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ABSTRACT. This material is for a course on stochastic analysis at UW—
Madison. The text covers the development of the stochastic integral of
predictable processes with respect to cadlag semimartingale integrators,
It6’s formula in an open domain in R", an existence and uniqueness
theorem for an equation of the type dX = dH + F(t,X)dY where Y
is a cadlag semimartingale, and local time and Girsanov’s theorem for
Brownian motion. There is also a chapter on the integral with respect
to the white noise martingale measure and solving the stochastic heat
equation with multiplicative noise.

The text is self-contained except for certain basics of integration
theory and probability theory which are explained but not proved. In
addition, the reader needs to accept without proof two basic martin-
gale theorems: (i) the existence of quadratic variation for a cadlag local
martingale; and (ii) the so-called fundamental theorem of local martin-
gales that states the following: given a cadlag local martingale M and
a positive constant ¢, M can be decomposed as N + A where N and A
are cadlag local martingales, jumps of N are bounded by ¢, and A has
paths of bounded variation.

This text intends to provide a stepping stone to deeper books such
as Karatzas-Shreve and Protter. The hope is that this material is acces-
sible to students who do not have an ideal background in analysis and
probability theory, and useful for instructors who (like the author) are
not experts on stochastic analysis.
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Chapter 1

Measures, Integrals,
and Foundations of
Probability Theory

In this chapter we sort out the integrals one typically encounters in courses
on calculus, analysis, measure theory, probability theory and various applied
subjects such as statistics and engineering. These are the Riemann inte-
gral, the Riemann-Stieltjes integral, the Lebesgue integral and the Lebesgue-
Stieltjes integral. The starting point is the general Lebesgue integral on an
abstract measure space. The other integrals are special cases, even though
they have definitions that look different.

This chapter is not a complete treatment of the basics of measure theory.
It provides a brief unified explanation for readers who have prior familiarity
with various notions of integration. To avoid unduly burdening this chapter,
many technical matters that we need later in the book have been relegated
to the appendix. For details that we have omitted and for proofs the reader
should turn to any of the standard textbook sources, such as Folland [&].

In the second part of the chapter we go over the measure-theoretic foun-
dations of probability theory. Readers who know basic measure theory and
measure-theoretic probability can safely skip this chapter.

1.1. Measure theory and integration

A space X is in general an arbitrary set. For integration, the space must
have two additional structural elements, namely a o-algebra and a measure.
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2 1. Measures, Integrals, and Foundations of Probability Theory

1.1.1. o-algebras. Suppose A is a collection of subsets of X. (Terms such
as class, collection and family are used as synonyms for set to avoid speaking
of “sets of sets,” or even “sets of sets of sets.”) Then A is a o-algebra (also
called a o-field) if it has these properties:

(i) X e Aand 0 € A.
(ii) If A € A then also A€ € A.

(iii) If {A;} is a sequence of sets in A, then also their union | J; 4; is an
element of A.

The restriction to countable unions in part (iii) is crucial. Unions over
arbitrarily large collections of sets are not permitted. On the other hand, if
part (iii) only permits finite unions, then A is called an algebra of sets, but
this is not rich enough for developing a useful theory of integration.

A pair (X, A) where X is a space and A is a o-algebra on X is called
a measurable space. The elements of A are called measurable sets. Suppose
(X, A) and (Y,B) are two measurable spaces and f : X — Y is a map
(another term for a function) from X into Y. Then f is measurable if for
every B € B, the inverse image

J7HB)={re X: f(x)e B} ={f € B}
lies in A. Measurable functions are the fundamental object in measure
theory. Measurability is preserved by composition f o g of functions.

In finite or countable spaces the useful o-algebra is usually the power set
2X which is the collection of all subsets of X. Not so in uncountable spaces.
Furthermore, the important o-algebras are usually very complicated so that
it is impossible to give a concise criterion for testing whether a given set is
a member of the g-algebra. The preferred way to define a o-algebra is to
generate it by a smaller collection of sets that can be explicitly described.
This procedure is analogous to spanning a subspace of a vector space with a
given set of vectors. Except that the generated o-algebra usually lacks the
kind of internal description that vector subspaces have as the set of finite
linear combinations of basis vectors. Generation of o-algebras is based on
this lemma whose proof the reader should fill in as an exercise, if this material
is new.

Lemma 1.1. Let I be a family of o-algebras on a space X. Then the

tersection
c=(A

Ael
s also a o-algebra.

Let £ be an arbitrary collection of subsets of X. The o-algebra generated
by £, denoted by o(E), is by definition the intersection of all o-algebras on
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X that contain £. This intersection is well-defined because there is always
at least one o-algebra on X that contains £, namely the power set 2X. An
equivalent characterization of o (&) is that it satisfies these three properties:
(i) o(€) D&, (i) 0(€) is a o-algebra on X, and (iii) if B is any o-algebra on
X that contains £, then o(£) C B. This last point justifies calling o(&) the
smallest o-algebra on X that contains &£.

A related notion is a c-algebra generated by collection of functions.
Suppose (Y,H) is a measurable space, and ® is a collection of functions
from X into Y. Then the o-algebra generated by ® is defined by

(1.1) o(®) =c{{feB}:fe® BeH}
o(®) is the smallest o-algebra that makes all the functions in ® measurable.

Example 1.2 (Borel o-algebras). If X is a metric space, then the Borel
o-field Bx is the smallest o-algebra on X that contains all open sets. The
members of Bx are called Borel sets. We also write B(X) when subscripts
become clumsy.

It is often technically convenient to have different generating sets for a
particular o-algebra. For example, the Borel o-algebra Br of the real line
is generated by either one of these classes of intervals:

{(a,b] : —co <a<b< oo} and {(—o00,b):—00<b< oo}

We shall also need the Borel g-algebra B|_, ] of the extended real line
[—00, 00]. We define this as the smallest o-algebra that contains all Borel sets
on the real line and the singletons {—oo} and {co}. This o-algebra is also
generated by the intervals {[—o00, b] : b € R}. It is possible to define a metric
on [—o0,00] such that this o-algebra is the Borel o-algebra determined by
the metric.

