that could conceivably
be solved in a mathematically rigorous fashion. The virtue of (9.39) is that
it makes sense for any measurable, adapted process u(t, x, ω) for which the
last (stochastic) integral is well-defined. Compact support of ψ restricts
this integral to a compact rectangle [0, t] × [−R,R] so under strict enough
assumptions on σ this integral will present no problem. In p.d.e. terminology
(9.39) is the weak form of equation (9.38).
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Let us rewrite (9.39) once more to highlight the feature that ψ is acted
on by a backward heat operator:∫

R

ψ(t, x)u(t, x) dx =

∫
R

ψ(0, x)u(0, x) dx

+

∫
[0,t]×R

[ψt(s, x) + 1
2ψxx(s, x)]u(s, x) ds dx(9.40)

+

∫
[0,t]×R

ψ(s, x)σ(u(s, x)) dW (s, x).

In (9.40) we have an equation for the unknown process u that is more mean-
ingfully posed than (9.38). But (9.40) is not immediately conducive to the
application of an iterative scheme for proving existence. So we set out to
rewrite the equation once more, by making a judicious choice of the test
function ψ. Since we have not made any precise assumptions yet, mathe-
matical precision will continue to take a backseat.

Take a test function φ ∈ C∞c (R) and define

G(t, φ, x) =

∫
R
p(t, z, x)φ(z) dz.

Keeping t > 0 fixed, set ψ(s, x) = G(t − s, φ, x). Then ψ(t, x) = φ(x) and
ψt(s, x) + 1

2ψxx(s, x) = 0 while s ∈ (0, t). With this ψ (9.40) turns into

(9.41)

∫
R

φ(x)u(t, x) dx =

∫
R

G(t, φ, x)u(0, x) dx

+

∫
[0,t]×R

G(t− s, φ, x)σ(u(s, x)) dW (s, x).

Now let φ shrink nicely down to a point mass at a particular x0. For example,
take φε(x) = p(ε, x0, x) and then let ε↘ 0. Then

G(t, φε, y) =

∫
p(t, x, y)φε(x) dx→ p(t, x0, y).

After the ε→ 0 limit equation (9.41) becomes

(9.42)

u(t, x0) =

∫
R

p(t, x0, x)u(0, x) dx

+

∫
[0,t]×R

p(t− s, x0, x)σ(u(s, x)) dW (s, x).

Of course taking the limit above rigorously would require some assumptions.
But we will not worry about justifying the steps from (9.38) to (9.42). In
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fact, we haven’t even given a rigorous definition for what (9.38) means. The
fruitful thing to do is to take (9.42) as the definition of the solution to
(9.38). Recall that {Gt} is the filtration on R× Ω obtained by augmenting
{BR ⊗Ft}.

Definition 9.8. Let u0(x, ω) be a given G0-measurable initial function. Let
u(t, x, ω) be a measurable adapted process. Then u is a mild solution of the
initial value problem

(9.43) ut = 1
2uxx + σ(u)

�
W on (0,∞)×R, u(0, x) = u0(x) for x ∈ R

if u satisfies the equation

(9.44)

u(t, x) =

∫
R

p(t, x, y)u0(y) dy

+

∫
[0,t]×R

p(t− s, x, y)σ(u(s, y)) dW (s, y)

in the sense that, for each (t, x) ∈ (0,∞) ×R, the equality holds a.s. Part
of the definition is that the integrals above are well-defined. In particular,
for each (t, x) the integrand ξt,x(s, x, ω) = 1[0,t)(s)p(t − s, x, y)σ(u(s, y)) is
a member of L2(W ).

Note that the stochastic integral term on the right of (9.44) is the value

Y t,x
t of the process

Y t,x
r =

∫
[0,r]×R

1[0,t)(s) p(t− s, x, y)σ(u(s, y)) dW (s, y), r ∈ R+

defined as in Definition 9.6. Exercise 9.13 asks you to verify that equation
(9.44) implies the weak form (9.40).

Example 9.9. The case σ(u) = 1 is called the stochastic heat equation
with additive noise:

(9.45) ut = 1
2uxx +

�
W on (0,∞)×R, u(0, x) = u0(x) for x ∈ R.

In this case (9.44) immediately gives us an explicit solution:

(9.46) u(t, x) =

∫
R

p(t, x, y)u0(y) dy +

∫
[0,t]×R

p(t− s, x, y) dW (s, y).

In particular, the stochastic integral term has a deterministic L2 integrand.
This integral can be defined as an instance of the isonormal process in Section
9.1.
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Returning to the general SPDE (9.43), our goal is to prove an exis-
tence and uniqueness theorem for the mild solution. The familiar Lipschitz
assumption on the coefficient σ(u) is again invoked.

Assumption 9.10. Assume the Borel function σ : R → R satisfies the
Lipschitz condition

(9.47) |σ(u)− σ(v)| ≤ L|u− v|
for a constant L <∞ and all u, v ∈ R.

Note that assumption (9.47) implies also the growth bound

(9.48) |σ(u)| ≤ L′(1 + |u|)
for another constant L′.

We need to impose two types of assumptions on the initial function u0,
basically to make the two integrals on the right-hand side of (9.44) well
defined. The first integral is an ordinary Lebesgue integal, evaluated ω by
ω. It needs an assumption on the almost sure behavior of u0. We also insert
u0 in the stochastic integral. This part would be well-defined with an Lp

assumption with p = 2. In order to get a continuous solution process we
strengthen this to p > 8.

Assumption 9.11. Let u0 : R×Ω→ R be a G0-measurable function with
the following properties. For P -a.e. ω, x 7→ u0(x, ω) is a continuous function
and there exists a constant C(ω) <∞ such that

(9.49) |u0(x, ω)| ≤ C(ω)eC(ω)|x| ∀x ∈ R.

Furthermore, for some 8 < p < ∞ and constants 0 ≤ A,K < ∞ we have
the moment bound

(9.50) E[|u0(x)|p ] ≤ KeA|x| ∀x ∈ R.

Theorem 9.12. (a) Existence. Assume Assumptions 9.10 and 9.11. Then
there exists a continuous, measurable, adapted process u(t, x, ω) that satisfies
Definition 9.8 of the mild solution of the stochastic heat equation (9.43).
Furthermore, for each T ∈ (0,∞) there exists a constant K(T ) < ∞ such
that

(9.51) ∀t ∈ [0, T ], x ∈ R : E[ |u(t, x)|p ] ≤ K(T )eA|x|

where A is the same constant as in assumption (9.50).

(b) Uniqueness. Assume Assumption 9.10. Let u0 be a random function
such that the first integral on the right-hand side of (9.44) makes sense
for a.e. ω. Suppose u and v are two measurable processes adapted to the
filtration {Gt} defined above. Assume u and v satisfy moment bound (9.51)
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with p = 2 for some T , and equation (9.44) almost surely for each point
(t, x) ∈ [0, T ]×R. Then u(t, x) = v(t, x) a.s. for each (t, x) ∈ [0, T ]×R.

At the heart of the existence proof is again an iteration. The scheme
comes naturally from the definition (9.44). Let

(9.52) u0(t, x) =

∫
R

p(t, x, y)u0(y) dy

and for n ≥ 1

(9.53)

un(t, x) =

∫
R

p(t, x, y)u0(y) dy

+

∫
[0,t]×R

p(t− s, x, y)σ(un−1(s, y)) dW (s, y).

As it stands, un(t, x) is defined for each (t, x) separately as an L2 limit,
according to the definition of the white noise integral from the previous
section. This is not good enough. In order to insert un back into the
stochastic integral for the next step of the iteration, un needs to have some
regularity properties as a process indexed by (t, x). For this purpose we
show that, at each stage, we can select a continuous version of the process
un defined by the right-hand side of (9.53). We begin by sketching the
simple argument for the first integral on the right-hand side of (9.44) and
(9.53).

Lemma 9.13. Let f be a continuous function on R and C a constant such
that |f(x)| ≤ CeC|x| ∀x ∈ R. Then the function

v(t, x) =

∫
R
p(t, x, y) f(y) dy

is continuous on R+ ×R.

Proof. If (t, x) → (s, z) such that s > 0, it is straightforward to use domi-
nated convergence to show v(t, x) → v(s, z). Suppose (t, x) → (0, z). Con-
tinuity holds along the line t = 0 by convention (9.35), so we may assume
t→ 0 along positive values. Pick a small δ > 0 and write

|v(t, x)− f(z)| ≤
∫
y:|y−z|<δ

p(t, x, y)|f(y)− f(z)| dy

+

∫
y:|y−(x−z)|≥δ

e−y
2/t

√
2πt
|f(y)− f(z)| dy.

The first integral on the right can be made small by choice of δ, by the
continuity of f . When |x − z| < δ/2, the second integral can be bounded
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above by expanding the set over which the integral is taken to {y : |y| ≥
δ/2}. The derivative (∂/∂t)p(t, 0, y) shows that, for small enough t and all
y outside (−δ/2, δ/2), p(t, 0, y) decreases as t ↘ 0. Thus by dominated
convergence the second intergral vanishes as (t, x)→ (0, z). �

Before embarking on the real work we record some properties of the heat
kernel. The following calculation will be used several times:

(9.54)

∫
[0,t]×R

p(s, x, y)2 ds dy =

∫ t

0
ds

∫
R

e−y
2/s

2πs
dy =

√
t/π.

Note that shifting the integration variable y removes the variable x. Another
useful formula is the Gaussian moment generating function

(9.55)

∫
R

e−
y2

2σ2

√
2πσ2

eαy dy = e
1
2
σ2α2

for α ∈ R.

Lemma 9.14. There exists a constant C such that, for all x ∈ R and
0 < h, t <∞,

(9.56)

∫
[0,t]×R

|p(s, x+ h, y)− p(s, x, y)|2 ds dy ≤ Ch.

and

(9.57)

∫
[0,t]×R

|p(s+ h, x, y)− p(s, x, y)|2 ds dy ≤ C
√
h.

Proof. Straightforward calculations. Expand the square and integrate the
exponentials separately.∫

[0,t]×R

|p(s, x+ h, y)− p(s, x, y)|2 ds dy

=

∫ t

0

ds

2πs

∫
R

(
e−

u2

s − 2e−
w2

2s
− (w+h)2

2s + e−
(w+h)2

s
)
dw

=

∫ t

0

1√
πs

(1− e−
h2

4s ) ds =
h

2
√
π

∫ ∞
h2/(4t)

u−3/2(1− e−u) du

≤ h

2
√
π

∫ ∞
0

u−3/2(1− e−u) du = Ch.
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Similarly∫
[0,t]×R

|p(s+ h, x, y)− p(s, x, y)|2 ds dy

=
1√
π

(√
t+ h−

√
t+ h/2 + (

√
2− 1)

√
h+
√
t−

√
t+ h/2

)
≤ C
√
h. �

We refine the previous lemma by inserting an exponentially growing
factor inside the integral.

Lemma 9.15. Let 0 < A, T < ∞. There exists a constant C = C(A, T ) <
∞ such that, for all x ∈ R, t ∈ [0, T ] and 0 < h ≤ 1,

(9.58)

∫
[0,t]×R

|p(s, x+ h, y)− p(s, x, y)|2 eA|y| ds dy ≤ CeA|x|h.

and

(9.59)

∫
[0,t]×R

|p(s+ h, x, y)− p(s, x, y)|2 eA|y| ds dy ≤ CeA|x|
√
h.

Proof. Since eA|y| ≤ eAy + e−Ay, we can drop the absolute value from y by
allowing A to be real, and then at the end add the two bounds for A and
−A.

First some separate parts of the calculations. The next identity will find
use several times later also.

(9.60)

∫
[0,t]×R

p(s, x, y)2 eAy ds dy = eAx
∫ t

0

ds

2
√
πs

∫
R

e−y
2/s

√
πs

eAy dy

= eAx
∫ t

0

ds

2
√
πs

eA
2s/4

and

(9.61)

∫
[0,t]×R

p(s, x+ h, y)p(s, x, y) eAy ds dy

= eh
2/4s

∫ t

0

ds

2
√
πs

∫
R

e−
1
s

(y−x−h
2

)2

√
πs

eAy dy

= eA(x+h
2

)eh
2/4s

∫ t

0

ds

2
√
πs

eA
2s/4.
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Now expand the square and collect terms.

(9.62)

∫
[0,t]×R

|p(s, x+ h, y)− p(s, x, y)|2 eAy ds dy

= eAx
∫ t

0

ds

2
√
πs
eA

2s/4
(

1− 2eAh/2eh
2/4s + eAh

)
= eAx

∫ t

0

ds

2
√
πs
eA

2s/4
(

(eAh/2 − 1)2 + 2eAh/2(1− eh2/4s)
)

Use the bound eA
2s/4 ≤ eA2t/4. Bound the first part inside the large paren-

theses with |ex − 1| ≤ e(x∨0)|x|:

(eAh/2 − 1)2 ≤ e(A∨0)hh2.

Integrate the second part:∫ t

0

1√
πs

(1− e−
h2

4s ) ds =
h

2
√
π

∫ ∞
h2/(4t)

u−3/2(1− e−u) du

≤ h

2
√
π

∫ ∞
0

u−3/2(1− e−u) du = Ch.

In the end we get ∫
[0,t]×R

|p(s, x+ h, y)− p(s, x, y)|2 eAy ds dy

≤ CeAxeA2t/4e(A∨0)h(h2
√
t+ h)

where C is a numerical constant that does not depend on any of the pa-
rameters of the calculation. With h restricted to (0, 1] we have h2 ≤ h, and
doubling this bound to account for ±A gives (9.58).

We proceed similarly for the second bound. First a piece of the calcula-
tion.

(9.63)

∫
[0,t]×R

p(s+ h, x, y)p(s, x, y) eAy ds dy

=

∫ t

0

ds

2
√
π(s+ h/2)

∫
R

e
−(y−x)2 1

2
(s+h)s
2s+h√

2π (s+h)s
2s+h

eAy dy

= eAx
∫ t

0

ds

2
√
π(s+ h/2)

e
A2

4
· (s+h)s
s+h/2 .
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Then, using (9.60) and (9.63),∫
[0,t]×R

|p(s+ h, x, y)− p(s, x, y)|2 eAy ds dy

=
eAx

2
√
π

∫ t

0

( eA2

4
(s+h)

√
s+ h

− 2
e
A2

4
· (s+h)s
s+h/2√

s+ h/2
+
e
A2

4
s

√
s

)
ds

≤ eAx

2
√
π

∫ t

0

( eA2

4
(s+h) − e

A2

4
· (s+h)s
s+h/2√

s+ h/2

+
e
A2

4
s − e

A2

4
· (s+h)s
s+h/2√

s+ h/2
+ e

A2

4
s
[ 1√

s
− 1√

s+ h/2

] )
ds

≤ eAxC(A, t)
√
h.

Inside the integral in the middle member above, the first term is O(h), the

second negative, and the third O(
√
h). �

Now the lemma that will be crucial in propagating good properties along
the iteration (9.53).

Lemma 9.16. Fix p > 8. Let ξ(t, x, ω) be an adapted measurable process.
Assume that for each T ∈ (0,∞) there exist nonnegative finite constants
K = K(T ) and A = A(T ) such that

(9.64) ∀t ∈ [0, T ], x ∈ R : E[ |ξ(t, x)|p ] ≤ KeA|x|.

For each (t, x) ∈ R+ ×R let

η(t, x) =

∫
[0,t]×R

p(t− s, x, y) ξ(s, y) dW (s, y).

Then the process η(t, x) is well-defined and has a continuous version. Fur-
thermore, the moment bound is preserved with the same constant in the
exponent but with a larger constant in front: there exists a constant C(A, T )
such that

(9.65) ∀t ∈ [0, T ], x ∈ R E[ |η(t, x)|p ] ≤ C(A, T )KeA|x|

where A and K are the same constants in both (9.64) and (9.65).

Proof. We can think of η(t, x) =
∫

[0,T ]×R Y
t,x(s, y) dW (s, y) for any T ≥ t,

with Y t,x(s, y, ω) = 1[0,t)(s)p(t − s, x, y)ξ(s, y). That Y t,x ∈ L2(W ) follows

from assumption (9.64) and property (9.60) of the heat kernel. Thus Y t,x is
a legitimate integrand.
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The continuity of η will come from the Kolmogorov-Centsov criterion,
Theorem B.20. So we estimate moments of increments, first the space in-
crement and then the time increment. Fix T < ∞, and restrict t to [0, T ]
so that K and A in (9.64) can be regarded as fixed finite constants. Below
apply first the Burkholder-Davis-Gundy inequality (9.33). Then inside the
expectation apply Hölder’s inequality with conjugate exponents p/(p − 2)
and p/2, and note that the first integral can be taken outside the expecta-
tion.