When we speak of real-valued or extended real-valued measurable func-
tions on an arbitrary measurable space (X,.A), we always have in mind the
Borel o-algebra on R and [—o0, o0]. One can then check that measurability
is preserved by algebraic operations (f+g, fg, f/g, whenever these are well-
defined) and by pointwise limits and suprema of sequences: if {f, : n € N}
is a sequence of real-valued measurable functions, then for example the func-
tions

g(x) = sup fp(x) and h(z)= lim f,(z)
are measurable. The set N above is the set of natural numbers N =
{1,2,3,...}. Thus measurability is a more robust property than other fa-
miliar types of regularity, such as continuity or differentiability, that are not
in general preserved by pointwise limits.
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If (X, Bx) is a metric space with its Borel o-algebra, then every continu-
ous function f: X — R is measurable. The definition of continuity implies
that for any open G C R, f~!(G) is an open set in X, hence a member
of Bx. Since the open sets generate Br, this suffices for concluding that
f~Y(B) € Bx for all Borel sets B C R.

Example 1.3 (Product o-algebras). Of great importance for probability
theory are product o-algebras. Let Z be an arbitrary index set, and for
each i € 7 let (Xj,A;) be a measurable space. The Cartesian product space
X = JLier Xi is the space of all functions = : 7 — J;c7 X; such that
x(i) € X; for each i. Alternate notation for z(i) is z;. Coordinate projection
maps on X are defined by f;(x) = x;, in other words f; maps X onto X; by
extracting the i-coordinate of the Z-tuple z. The product o-algebra Q.7 A;
is by definition the o-algebra generated by the coordinate projections {f; :
ieT}.

1.1.2. Measures. Let us move on to discuss the second fundamental in-
gredient of integration. Let (X,.A) be a measurable space. A measure is a
function p : A — [0, 00] that satisfies these properties:

(i) u(0) = 0.
(ii) If {A;} is a sequence of sets in A such that A;NA; = () for all ¢ # j
(pairwise disjoint is the term), then

M(U Ai) = Sua,

Property (ii) is called countable additivity. It goes together with the fact
that o-algebras are closed under countable unions, so there is no issue about
whether the union |J; A; is a member of A. The triple (X, A, ) is called a
measure space.

If 1(X) < oo then p is a finite measure. If p(X) =1 then u is a prob-
ability measure. Infinite measures arise naturally. The ones we encounter
satisfy a condition called o-finiteness: p is o-finite if there exists a sequence
of measurable sets {V;} such that X = (JV; and u(V;) < oo for all i. A
measure defined on a Borel o-algebra is called a Borel measure.

Example 1.4. Suppose X = {z; : i« € N} is a countable space, and let
{a; : i € N} be a sequence of nonnegative real numbers. Then

wA) = > a
i EA

defines a o-finite (or finite, if 3" a; < 00) measure on the o-algebra 2% of all
subsets of X.
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The example shows that to define a measure on a countable space, one
only needs to specify the measures of the singletons, and the rest follows
by countable additivity. Again, things are more complicated in uncountable
spaces. For example, we would like to have a measure m on the Borel sets of
the real line with the property that the measure m(I) of an interval I is the
length of the interval. (This measure is known as the Lebesgue measure.)
But then the measure of any singleton must be zero. So there is no way to
construct the measure by starting with singletons.

Since it is impossible to describe every element of a o-algebra, it is
even more impossible to give a simple explicit formula for the measure of
every measurable set. Consequently we need a theorem that “generates” a
measure from some modest ingredients that can be explicitly written down.
Here is a useful one.

First, a class S of subsets of X is a semialgebra if it has these properties:
i)0eS

(ii) If A, B € S then also AN B € S.

(iii) If A € S, then A€ is a finite disjoint union of elements of S.

A good example on the real line to keep in mind is
(1.2) S={(a,b]: —o0 <a<b<oo}U{(a,00): —00<a< oo}
This semialgebra generates Bg.

Theorem 1.5. Let S be a semialgebra, and py : S — [0, 00] a function with
these properties:

(i) no(@) =0
(ii) If A € S is a finite disjoint union of sets Bi,...,B, in S, then
po(A) =32 po(Bi).
(i) If A € S is a countable disjoint union of sets By, Ba,..., By, ... in
S, then po(A) < 3 po(Bi).

Assume furthermore that there exists a sequence of sets {A;} in S such that
X =UAi and po(A;) < oo for alli. Then there exists a unique measure f
on the o-algebra o(S) such that p1 = po on S.

This theorem is proved by first extending po to the algebra generated
by S, and by then using the so-called Carathéodory Extension Theorem to
go from the algebra to the o-algebra. With Theorem 1.5 we can describe a
large class of measures on R.

Example 1.6 (Lebesgue-Stieltjes measures). Let F' be a nondecreasing,
right-continuous real-valued function on R. For intervals (a, ], define

po(a, b] = F(b) — F(a).
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This will work also for a = —oco and b = oo if we define
F(oo) = lim F(z) and F(—o0)= lim F(y).
x /foo Y \—00

It is possible that F(o00) = oo and F(—o0) = —oo, but this will not hurt
the definition. One can show that g satisfies the hypotheses of Theorem
1.5, and consequently there exists a measure p on (R, Br) that gives mass
F(b) — F(a) to each interval (a,b]. This measure is called the Lebesgue-
Stieltjes measure of the function F', and we shall denote u by Ar to indicate
the connection with F.

The most important special case is Lebesgue measure which we shall
denote by m, obtained by taking F(x) = x.

On the other hand, if p is a Borel measure on R such that u(B) < oo
for all bounded Borel sets, we can define a right-continuous nondecreasing
function by

0, z], >0
G(0) =0, and G(z) = (0, ] v
_M(I) O]a x <0
and then p = Ag. Thus Lebesgue-Stieltjes measures give us all the Borel
measures that are finite on bounded sets.

1.1.3. The integral. Let (X, A, 1) be a fixed measure space. To say that a
function f: X — Ror f : X — [—00, 00| is measurable is always interpreted
with the Borel o-algebra on R or [—oo,00]. In either case, it suffices to
check that {f < t} € A for each real t. The Lebesgue integral is defined
in several stages, starting with cases for which the integral can be written
out explicitly. This same pattern of proceeding from simple cases to general
cases will also be used to define stochastic integrals.

Step 1. Nonnegative measurable simple functions. A nonnegative sim-
ple function is a function with finitely many distinct values ajy,...,q, €
[0,00). If we set A; = {f = a;}, then we can write

fl@) =) aila()
i=1

where
1, z€A

Lale) = {0 x¢ A

is the indicator function (also called characteristic function) of the set A.
The integral [ fdu is defined by

[ Fdn=>" a4
=1
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This sum is well-defined because f is measurable iff each A; is measurable,
and it is possible to add and multiply numbers in [0, cc]. Note the convention
0-00=0.

Step 2. [0, 00]-valued measurable functions. Let f : X — [0,00] be
measurable. Then we define

/fd,u = sup{/gd,u : ¢ is a simple function such that 0 < g < f}
This integral is a well-defined number in [0, o).

Step 3. General measurable functions. Let f : X — [—o00,00] be
measurable. The positive and negative parts of f are f* = f Vv 0 and
f~ = —(fA0). f* are nonnegative functions, and satisfy f = f* — f~ and
|fl = fT + f~. The integral of f is defined by

[ran=[rran- [ 5 a

provided at least one of the integrals on the right is finite.

These steps complete the construction of the integral. Along the way
one proves that the integral has all the necessary properties, such as linearity

/(aerﬁg)dM:a/fdwrﬁ/gdu,
monotonicity:
f < g implies /fdué /gdu,

and the important inequality

'/fdu’S/!f\du-

Various notations are used for the integral [ f du. Sometimes it is desir-
able to indicate the space over which one integrates by [ « Jdp. Then one
can indicate integration over a subset A by defining

/Afduz/xl,qfdu-

To make the integration variable explicit, one can write

[ t@utan) o [ p@)duto)

Since the integral is linear in both the function and the measure, the linear
functional notation (f, ) is used. Sometimes the notation is simplified to
wu(f), or even to pf.
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A basic aspect of measure theory is that whatever happens on sets of
measure zero is not visible. We say that a property holds p-almost every-
where (or simply almost everywhere if the measure is clear from the context)
if there exists a set N € A such that u(N) = 0 (a p-null set) and the
property in question holds on the set N°.

For example, we can define a measure p on R which agrees with Lebesgue
measure on [0, 1] and vanishes elsewhere by ©(B) = m(BNJ0,1]) for B € Bg.
Then if g(z) = x on R while

sinx, <0
flz)=qz, 0<z<1

cosz, =>1

we can say that f = g p-almost everywhere.

The principal power of the Lebesgue integral derives from three funda-
mental convergence theorems which we state next. The value of an integral is
not affected by changing the function on a null set. Therefore the hypotheses
of the convergence theorems require only almost everywhere convergence.

Theorem 1.7. (Fatou’s lemma) Let 0 < f,, < oo be measurable functions.
Then
[ (i £.)dn < tim [ g.dn

n—o0 n—oo

Theorem 1.8. (Monotone convergence theorem) Let fy, be nonnegative mea-
surable functions, and assume f, < fnt1 almost everywhere, for each n. Let
f=1limy,_00 frn. This limit exists at least almost everywhere. Then

/fdu_nlggo/fndu.

Theorem 1.9. (Dominated convergence theorem) Let f,, be measurable func-
tions, and assume the limit f = lim,_ oo fn exists almost everywhere. As-
sume there ezists a function g > 0 such that |f,| < g almost everywhere for
each n, and [ gdu < co. Then

/fdu:nlggo/fndﬂ.

Finding examples where the hypotheses and the conclusions of these
theorems fail are excellent exercises. By the monotone convergence theorem
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we can give the following explicit limit expression for the integral [ fdu of
a [0, oo]-valued function f. Define simple functions
2"n—1
(1.3) fal@) =D 27"k Lpmnpc pea-n(rpy () + 0 Lipmny ().
k=0
Then 0 < f,(z) / f(z), and so by Theorem 1.8,

[ ran= [ g

2"n—1
=i {30 2kl <7 < B} s 2

n—00
k=0

(1.4)

There is an abstract change of variables principle which is particu-
larly important in probability. Suppose we have a measurable map ¢ :
(X, A) — (Y,H) between two measurable spaces, and a measurable func-
tion f: (Y,H) — (R,Br). If 1 is a measure on (X,.A), we can define a
measure v on (Y, H) by

v(U) = p(y= 1 (U)) for U € H.
In short, this connection is expressed by
v=potp L.

If the integral of f over the measure space (Y, H, v) exists, then the value of
this integral is not changed if instead we integrate f o1 over (X, A, u):

(1.5) [ = [ (rowyan

Note that the definition of v already gives equality (1.5) for f = 1. The
linearity of the integral then gives it for simple f. General f > 0 follow by
monotone convergence, and finally general f = f* — f~ by linearity again.
This sequence of steps recurs often when an identity for integrals is to be
proved.