E|η(t, x)− η(t, z)|p

= E

[ ∣∣∣∣ ∫
[0,t]×R

(pt−s,x,y − pt−s,z,y) ξ(s, y) dW (s, y)

∣∣∣∣p ]

≤ CE
[ ∣∣∣∣ ∫

[0,t]×R

|pt−s,x,y − pt−s,z,y|2 |ξ(s, y)|2 ds dy
∣∣∣∣ p2 ]

= CE

[ ∣∣∣∣ ∫
[0,t]×R

|pt−s,x,y − pt−s,z,y|2−
4
p |pt−s,x,y − pt−s,z,y|

4
p |ξs,y|2 ds dy

∣∣∣∣ p2 ]

≤ C
( ∫

[0,t]×R

|pt−s,x,y − pt−s,z,y|2 ds dy
) p−2

2

× E

∫
[0,t]×R

|pt−s,x,y − pt−s,z,y|2 |ξ(s, y)|p ds dy

≤ C
( ∫

[0,t]×R

|pt−s,x,y − pt−s,z,y|2 ds dy
) p−2

2

×
∫

[0,t]×R

|pt−s,x,y − pt−s,z,y|2KeA|y| ds dy

≤ C|x− z|
p
2KeA|x| ≤ C|x− z|

p
2 .

In the next to last step we applied (9.56) and (9.58) restricted t, x and z to
compact intervals to get a single constant C in front.

The time increment we treat in two pieces. Let 0 ≤ t < t+ h ≤ T .

η(t+ h, x)− η(t, x)

=

∫
[0,t]×R

(p(t+ h− s, x, y)− p(t− s, x, y)) ξ(s, y) dW (s, y)
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+

∫
[t,t+h]×R

p(t+ h− s, x, y) ξ(s, y) dW (s, y)

and so, from |a+ b|p ≤ C(|a|p + |b|p) and inequality (9.33) again,

E|η(t+ h, x)− η(t, x)|p

≤ CE
[ ∣∣∣∣ ∫

[0,t]×R

|pt+h−s,x,y − pt−s,x,y|2 |ξ(s, y)|2 ds dy
∣∣∣∣ p2 ]

+ CE

[ ∣∣∣∣∫
[t,t+h]×R

|p(t+ h− s, x, y)|2 |ξ(s, y)|2 ds dy
∣∣∣∣ p2 ].

Repeat the Hölder step from above and use assumption (9.64) again to get

E|η(t+ h, x)− η(t, x)|p

≤ C
( ∫

[0,t]×R

|pt+h−s,x,y − pt−s,x,y|2 ds dy
) p−2

2

×
∫

[0,t]×R

|pt+h−s,x,y − pt−s,x,y|2KeA|y| ds dy

+ C

( ∫
[t,t+h]×R

|p(t+ h− s, x, y)|2 ds dy
) p−2

2

×
∫

[t,t+h]×R

|p(t+ h− s, x, y)|2KeA|y| ds dy

≤ Ch
p−2
4 · C(A, t)Ke|x|

√
h ≤ Ch

p
4

We bounded the four integrals with (9.57), (9.59), (9.54) and (9.60), and
then restricted t, x and z to compact intervals.

Combine the estimates to get, for (s, x) and (t, z) restricted to a compact
subset of R+ ×R,

E|η(s, x)− η(t, z)|p ≤ C
(
|s− t|

p
4 + |x− z|

p
2
)

≤ C|(s, x)− η(t, z)|
p
4 .

In the last expression | | stands for Euclidean distance on the plane. The
restriction to a compact set allowed us to drop the higher exponent, at the
price of adjusting the constant C. Note that for small increments the smaller
exponent gives the larger upper bound, and this is the relevant one. Since
dimension of space-time is d = 2, the criterion from Theorem B.20 for the
existence of a continuous version is p

4 > 2 ⇔ p > 8.
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To prove (9.65), use the Hölder argument from above and then (9.54)
and (9.60), with t restricted to [0, T ].

E|η(t, x)|p = E

[ ∣∣∣∣ ∫
[0,t]×R

pt−s,x,y ξ(s, y) dW (s, y)

∣∣∣∣p ]

≤ CE
[ ∣∣∣∣ ∫

[0,t]×R

p2
t−s,x,y |ξ(s, y)|2 ds dy

∣∣∣∣ p2 ]

≤ C
( ∫

[0,t]×R

p2
t−s,x,y ds dy

) p−2
2

∫
[0,t]×R

p2
t−s,x,yKe

A|y| ds dy

≤ C(A, T )KeA|x|. �

Let us first discuss the consequences of the lemma for the mild solution u.
Suppose we have a measurable adapted process u that satisfies the moment
bound (9.64) and such that, for each fixed (t, x) ∈ R+ × R, (9.44) holds
a.s. Property (9.48) transfers (9.64) to σ(u(t, x)), and then by Lemma 9.16
the stochastic integral on the right-hand side of (9.44) has a continuous
version. Then the entire right-hand side of (9.44) has a continuous version,
and hence so does the left-hand side, namely u itself. (Processes u and ū
are now versions of each other if P{u(t, x) = ū(t, x)} = 1 for each (t, x).)
The stochastic integral is not changed by replacing u with another version
of it. The reason is that the metric dL2(W ) does not distinguish between
versions and so versions have the same approximating simple predictable
processes in Proposition 9.2. Consequently equation (9.44) continues to
hold a.s. for the continuous version of u. The upshot is that in order to have
a continuous solution u, we only need a measurable adapted solution u that
satisfies moment bound (9.64).

We turn to the iteration (9.53). Assumptions (9.49) and (9.50) on u0 and
property (9.48) on σ(u) guarantee the hypotheses of Lemmas 9.13 and 9.16
so that u0(t, x) is well-defined, has a continuous version, and satisfies again
the locally uniform Lp bound (9.64). Repeating this, we define a sequence
of continuous processes un by (9.53), each satisfying moment bound (9.64).

For the existence of the solution we develop a Gronwall type argument
for the convergence of the iterates un, analogously to our earlier treatment
of SDEs. Note the following convolution property (B.12) of the Gaussian
kernel: ∫

R
p(s, y, x)p(s, x, y) dx =

1√
2π · 2s

Fix an compact time interval [0, T ]. By restricting the treatment to [0, T ]
we do not need to keep track of the t-dependence of various constants.
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It is crucial to develop the moment bound (9.50) along the way in a
manner that does not alter the constant A in the exponent. First we pass
it to u0(t, x) defined by (9.52). Since u0(0, x) = u0(x), take t ∈ (0, T ].

E|u0(t, x)|p ≤
∫
R

p(t, x, y)KeA|y| dy ≤ KeA|x|
∫
R

p(t, 0, y) eA|y| dy

= KeA|x|E(eA
√
t|Z|) = K0e

A|x|

where Z denoted a N (0, 1) random variable, and we defined a new constant

K0 = K0(A, T ). Note that the constant A in eA|x| was preserved.

Next we control the initial difference. The constant C below can change
from line to line and depend on (T, p), but not on (A, x).

E|u1(t, x)− u0(t, x)|p

= E

[ ∣∣∣∣ ∫
[0,t]×R

p(t− s, x, y)σ(u0(s, y)) dW (s, y)

∣∣∣∣p ]

≤ CE
[ ∣∣∣∣ ∫

[0,t]×R

p2
t−s,x,y |σ(u0(s, y))|2 ds dy

∣∣∣∣ p2 ]

≤ C
( ∫

[0,t]×R

p2
t−s,x,y ds dy

) p−2
2

∫
[0,t]×R

p2
t−s,x,y E|σ(u0(s, y))|p ds dy

≤ C
∫

[0,t]×R

p(t− s, x, y)2 (1 + E|u0(s, y)|p) ds dy

≤ C
∫

[0,t]×R

p(t− s, x, y)2 (1 +K0e
A|y|) ds dy

≤ C(1 + C(A, T )K0e
A|x|) ≤ K1e

A|x|.

On the last line we introduced yet another constant K1 = K1(A, T ).

For n ≥ 1 we have the equation

un+1(t, x)− un(t, x)

=

∫
[0,t]×R

p(t− s, x, y) [σ(un(s, y))− σ(un−1(s, y))] dW (s, y).

For the induction argument introduce the sequence

(9.66) an(t) = sup
s∈[0,t]

sup
x∈R

e−A|x|E|un+1(s, x)− un(s, x)|p.
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The calculation above gives the inequality

(9.67) a0(t) ≤ K1 for t ∈ [0, T ]

which serves as the initial step of the induction. For the induction step we
imitate yet again the calculations of Lemma 9.16, with restriction t ∈ [0, T ].
The Lipschitz assumption (9.47) comes here into the argument. Again C
can change from line to line and depend on (T, p) but not on (A, x).

E|un+1(t, x)− un(t, x)|p

= E

[ ∣∣∣∣ ∫
[0,t]×R

p(t− s, x, y) [σ(un(s, y))− σ(un−1(s, y))] dW (s, y)

∣∣∣∣p ]

≤ CE
[ ∣∣∣∣ ∫

[0,t]×R

p2
t−s,x,y |σ(un(s, y))− σ(un−1(s, y))|2 ds dy

∣∣∣∣ p2 ]

≤ CE
[ ∣∣∣∣ ∫

[0,t]×R

p
2− 4

p

t−s,x,y p
4
p

t−s,x,y |un(s, y)− un−1(s, y)|2 ds dy
∣∣∣∣ p2 ]

≤ C
( ∫

[0,t]×R

p2
t−s,x,y ds dy

) p−2
2

×
∫

[0,t]×R

p2
t−s,x,y E|un(s, y)− un−1(s, y)|p ds dy

≤ C
∫

[0,t]×R

p2
t−s,x,y e

A|y| an−1(s) ds dy

= C

∫ t

0
ds an−1(s)

∫
R

e−
(y−x)2
t−s

2π(t− s)
eA|y| dy

≤ C
∫ t

0
ds

an−1(s)√
t− s

eA|x|+
t−s
4
A2

≤ eA|x| ·K2

∫ t

0

an−1(s)√
t− s

ds.

The next to last inequality came from the Gaussian moment generating

function (9.55). We introduced a new constant K2 = K2(A, T ) = CeTA
2/4.

The development above can be summarized in the inequality

an(t) ≤ K2

∫ t

0

an−1(s)√
t− s

ds t ∈ [0, T ].
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An application of Hölder’s inequality gives

(9.68) an(t) ≤ K2

(∫ t

0
(t− s)−3/4 ds

)2/3(∫ t

0
an−1(s)3 ds

)1/3

.

Define (yet again) a new constant and turn this into

an(t)3 ≤ K3

∫ t

0
an−1(s)3 ds, t ∈ [0, T ].

As in (7.37)–(7.38), (9.67) together with the above inequality develop in-
ductively into

an(t)3 ≤ K3
1

Kn
3 t
n

n!
t ∈ [0, T ].

We get this bound on Lp norms:∫
[0,T ]×[−R,R]

∑
n≥0

E|un+1(t, x, ω)− un(t, x, ω)|p dt dx

≤ 2RTeAR
∑
n≥0

sup
t∈[0,T ]

sup
x∈R

e−A|x|E|un+1(t, x, ω)− un(t, x, ω)|p

≤ 2RTeAR
∑
n≥0

an(T ) ≤ C(A, T,R)
∑
n≥0

(
Kn

3 T
n

n!

) 1
3

<∞

where the convergence of the series can be seen for example from nn/n! ≤ en.

From

E|un+1(t, x)− un(t, x)| ≤ eA|x|/pan(t)

we deduce

E
∑
n≥0

|un+1(t, x, ω)− un(t, x, ω)| <∞,

from which is follows that

∀ (t, x) :
∑
n≥0

|un+1(t, x, ω)− un(t, x, ω)| <∞ for P -a.e. ω.

Consequently there exists a limit function u(t, x, ω) such that

(9.69) ∀ (t, x) : un(t, x, ω)→ u(t, x, ω) P -a.s.

In particular, u is measurable and adapted to {Gt}.
By (9.66) and the triangle inequality, for t ∈ [0, T ], x ∈ R, and n < m <

∞,

‖un(t, x)− um(t, x)‖Lp(P ) ≤ eA|x|/p
∞∑
k=n

ak(T )
1
p = eA|x|/pK1/p

p,n <∞.
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The last equality above defines the constant Kp,n that vanishes as n → ∞
by the convergence of the series. Since um(t, x) → u(t, x) a.s., we can let
m→∞ on the left and apply Fatou’s lemma to get

(9.70) ‖un(t, x)− u(t, x)‖Lp(P ) ≤ eA|x|/pK1/p
p,n .

Recall that the iteration preserved the Lp bound (9.64) for each un, with a
fixed A but K that changed with n. The estimate above extends this bound
to u and thereby verifies (9.51).

To summarize, we have a measurable, adapted limit process u with mo-
ment bound (9.51). From Lemma 9.16 we know that the stochastic integral
on the right-hand side of (9.44) is well-defined. To conclude the proof that
this process satisfies the definition of the mild solution, it only remains to
show that the iterative scheme (9.53) turns, in the limit, into the definition
(9.44) of the mild solution. It is enough to show L2 convergence of the
right-hand side of (9.53) to the right-hand side of (9.44), since we already
know the a.s. convergence of the left-hand side. Utilizing the isometry, the
Lipschitz assumption (9.47), and estimate (9.70),

E

∣∣∣∣ ∫
[0,t]×R

p(t− s, x, y) [σ(un(s, y))− σ(u(s, y))] dW (s, y)

∣∣∣∣2

= E

∫
[0,t]×R

p(t− s, x, y)2 |σ(un(s, y))− σ(u(s, y))|2 ds dy

≤ C
∫

[0,t]×R

p(t− s, x, y)2E|un(s, y)− u(s, y)|2 ds dy

≤ CK2,n

∫
[0,t]×R

p(t− s, x, y)2 eA|y| ds dy

−→ 0 as n→∞.

This completes the existence proof.

We turn to uniqueness. Same steps as above, with the isometry and the
Lipschitz assumption (9.47). Define

α(t) = sup
s∈[0,t]

sup
x∈R

e−A|x|E|u(s, x)− v(s, x)|2

E|u(t, x)− v(t, x)|2

= E

∣∣∣∣ ∫
[0,t]×R

p(t− s, x, y) [σ(u(s, y))− σ(v(s, y))] dW (s, y)

∣∣∣∣2
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= E

∫
[0,t]×R

p(t− s, x, y)2 |σ(u(s, y))− σ(v(s, y))|2 ds dy

≤ C
∫

[0,t]×R

p(t− s, x, y)2E|u(s, y)− v(s, y)|2 ds dy

≤ C
∫

[0,t]×R

p(t− s, x, y)2 α(s)eA|y| ds dy.

As above, we develop this into

α(t) ≤ C
∫ t

0

α(s)√
t− s

ds ≤ C
(∫ t

0
α(s)3 ds

)1/3

where we used again the Hölder trick of (9.68) and restricted to t ∈ [0, T ] to
have a constant C independent of t. Gronwall’s inequality (Lemma A.20)
implies that α(t) ≡ 0. This completes the proof of Theorem 9.12.

Exercises

In Exercises 9.2–9.3, W is a white noise based on a σ-finite measure space
(X,B, λ).

Exercise 9.1. Let (X,B, λ) be a σ-finite measure space. Show that on some
probability space there exists a mean zero Gaussian process {W (A) : A ∈
B, λ(A) <∞} with covariance E[W (A)W (B)] = λ(A ∩B). In other words,
white noise exists. This can be viewed as an application of Exercise 1.19.

Exercise 9.2. (a) Compute E[(W (A ∪B)−W (A)−W (B))2] and deduce
the finite additivity of W .

(b) Show that E[(W (A)−W (B))2] = λ(A4B).

(c) Show the a.s. countable additivity (9.3).

Exercise 9.3. For a set U ∈ A define the σ-algebra

GU = σ{W (A) : A ∈ A, A ⊆ U, λ(A) <∞}.
Show that the σ-algebras GU and GUc are independent. Hints. By a π-λ ar-
gument it suffices to show the independence of any two vectors (W (A1), . . . ,W (Am))
and (W (B1), . . . ,W (Bn)) where each Ai ⊆ U and each Bj ⊆ U c. Then use
either the fact that the full vector (W (A1), . . . ,W (Am), W (B1), . . . ,W (Bn))
is jointly Gaussian, or decompose W (Ai)’s and W (Bj)’s into sums of inde-
pendent pieces.