1.1.4. Completion of measures. There are certain technical benefits to
having the following property in a measure space (X, A, u), called complete-
ness: if N € A satisfies u(N) = 0, then every subset of N is measurable
(and then of course has measure zero). It turns out that this can always be
arranged by a simple enlargement of the o-algebra. Let

={A C X : there exists B,N € Aand F C N
such that u(N)=0and A= BUF}

and define ji on A by ji(A) = u(B) when B has the relationship to A from
above. Then one can check that A C A, (X, A, i) is a complete measure
space, and 1 agrees with p on A.
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An important example of this procedure is the extension of Lebesgue
measure m from Br to a g-algebra Lg of the so-called Lebesgue measurable
sets. Ly is the completion of Br under Lebesgue measure, and it is strictly
larger than Br. Proving this latter fact is typically an exercise in real
analysis (for example, Exercise 2.9 in [8]). For our purposes the Borel sets
suffice as a domain for Lebesgue measure. In analysis literature the term
Lebesgue measure usually refers to the completed measure.

1.1.5. The Riemann and Lebesgue integrals. In calculus we learn the
Riemann integral. Suppose f is a bounded function on a compact interval
[a,b]. Given a (finite) partition 7 = {a = sp < s1 < --- < s, = b} of [a, D]
and some choice of points z; € [s;, s;+1], we form the Riemann sum

n—1

S(m) = Zf(ffi)(siﬂ — 5;).

1=0

We say f is Riemann integrable on [a, b] if there is a number ¢ such that the
following is true: given ¢ > 0, there exists § > 0 such that |c — S(7)| < ¢
for every partition 7 with mesh(7w) = max{s;+1 — s;} < 0 and for any choice
of the points z; in the Riemann sum. In other words, the Riemann sums
converge to ¢ as the mesh of the partition converges to zero. The limiting
value is by definition the Riemann integral of f:

b
(1.6) / f@)ds=c= lm S(r).

mesh(7)—0

One can then prove that every continuous function is Riemann integrable.

The definition of the Riemann integral is fundamentally different from
the definition of the Lebesgue integral. For the Riemann integral there is
one recipe for all functions, instead of a step-by-step definition that proceeds
from simple to complex cases. For the Riemann integral we partition the
domain [a,b], whereas the Lebesgue integral proceeds by partitioning the
range of f, as formula (1.4) makes explicit. This latter difference is some-
times illustrated by counting the money in your pocket: the Riemann way
picks one coin at a time from the pocket, adds its value to the total, and re-
peats this until all coins are counted. The Lebesgue way first partitions the
coins into pennies, nickles, dimes, and quarters, and then counts the piles.
As the coin-counting picture suggests, the Lebesgue way is more efficient (it
leads to a more general integral with superior properties) but when both
apply, the answers are the same. The precise relationship is the following,
which also gives the exact domain of applicability of the Riemann integral.

Theorem 1.10. Suppose f is a bounded function on |a,b].
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(a) If f is a Riemann integrable function on |a,b], then f is Lebesque
measurable, and the Riemann integral of f coincides with the Lebesgue in-
tegral of f with respect to Lebesgue measure m on [a,b].

(b) f is Riemann integrable iff the set of discontinuities of f has Lebesgue
measure Zero.

Because of this theorem, the Riemann integral notation is routinely used
for Lebesgue integrals on the real line. In other words, we write

b
/ f(x)dx instead of fdm
a [a,b]
for a Borel or Lebesgue measurable function f on [a,b], even if the function
f is not Riemann integrable.

1.1.6. Function spaces. Various function spaces play an important role in
analysis and in all the applied subjects that use analysis. One way to define
such spaces is through integral norms. Let (X,.4, ) be a measure space.
For 1 < p < oo, the space LP(y) is the set of all measurable f : X — R such
that [|f|P du < co. The LP norm on this space is defined by

) 1o = 1f 2o = { / I du}p.

A function f is called integrable if [|f|dp < co. This is synonymous with
fe L (p).

There is also a norm corresponding to p = oo, defined by

(1.8) [ flloo = 1 fll ooy = inf{c >0 p{[f] > c} = 0}.

This quantity is called the essential supremum of |f|. The inequality | f(z)| <
|| flloo holds almost everywhere, but can fail on a null set of points x.

The LP(u) spaces, 1 < p < oo, are Banach spaces (see Appendix). The
type of convergence in these spaces is called LP convergence, so we say

fn— fin LP(p) if
I fn = fllze(y — 0 asn — oc.

However, a problem is created by the innocuous property of a norm that
requires ||f|l, = 0 if and only if f = 0. For example, let the underlying
measure space be the interval [0, 1] with Lebesgue measure on Borel sets.
From the definition of the L” norm then follows that || f||, = 0 if and only
if f = 0 Lebesgue—-almost everywhere. In other words, f can be nonzero
on even infinitely many points as long as these points form a Lebesgue—null
set, and still || f|l, = 0. An example of this would be the indicator function
of the rationals in [0, 1]. So the disturbing situation is that many functions
have zero norm, not just the identically zero function f(z) = 0.
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To resolve this, we apply the idea that whatever happens on null sets
is not visible. We simply adopt the point of view that functions are equal
if they differ only on a null set. The mathematically sophisticated way
of phrasing this is that we regard elements of LP(u) as equivalence classes
of functions. Particular functions that are almost everywhere equal are
representatives of the same equivalence class. Fortunately, we do not have
to change our language. We can go on regarding elements of LP(u) as
functions, as long as we remember the convention concerning equality. This
issue will appear again when we discuss spaces of stochastic processes.

1.1.7. Product measures. Let (X, A,u) and (Y,B,v) be two o-finite
measure spaces. The product measure space (X X Y, A® B,u ® v) is de-
fined as follows. X x Y is the Cartesian product space. A® B is the product
o-algebra. The product measure p ® v is the unique measure on A ® B that
satisfies

1 (A x B) = u(A)(B)

for measurable rectangles A x B where A € A and B € B. Measurable
rectangles generate A ® B and they form a semialgebra. The hypotheses of
the Extension Theorem 1.5 can be checked, so the measure u® v is uniquely
and well defined. This measure u ® v is also o-finite.

The z-section f, of an A ® B-measurable function f is f.(y) = f(z,y).
It is a B-measurable function on Y. Furthermore, the integral of f, over
(Y, B,v) gives an A-measurable function of x. Symmetric statements hold
for the y-section f,(z) = f(x,y), a measurable function on X. This is part
of the important Tonelli-Fubini theorem.