Exercise 9.4. In this exercise you show that white noise W ( · , ω) is not a
signed measure for a.e. fixed ω. Let W be a white noise on Rd based on
Lebesgue measure m. Fix positive numbers {ck}k∈N such that

∑
c2
k = 1
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but
∑
ck =∞. (For example, ck =

√
6/(πk).) Let A =

⋃
k Ak be a disjoint

union of Borel sets with m(Ak) = c2
k. Show that

∑
|W (Ak)| =∞ a.s. Thus∑

W (Ak) does not converge absolutely and consequently W ( · , ω) cannot
be a signed measure.

Exercise 9.5. Let W be white noise on Rd with respect to Lebesgue mea-
sure. For c > 0 show that W (c)(A,ω) = c−d/2W (cA, ω) is another white
noise on Rd.

Exercise 9.6. Let W be white noise on Rd with respect to Lebesgue mea-
sure. If W had a density ξ, that is, if in some sense it would be true that
W (B) =

∫
B ξ(x) dx for a stochastic process ξ, then presumably, again in

some sense, m(B)−1W (B) → ξ(x0) as the set B shrinks down to the point
x0. However, show that this is not true even in the weakest possible sense,
namely as a limit in distribution. Take Bε = [x0 − ε/2, x0 + ε/2]d and show
that m(Bε)

−1W (Bε) is not even tight as ε ↘ 0. (For example, show that
for any compact interval [−b, b] ⊆ R, P{m(B)−1W (B) ∈ [−b, b]} → 0 as
ε↘ 0.)

Exercise 9.7. This exercise contains some of the details of the construction
of the isonormal process {W (h) : h ∈ L2(λ)}.

(a) Show linearity W (αg + βh) = αW (g) + βW (h) for α, β ∈ R and
simple functions g, h ∈ L2(λ).

(b) Show that W (h) is well-defined: that is, if {gn} and {hn} are two
sequences of simple functions such that gn → h and hn → h in L2(λ), then
lim
n→∞

W (gn) = lim
n→∞

W (hn).

(c) Show that {W (h) : h ∈ L2(λ)} is a mean zero Gaussian process with
covariance E[W (g)W (h)] =

∫
gh dλ. Note that you need to show that for

any choice h1, . . . , hn ∈ L2(λ), the vector (W (h1), . . . ,W (hn)) has a normal
distribution.

Exercise 9.8. Let {Bt : t ∈ Rd
+} be Brownian sheet with index set Rd

+.

Show that for each compact setK ⊆ Rd
+ there exists a constant C = C(K) <

∞ such that E[(Bs − Bt)2] ≤ C
∑d

i=1|si − ti| for s, t ∈ K. Use Theorem
B.20 to show that Brownian sheet has a continuous version. (Exercise 1.12
points the way to finding bounds on high moments of Bs −Bt.)

Exercise 9.9. Expand the calculation in (9.9) to prove that for any A and
B with m(A) +m(B) <∞, Zt = Wt(A)Wt(B)− tm(A∩B) is a martingale.
You will need Exercise 9.3.

Exercise 9.10. Let A be a ring of subsets of a space X. Show that (i)
∅ ∈ A, (ii) A is closed under intersections, and (iii) A is an algebra iff
X ∈ A.
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Exercise 9.11. Fill in the details of the proof of Lemma 9.4.

Exercise 9.12. (Fubini’s theorem for stochastic integrals) Let (U,U , µ) be
a finite measure space, and Y (t, x, u, ω) a jointly measurable function on
R+ ×Rd × Ω× U . Prove the statement

(9.71)

∫
U
µ(du)

∫
(0,t]×B

Y (s, x, u) dW (s, x)

=

∫
(0,t]×B

( ∫
U
Y (s, x, u)µ(du)

)
dW (s, x)

under some natural assumptions.

Exercise 9.13. Check that if process u(t, x) satisfies definition (1.41) of
a mild solution then it also satisfies the weak form (1.37). You will need
(9.71).

Exercise 9.14. Since the existence proof of Theorem 9.12 is technical, a
valuable way to understand the issues would be to rework parts of the proof
with stronger assumptions. For example, reprove Lemma 9.16 to show that,
if we assume

(9.72) sup
x∈R

E[ |u0(x)|p ] <∞

for some p > 8, then

(9.73) ∀T <∞ : sup
t∈[0,T ], x∈R

E[ |u(t, x)|p ] <∞.





Appendix A

Analysis

Definition A.1. Let X be a space. A function d : X × X → [0,∞) is a
metric if for all x, y, z ∈ X,

(i) d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x), and

(iii) d(x, y) ≤ d(x, z) + d(z, y).

The pair (X, d), or X alone, is called a metric space.

Convergence of a sequence {xn} to a point x in X means that the dis-
tance vanishes in the limit: xn → x if d(xn, x) → 0. {xn} is a Cauchy
sequence if supm>n d(xm, xn) → 0 as n → ∞. Completeness of a metric
space means that every Cauchy sequence in the space has a limit in the
space. A countable set {yk} is dense in X if for every x ∈ X and every
ε > 0, there exists a k such that d(x, yk) < ε. X is a separable metric space
if it has a countable dense set. A complete, separable metric space is called
a Polish space.

The Cartesian product Xn = X × X × · · · × X is a metric space with
metric d̄(x,y) =

∑
i d(xi, yi) defined for vectors x = (x1, . . . , xn) and y =

(y1, . . . , yn) in Xn.

A vector space (also linear space) is a space X on which addition x+ y
(x, y ∈ X) and scalar multiplication αx (α ∈ R, x ∈ X) are defined, and
satisfy the usual algebraic properties that familiar vector spaces such as Rn

have. For example, there must exist a zero vector 0 ∈ X, and each x ∈ X
has an additive inverse −x such that x+ (−x) = 0.

Definition A.2. Let X be a vector space. A function ‖ · ‖ : X → [0,∞) is
a norm if for all x, y ∈ X and α ∈ R,

349
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(i) ‖x‖ = 0 if and only if x = 0,

(ii) ‖αx‖ = |α| · ‖x‖, and

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
X is a normed space if it has a norm. A metric on a normed space is defined
by d(x, y) = ‖x− y‖. A normed space that is complete as a metric space is
called a Banach Space.

A basic extension result says that a uniformly continuous map (a syn-
onym for “function”) into a complete space can be extended to the closure
of its domain.

Lemma A.3. Let (X, d) and (Y, r) be metric spaces, and assume (Y, r) is
complete. Let S be a subset of X, and f : S → Y a map that is uniformly
continuous. Then there exists a unique continuous map g : S̄ → Y such that
g(x) = f(x) for x ∈ S. Furthermore g is also uniformly continuous.

Proof. Fix x ∈ S̄. There exists a sequence xn ∈ S that converges to x.
We claim that {f(xn)} is a Cauchy sequence in Y . Let ε > 0. By uniform
continuity, there exists η > 0 such that for all z, w ∈ S, if d(z, w) ≤ η
then r

(
f(z), f(w)

)
≤ ε/2. Since xn → x, there exists N < ∞ such that

d(xn, x) < η/2 whenever n ≥ N . Now if m,n ≥ N ,

d(xm, xn) ≤ d(xm, x) + d(x, xn) < η/2+ < η/2 = η,

so by choice of η,

(A.1) r
(
f(xm), f(xn)

)
≤ ε/2 < ε for m,n ≥ N .

By completeness of Y , the Cauchy sequence {f(xn)} converges to some
point y ∈ Y . Let us check that for any other sequence S 3 zk → x, the limit
of f(zm) is again y. Let again ε > 0, choose η and N as above, and choose
K so that d(zk, x) < η/2 whenever k ≥ K. Let n ≥ N and k ≥ K. By the
triangle inequality

r
(
y, f(zk)

)
≤ r
(
y, f(xn)

)
+ r
(
f(xn), f(zk)

)
.

We can let m→∞ in (A.1), and since f(xm)→ y and the metric is itself a
continuous funcion of each of its arguments, in the limit r

(
y, f(xn)

)
≤ ε/2.

Also,
d(zk, xn) ≤ d(zk, x) + d(x, xn) < η/2+ < η/2 = η,

so r
(
f(xn), f(zk)

)
≤ ε/2. We have shown that r

(
y, f(zk)

)
≤ ε for k ≥ K.

In other words f(zk)→ y.

The above development shows that, given x ∈ S̄, we can unambigously
define g(x) = lim f(xn) by using any sequence xn in S that converges to x.
By the continuity of f , if x happens to lie in S, then g(x) = lim f(xn) = f(x),
so g is an extension of f to S̄.
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To show the continuity of g, let ε > 0, pick η as above, and suppose
d(x, z) ≤ η/2 for x, z ∈ S̄. Pick sequences xn → x and zn → z from S.
Pick n large enough so that r

(
f(xn), f(x)

)
< ε/4, r

(
f(zn), f(z)

)
< ε/4,

d(xn, x) < η/4 and d(zn, z) < η/4. Then

d(xn, zn) ≤ d(xn, x) + d(x, z) + d(zn, z) < η

which implies r
(
f(xn), f(zn)

)
≤ ε/2. Then

r
(
f(x), f(z)

)
≤ r
(
f(x), f(xn)

)
+ r
(
f(xn), f(zn)

)
+ r
(
f(zn), f(z)

)
≤ ε.

This shows the uniform continuity of g.

Uniqueness of g follows from above because any continuous extension h
of f must satisfy h(x) = lim f(xn) = g(x) whenever a sequence xn from S
converges to x. �

Without uniform continuity the extension might not be possible, as ev-
idenced by a simple example such as S = [0, 1) ∪ (1, 2], f ≡ 1 on [0, 1), and
f ≡ 2 on (1, 2].

One key application of the extension is the following situation.

Lemma A.4. Let X, Y and S be as in the previous lemma. Assume in ad-
dition that they are all linear spaces, and that the metrics satisfy d(x0, x1) =
d(x0 + z, x1 + z) for all x0, x1, z ∈ X and r(y0, y1) = r(y0 + w, y1 + w) for
all y0, y1, w ∈ Y . Let I : S → Y be a continuous linear map. Then there
exists a linear map T : S̄ → Y which agrees with I on S.

A.1. Continuous, cadlag and BV functions

Fix an interval [a, b]. The uniform norm and the uniform metric on functions
on [a, b] are defined by

(A.2) ‖f‖∞ = sup
t∈[a,b]

|f(t)| and d∞(f, g) = sup
t∈[a,b]

|f(t)− g(t)|.

One needs to distinguish these from the L∞ norms defined in (1.8).

We can impose this norm and metric on different spaces of functions on
[a, b]. Continuous functions are the most familiar. Studying stochastic pro-
cesses leads us also to consider cadlag functions, which are right-continuous
and have left limits at each point in [a, b]. Both cadlag functions and con-
tinuous functions form a complete metric space under the uniform metric.
This is proved in the next lemma.

Lemma A.5. (a) Suppose {fn} is a Cauchy sequence of functions in the
metric d∞ on [a, b]. Then there exists a function f on [a, b] such that
d∞(fn, f)→ 0.
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(b) If all the functions fn are cadlag on [a, b], then so is the limit f .

(c) If all the functions fn are continuous on [a, b], then so is the limit f .

Proof. As an instance of the general definition, a sequence of functions {fn}
on [a, b] is a Cauchy sequence in the metric d∞ if for each ε > 0 there exists
a finite N such that d∞(fn, fm) ≤ ε for all m,n ≥ N . For a fixed t, the
sequence of numbers {fn(t)} is a Cauchy sequence, and by the completeness
of the real number system fn(t) converges as n→∞. These pointwise limits
define the function

f(t) = lim
n→∞

fn(t).

It remains to show uniform convergence fn → f . Fix ε > 0, and use the
uniform Cauchy property to pick N so that

|fn(t)− fm(t)| ≤ ε for all m,n ≥ N and t ∈ [a, b].

With n and t fixed, let m→∞. In the limit we get

|fn(t)− f(t)| ≤ ε for all n ≥ N and t ∈ [a, b].

This shows the uniform convergence.

(b) Fix t ∈ [a, b]. We first show f(s) → f(t) as s ↘ t. (If t = b no
approach from the right is possible and there is nothing to prove.) Let
ε > 0. Pick n so that

sup
x∈[a,b]

|fn(x)− f(x)| ≤ ε/4.

By assumption fn is cadlag so we may pick δ > 0 so that t ≤ s ≤ t + δ
implies |fn(t)− fn(s)| ≤ ε/4. The triangle inequality then shows that

|f(t)− f(s)| ≤ ε

for s ∈ [t, t+ δ]. We have shown that f is right-continuous.

To show that left limits exist for f , use the left limit of fn to find η > 0
so that |fn(r)− fn(s)| ≤ ε/4 for r, s ∈ [t− η, t). Then again by the triangle
inequality, |f(r)− f(s)| ≤ ε for r, s ∈ [t− η, t). This implies that

0 ≤ lim sup
s↗t

f(s)− lim inf
s↗t

f(s) ≤ ε

and that both limsup and liminf are finite. Since ε > 0 was arbitrary, the
existence of the limit f(t−) = lims↗t f(s) follows.

(c) Right continuity of f follows from part (b), and left continuity is
proved by the same argument. �
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A function f defined on Rd (or some subset of it) is locally Lipschitz if
for every compact set K there exists a constant LK such that

|f(x)− f(y)| ≤ LK |x− y|

for all x, y ∈ K in the domain of f . In particular, a locally Lipschitz function
on R is Lipschitz continuous on any compact interval [a, b]. A weaker form
of continuity is local Hölder continuity with exponent γ ∈ (0, 1]:

|f(x)− f(y)| ≤ LK |x− y|γ

for x, y ∈ K in the domain of f . If γ = 1 then we are back in Lipschitz
continuity. Values γ > 1 are not of interest. (Why?)

Lemma A.6. Suppose g ∈ BV [0, T ] and f is locally Lipschitz on R, or
some subset of it that contains the range of g. Then f ◦ g is BV.

Proof. A BV function on [0, T ] is bounded because

|g(x)| ≤ |g(0)|+ Vg(T ).

Hence f is Lipschitz continuous on the range of g. With L denoting the
Lipschitz constant of f on the range of g, for any partition {ti} of [0, T ],∑

i

|f(g(ti+1))− f(g(ti))| ≤ L
∑
i

|g(ti+1)− g(ti)| ≤ LVg(T ). �

Lemma A.7. Suppose f has left and right limits at all points in [0, T ]. Let
α > 0. Define the set of jumps of magnitude at least α by

(A.3) U = {t ∈ [0, T ] : |f(t+)− f(t−)| ≥ α}

with the interpretations f(0−) = f(0) and f(T+) = f(T ). Then U is finite.
Consequently f can have at most countably many jumps in [0, T ].

Proof. If U were infinite, it would have a limit point s ∈ [0, T ]. This means
that every interval (s − δ, s + δ) contains a point of U , other than s itself.
But since the limits f(s±) both exist, we can pick δ small enough so that
|f(r)− f(t)| < α/2 for all pairs r, t ∈ (s− δ, s), and all pairs r, t ∈ (s, s+ δ).
Then also |f(t+)−f(t−)| ≤ α/2 for all t ∈ (s−δ, s)∪ (s, s+δ), and so these
intervals cannot contain any point from U . �

The lemma applies to monotone functions, BV functions, cadlag and
caglad functions.

Lemma A.8. Let f be a cadlag function on [0, T ] and define U as in (A.3).
Then

lim
δ↘0

sup{|f(v)− f(u)| : 0 ≤ u < v ≤ T, v − u ≤ δ, (u, v] ∩ U = ∅} ≤ α.
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Proof. This is proved by contradiction. Assume there exists a sequence
δn ↘ 0 and points un, vn ∈ [0, T ] such that 0 < vn−un ≤ δn, (un, vn]∩U = ∅,
and

(A.4) |f(vn)− f(un)| > α+ ε

for some ε > 0. By compactness of [0, T ], we may pass to a subsequence
(denoted by un, vn again) such that un → s and vn → s for some s ∈ [0, T ].
One of the three cases below has to happen for infinitely many n.

Case 1. un < vn < s. Passing to the limit along a subsequence for which
this happens gives

f(vn)− f(un)→ f(s−)− f(s−) = 0

by the existence of left limits for f . This contradicts (A.4).

Case 2. un < s ≤ vn. By the cadlag property,

|f(vn)− f(un)| → |f(s)− f(s−)|.

(A.4) is again contradicted because s ∈ (un, vn] implies s cannot lie in U , so
the jump at s must have magnitude strictly less than α.

Case 3. s ≤ un < vn. This is like Case 1. Cadlag property gives

f(vn)− f(un)→ f(s)− f(s) = 0. �

In Section 1.1.9 we defined the total variation Vf (t) of a function defined
on [0, t]. Let us also define the quadratic cross variation of two functions f
and g by

[f, g](t) = lim
mesh(π)→0

m(π)−1∑
i=0

(
f(si+1)− f(si)

)(
g(si+1)− g(si)

)
if the limit exists as the mesh of the partition π = {0 = s0 < · · · < sm(π) = t}
tends to zero. The quadratic variation of f is [f ] = [f, f ].

In the next development we write down sums of the type
∑

α∈A x(α)
where A is an arbitrary set and x : A → R a function. Such a sum can be
defined as follows: the sum has a finite value c if for every ε > 0 there exists
a finite set B ⊆ A such that if E is a finite set with B ⊆ E ⊆ A then

(A.5)

∣∣∣∣ ∑
α∈E

x(α) − c

∣∣∣∣ ≤ ε.
If
∑
A x(α) has a finite value, x(α) 6= 0 for at most countably many α-values.

In the above condition, the set B must contain all α such that |x(α)| > 2ε,
for otherwise adding on one such term violates the inequality. In other
words, the set {α : |x(α)| ≥ η} is finite for any η > 0.
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If x(α) ≥ 0 always, then∑
α∈A

x(α) = sup

{∑
α∈B

x(α) : B is a finite subset of A
}

gives a value in [0,∞] which agrees with the definition above if it is finite.
As for familiar series, absolute convergence implies convergence. In other
words if ∑

α∈A
|x(α)| <∞,

then the sum
∑
A x(α) has a finite value (Exercise A.2).

Lemma A.9. Let f be a function with left and right limits on [0, T ]. Then∑
s∈[0,T ]

|f(s+)− f(s−)| ≤ Vf (T ),

where we interpret f(0−) = f(0) and f(T+) = f(T ). The sum is actually
over a countable set because f has at most countably many jumps.

Proof. If f has unbounded variation there is nothing to prove because the
right-hand side of the inequality is infinite. Suppose Vf (T ) < ∞. If the
conclusion of the lemma fails, there exists a finite set {s1 < s2 < · · · < sm}
of jumps such that

m∑
i=1

|f(si+)− f(si−)| > Vf (T ).

Pick disjoint intervals (ai, bi) 3 si for each i. (If s1 = 0 take a1 = 0, and if
sm = T take bm = T .) Then

Vf (T ) ≥
m∑
i=1

|f(bi)− f(ai)|

Let ai ↗ si and bi ↘ si for each i, except for a1 in case s1 = 0 and for bm
in case sm = T . Then the right-hand side above converges to

m∑
i=1

|f(si+)− f(si−)|,

contradicting the earlier inequality. �

Lemma A.10. Let f and g be a real-valued cadlag functions on [0, T ], and
assume f ∈ BV [0, T ]. Then

(A.6) [f, g](T ) =
∑

s∈(0,T ]

(
f(s)− f(s−)

)(
g(s)− g(s−)

)
and the sum above converges absolutely.
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Proof. As a cadlag function g is bounded. (If it were not, we could pick sn
so that |g(sn)| ↗ ∞. By compactness, a subsequence snk → t ∈ [0, T ]. But
g(t±) exist and are finite.) Then by the previous lemma

∑
s∈(0,T ]

|f(s)− f(s−)| · |g(s)− g(s−)| ≤ 2‖g‖∞
∑

s∈(0,T ]

|f(s)− f(s−)|

≤ 2‖g‖∞Vf (T ) <∞.

This checks that the sum in (A.6) converges absolutely. Hence it has a finite
value, and we can approximate it with finite sums. Let ε > 0. Let Uα be
the set defined in (A.3) for g. For small enough α > 0,∣∣∣∣ ∑

s∈Uα

(
f(s)− f(s−)

)(
g(s)− g(s−)

)
−

∑
s∈(0,T ]

(
f(s)− f(s−)

)(
g(s)− g(s−)

)∣∣∣∣ ≤ ε.
Shrink α further so that 2αVf (T ) < ε.

For such α > 0, let Uα = {u1 < u2 < · · · < un}. Let δ = 1
2 min{uk+1 −

uk} be half the minimum distance between two of these jumps. Consider
partitions π = {0 = s0 < · · · < sm(π) = t} with mesh(π) ≤ δ. Let i(k)
be the index such that uk ∈ (si(k), si(k)+1], 1 ≤ k ≤ n. By the choice of δ,
a partition interval (si, si+1] can contain at most one uk. Each uk lies in
some (si, si+1] because these intervals cover (0, T ] and for a cadlag function
0 is not a discontinuity. Let I = {0, . . . ,m(π)− 1} \ {i(1), . . . , i(n)} be the
complementary set of indices.

By Lemma A.8 we can further shrink δ so that if mesh(π) ≤ δ then
|g(si+1)− g(si)| ≤ 2α for i ∈ I. Then

m(π)−1∑
i=0

(
f(si+1)− f(si)

)(
g(si+1)− g(si)

)
=

n∑
k=1

(
f(si(k)+1)− f(si(k))

)(
g(si(k)+1)− g(si(k))

)
+
∑
i∈I

(
f(si+1)− f(si)

)(
g(si+1)− g(si)

)
≤

n∑
k=1

(
f(si(k)+1)− f(si(k))

)(
g(si(k)+1)− g(si(k))

)
+ 2αVf (T ).
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As mesh(π) → 0, si(k) < uk and si(k)+1 ≥ uk, while both converge to uk.
By the cadlag property the sum on the last line above converges to

n∑
k=1

(
f(uk)− f(uk−)

)(
g(uk)− g(uk−)

)
.

Combining this with the choice of α made above gives

lim
mesh(π)→0

m(π)−1∑
i=0

(
f(si+1)− f(si)

)(
g(si+1)− g(si)

)
≤

∑
s∈(0,T ]

(
f(s)− f(s−)

)(
g(s)− g(s−)

)
+ 2ε.

Reversing inequalities in the argument gives

lim
mesh(π)→0

m(π)−1∑
i=0

(
f(si+1)− f(si)

)(
g(si+1)− g(si)

)
≥

∑
s∈(0,T ]

(
f(s)− f(s−)

)(
g(s)− g(s−)

)
− 2ε.

Since ε > 0 was arbitrary the proof is complete. �

Corollary A.11. If f is a cadlag BV-function on [0, T ], then [f ]T is finite
and given by

[f ](T ) =
∑

s∈(0,T ]

(
f(s)− f(s−)

)2
.

Lemma A.12. Let fn, f , gn and g be cadlag functions on [0, T ] such that
fn → f uniformly and gn → g uniformly on [0, T ]. Suppose fn ∈ BV [0, T ]
for each n, and C0 ≡ supn Vfn(T ) <∞. Then [fn, gn]T → [f, g]T as n→∞.

Proof. The function f is also BV, because for any partition,∑
i

|f(si+1)− f(si)| = lim
n→∞

∑
i

|fn(si+1)− fn(si)| ≤ C0.

Consequently by Lemma A.10 we have

[f, g]T =
∑

s∈(0,T ]

(
f(s)− f(s−)

)(
g(s)− g(s−)

)
and

[fn, gn]T =
∑

s∈(0,T ]

(
fn(s)− fn(s−)

)(
gn(s)− gn(s−)

)
and all these sums converge absolutely. Pick δ > 0. Let

Un(δ) = {s ∈ (0, T ] : |gn(s)− gn(s−)| ≥ δ}
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be the set of jumps of g of magnitude at least δ, and U(δ) the same for g.
By the absolute convergence of the sum for [f, g] we can pick δ > 0 so that∣∣∣∣[f, g]T −

∑
s∈U(δ)

(
f(s)− f(s−)

)(
g(s)− g(s−)

)∣∣∣∣ ≤ ε.
Shrink δ further so that δ < ε/C0. Then for any finite H ⊇ Un(δ),∣∣∣∣ [fn, gn]T −

∑
s∈H

(
fn(s)− fn(s−)

)(
gn(s)− gn(s−)

)∣∣∣∣
≤
∑
s/∈H

|fn(s)− fn(s−)| · |gn(s)− gn(s−)|

≤ δ
∑

s∈(0,T ]

|fn(s)− fn(s−)| ≤ δC0 ≤ ε.

We claim that for large enough n, Un(δ) ⊆ U(δ). Since a cadlag
function has only finitely many jumps with magnitude above any given
positive quantity, there exists a small α > 0 such that g has no jumps
s such that |g(s) − g(s−)| ∈ (δ − α, δ). If n is large enough so that
sups|gn(s)− g(s)| < α/4, then for each s∣∣(gn(s)− gn(s−)) − (g(s)− g(s−))

∣∣ ≤ α/2.
Now if s ∈ Un(δ), |gn(s) − gn(s−)| ≥ δ and the above inequality imply
|g(s) − g(s−)| ≥ δ − α/2. This jump cannot fall in the forbidden range
(δ − α, δ), so in fact it must satisfy |g(s)− g(s−)| ≥ δ and then s ∈ U(δ).

Now we can complete the argument. Take n large enough so that U(δ) ⊃
Un(δ), and take H = U(δ) in the estimate above. Putting the estimates
together gives∣∣ [f, g]− [fn, gn]

∣∣ ≤ 2ε

+

∣∣∣∣ ∑
s∈U(δ)

(
f(s)− f(s−)

)(
g(s)− g(s−)

)
−

∑
s∈U(δ)

(
fn(s)− fn(s−)

)(
gn(s)− gn(s−)

)∣∣∣∣.
As U(δ) is a fixed finite set, the difference of two sums over U tends to zero
as n→∞. Since ε > 0 was arbitrary, the proof is complete. �

We regard vectors as column vectors. T denotes transposition. So if
x = [x1, . . . , xd]

T and y = [y1, . . . , yd]
T are elements of Rd and A = (ai,j) is

a d× d matrix, then

xTAy =
∑

1≤i,j≤d
xiai,jyj .
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The Euclidean norm is |x| = (x2
1 + · · · + x2

d)
1/2, and we apply this also to

matrices in the form

|A| =
{ ∑

1≤i,j≤d
a2
i,j

}1/2

.

The Schwarz inequality says |xTy| ≤ |x| · |y|. This extends to

(A.7) |xTAy| ≤ |x| · |A| · |y|.

Lemma A.13. Let g1, . . . , gd be cadlag functions on [0, T ], and form the
Rd-valued cadlag function g = (g1, . . . , gd)

T with coordinates g1, . . . , gd. A
cadlag function on a bounded interval is bounded, so there exists a closed,
bounded set K ⊆ Rd such that g(s) ∈ K for all s ∈ [0, T ].

Let φ be a continuous function on [0, T ]2 ×K2 such that the function

(A.8) γ(s, t,x,y) =


φ(s, t,x,y)

|t− s|+ |y − x|2
, s 6= t or x 6= y

0, s = t and x = y

is also continuous on [0, T ]2×K2. Let π` = {0 = t`0 < t`1 < · · · < t`m(`) = T}
be a sequence of partitions of [0, T ] such that mesh(π`)→ 0 as `→∞, and

(A.9) C0 = sup
`

m(`)−1∑
i=0

∣∣g(t`i+1)− g(t`i)
∣∣2 <∞.

Then

lim
`→∞

m(`)−1∑
i=0

φ
(
t`i , t

`
i+1,g(t`i),g(t`i+1)

)
=

∑
s∈(0,T ]

φ
(
s, s,g(s−),g(s)

)
.(A.10)

The limit on the right is a finite, absolutely convergent sum.

Proof. To begin, note that [0, T ]2×K2 is a compact set, so any continuous
function on [0, T ]2 ×K2 is bounded and uniformly continuous.

We claim that

(A.11)
∑

s∈(0,T ]

∣∣g(s)− g(s−)
∣∣2 ≤ C0

where C0 is the constant defined in (A.9). This follows the reasoning of
Lemma A.9. Consider any finite set of points s1 < · · · < sn in (0, T ]. For
each `, pick indices i(k) such that sk ∈ (t`i(k), t

`
i(k)+1], 1 ≤ k ≤ n. For large

enough ` all the i(k)’s are distinct, and then by (A.9)

n∑
k=1

∣∣g(t`i(k)+1)− g(t`i(k))
∣∣2 ≤ C0.



360 A. Analysis

As `→∞ the inequality above becomes

n∑
k=1

∣∣g(sk)− g(sk−)
∣∣2 ≤ C0

by the cadlag property, because for each `, t`i(k) < sk ≤ t`i(k)+1, while both

extremes converge to sk. The sum on the left-hand side of (A.11) is by
definition the supremum of sums over finite sets, hence the inequality in
(A.11) follows.

By continuity of γ there exists a constant C1 such that

(A.12) |φ(s, t,x,y)| ≤ C1

(
|t− s|+ |y − x|2

)
for all s, t ∈ [0, T ] and x,y ∈ K. From (A.12) and (A.11) we get the bound∑

s∈(0,T ]

∣∣φ(s, s,g(s−),g(s)
)∣∣ ≤ C0C1 <∞.

This absolute convergence implies that the sum on the right-hand side of
(A.10) can be approximated by finite sums. Given ε > 0, pick α > 0 small
enough so that∣∣∣∣ ∑

s∈Uα

φ
(
s, s,g(s−),g(s)

)
−

∑
s∈(0,T ]

φ
(
s, s,g(s−),g(s)

)∣∣∣∣ ≤ ε
where

Uα = {s ∈ (0, T ] : |g(s)− g(s−)| ≥ α}

is the set of jumps of magnitude at least α.

Since γ is uniformly continuous on [0, T ]2 ×K2 and vanishes on the set
{(u, u, z, z) : u ∈ [0, T ], z ∈ K}, we can shrink α further so that

(A.13) |γ(s, t,x,y)| ≤ ε/(T + C0)

whenever |t − s| ≤ 2α and |y − x| ≤ 2α. Given this α, let I` be the set of
indices 0 ≤ i ≤ m(`)−1 such that (t`i , t

`
i+1]∩Uα = ∅. By Lemma A.8 and the

assumption mesh(π`) → 0 we can fix `0 so that for ` ≥ `0, mesh(π`) < 2α
and

(A.14) |g(t`i+1)− g(t`i)| ≤ 2α for all i ∈ I`.

Note that the proof of Lemma A.8 applies to vector-valued functions.

Let J ` = {0, . . . ,m(`) − 1} \ I` be the complementary set of indices i
such that (t`i , t

`
i+1] contains a point of Uα. Now we can bound the difference
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in (A.10). Consider ` ≥ `0.∣∣∣∣ m(`)−1∑
i=0

φ
(
t`i , t

`
i+1,g(t`i),g(t`i+1)

)
−

∑
s∈(0,T ]

φ
(
s, s,g(s−),g(s)

) ∣∣∣∣
≤
∑
i∈I`

∣∣φ(t`i , t`i+1,g(t`i),g(t`i+1)
)∣∣

+

∣∣∣∣ ∑
i∈J`

φ
(
t`i , t

`
i+1,g(t`i),g(t`i+1)

)
−
∑
s∈Uα

φ
(
s, s,g(s−),g(s)

) ∣∣∣∣+ ε.

The first sum after the inequality above is bounded above by ε, by (A.8),
(A.9), (A.13) and (A.14). The difference of two sums in absolute values
vanishes as ` → ∞, because for large enough ` each interval (t`i , t

`
i+1] for

i ∈ J ` contains a unique s ∈ Uα, and as `→∞,

t`i → s, t`i+1 → s, g(t`i)→ g(s−) and g(t`i+1)→ g(s)

by the cadlag property. (Note that Uα is finite by Lemma A.7 and for large
enough ` index set J` has exactly one term for each s ∈ Uα.) We conclude

lim sup
`→∞

∣∣∣∣ m(`)−1∑
i=0

φ
(
t`i , t

`
i+1,g(t`i),g(t`i+1)

)
−

∑
s∈(0,T ]

φ
(
s, s,g(s−),g(s)

) ∣∣∣∣ ≤ 2ε.

Since ε > 0 was arbitrary, the proof is complete. �

A.2. Differentiation and integration

For an open set G ⊆ Rd, C2(G) is the space of functions f : G→ R whose
partial derivatives up to second order exist and are continuous. We use
subscript notation for partial derivatives, as in

fx1 =
∂f

∂x1
and fx1,x2 =

∂2f

∂x1∂x2
.