Theorem 1.11. Suppose (X, A, n) and (Y, B,v) are o-finite measure spaces.

(a) (Tonelli’s theorem) Let f be a [0, co]-valued A @ B-measurable func-
tion on X xY . Then the functions g(x) = [, fodv and h(y) = [y fydp are
[0, oo]-valued measurable functions on their respective spaces. Furthermore,
f can be integrated by iterated integration:

/nyfd(“®”) :/X{[/f(ﬂ%yﬁ/(dy)}u(dx)
:/Y{/X f(%y)u(d:c)}u(dy).

(b) (Fubini’s theorem) Let f € LY (u®v). Then f, € L*(v) for p-almost
every x, f, € L' () for v-almost every y, g € L*(u) and h € L*(v). Iterated
integration is valid as in (1.9) above.

(1.9)
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The product measure construction and the theorem generalize naturally
to products

<£Ile‘, év‘li, ém)

of finitely many o-finite measure spaces. Infinite products shall be discussed
in conjunction with the construction problem of stochastic processes.

The part of the Tonelli-Fubini theorem often needed is that integrating
away some variables from a product measurable function always leaves a
function that is measurable in the remaining variables.

In multivariable calculus we learn the multivariate Riemann integral over
n-dimensional rectangles,

b1 bo bn,
/ / / flx1, @, ... xy) day, - - - dxg dxy.
ai a2 an

This is an integral with respect to m-dimensional Lebesgue measure on
R”, which can be defined as the completion of the n-fold product of one-
dimensional Lebesgue measures.

As a final technical point, consider metric spaces X1, Xo,...,X,, with
product space X = [[ X;. X has the product o-algebra @) By, of the Borel
o-algebras from the factor spaces. On the other hand, X is a metric space in
its own right, and so has its own Borel o-algebra Bx. What is the relation
between the two? The projection maps (x1,...,z,) — x; are continuous,
hence Bx-measurable. Since these maps generate Q) By, it follows that
Q) Bx, C Bx. It turns out that if the X;’s are separable then equality holds:
Q Bx, = Bx. A separable metric space is one that has a countable dense

set. An example of a countable dense set is the set of rational numbers in
R.

1.1.8. Signed measures. A finite signed measure y on a measurable space
(X, A) is a function x : A — R such that p(0) = 0, and

(1.10) p(A) =" u(A)
=1

whenever A = |J 4; is a disjoint union. The series in (1.10) has to converge
absolutely, meaning that

Z!N(Ai)\ < 00.

Without absolute convergence the limit of the series ) p(A4;) would depend
on the order of the terms. But this must not happen because rearranging
the sets A1, Asg, As, ... does not change their union.



14 1. Measures, Integrals, and Foundations of Probability Theory

More generally, a signed measure is allowed to take one of the values
+00 but not both. Absolute convergence in (1.10) is then required if p(A)
is a finite real number. We shall use the term measure only when the signed
measure takes only values in [0, oo]. If this point needs emphasizing, we use
the term positive measure as a synonym for measure.

For any signed measure v, there exist unique positive measures v and
v~ such that v = vt — v~ and v Lv~. (The statement v Ly~ reads “v*
and v~ are mutually singular”, and means that there exists a measurable
set A such that vT(A4) = v~ (A°) = 0.) The measure vt is the positive
variation of v, v~ is the negative variation of v, and the pair v, v~ is the
Jordan decomposition of v. There exist measurable sets P and IV such that
PUN=X,PNN=0,and vT(A) =v(ANP) and v~ (A) = —v(ANN).
(P, N) is called the Hahn decomposition of v. The total variation of v is the
positive measure |v| = v +v~. We say that the signed measure v is o-finite
if |v| is o-finite.

Integration with respect to a signed measure is defined by

(1.11) /fdy:/fdzﬁ—/fdu—

whenever both integrals on the right are finite. A function f is integrable
with respect to v if it is integrable with respect to |v|. In other words, L'(v)
is by definition L!( |v|). A useful inequality is

(1.12) ‘ [rav] < [is1aw

valid for all f for which the integral on the right is finite.

Note for future reference that integrals with respect to |v| can be ex-
pressed in terms of v by

(1.13) /fdyyy:/Pfdu++/Nfdu—:/(1P—1N)fdy.

1.1.9. BV functions and Lebesgue-Stieltjes integrals. Let F' be a
function on [a,b]. The total variation function of F is the function Vp(z)
defined on [a, b] by

(1.14) Vp(z) = sup{Z|F(si) —F(si_1)|:a=s0<s < - <s,= x}
=1

The supremum above is taken over partitions of the interval [a,x]. F has
bounded variation on [a,b] if Vp(b) < oco. BV]a,b] denotes the space of
functions with bounded variation on [a, b] (BV functions).

VF is a nondecreasing function with Vp(a) = 0. F' is a BV function iff
it is the difference of two bounded nondecreasing functions, and in case F
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is BV, one way to write this decomposition is
F=YVp+F)-Li(Vp—F)

(the Jordan decomposition of F'). If F' is BV and right-continuous, then also
Vr is right-continuous.

Henceforth suppose F' is BV and right-continuous on [a, b]. Then there
is a unique signed Borel measure Ar on (a,b] determined by

Ap(u,v] = F(v) — F(u), a<u<wv<b.