These will always be applied to functions with continuous partial derivatives
so the order of differentiation does not matter. The gradient Df is the
column vector of first-order partial derivatives:

Df(x) =
[
fx1(x), fx2(x), . . . , fxd(x)

]T
.

The Hessian matrix D2f is the d× d matrix of second-order partial deriva-
tives:

D2f(x) =


fx1,x1(x) fx1,x2(x) · · · fx1,xd(x)
fx2,x1(x) fx2,x2(x) · · · fx2,xd(x)

...
...

. . .
...

fxd,x1(x) fxd,x2(x) · · · fxd,xd(x)

 .
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We prove a version of Taylor’s theorem. Let us write f ∈ C1,2([0, T ]×G)
if the partial derivatives ft, fxi and fxi,xj exist and are continuous on (0, T )×
G, and they extend as continuous functions to [0, T ]×G. The continuity of
ft is actually not needed for the next theorem. But this hypothesis will be
present in the application to the proof of Itô’s formula, so we assume it here
already.

Theorem A.14. (a) Let (a, b) be an open interval in R, f ∈ C1,2([0, T ] ×
(a, b)), s, t ∈ [0, T ] and x, y ∈ (a, b). Then there exists a point τ between s
and t and a point θ between x and y such that

f(t, y) = f(s, x) + fx(s, x)(y − x) + ft(τ, y)(t− s)
+ 1

2fxx(s, θ)(y − x)2.
(A.15)

(b) Let G be an open convex set in Rd, f ∈ C1,2([0, T ]×G), s, t ∈ [0, T ]
and x,y ∈ G. Then there exists a point τ between s and t and θ ∈ [0, 1]
such that, with ξ = θx + (1− θ)y,

f(t,y) = f(s,x) +Df(s,x)T (y − x) + ft(τ,y)(t− s)

+ 1
2(y − x)TD2f(s, ξ)(y − x).

(A.16)

Proof. Part (a). Check by integration by parts that

ψ(s, x, y) =

∫ y

x
(y − z)fxx(s, z) dz

satisfies

ψ(s, x, y) = f(s, y)− f(s, x)− fx(s, x)(y − x).

By the mean value theorem there exists a point τ between s and t such that

f(t, y)− f(s, y) = ft(τ, y)(t− s).

By the intermediate value theorem there exists a point θ between x and y
such that

ψ(s, x, y) = fxx(s, θ)

∫ y

x
(y − z) dz = 1

2fxx(s, θ)(y − x)2.

The application of the intermediate value theorem goes like this. Let fxx(s, u)
and fxx(s, v) be the minimum and maximum of fxx(s, · ) in [x, y] (or [y, x]
if y < x). Then

fxx(s, u) ≤ ψ(s, x, y)
1
2(y − x)2

≤ fxx(s, v).

The intermediate value theorem gives a point θ between a and b such that

fxx(s, θ) =
ψ(s, x, y)
1
2(y − x)2

.
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The continuity of fxx is needed here. Now

f(t, y) = f(s, x) + fx(s, x)(y − x) + ft(τ, y)(t− s) + ψ(s, x, y)

= f(s, x) + fx(s, x)(y − x) + ft(τ, y)(t− s) + 1
2fxx(s, θ)(y − x)2.

Part (b). Apply part (a) to the function g(t, r) = f
(
t,x + r(y − x)

)
for

(t, r) ∈ [0, T ]× (−ε, 1 + ε) for a small enough ε > 0 so that x + r(y−x) ∈ G
for −ε ≤ r ≤ 1 + ε. �

The following generalization of the dominated convergence theorem is
sometimes useful. It is proved by applying Fatou’s lemma to gn ± fn.

Theorem A.15. Let fn, f , gn, and g be measurable functions such that
fn → f , |fn| ≤ gn ∈ L1(µ) and

∫
gn dµ→

∫
g dµ <∞. Then∫

f dµ = lim
n→∞

∫
fn dµ.

Lemma A.16. Let (X,B, ν) be a general measure space. Assume gn → g
in Lp(ν) for some 1 ≤ p <∞. Then for any measurable set B ∈ B,∫

B
|gn|p dν →

∫
B
|g|p dν.

Proof. Let ν̃ denote the measure restricted to the subspace B, and g̃n and
g̃ denote functions restricted to this space. Since∫

B
|g̃n − g̃|p dν̃ =

∫
B
|gn − g|p dν ≤

∫
X
|gn − g|p dν

we have Lp(ν̃) convergence g̃n → g̃. Lp norms (as all norms) are subject to
the triangle inequality, and so∣∣ ‖g̃n‖Lp(ν̃) − ‖g̃‖Lp(ν̃)

∣∣ ≤ ‖g̃n − g̃‖Lp(ν̃) → 0.

Consequently ∫
B
|gn|p dν = ‖g̃n‖pLp(ν̃) → ‖g̃‖

p
Lp(ν̃) =

∫
B
|g|p dν.

�

A common technical tool is approximation of general functions by func-
tions of some convenient type. Here is one such result that we shall use
later.
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Lemma A.17. Let µ be a σ-finite Borel measure on R, 1 ≤ p < ∞, and
f ∈ Lp(µ). Let ε > 0. Then there is a continuous function g supported on
a bounded interval, and a step function h of the form

(A.17) h(t) =

m−1∑
i=1

αi1(si,si+1](t)

for some points −∞ < s1 < s2 < · · · < sm <∞ and reals αi, such that∫
R
|f − g|p dµ < ε and

∫
R
|f − h|p dµ < ε.

If there exists a constant C such that |f | ≤ C, then g and h can also be
selected so that |g| ≤ C and |h| ≤ C.

When the underlying measure is Lebesgue measure, one often writes
Lp(R) for the function spaces.

Proposition A.18 (Lp continuity). Let f ∈ Lp(R). Then

lim
h→0

∫
R
|f(t)− f(t+ h)|p dt = 0.

Proof. Check that the property is true for a step function of the type (A.17).
Then approximate an arbitrary f ∈ Lp(R) with a step function. �

Proposition A.19. Let T be an invertible linear transformation on Rn and
f a Borel or Lebesgue measurable function on Rn. Then if f is either in
L1(Rn) or nonnegative,

(A.18)

∫
Rn

f(x) dx = |detT |
∫
Rn

f(T (x)) dx.

The next inequality is a basic tool for deriving estimates. We use it in
the chapter on SDEs.

Lemma A.20. (Gronwall’s inequality) Let g be an integrable Borel function
on [a, b], f a nondecreasing function on [a, b], and assume that there exists
a constant B such that

g(t) ≤ f(t) +B

∫ t

a
g(s) ds, a ≤ t ≤ b.

Then

g(t) ≤ f(t)eB(t−a), a ≤ t ≤ b.
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Proof. The integral
∫ t
a g(s) ds of an integrable function g is an absolutely

continuous (AC) function of the upper limit t. At Lebesgue-almost every t
it is differentiable and the derivative equals g(t). Consequently the equation

d

dt

(
e−Bt

∫ t

a
g(s) ds

)
= −Be−Bt

∫ t

a
g(s) ds+ e−Btg(t)

is valid for Lebesgue-almost every t. Hence by the hypothesis

d

dt

(
e−Bt

∫ t

a
g(s) ds

)
= e−Bt

(
g(t)−B

∫ t

a
g(s) ds

)
≤ f(t)e−Bt for almost every t.

An absolutely continuous function is the integral of its almost everywhere
existing derivative. Integrating above and using the monotonicity of f give

e−Bt
∫ t

a
g(s) ds ≤

∫ t

a
f(s)e−Bs ds ≤ f(t)

B

(
e−Ba − e−Bt

)
from which ∫ t

a
g(s) ds ≤ f(t)

B

(
eB(t−a) − 1

)
.

Using the assumption once more,

g(t) ≤ f(t) +B · f(t)

B

(
eB(t−a) − 1

)
= f(t)eB(t−a). �

Exercises

Exercise A.1. Let f be a cadlag function on [a, b]. Show that f is bounded,
that is, supt∈[a,b]|f(t)| < ∞. Hint. Suppose |f(tj)| → ∞ for some sequence

tj ∈ [a, b]. By compactness some subsequence converges: tjk → t ∈ [a, b].
But cadlag says that f(t−) exists as a limit among real numbers and f(t+) =
f(t).

Exercise A.2. Let A be a set and x : A → R a function. Suppose

c1 ≡ sup

{∑
α∈B
|x(α)| : B is a finite subset of A

}
<∞.

Show that then the sum
∑

α∈A x(α) has a finite value in the sense of the
definition stated around equation (A.5).

Hint. Pick finite sets Bk such that
∑

Bk
|x(α)| > c1 − 1/k. Show that

the sequence ak =
∑

Bk
x(α) is a Cauchy sequence. Show that c = lim ak is

the value of the sum.





Appendix B

Probability

B.1. General matters

B.1.1. Measures and σ-algebras. It is sometimes convenient to work
with classes of sets that are simpler than σ-algebras. A collection A of
subsets of a space Ω is an algebra if

(i) Ω ∈ A.

(ii) Ac ∈ A whenever A ∈ A.

(iii) A ∪B ∈ A whenever A ∈ A and B ∈ A.

A collection S of subsets of Ω is a semialgebra if it has these properties:

(i) ∅ ∈ S.

(ii) If A,B ∈ S then also A ∩B ∈ S.

(iii) If A ∈ S, then Ac is a finite disjoint union of elements of S.

In applications, one sometimes needs to generate an algebra with a semial-
gebra, which is particularly simple.

Lemma B.1. Let S be a semialgebra, and A the algebra generated by S, in
other words the intersection of all algebras that contain S. Then A is the
collection of all finite disjoint unions of members of S.

Proof. Let B be the collection of all finite disjoint unions of members of
S. Since any algebra containing S must contain B, it suffices to verify
that B is an algebra. By hypothesis ∅ ∈ S and Ω = ∅c is a finite disjoint
union of members of S, hence a member of B. Since A ∪ B = (Ac ∩ Bc)c

(deMorgan’s law), it suffices to show that B is closed under intersections
and complements.

367
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Let A =
⋃

1≤i≤m Si and B =
⋃

1≤j≤n Tj be finite disjoint unions of

members of S. Then A ∩ B =
⋃
i,j Ai ∩ Bj is again a finite disjoint union

of members of S. By the properties of a semialgebra, we can write Sci =⋃
1≤k≤p(i)Ri,k as a finite disjoint union of members of S. Then

Ac =
⋂

1≤i≤m
Sci =

⋃
(k(1),...,k(m))

⋂
1≤i≤m

Ri,k(i).

The last union above is over m-tuples (k(1), . . . , k(m)) such that 1 ≤ k(i) ≤
p(i). Each

⋂
1≤i≤mRi,k(i) is an element of S, and for distinct m-tuples these

are disjoint because k 6= ` implies Ri,k ∩Ri,` = ∅. Thus Ac ∈ B too. �

Algebras are sufficiently rich to provide approximation with error of
arbitrarily small measure. The operation 4 is the symmetric difference
defined by A4B = (A\B)∪ (B \A). The next lemma is proved by showing
that the collection of sets that can be approximated as claimed form a σ-
algebra.

Lemma B.2. Suppose µ is a finite measure on the σ-algebra σ(A) generated
by an algebra A. Show that for every B ∈ σ(A) and ε > 0 there exists A ∈ A
such that µ(A4B) < ε.

A particularly useful tool for basic work in measure theory is Dynkin’s
π-λ theorem. Let L and R be collections of subsets of a space Ω. R is a
π-system if it is closed under intersections, in other words if A,B ∈ R, then
A ∩B ∈ R. L is a λ-system if it has the following three properties:

(1) Ω ∈ L.

(2) If A,B ∈ L and A ⊆ B then B \A ∈ L.

(3) If {An : 1 ≤ n <∞} ⊆ L and An ↗ A then A ∈ L.

Theorem B.3 (Dynkin’s π-λ theorem). If R is a π-system and L is a λ-
system that contains R, then L contains the σ-algebra σ(R) generated by
R.

For a proof, see the Appendix in [5]. The π-λ theorem has the following
version for functions.

Theorem B.4. Let R be a π-system on a space X such that X =
⋃
Bi for

some pairwise disjoint sequence Bi ∈ R. Let H be a linear space of bounded
functions on X. Assume that 1B ∈ H for all B ∈ R, and assume that H
is closed under bounded, increasing pointwise limits. The second statement
means that if f1 ≤ f2 ≤ f3 ≤ · · · are elements of H and supn,x fn(x) ≤ c
for some constant c, then f(x) = limn→∞ fn(x) is a function in H. It
follows from these assumptions that H contains all bounded σ(R)-measurable
functions.
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Proof. L = {A : 1A ∈ H} is a λ-system containing R. Note that X ∈ L fol-
lows because by assumption 1X = limn→∞

∑n
i=1 1Bi is an increasing limit

of functions in H. By the π-λ theorem indicator functions of all σ(R)-
measurable sets lie in H. By linearity all σ(R)-measurable simple functions
lie in H. A bounded, nonnegative σ(R)-measurable function is an increas-
ing limit of nonnegative simple functions, and hence in H. And again by
linearity, all bounded σ(R)-measurable functions lie in H. �

Lemma B.5. Let R be a π-system on a space X. Let µ and ν be two
(possibly infinite) measures on σ(R), the σ-algebra generated by R. Assume
that µ and ν agree on R. Assume further that there is a countable collection
of pairwise disjoint sets {Ri} ⊆ R such that X =

⋃
Ri and µ(Ri) = ν(Ri) <

∞. Then µ = ν on σ(R).

Proof. It suffices to check that µ(A) = ν(A) for all A ∈ σ(R) that lie inside
some Ri. Then for a general B ∈ σ(R),

µ(B) =
∑
i

µ(B ∩Ri) =
∑
i

ν(B ∩Ri) = ν(B).

Inside a fixed Rj , let

D = {A ∈ σ(R) : A ⊆ Rj , µ(A) = ν(A)}.
D is a λ-system. Checking property (2) uses the fact that Rj has finite
measure under µ and ν so we can subtract: if A ⊆ B and both lie in D, then

µ(B \A) = µ(B)− µ(A) = ν(B)− ν(A) = ν(B \A),

so B\A ∈ D. By hypothesis D contains the π-system {A ∈ R : A ⊆ Rj}. By
the π-λ-theorem D contains all the σ(R)-sets that are contained in Rj . �

Lemma B.6. Let ν and µ be two finite Borel measures on a metric space
(S, d). Assume that

(B.1)

∫
S
f dµ =

∫
S
f dν

for all bounded continuous functions f on S. Then µ = ν.

Proof. Given a closed set F ⊆ S,

(B.2) fn(x) =
1

1 + n dist(x, F )

defines a bounded continuous function which converges to 1F (x) as n→∞.
The quantity in the denominator is the distance from the point x to the set
F , defined by

dist(x, F ) = inf{d(x, y) : y ∈ F}.
For a closed set F , dist(x, F ) = 0 iff x ∈ F . Letting n → ∞ in (B.1) with
f = fn gives µ(F ) = ν(F ). Apply Lemma B.5 to the class of closed sets. �
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B.1.2. Inequalities and limits. There is a handful of inequalities that are
used constantly in probability. We already stated the conditional version of
Jensen’s inequality in Theorem 1.26. Of course the reader should realize
that as a special case we get the unconditioned version: f(EX) ≤ Ef(X)
for convex f for which the expectations are well-defined.

Proposition B.7. (i) (Markov’s inequality) For a random variable X ≥ 0
and a real number b > 0,

(B.3) P{X ≥ b} ≤ b−1EX.

(ii) (Chebyshev’s inequality) For a random variable X with finite mean and
variance and a real b > 0,

(B.4) P{|X − EX| ≥ b} ≤ b−2 Var(X).

Proof. Chebyshev’s is a special case of Markov’s, and Markov’s is quickly
proved:

P{X ≥ b} = E1{X ≥ b} ≤ b−1E
(
X1{X ≥ b}

)
≤ b−1EX. �

Let {An} be a sequence of events in a probability space (Ω,F , P ). We
say An happens infinitely often at ω if ω ∈ An for infinitely many n. Equiv-
alently,

{ω : An happens infinitely often} =
∞⋂
m=1

∞⋃
n=m

An.

The complementary event is

{ω : An happens only finitely many times} =

∞⋃
m=1

∞⋂
n=m

Acn.

Often it is convenient to use the random variable

N0(ω) = inf
{
m : ω ∈

∞⋂
n=m

Acn

}
with N0(ω) =∞ if An happens infinitely often at ω.