We can obtain this measure from our earlier definition of Lebesgue-Stieltjes
measures of nondecreasing functions. Let F = F; — F5 be the Jordan decom-
position of F. Extend these functions outside [a, b] by setting F;(x) = F;(a)
for x < a, and Fj(x) = F;(b) for > b. Then Ap = Ap, — Ap, is the Jordan
decomposition of the measure Ap, where Ap, and A, are as constructed in
Example 1.6. Furthermore, the total variation measure of A is

IAp| =Ap, + Ap, = Ay,

the Lebesgue-Stieltjes measure of the total variation function Vp. The inte-
gral of a bounded Borel function g on (a, b] with respect to the measure Ap
is of course denoted by

/ gdAr but also by / g(z)dF(z),
(a,b] (a,b]

and the integral is called a Lebesgue-Stieltjes integral. We shall use both
of these notations in the sequel. Especially when [ g dF might be confused
with a stochastic integral, we prefer [ g dAp. For Lebesgue-Stieltjes integrals
inequality (1.12) can be written in the form

(1.15) ‘ /(a’b] g(z) dF (z)

< /(a,b]'g(x)' Vi ().

We consider Ap a measure on (a, b] rather than [a, b] because according
to the connection between a right-continuous function and its Lebesgue-
Stieltjes measure, the measure of the singleton {a} is

(1.16) Ap{a} = F(a) — F(a-).

This value is determined by how we choose to extend F' to x < a, and so is
not determined by the values on [a, b].

Advanced calculus courses sometimes cover a related integral called the
Riemann-Stieltjes, or the Stieltjes integral. This is a generalization of the
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Riemann integral. For bounded functions g and F' on [a,b], the Riemann-
Stieltjes integral f: gdF is defined by

b
/ gdF = hm Zg ;) (F(si+1) — F(si))

mesh(m
if this limit exists. The notation and the interpretation of the limit is as
n (1.6). One can prove that this limit exists for example if g is continuous
and F is BV [16, page 282]. The next lemma gives a version of this limit
that will be used frequently in the sequel. The left limit function is defined

by f(t—) = limg ~ s<; f(s), by approaching ¢ strictly from the left, provided
these limits exist.

Lemma 1.12. Let v be a finite signed measure on (0,T]. Let f be a bounded
Borel function on [0, T] for which the left limit f(t—) exists at all0 <t < T.
Let 1" = {0 = s < --- < Sm(n) = T} be partitions of [0,T] such that
mesh(n") — 0. Then

m(n)—1
lim sup st v(sy Aty sing At] — s—)v(ds) | =0.
fim s |30 SRt At A= [ 7))

In particular, for a right-continuous function G € BV[0,T],

m(n)—1
Z M (G(sq At) = G(sPAL)) — f(s—)dG(s)

= (0,¢]

lim sup =0.

n—=00 0<t<T

It is important here that f is evaluated at the left endpoint of the par-
tition intervals [s?, s}’ ;].

Proof. For each 0 <t < T,

m(n)—1
‘ Z f 5 At?sz—i—l/\t] (Ot}f(s_)y(ds)
m(n)—1
/ D T L, (8) = F(s=)| IvI(ds)
(0,¢] i—0
m(n)—1
: f ?15 :S — f(s=)||v|(d
/(O,T} =0 (S ) (s z+1]( ) <S ) ‘ ‘( 3)

where the last inequality is simply a consequence of increasing the interval
of integration to (0,7]. The last integral gives a bound that is uniform in ¢,
and it vanishes as n — oo by the dominated convergence theorem. ]
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Example 1.13. A basic example is a step function. Let {x;} be a sequence
of points in R (ordering of x;’s is immaterial), and {a;} an absolutely sum-
mable sequence, which means ) |a;| < co. Define

G(t) = Z o for t € R.
iy <t
From
Gt)—G(s)| < > Jai|  fors<t
iis<a; <t
one can show that G is right-continuous and a BV function on any subin-
terval of R. Furthermore, the left limit G(t—) exists and is given by

G(t—) = Z % for each t € R.

<t

The Lebesgue-Stieltjes integral of a bounded Borel function f is

(1.17) / FAG =Y aif(x).

(0,77 #:0<z;<T
To justify this, first take f = 1,3 with 0 < a < b < T and check that
both sides equal G(b) — G(a) (left-hand side by definition of the Lebesgue-
Stieltjes measure). These intervals, together with the empty set, form a
m-system that generates the Borel o-algebra on (0,7]. Theorem B.4 can be
applied to verify the identity for all bounded Borel functions f.

The above proof of (1.17) is a good example of a recurring theme. Sup-
pose the goal is to prove an identity for a large class of objects (for example,
(1.17) above is supposed to be valid for all bounded Borel functions f).
Typically we can do an explicit verification for some special cases. If this
class of special cases is rich enough, then we can hope to complete the proof
by appealing to some general principle that extends the identity from the
special class to the entire class. Examples of such general principles are
Theorems B.3 and B.4 and Lemmas B.5 and B.6 in Appendix B.

1.1.10. Radon-Nikodym theorem. This theorem is among the most im-
portant in measure theory. We state it here because it gives us the existence
of conditional expectations in the next section. First a definition. Suppose p
is a measure and v a signed measure on a measurable space (X,.4). We say
v is absolutely continuous with respect to u, abbreviated v < p, if u(A) =0
implies v(A) = 0 for all A € A.

Theorem 1.14. Let p be a o-finite measure and v a o-finite signed mea-
sure on a measurable space (X, A). Assume v is absolutely continuous with
respect to ji. Then there exists a p-almost everywhere unique A-measurable
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function f such that at least one of [ fTdu and [ f~ du is finite, and for
each A € A,

(1.18) I/(A):/Afdu.

Some remarks are in order. Since either [, f*du or [, f~ du is finite,
the integral [, fdu has a well-defined value in [—00,00]. The equality of
integrals (1.18) extends to measurable functions, so that

(1.19) /gdu:/gfdu

for all A-measurable functions g for which the integrals make sense. The
precise sense in which f is unique is this: if f also satisfies (1.18) for all

A€ A, then p{f # f} =0.