Lemma B.8. (Borel-Cantelli Lemma) Let {An} be a sequence of events in
a probability space (Ω,F , P ) such that

∑
n P (An) <∞. Then

P{An happens infinitely often} = 0,

or equivalently, P{N0 <∞} = 1.

Proof. Since the tail of a convergent series can be made arbitrarily small,
we have

P

( ∞⋂
m=1

∞⋃
n=m

An

)
≤
∞∑
n=m

P (An)→ 0 as m→∞. �
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The typical application of the Borel-Cantelli lemma is some variant of
this idea.

Lemma B.9. Let {Xn} be a sequence of random variables on (Ω,F , P ).
Suppose ∑

n

P{|Xn| ≥ ε} <∞ for every ε > 0.

Then Xn → 0 almost surely.

Proof. Translating the familiar ε-definition of convergence into an event
gives

{ω : Xn(ω)→ 0} =
⋂
k≥1

⋃
m≥1

⋂
n≥m
{ω : |Xn(ω)| ≤ 1/k}.

For each k ≥ 1, the hypothesis and the Borel-Cantelli lemma give

P

( ⋃
m≥1

⋂
n≥m
{|Xn| ≤ 1/k}

)
= 1− P

( ⋂
m≥1

⋃
n≥m
{|Xn| > 1/k}

)
= 1.

A countable intesection of events of probability one has also probability
one. �

Here is an example of the so-called diagonal trick for constructing a
single subsequence that satisfies countably many requirements.

Lemma B.10. For each j ∈ N let Y j and {Xj
n} be random variables such

that Xj
n → Y j in probability as n → ∞. Then there exists a single sub-

sequence {nk} such that, simultaneously for all j ∈ N, Xj
nk → Y j almost

surely as k →∞.

Proof. Applying part (iii) of Theorem 1.20 as it stands gives for each j

separately a subsequence nk,j such that Xj
nk,j → Y j almost surely as k →∞.

To get one subsequence that works for all j we need a further argument.

Begin by choosing for j = 1 a subsequence {n(k, 1)}k∈N such that
X1
n(k,1) → Y 1 almost surely as k → ∞. Along the subsequence n(k, 1) the

variables X2
n(k,1) still converge to Y 2 in probability. Consequently we can

choose a further subsequence {n(k, 2)} ⊆ {n(k, 1)} such that X2
n(k,2) → Y 2

almost surely as k →∞.

Continue inductively, producing nested subsequences

{n(k, 1)} ⊇ {n(k, 2)} ⊇ · · · ⊇ {n(k, j)} ⊇ {n(k, j + 1)} ⊇ · · ·

such that for each j, Xj
n(k,j) → Y j almost surely as k → ∞. Now set

nk = n(k, k). Then for each j, from k = j onwards nk is a subsequence of

n(k, j). Consequently Xj
nk → Y j almost surely as k →∞. �

Here is a convergence theorem for random series.
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Theorem B.11. Let {Xk}k∈N be independent random variables such that
E(Xk) = 0 and

∑
Var(Xk) < ∞. Then the random series

∑n
k=1Xk con-

verges almost surely to a finite limit as n→∞.

The basic convergence theorems of integration theory often work if al-
most everywhere convergence is replaced by the weaker types of convergence
that are common in probability. As an example, here is the dominated con-
vergence theorem under convergence in probability.

Theorem B.12. Let Xn be random variables on (Ω,F , P ), and assume
Xn → X in probability. Assume there exists a random variable Y ≥ 0 such
that |Xn| ≤ Y almost surely for each n, and EY <∞. Then EXn → EX.

Proof. It suffices to show that every subsequence {nk} has a further sub-
subsequence {nkj} such that EXnkj

→ EX as j → ∞. So let {nk} be

given. Convergence in probability Xnk → X implies almost sure conver-
gence Xnkj

→ X along some subsubsequence {nkj}. The standard domi-

nated convergence theorem now gives EXnkj
→ EX. �

B.1.3. More about conditional expectations. When we discuss condi-
tional expectations, A is a sub-σ-field of F on the probability space (Ω,F , P ).
It is sometimes convenient to know that, just like expectations, conditional
expectations are well-defined for nonnegative random variables without in-
tegrability assumptions.

Lemma B.13. Let X be a [0,∞]-valued random variable on (Ω,F , P ).
Then there exists an a.s. unique A-measurable [0,∞]-valued random variable
E(X|A) with the property that

E[1AX] = E
[
1AE(X|A)

]
for all A ∈ A.

Since X is not assumed integrable, the identity above may be ∞ = ∞
for some choices of A.

Proof. Existence. The sequence E(X ∧ n|A) is almost surely monotone
nondecreasing, and so the almost sure A-measurable [0,∞]-valued limit Y =
limn→∞E(X ∧ n|A) exists. By the monotone convergence theorem

E
[
1AY

]
= lim

n→∞
E
[
1AE(X ∧ n|A)

]
= lim

n→∞
E
[
1A · (X ∧ n)

]
= E

[
1AX

]
.

Consequently the integral identity E[1AY ] = E[1AX] holds for all A ∈ A.

Uniqueness. Suppose Y and Ỹ are two nonnegative A-measurable ran-
dom variables that satisfy the integral identity. Two calculations combine
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to yield the uniqueness P (Y 6= Ỹ ) = 0. First for any n ∈ N

E
[
1{Ỹ <Y≤n}(Y − Ỹ )

]
= E[1{Ỹ <Y≤n}Y ]− E[1{Ỹ <Y≤n}Ỹ ]

= E[1{Ỹ <Y≤n}X]− E[1{Ỹ <Y≤n}X] = 0.

It is of course essential that the last subtraction is between two finite num-
bers, which follows from the fact that the previous expectations are [0, n]-

valued. Union over n and reversing the roles of Y and Ỹ give P (Ỹ < Y <

∞) + P (Y < Ỹ <∞) = 0.

To handle infinite values, compute again first for n ∈ N:

n ≥ E[1{Y=∞,Ỹ≤n}Ỹ ] = E[1{Y=∞,Ỹ≤n}X] = E[1{Y=∞,Ỹ≤n}Y ].

Finiteness of the last expectation forces P (Y = ∞, Ỹ ≤ n) = 0, and this

extends to P (Ỹ <∞ = Y ) + P (Y <∞ = Ỹ ) = 0. �

Conditional expectations satisfy some of the same convergence theorems
as ordinary expectations.

Theorem B.14. The hypotheses and conclusions below are all “almost
sure”. In parts (i) and (ii) the random variables are not necessarily in-
tegrable.

(i) (Monotone Convergence Theorem) Suppose 0 ≤ Xn ≤ Xn+1 for all n
and Xn ↗ X. Then E(Xn|A)↗ E(X|A).

(ii) (Fatou’s Lemma) If Xn ≥ 0 for all n, then

E
(
limXn|A

)
≤ limE(Xn|A).

(iii) (Dominated Convergence Theorem) Suppose Xn → X, |Xn| ≤ Y
for all n, and Y ∈ L1(P ). Then E(Xn|A)→ E(X|A).

Proof. Part (i). By monotonicity the almost sure limit limn→∞E(Xn|A)
exists. By the ordinary monotone convergence theorem this limit satisfies
the defining property of E(X|A): for A ∈ A,

E
[
1A · lim

n→∞
E(Xn|A)

]
= lim

n→∞
E
[
1AE(Xn|A)

]
= lim

n→∞
E
[
1AXn

]
= E

[
1AX

]
.

Part (ii). The sequence Yk = infm≥kXm increases up to limXn. Thus
by part (i),

E
(
limXn|A

)
= lim

n→∞
E
(

inf
k≥n

Xk|A
)
≤ lim

n→∞
E(Xn|A).

Part (iii). Using part (ii),

E(X|A) + E(Y |A) = E
(
lim{Xn + Y }|A

)
≤ limE

(
Xn + Y |A

)
= limE(Xn|A) + E(Y |A).
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This gives limE(Xn|A) ≥ E(X|A). Apply this to−Xn to get limE(Xn|A) ≤
E(X|A). �

We defined uniform integrability for a sequence in Section 1.2.2. The
idea is the same for a more general collection of random variables.

Definition B.15. Let {Xα : α ∈ A} be a collection of random variables
defined on a probability space (Ω,F , P ). They are uniformly integrable if

lim
M→∞

sup
α∈A

E
[
|Xα| · 1{|Xα| ≥M}

]
= 0.

Equivalently, the following two conditions are satisfied. (i) supαE|Xα| <∞.
(ii) Given ε > 0, there exists a δ > 0 such that for every event B such that
P (B) ≤ δ,

sup
α∈A

∫
B
|Xα| dP ≤ ε.

Proof of the equivalence of the two formulations of uniform integrability
can be found for example in [4]. The next lemma is a great exercise, or a
proof can be looked up in Section 4.5 of [5].

Lemma B.16. Let X be an integrable random variable on a probability
space (Ω,F , P ). Then the collection of random variables

{E(X|A) : A is a sub-σ-field of F}

is uniformly integrable.

Lemma B.17. Suppose Xn → X in L1 on a probability space (Ω,F , P ).
Let A be a sub-σ-field of F . Then there exists a subsequence {nj} such that
E[Xnj |A]→ E[X|A] a.s.

Proof. We have

lim
n→∞

E
(
E[ |Xn −X| |A]

)
= lim

n→∞
E
(
|Xn −X|

)
= 0,

and since

|E[Xn|A]− E[X|A] | ≤ E[ |Xn −X| |A],

we conclude that E[Xn|A] → E[X|A] in L1. L1 convergence implies a.s.
convergence along some subsequence. �

Lemma B.18. Let X be a random d-vector and A a sub-σ-field on the
probability space (Ω,F , P ). Let

φ(θ) =

∫
Rd

eiθ
Tx µ(dx) (θ ∈ Rd)
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be the characteristic function (Fourier transform) of a probability distribu-
tion µ on Rd. Assume

E
[
exp{iθTX}1A

]
= φ(θ)P (A)

for all θ ∈ Rd and A ∈ A. Then X has distribution µ and is independent
of A.

Proof. Taking A = Ω above shows that X has distribution µ. Fix A such
that P (A) > 0, and define the probability measure νA on Rd by

νA(B) =
1

P (A)
E
[
1B(X)1A

]
, B ∈ BRd .

By hypothesis, the characteristic function of νA is φ. Hence νA = µ, which
is the same as saying that

P
(
{X ∈ B} ∩A

)
= νA(B)P (A) = µ(B)P (A).

Since B ∈ BRd and A ∈ A are arbitrary, the independence of X and A
follows. �

In Chapter 1, page 27, we defined conditional probabilities P (B|A) as
special cases of conditional expectations: P (B|A))(ω) = E(1B|A)(ω). The
question we address here is whether this definition can give us actual condi-
tional probability measures so that conditional expectations could then be
defined by integration. This point is not needed often in this text, but does
appear in the proof of Theorem 7.15.

It turns out that when the underlying spaces are complete, separable
metric spaces (such spaces are called Polish spaces), this can be arranged.
This is good news because all the spaces we usually work with are Polish,
such as Rd with its usual metric, CRd [0, T ] with the uniform metric, and
CRd [0,∞) with the metric of uniform convergence on compact time intervals.

Theorem B.19. (a) Let (Ω,F , P ) consist of a Polish space Ω with its Borel
σ-algebra F and a Borel probability measure P . Let A be a sub-σ-algebra
of F . Then there exists a mapping ω 7→ Pω from Ω into the space of Borel
probability measures on Ω such that, for each B ∈ F , ω 7→ Pω(B) is A-
measurable and Pω(B) is a version of P (B|A)(ω).

That Pω(B) is a version of P (B|A)(ω) means that Pω(B) satisfies the
definition of P (B|A)(ω). The term “version” is used because a conditional
expectation is only defined up to events of measure zero.

Pω is called the conditional probability measure of P , given A. It can be
used to define conditional expectations by integration: for any X ∈ L1(P ),

E(X|A)(ω) =

∫
Ω
X(ω̃)Pω(dω̃)
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defines a version of the conditional expectation.

When Ω is Polish, the space of probability measures M1(Ω) with its
so-called weak topology is also Polish. Hence M1(Ω) has its own Borel
σ-algebra. The mapping ω 7→ Pω from Ω into M1(Ω) is Borel measurable.

B.1.4. Continuity of stochastic processes. The extremely useful Kol-
mogorov-Centsov criterion establishes path-level continuity of a stochastic
process from moment estimates on increments. We prove the result for a
process X indexed by the d-dimensional unit cube [0, 1]d and with values
in a general complete separable metric space (S, ρ). The unit cube can be
replaced by any bounded rectangle in Rd by a simple affine transformation
s 7→ As+ h of the index.

Define

Dn =
{

(k1, . . . , kd)2
−n : k1, . . . , kd ∈ {0, 1, . . . , 2n}

}
and then the set D =

⋃
n≥0Dn of dyadic rational points in [0, 1]d. The trick

for getting a continuous version of a process is to use Lemma A.3 to rebuild
the process from its values on D.

Theorem B.20. Let (S, ρ) be a complete separable metric space.

(a) Suppose {Xs : s ∈ D} is an S-valued stochastic process defined
on some probability space (Ω,F , P ) with the following property: there exist
constants K <∞ and α, β > 0 such that

(B.5) E
[
ρ(Xs, Xr)

β
]
≤ K|s− r|d+α for all r, s ∈ D.

Then there exists an S-valued process {Ys : s ∈ [0, 1]d} on (Ω,F , P ) such
that the path s 7→ Ys(ω) is continuous for each ω ∈ Ω and P{Ys = Xs} = 1
for each s ∈ D. Furthermore, Y is Hölder continuous with index γ for each
γ ∈ (0, α/β): for each ω ∈ Ω there exists a constant C(γ, ω) <∞ such that

(B.6) ρ(Ys(ω), Yr(ω)) ≤ C(γ, ω)|s− r|γ for all r, s ∈ [0, 1]d.

(b) Suppose {Xs : s ∈ [0, 1]d} is an S-valued stochastic process that sat-
isfies the moment bound (B.5) for all r, s ∈ [0, 1]d. Then X has a continuous
version that is Hölder continuous with exponent γ for each γ ∈ (0, α/β).

Proof. For n ≥ 0 let ηn = max{ρ(Xr, Xs) : r, s ∈ Dn, |s−r| = 2−n} denote
the maximal nearest-neighbor increment among points in Dn. The idea of
the proof is to use nearest-neighbor increments to control all increments
by building paths through dyadic points. Pick γ ∈ (0, α/β). First, noting
that Dn has (2n + 1)d points and each point in Dn has at most 2d nearest
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neighbors,

E(ηβn) ≤
∑

r,s∈Dn:|s−r|=2−n

E
[
ρ(Xs, Xr)

β
]
≤ 2d(2n + 1)dK2−n(d+α)

≤ C(d)2−nα.

Consequently

E
[∑
n≥0

(2nγηn)β
]

=
∑
n≥0

2nγβEηβn ≤ C(d)
∑
n≥0

2n(γβ−α) <∞.

A nonnegative random variable with finite expectation must be finite almost
surely. So there exists an event Ω0 such that P (Ω0) = 1 and

∑
n(2nγηn)β <

∞ for ω ∈ Ω0. In particular, for each ω ∈ Ω0 there exists a constant
C(ω) <∞ such that

(B.7) ηn(ω) ≤ C(ω)2−nγ for all n ≥ 0.

This constant depends on γ we ignore that in the notation.

Now we construct the paths. Suppose first d = 1 so our dyadic rationals
are points in the interval [0, 1]. The simple but key observation is that given
r < s in D such that s− r ≤ 2−m, the interval (r, s] can be partitioned as
r = s0 < s1 < · · · < sM = s so that each pair (si−1, si) is a nearest-neighbor
pair in a particular Dn for some n ≥ m, and no Dn contributes more than
two such pairs .

To see this, start by finding the smallest m0 ≥ m such that (r, s] contains
an interval of the type (k2−m0 , (k + 1)2−m0 ]. At most two such intervals fit
inside (r, s] because otherwise we could have taken m0 − 1. Remove these
level m0 intervals from (r, s]. What remains are two intervals (r, k02−m0 ]
and (`02−m0 , s] both of length strictly less than 2−m0 . Now the process
continues separately on the left and right piece. On the left, next look for
the smallest m1 > m0 such that for some k1

(k1 − 1)2−m1 < r ≤ k12−m1 < k02−m0 .

This choice ensures that (k12−m1 , k02−m0) is a nearest-neighbor pair in Dm1 .
Remove the interval (k12−m1 , k02−m0 ], be left with (r, k12−m1 ], and continue
in this manner. Note that if r < k12−m1 then r cannot lie inDm1 . Since r lies
in some Dn0 eventually this process stops. The same process is performed
on the right.

Extend this to d dimensions by connecting each coordinate in turn. In
conclusion, if r, s ∈ D satisfy |s − r| ≤ 2−m we can write a finite sum
s−r =

∑
(si−si−1) such that each (si−1, si) is a nearest-neighbor pair from

a particular Dn for some n ≥ m, and no Dn contributes more than 2d such
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pairs. By the triangle inequality and by (B.7), for ω ∈ Ω0

ρ(Xr(ω), Xs(ω)) ≤
∑
n≥m

2dC(ω)2−nγ ≤ C(ω)2−mγ .

We utilized above the common convention of letting a constant change from
one step to the next when its precise value is of no consequence.

Now given any r, s ∈ D pick m ≥ 0 so that 2−m−1 ≤ |r− s| ≤ 2−m, and
use the previous display to write, still for ω ∈ Ω0,

(B.8)
ρ(Xr(ω), Xs(ω)) ≤ C(ω)2−mγ ≤ C(ω)2γ(2−m−1)γ

≤ C(ω)|s− r|γ .

This shows that for ω ∈ Ω0, X�(ω) is Hölder continuous with exponent γ, and
so in particular uniformly continuous. To define Y fix some point x0 ∈ S,
given s ∈ [0, 1]d find D 3 sj → s and define

Ys(ω) =

{
limj→∞Xsj (ω), ω ∈ Ω0

x0, ω /∈ Ω0.

The proof of Lemma A.3 shows that the definition of Ys(ω) does not depend
on the sequence sj chosen and s 7→ Ys(ω) is continuous for ω ∈ Ω0. For
ω /∈ Ω0 this path is continuous by virtue of being a constant. Also, Ys(ω) =
Xs(ω) for ω ∈ Ω0 and s ∈ D. The Hölder continuity of Y follows from (B.8)
by letting s and r converge to points in [0, 1]d. This completes the proof of
part (a) of the theorem.

For part (b) construct Y as in part (a) from the restriction {Xs : s ∈
D}. To see that P{Ys = Xs} = 1 also for s /∈ D, pick again a sequence
D 3 sj → s, ε > 0 and write

P{ρ(Xs, Ys) ≥ ε} ≤ P{ρ(Xs, Xsj ) ≥ ε/3}+ P{ρ(Xsj , Ysj ) ≥ ε/3}
+ P{ρ(Ysj , Ys) ≥ ε/3}.

As j → ∞, on the right the first probability vanishes by the moment as-
sumption and Chebyshev’s inequality:

P{ρ(Xs, Xsj ) ≥ ε/3} ≤ 3βε−βK|s− sj |d+α → 0.

The last probability vanishes as j → ∞ because ρ(Ysj (ω), Ys(ω)) → 0 for
all ω by the continuity of Y . The middle probability equals zero because
P{Ysj = Xsj} = 1.

In conclusion, P{ρ(Xs, Ys) ≥ ε} = 0 for every ε > 0. This implies that
with probability 1, ρ(Xs, Ys) = 0 or equivalently Xs = Ys. �
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B.2. Construction of Brownian motion

We construct here a one-dimensional standard Brownian motion by con-
structing its probability distribution on the “canonical” path space C =
CR[0,∞). Let Bt(ω) = ω(t) be the coordinate projections on C, and
FBt = σ{Bs : 0 ≤ s ≤ t} the filtration generated by the coordinate pro-
cess.

Theorem B.21. There exists a Borel probability measure P 0 on C =
CR[0,∞) such that the process B = {Bt : 0 ≤ t < ∞} on the probabil-
ity space (C,BC , P 0) is a standard one-dimensional Brownian motion with
respect to the filtration {FBt }.

The construction gives us the following regularity property of paths. Fix
0 < γ < 1

2 . For P 0-almost every ω ∈ C,

(B.9) sup
0≤s<t≤T

|Bt(ω)−Bs(ω)|
|t− s|γ

<∞ for all T <∞.

The proof relies on the Kolmogorov Extension Theorem 1.28. We do not
directly construct the measure on C. Instead, we first construct the process
on positive dyadic rational time points

Q2 =
{ k

2n
: k, n ∈ N

}
.

Then we apply an important theorem, the Kolmogorov-Centsov criterion, to
show that the process has a unique continuous extension from Q2 to [0,∞)
that satisfies the Hölder property. The distribution of this extension will be
the Wiener measure on C.

Let

(B.10) pt(x) =
1√
2πt

exp
{
−x

2

2t

}
be the density of the normal distribution with mean zero and variance t.
This function is also called the Gaussian kernel. For an increasing n-tuple of
positive times 0 < t1 < t2 < · · · < tn, let t = (t1, t2, . . . , tn). We shall write
x = (x1, . . . , xn) for vectors in Rn, and abbreviate dx = dx1 dx2 · · · dxn
to denote integration with respect to Lebesgue measure on Rn. Define a
probability measure µt on Rn by

(B.11) µt(A) =

∫
Rn

1A(x) pt1(x1)
n∏
i=2

pti−ti−1(xi − xi−1) dx

for A ∈ BRn . Before proceeding further, we check that this definition is
the right one, namely that µt is the distribution we want for the vector
(Bt1 , Bt2 , . . . , Btn).
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Lemma B.22. If a one-dimensional standard Brownian motion B exists,
then for A ∈ BRn

P
{

(Bt1 , Bt2 , . . . , Btn) ∈ A
}

= µt(A).

Proof. Define the nonsingular linear map

T (y1, y2, y3, . . . , yn) = (y1, y1 + y2, y1 + y2 + y3, . . . , y1 + y2 + · · ·+ yn)

with inverse

T−1(x1, x2, x3, . . . , xn) = (x1, x2 − x1, x3 − x2, . . . , xn − xn−1).

In the next calculation, use the fact that the Brownian increments are inde-
pendent and Bti −Bti−1 has density pti−ti−1 .

P
{

(Bt1 , Bt2 , Bt3 , . . . , Btn) ∈ A
}

= P
{
T (Bt1 , Bt2 −Bt1 , Bt3 −Bt2 , . . . , Btn −Btn−1) ∈ A

}
= P

{
(Bt1 , Bt2 −Bt1 , Bt3 −Bt2 , . . . , Btn −Btn−1) ∈ T−1A

}
=

∫
Rn

1A(Ty)pt1(y1)pt2−t1(y2) · · · ptn−tn−1(yn) dy.

Now change variables through x = Ty ⇔ y = T−1x. T has determinant
one, so by (A.18) the integral above becomes∫

Rn

1A(x)pt1(x1)pt2−t1(x2 − x1) · · · ptn−tn−1(xn − xn−1) dx = µt(A).

�

To apply Kolmogorov’s Extension Theorem we need to define consistent
finite-dimensional distributions. For an n-tuple s = (s1, s2, . . . , sn) of dis-
tinct elements from Q2 let π be the permutation that orders it. In other
words, π is the bijection on {1, 2, . . . , n} determined by

sπ(1) < sπ(2) < · · · < sπ(n).

(In this section all n-tuples of time points have distinct entries.) Define the
probability measure Qs on Rn by Qs = µπs ◦ π, or in terms of integrals of
bounded Borel functions,∫

Rn

f dQs =

∫
Rn

f(π−1(x)) dµπs.

Let us convince ourselves again that this definition is the one we want.
Qs should represent the distribution of the vector (Bs1 , Bs2 , . . . , Bsn), and



B.2. Construction of Brownian motion 381

indeed this follows from Lemma B.22:∫
Rn

f(π−1(x)) dµπs = E
[
(f ◦ π−1)(Bsπ(1) , Bsπ(2)), . . . , Bsπ(n))

]
= E

[
f(Bs1 , Bs2 , . . . , Bsn)

]
.

For the second equality above, apply to yi = Bsi the identity

π−1(yπ(1), yπ(2), . . . , yπ(n)) = (y1, y2, . . . , yn)

which is a consequence of the way we defined the action of a permutation
on a vector in Section 1.2.4.

Let us check the consistency properties (i) and (ii) required for the Ex-
tension Theorem 1.28. Suppose t = ρs for two distinct n-tuples s and t
from Q2 and a permutation ρ. If π orders t then π ◦ ρ orders s, because
tπ(1) < tπ(2) implies sρ(π(1)) < sρ(π(2)). One must avoid confusion over how
the action of permutations is composed:

π(ρs) = (sρ(π(1)), sρ(π(2)), . . . , sρ(π(n)))

because
(
π(ρs)

)
i

= (ρs)π(i) = sρ(π(i)). Then

Qs ◦ ρ−1 =
(
µπ(ρs) ◦ (π ◦ ρ)

)
◦ ρ−1 = µπt ◦ π = Qt.

This checks (i). Property (ii) will follow from this lemma.

Lemma B.23. Let t = (t1, . . . , tn) be an ordered n-tuple , and let t̂ =
(t1, . . . , tj−1, tj+1, . . . , tn) be the (n − 1)-tuple obtained by removing tj from
t. Then for A ∈ BRj−1 and B ∈ BRn−j ,

µt(A×R×B) = µt̂(A×B).

Proof. A basic analytic property of Gaussian densities is the convolution
identity

(B.12) (ps ∗ pt)(x) = ps+t(x),

where the convolution of two densities f and g is in general defined by

(f ∗ g)(x) =

∫
R
f(y)g(x− y) dy.

We leave checking this to the reader. The corresponding probabilistic prop-
erty is that the sum of independent normal variables is again normal, and
the means and variances add.

The conclusion of the lemma follows from a calculation. Abbreviate x′ =
(x1, . . . , xj−1), x′′ = (xj+1, . . . , xn) and x̂ = (x′,x′′). It is also convenient to
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use t0 = 0 and x0 = 0.

µt(A×R×B) =

∫
A
dx′

∫
R
dxj

∫
B
dx′′

n∏
i=1

pti−ti−1(xi − xi−1)

=

∫
A×B

dx̂
∏

i 6=j,j+1

pti−ti−1(xi − xi−1)

×
∫
R
dxj ptj−tj−1(xj − xj−1)ptj+1−tj (xj+1 − xj).

After a change of variables y = xj − xj−1, the interior integral becomes∫
R
dy ptj−tj−1(y)ptj+1−tj (xj+1 − xj−1 − y) = ptj−tj−1 ∗ ptj+1−tj (xj+1 − xj−1)

= ptj+1−tj−1(xj+1 − xj−1).

Substituting this back up gives∫
A×B

dx̂

n∏
i 6=j,j+1

pti−ti−1(xi − xi−1) · ptj+1−tj−1(xj+1 − xj−1)

= µt̂(A×B). �

As A ∈ BRj−1 and B ∈ BRn−j range over these σ-algebras, the class of
product sets A× B generates BRn−1 and is also closed under intersections.
Consequently by Lemma B.5, the conclusion of the above lemma generalizes
to

(B.13) µt{x ∈ Rn : x̂ ∈ G} = µt̂(G) for all G ∈ BRn−1 .

We are ready to check requirement (ii) of Theorem 1.28. Let t =
(t1, t2, . . . , tn−1, tn) be an n-tuple, s = (t1, t2, . . . , tn−1) and A ∈ BRn−1 .
We need to show Qs(A) = Qt(A × R). Suppose π orders t. Let j be the
index such that π(j) = n. Then s is ordered by the permutation

σ(i) =

{
π(i), i = 1, . . . , j − 1

π(i+ 1), i = j, . . . , n− 1.

A few observations before we compute: σ is a bijection on {1, 2, . . . , n− 1}
as it should. Also

σ(xπ−1(1), xπ−1(2), . . . , xπ−1(n−1)) = (xπ−1(σ(1)), xπ−1(σ(2)), . . . , xπ−1(σ(n−1)))

= (x1, . . . , xj−1, xj+1, . . . , xn) = x̂
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where the notation x̂ is used as in the proof of the previous lemma. And
lastly, using π̂t to denote the omission of the jth coordinate,

π̂t = (tπ(1), . . . , tπ(j−1), tπ(j+1), . . . , tπ(n))

= (tσ(1), . . . , tσ(j−1), tσ(j), . . . , tσ(n−1))

= σs.

Equation (B.13) says that the distribution of x̂ under µπt is µπ̂t. From these
ingredients we get

Qt(A×R) = µπt(π(A×R))

= µπt{x ∈ Rn : (xπ−1(1), xπ−1(2), . . . , xπ−1(n−1)) ∈ A}
= µπt{x ∈ Rn : x̂ ∈ σA}
= µπ̂t(σA) = µσs(σA) = Qs(A).

We have checked the hypotheses of Kolmogorov’s Extension Theorem for
the family {Qt}.

Let Ω2 = RQ2 with its product σ-algebra G2 = B(R)⊗Q2 . Write ξ = (ξt :
t ∈ Q2) for a generic element of Ω2. By Theorem 1.28 there is a probability
measure Q on (Ω2,G2) with marginals

Q
{
ξ ∈ Ω2 : (ξt1 , ξt2 , . . . , ξtn) ∈ B

}
= Qt(B)

for n-tuples t = (t1, t2, . . . , tn) of distinct elements from Q2 and B ∈ BRn .
We write EQ for expectation under the measure Q.

So far we have not included the time origin in the index set Q2. This
was for reasons of convenience. Because B0 has no density, to include t0 = 0
would have required two formulas for µt in (B.11), one for n-tuples with
zero, the other for n-tuples without zero. Now define Q0

2 = Q2 ∪ {0}. On
Ω2 define random variables {Xq : q ∈ Q0

2} by

(B.14) X0(ξ) = 0, and Xq(ξ) = ξq for q ∈ Q2.

The second step of our construction of Brownian motion is the proof
that the process {Xq} is uniformly continuous on bounded index sets. This
comes from an application of the Kolmogorov-Centsov criterion, Theorem
B.20.

Lemma B.24. Let {Xq} be the process defined by (B.14) on the probability
space (Ω2,G2, Q), where Q is the probability measure whose existence came
from Kolmogorov’s Extension Theorem. Let 0 < γ < 1

2 . Then there is an
event Γ such that Q(Γ) = 1 with this property: for all ξ ∈ Γ and T < ∞,
there exists a finite constant CT (ξ) such that

(B.15) |Xs(ξ)−Xr(ξ)| ≤ CT (ξ)|s− r|γ for all r, s ∈ Q0
2 ∩ [0, T ].
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In particular, for ξ ∈ Γ the function q 7→ Xq(ξ) is uniformly continuous on
Q0

2 ∩ [0, T ] for every T <∞.

Proof. We apply Theorem B.20 to an interval [0, T ]. Though Theorem
B.20 was written for the unit cube [0, 1]d it applies obviously to any closed
bounded interval or rectangle, via a suitable transformation of the index s.

We need to check the hypothesis (B.5). Due to the definition of the
finite-dimensional distributions of Q, this reduces to computing a moment
of the Gaussian distribution. Fix an integer m ≥ 2 large enough so that
1
2 −

1
2m > γ. Let 0 ≤ q < r be indices in Q0

2. In the next calculation, note
that after changing variables in the dy2-integral it no longer depends on y1,
and the y1-variable can be integrated away.

EQ
[
(Xr −Xq)

2m
]

=

∫∫
R2

(y2 − y1)2mpq(y1)pr−q(y2 − y1) dy1 dy2

=

∫
R
dy1 pq(y1)

∫
R
dy2 (y2 − y1)2mpr−q(y2 − y1)

=

∫
R
dy1 pq(y1)

∫
R
dxx2mpr−q(x) =

∫
R
dxx2mpr−q(x)

=
1√

2π(r − q)

∫
R
x2m exp

{
− x2

2(r − q)

}
dx

= (r − q)m
∫
R
z2m exp

{
−z

2

2

}
dz = Cm|r − q|m,

where Cm = 1 · 3 · 5 · · · (2m − 1), the product of the odd integers less than
2m. We have verified the hypothesis (B.5) for the values α = m − 1 and
β = 2m, and by choice of m,

0 < γ < α/β = 1
2 −

1
2m .

Theorem B.20 now implies the following. For each T < ∞ there exists an
event ΓT ⊆ Ω2 such that Q(ΓT ) = 1 and for every ξ ∈ ΓT there exists a
finite constant C(ξ) such that

(B.16) |Xr(ξ)−Xq(ξ)| ≤ C(ξ)|r − q|γ

for any q, r ∈ [0, T ] ∩Q0
2. Take

Γ =

∞⋂
T=1

ΓT .