The function f is the Radon-Nikodym derivative of v with respect to p,
and denoted by f = dv/du. The derivative notation is very suggestive. It
leads to dv = f du which tells us how to do the substitution in the integral.
Also, it suggests that

dv d d
(1.20) - ap _ ar
dp dp  du
which is a true theorem under the right assumptions: suppose v is a signed

measure, p and p positive measures, all o-finite, v < p and p < . Then

dv dv dp
dv = -—dp = c— - —d
/gy/gdpp/gdpdu”

by two applications of (1.19). Since the Radon-Nikodym derivative is unique,
the equality above proves (1.20).

Here is a result that combines the Radon-Nikodym theorem with Lebesgue-
Stieltjes integrals.

Lemma 1.15. Suppose v is a finite signed Borel measure on [0,T] and
g€ LY(v). Let

F(t):/[oﬂg(s)y(ds), 0<t<T.

Then F' is a right-continuous BV function on [0,T]. The Lebesgue-Stieltjes
integral of a bounded Borel function ¢ on (0,T) satisfies

(1.21) o(s)dF(s) = | (s)g(s) v(ds).

(0,7 (0,7
In abbreviated form, dF = gdv and g = dAp/dv on (0,T].
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Proof. For right continuity of F', let ¢, \ t. Then

< / 14 loldlv].
(0,7

)

|F'(tn) — F(t)| = ’/ L4, - gdv
(0,71

The last integral vanishes as ¢, ¢ because 1(;;,)(s) — 0 at each point s,
and the integral converges by dominated convergence. Thus F(t+) = F(t).

For any partition 0 = s <s1 <--- < s, =T,

Z‘F(Si-&—l)_F(Si)‘—Z‘/(S gdv gz/( lg| d|v|

i,Si+1] i,8i+1)

— [ lgldpl.
(0,7]

)

By the assumption g € L'(v) the last quantity above is a finite upper bound
on the sums of F-increments over all partitions. Hence F' € BV[0,T].

The last issue is the equality of the two measures Ap and g dv on (0,T].
By Lemma B.5 it suffices to check the equality of the two measures for
intervals (a,b], because this class of intervals is closed under intersection
and generates the Borel o-algebra on (0, 7.

Ap(a,b] = F(b)—F(a) = /[Ob]g@),/(ds)_ /[0 9(s)vids) = /( 90
This suffices. O

The conclusion (1.21) can be extended to [0, T] if we define F'(0—) = 0.
For then

Ap{0} = F(0) = F(0-) = F(0) = g(0){0} = [ gdu.

On the other hand, the conclusion of the lemma on (0, 7] would not change
if we defined F'(0) = 0 and

F(t) = /(ot} g(s)v(ds), 0<t<T.

This changes F' by a constant and hence does not affect its total variation
or Lebesgue-Stieltjes measure.

1.2. Basic concepts of probability theory

This section summarizes the measure-theoretic foundations of probability
theory. Matters related to stochastic processes will be treated in the next
chapter.
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1.2.1. Probability spaces, random variables and expectations. The
foundations of probability are taken directly from measure theory, with no-
tation and terminology adapted to probabilistic conventions. A probability
space (2, F, P) is a measure space with total mass P(2) = 1. The prob-
ability space is supposed to model the random experiment or collection of
experiments that we wish to analyze. The underlying space 2 is called the
sample space, and its sample points w € ) are the elementary outcomes of
the experiment. The measurable sets in F are called events. P is a proba-
bility measure. A random variable is a measurable function X : Q@ — S with
values in some measurable space S. Most often S = R. If § = R? one can
call X a random wector, and if S is a function space then X is a random
function.

Here are some examples to illustrate the terminology.

Example 1.16. Consider the experiment of choosing randomly a person in
a room of N people and registering his or her age in years. Then naturally
Q is the set of people in the room, F is the collection of all subsets of 2,
and P{w} = 1/N for each person w € Q. Let X (w) be the age of person w.
Then X is a Z,-valued measurable function (random variable) on (2.

Example 1.17. Consider the (thought) experiment of tossing a coin infin-
itely many times. Let us record the outcomes (heads and tails) as zeroes
and ones. The sample space (2 is the space of sequences w = (1, z2, 3, .. .)
of zeroes and ones, or Q = {0, 1}, where N = {1,2,3,...} is the set of nat-
ural numbers. The o-algebra F on Q is the product c-algebra BEN where
each factor is the natural o-algebra

B={0,{0},{1}.{0,1}}

on {0,1}. To choose the appropriate probability measure on 2, we need to
make assumptions on the coin. Simplest would be to assume that successive
coin tosses are independent (a term we discuss below) and fair (heads and
tails equally likely). Let S be the class of events of the form

A=Aw: (z1,...,25) = (a1,...,apn)}

as n varies over N and (ay,...,a,) varies over n-tuples of zeroes and ones.
Include @ and Q to make S a semialgebra. Our assumptions dictate that
the probability of the event A should be Py(A) = 27". One needs to check
that P, satisfies the hypotheses of Theorem 1.5. Then the mathematical
machinery takes over and gives the existence of a unique probability measure
P on (2, F) that agrees with Py on S.

This is a mathematical model of a sequence of independent fair coin
tosses. Natural random variables to define on {2 are first the coordinate
variables X;(w) = =;, and then variables derived from these such as S,, =
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X1+ -+ X,, the number of ones among the first n tosses. The random
variables {X;} are an example of an i.i.d. sequence, which is short for
independent and identically distributed.

The ezxpectation of a real-valued random variable X is simply its Lebesgue
integral over the probability space:

EX:/XdP.
Q

The rules governing the existence of the expectation are exactly those inher-
ited from measure theory. The spaces LP(P) are also defined as for general
measure spaces.

The probability distribution (or simply distribution, also the term law is
used) p of a random variable X is the probability measure obtained when
the probability measure P is transported to the real line via

u(B)=P{X € B}, B € Bg.

The expression {X € B} is an abbreviation for the longer set expression
{weQ: X(w) € B}.