Then Q(Γ) = 1 and each ξ ∈ Γ has the required property. �

With the local Hölder property (B.15) in hand, we can now extend the
definition of the process X to the entire time line [0,∞) while preserving
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the local Hölder property, as was done for part (b) in Theorem B.20. The
value Xt(ξ) for any t /∈ Q0

2 can be defined by

Xt(ξ) = lim
i→∞

Xqi(ξ)

for any sequence {qi} from Q0
2 such that qi → t. This tells us that the

random variables {Xt : 0 ≤ t < ∞} are measurable on Γ. To have a
continuous process Xt defined on all of Ω2 set

Xt(ξ) = 0 for ξ /∈ Γ and all t ≥ 0.

The process {Xt} is a one-dimensional standard Brownian motion. The
initial value X0 = 0 has been built into the definition, and we have the
path continuity. It remains to check finite-dimensional distributions. Fix
0 < t1 < t2 < · · · < tn. Pick points 0 < qk1 < qk2 < · · · < qkn from Q0

2 so
that qki → ti as k → ∞, for 1 ≤ i ≤ n. Pick them so that for some δ > 0,
δ ≤ qki − qki−1 ≤ δ−1 for all i and k. Let φ be a bounded continuous function
on Rn. Then by the path-continuity (use again t0 = 0 and x0 = 0)∫

Ω2

φ(Xt1 , Xt2 , . . . , Xtn) dQ = lim
k→∞

∫
Ω2

φ(Xqk1
, Xqk2

, . . . , Xqkn
) dQ

= lim
k→∞

∫
Rn

φ(x)

n∏
i=1

pqki −qki−1
(xi − xi−1) dx

=

∫
Rn

φ(x)
n∏
i=1

pti−ti−1(xi − xi−1) dx =

∫
Rn

φ(x)µt(dx).

The second-last equality above is a consequence of dominated convergence.
An L1(Rn) integrable bound can be gotten by

pqki −qki−1
(xi − xi−1) =

exp
{
− (xi−xi−1)2

2(qki −qki−1)

}
√

2π(qki − qki−1)
≤

exp
{
− (xi−xi−1)2

2δ−1

}
√

2πδ
.

Comparison with Lemma B.22 shows that (Xt1 , Xt2 , . . . , Xtn) has the dis-
tribution that Brownian motion should have. An application of Lemma
B.6 is also needed here, to guarantee that it is enough to check continuous
functions φ. It follows that {Xt} has independent increments, because this
property is built into the definition of the distribution µt.

To complete the construction of Brownian motion and finish the proof
of Theorem 2.27, we define the measure P 0 on C as the distribution of the
process X = {Xt}:

P 0(B) = Q{ξ ∈ Ω2 : X(ξ) ∈ A} for A ∈ BC .

For this, X has to be a measurable map from Ω2 into C. This follows
from Exercise 1.8(b) because BC is generated by the projections πt : ω 7→
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ω(t). The compositions of projections with X are precisely the coordinates
πt ◦X = Xt which are measurable functions on Ω2. The coordinate process
B = {Bt} on C has the same distribution as X by the definition of P 0:

P 0{B ∈ H} = P 0(H) = Q{X ∈ H} for H ∈ BC .

We also need to check that B has the correct relationship with the
filtration {FBt }, as required by Definition 2.26. B is adapted to {FBt } by
construction. The independence of Bt −Bs and FBs follows from two facts:
B inherits independent increments from X (independence of increments is a
property of finite-dimensional distributions), and the increments {Bv−Bu :
0 ≤ u < v ≤ s} generate FBs . This completes the proof of Theorem 2.27.

Hölder continuity (2.34) follows from the equality in distribution of the
processes B and X, and because the Hölder property of X was built into
the construction through the Kolmogorov-Centsov theorem.
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Notation and
Conventions

Mathematicians tend to use parentheses ( ), braces { } and square brackets
[ ] interchangeably in many places. But there are situations where the de-
limiters have specific technical meanings and they cannot be used carelessly.
One example is (a, b) for an ordered pair or an open interval, and [a, b] for a
closed interval. Then there are situations where one type is conventionally
preferred and deviations are discouraged: for example f(x) for a function
value and {x : f(x) ∈ B} for sets. An example were all three forms are
acceptable is the probability of the event X ∈ B: P (X ∈ B), P [X ∈ B] or
P{X ∈ B}.

The time variable of a stochastic process can be in two places: Xt or
X(t). No distinction is meant between the two. For example Bt and B(t)
both denote Brownian motion at time t.

With expectations there is the question of the meaning of EX2. Does
the square come before or after the expectation? The notation in this book
follows these conventions:

EX2 = E(X2) while E[X]2 = E(X)2 =
(
E[X]

)2
.

When integrating a function of time and space over [0, t]×B, there is a
choice between∫∫

[0,t]×B
f(s, x) ds dx and

∫
[0,t]×B

f(s, x) ds dx.
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390 Notation and Conventions

While the former is more familiar from calculus, we opt for the latter to
avoid proliferating integral signs. Since ds dx can be taken to mean product
measure on [0, t]×B (Fubini’s theorem),

∫
makes just as much sense as

∫∫
.

Vectors are sometimes boldface: u = (u1, u2, . . . , un). In multivariate
integrals we can abbreviate du = du1,n = du1 du2 · · · dun.

A dot can be a placeholder for a variable. For example, a stochastic pro-
cess {Xt} indexed by time can be abbreviated as X = {Xt} or as X� = {Xt}.
The latter will be used when omission of the dot may lead to ambiguity.

Br(x) is the open ball of radius r centered at point x in a metric space.

C2(D) is a function space introduced on page 208.

C1,2([0, T ]×D) is a function space introduced on page 212.

δi,j = 1{i = j} =

{
1 if x = y

0 if x 6= y
is sometimes called the Dirac delta.

δx(A) =

{
1 if x ∈ A
0 if x /∈ A

is the point mass at x, or the probability

measure that puts all its mass on the point x.

4 denotes the symmetric difference of two sets:

A4B = (A \B) ∪ (B \A) = (A ∩Bc) ∪ (B ∩Ac).
∆f(x) = fx1,x1(x) + · · ·+ fxd,xd(x) is the Laplace operator.

f(t−) = lim
s↗t, s<t

f(s) is the left limit of f at t.

∆Z(t) = Z(t)− Z(t−) is the jump at t of the cadlag process Z.

iff is short for if and only if.

L2 = L2(M,P) is the space of predictable processes locally L2 under µM .

L(M,P) is the space of predictable processes locally in L2(M,P), Definition 5.21.

L2(W ) is the space of locally square-integrable adapted processes that can be

integrated by white noise, page 320.

m is Lebesgue measure, Section 1.1.2.

M1(Ω) is the space of Borel probability measures on the metric space Ω.

M2 is the space of cadlag L2-martingales.

M2,loc is the space of cadlag, local L2-martingales.

µM (A) = E

∫
[0,∞)

1A(t, ω)d[M ]t(ω) is the Doléans measure
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of a square-integrable cadlag martingale M .

N = {1, 2, 3, . . . } is the set of positive integers.

p(t, x, y) = pt(y − x) =
1√
2πt

exp
{
−(y − x)2

2t

}
is the Gaussian kernel;

if x, y ∈ Rd then p(t, x, y) = (2πt)−
d
2 exp

{
− 1

2t
|y − x|2

}
.

P is the predictable σ-field.

R+ = [0,∞) is the set of nonnegative real numbers.

S2 is the space of simple predictable processes.

VF is the total variation of a function F , Section 1.1.9.

X∗T (ω) = sup
0≤t≤T

|Xt(ω)|.

Xτ
t = Xτ∧t defines the stopped process Xτ .

Z− is the left limit process Z−(t) = Z(t−).

Z+ = {0, 1, 2, . . . } is the set of nonnegative integers.





Index

L2 valued measure

σ-finite, 318

L(M,P), 161

µM -equivalence, 137

π-λ theorem, 368

σ-algebra, 2

as information, 24

augmented, 35

Borel, 3

generated by a class of functions, 3

generated by a class of sets, 2

product, 4, 36

σ-field, 2

σ-finite

L2 valued measure, 318

measure, 4

absolute continuity of measure, 17

abuse of notation, 82, 234

algebra of sets, 2, 318, 346, 367

augmented filtration, 40

Bessel process, 223

beta distribution, 22

Blumenthal’s 0–1 law, 70

Borel σ-algebra, 3

Borel-Cantelli lemma, 370

bounded set, 318

bounded variation, 14

Brownian bridge, 236, 310

Brownian motion

absorbed at the origin, 85

Blumenthal’s 0–1 law, 70

construction, 379

definition, 64

Doléans measure, 136

Gaussian process, 84

geometric, 235

geometric Brownian motion, 239

Hölder continuity, 65, 73

hitting time, 226

Lévy’s characterization, 222

martingale property, 65

modulus of continuity, 76

multidimensional, 64

non-differentiability, 75

quadratic cross-variation, 86

quadratic variation, 76

reflected, 295

reflection principle, 72, 295

running maximum, 72, 295

standard, 64

strong Markov property, 71

transition probability density, 71

unbounded variation, 75, 77

Brownian sheet, 317

Burkholder-Davis-Gundy inequalities, 224

BV function, 14

cadlag, 44

caglad, 44

Cameron-Martin-Girsanov theorem, 300

change of variables, 9

characteristic function, 22, 234

characteristic function (of a set), 6

Chebyshev’s inequality, 370

complete measure, 9

complete, separable metric space, 375

conditional distribution, 252, 311, 375

conditional expectation, 311

convergence theorems, 373

definition, 26
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Jensen’s inequality, 29

convex function, 29

cumulative distribution function, 21

cylinder function, 311

diagonal trick, 371

discrete space, 80

distribution function, 21

distributional derivative, 293

Doléans measure, 136

dominated convergence theorem, 8

for conditional expectations, 373

generalized, 363

stochastic integral, 181

under convergence in probability, 372

Doob’s inequality, 94

equality

almost sure, 23

in distribution, 23

equality in distribution

stochastic processes, 41

exponential distribution, 22

memoryless property, 29, 36

Fatou’s lemma, 8

for conditional expectations, 373

Feller process, 60

Feynman-Kac formula, 226

filtration, 39

augmented, 40

complete, 40

left-continuous, 45

right-continuous, 45

usual conditions, 45, 48, 98

Fisk-Stratonovich integral, 228

Fubini’s theorem, 12

fundamental theorem of local martingales,

98

FV process, 44

gamma distribution, 22

gamma function, 22

Gaussian (normal) distribution, 22, 379

moments, 36

Gaussian kernel, 71, 311, 328, 379

Gaussian process, 38, 84

isonormal process, 316

geometric Brownian motion, 235, 239

Girsanov theorem, 300

Gronwall’s inequality, 364

for SDEs, 264

Hölder continuity, 353

Brownian motion, 65, 384

stochastic integral, 228

Hahn decomposition, 14

heat equation, 71, 328

hitting time, 46

is a stopping time, 48

iff, 390

increasing process, 52

natural, 106

independence, 25

pairwise, 36

indicator function, 6

integral, 6

Lebesgue-Stieltjes, 15

Riemann, 10

Riemann-Stieltjes, 15

integral sign, 389

integrating factor, 232

integration by parts, 199

invariant distribution, 235

isonormal process, 316

Itô equation, 232

strong Markov property, 251

strong solution, 240

uniqueness in distribution, 249, 308

weak solution, 308

Itô’s formula, 208

bounded variation case, 211

continuous process, 211

for Brownian motion, 211

vector-valued, 213

weak derivative, 293

Jensen’s inequality, 29, 370

Jordan decomposition

of a function, 15

of a signed measure, 14

Kolmogorov’s extension theorem, 32

Kolmogorov-Centsov criterion, 376

Kunita-Watanabe inequality, 53

Lévy’s 0-1 law, 96

Lévy’s characterization of Brownian

motion, 222, 300

Laplace operator, 216

Laplace transform, 226

law (probability distribution) of a random
variable, 21

Lebesgue integral, 6

Lebesgue measure, 6

Lebesgue-Stieltjes measure, 5, 15

point of increase, 34

left limit, 16

Lipschitz continuity, 353

local L2 martingale, 97

local function, 311

local martingale, 97

fundamental theorem, 98
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quadratic variation, 100

Markov process, 57, 58

from Itô equation, 251

transition probability, 59

Markov’s inequality, 370

martingale

convergence theorem, 96

Doob’s inequality, 94

local L2 martingale, 97

local martingale, 97

is a martingale, 112, 301

quadratic variation, 100

semimartingale, 99

spaces of martingales, 108

martingale measure, 318

covariance functional, 319

orthogonal, 319

worthy, 320

measurable

function, 2

set, 2

space, 2

measurable rectangle, 12

measure, 4

L2 valued, 318

σ-finite, 4

absolute continuity, 17

complete, 9

Lebesgue, 6

Lebesgue-Stieltjes, 5

product, 12

signed, 13

memoryless property, 36

mesh of a partition, 10, 76

metric

uniform convergence on compacts, 56

monotone convergence theorem, 8

for conditional expectations, 373

normal (Gaussian) distribution, 22, 379

Novikov’s condition, 301

null set, 8, 11, 12, 23

ordinary differential equation (ODE), 232,
240

Ornstein-Uhlenbeck process, 233, 312

orthogonal martingale measure, 319

pairwise independence, 36

partition, 10, 14, 76

path space, 56

C–space, 56

D–space, 56

point of increase, 34

Poisson process

compensated, 80, 86

Doléans measure, 137

homogeneous, 79

Markov property, 80

martingale characterization, 227

martingales, 86

not predictable, 202

on an abstract space, 78

semigroup, 81

strong Markov property, 80

Poisson random measure, 78

space-time, 205

Polish space, 252, 375

positive definite function, 38

power set, 2

predictable

σ-field, 134

process, 134, 202

rectangle, 134

predictable covariation, 105

predictable quadratic variation, 105

probability density, 21

probability distribution, 21

beta, 22

exponential, 22

gamma, 22

normal (Gaussian), 22

standard normal, 23

uniform, 22

product σ-algebra, 4

product measure, 12

progressive measurability, 40, 43, 44, 48

quadratic covariation, 49

quadratic variation, 49

local martingales, 100

predictable, 105

semimartingales, 103

Radon-Nikodym derivative

conditional expectation, 26

existence, 17

local time, 285

probability density, 21

Radon-Nikodym theorem, 17

random series, 372

reflection problem, 295

Riemann integral, 10

Riemann sum, 10

ring of sets, 318, 346

semialgebra of sets, 367

semigroup property, 60

semimartingale, 99

separable metric space, 13

simple function, 6

simple predictable process, 119, 138

spaces of martingales, 108
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standard normal distribution, 23
step function

approximation by, 363

stochastic differential, 216
stochastic differential equation (SDE), 231

Brownian bridge, 236
Itô equation, 232

Ornstein-Uhlenbeck process, 233

stochastic exponential, 236
strong solution, 240

uniqueness in distribution, 249, 308

weak existence, 308
weak solution, 309

stochastic exponential, 236

stochastic integral
cadlag integrand, 168

characterization in terms of quadratic

covariation, 195
continuous local martingale integrator,

165

dominated convergence theorem, 181
Fubini’s theorem, 347

FV martingale intergator, 173
Hölder continuity, 228

integration by parts, 199

irrelevance of time origin, 163
jumps, 178

limit of Riemann sums, 168, 175

local L2 martingale integrator, 162
quadratic (co)variation of, 193

semimartingale integrator, 172

substitution, 196, 197
stochastic interval, 153

stochastic partial differential equation

(SPDE)
mild solution, 331

weak form, 329
stochastic process, 40

cadlag, 44

caglad, 44
continuous, 44

equality in distribution, 41

finite variation (FV), 44
Gaussian, 84

increasing, 52
indistinguishability, 41
modification, 41

progressively measurable, 40

version, 41, 340
stopping time, 41

hitting time, 46, 48
maximum, 42

minimum, 42

Stratonovich integral, 117
strong Markov property, 60

for Brownian motion, 71

for Itô equation, 251

Tanaka’s formula, 293

Taylor’s theorem, 362
Tonelli’s theorem, 12

total variation
of a function, 14

of a measure, 14

transition probability, 59
transition probability density of Brownian

motion, 71

uniform convergence in probability, 111

uniform distribution, 22

uniform integrability, 24, 374
uniqueness in distribution, 249, 308

usual conditions, 45, 48, 98

weak derivative, 293

weak uniqueness, 249, 308
white noise, 315

covariance measure, 319

Wiener measure, 65
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