If h is a bounded Borel function on R, then h(X) is also a random
variable (this means the composition h o X), and

(1.22) Eh(X) = / X)dP = /

This equality is an instance of the change of variables identity (1.5). Notice
that we need not even specify the probability space to make this calculation.
This is the way things usually work. There must always be a probability
space underlying our reasoning, but when situations are simple we can ignore
it and perform our calculations in familiar spaces such as the real line or
Euclidean spaces.

The (cumulative) distribution function F of a random variable X is
defined by F(x) = P{X < z}. The distribution p is the Lebesgue-Stieltjes
measure of F. Using the notation of Lebesgue-Stieltjes integrals, (1.22) can
be expressed as

(1.23) Eh(X) = /R h(z) dF(x).

This is the way expectations are expressed in probability and statistics books
that avoid using measure theory, relying on the advanced calculus level
understanding of the Stieltjes integral.

The density function f of a random variable X is the Radon-Nikodym de-
rivative of its distribution with respect to Lebesgue measure, so f = du/dz.
It exists iff p is absolutely continuous with respect to Lebesgue measure on
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R. When f exists, the distribution function F' is differentiable Lebesgue—
almost everywhere, and F’ = f Lebesgue—almost everywhere. The expecta-
tion can then be expressed as an integral with respect to Lebesgue measure:

(1.24) Eh(X) = /R h(z)f(z) dz.

This is the way most expectations are evaluated in practice. For example, if
X is a rate A exponential random variable (X ~ Exp(\) in symbols), then

Eh(X) = /O h h(z)Ae ™ da.

The concepts discussed above have natural extensions to R%valued random
vectors.

Example 1.18. Here are the most important probability densities.

(i) On any bounded interval [a, b] of R there is the uniform distribution
Uniffa,b] with density f(z) = (b — a) "1}, (z). Whether the endpoints
are included is immaterial because it does not affect the outcome of any
calculation.

(ii) The exponential distribution mentioned above is a special case of the
Gamma(a, \) distribution on Ry with density f(z) = I'(a) ™' (Az)* 1 Ae 2.
The two parameters satisfy a, A > 0. The gamma function is I'(a)) =
JoS e " da.

(iii) For e, B > 0 the Beta(a, ) distribution on (0, 1) has density f(z) =

F(OH'/B) a— —
(=)

(iv) For a vector v € R? (d > 1) and a symmetric, nonnegative definite,
nonsingular d x d matrix I', the normal (or Gaussian) distribution N (v,T")
on R? has density

(1.25) f(x) =

1
(2m)4/2y/det T

Above, and in general, we regard a d-vector v as a d x 1 matrix with 1 x d

transpose vl

exp(—3(x — v)IT Hx —v)).

If T is singular then the A/ (v,T) distribution can be characterized by its
characteristic function (the probabilistic term for Fourier transform)

(1.26) E(eiSTX) = exp(isTv — %STI‘S), s € RY,

where X represents the R?valued N (v,T')-distributed random vector and
7 is the imaginary unit +/—1. This probability distribution is supported on
the image of R? under T'.

The N(0, 1) distribution on R with density f(z) = (27)"/2¢72"/2 is the
standard normal distribution. When d > 1, N'(v,T') is called a multivariate
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normal. As is evident from the formulas, the distribution of a Gaussian
vector X is determined by its mean vector v = FX and covariance matrix
I'=E(XXxT).

One more terminological change as we switch from analysis to probabil-
ity: almost everywhere (a.e.) becomes almost surely (a.s.). But of course
there is no harm in using both.

Equality of random variables X and Y has the same meaning as equality
for any functions: if X and Y are defined on the same sample space €2 then
they are equal as functions if X(w) = Y (w) for each w € Q. Often we
cannot really control what happens on null sets (sets of probability zero),
so the more relevant notion is the almost sure equality: X = Y a.s. if
P(X =Y) = 1. We also talk about equality in distribution of X and Y
which means that P(X € B) = P(Y € B) for all measurable sets B in the
(common) range space of X and Y. This is abbreviated X 2y and makes
sense even if X and Y are defined on different probability spaces.

1.2.2. Convergence of random variables. Here is a list of ways in which
random variables can converge. Except for convergence in distribution, they
are direct adaptations of the corresponding modes of convergence from anal-
ysis.

Definition 1.19. Let {X,} be a sequence of random variables and X a
random variable, all real-valued.

(a) X, — X almost surely if

P{w : lim X, (w) = X(w)} —1.

n=so0
(b) X,, = X in probability if for every € > 0,
T}Ln;oP{w X (W) — X ()] > 5} ~0.

(¢) Xp — X in LP for 1 <p < oo if

lim E{|X,(w) — X(w)|P} = 0.
(d) X,, — X in distribution (also called weakly) if

nlglgo P{X, <z} =P{X <z}

for each x at which F(z) = P{X < x} is continuous.

Convergence types (a)—(c) require that all the random variables are defined
on the same probability space, but (d) does not.
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The definition of weak convergence above is a specialization to the real
line of the general definition, which is this: let {u,} and u be Borel proba-
bility measures on a metric space S. Then u,, — p weakly if

/gdun—>/gdu
S S

for all bounded continuous functions g on S. Random variables converge
weakly if their distributions do in the sense above. Commonly used notation
for weak convergence is X,, = X.

Here is a summary of the relationships between the different types of
convergence. We need one new definition: a sequence {X,} of random
variables is uniformly integrable if

1.27 li El|X,| 1 = 0.

(1.27) i - sup B[ Xn] - 1(x, 2]

Theorem 1.20. Let {X,} and X be real-valued random variables on a
common probability space.

(i) If X, — X almost surely or in LP for some 1 < p < oo, then
X, — X in probability.
(ii) If X,, — X in probability, then X, — X weakly.
(iii) If X, — X in probability, then there exists a subsequence X, such
that X, — X almost surely.
(iv) Suppose X, — X in probability. Then X, — X in L' iff {X,} is
uniformly integrable.

1.2.3. Independence and conditioning. Fix a probability space
(Q, F, P). In probability theory, o-algebras represent information. F rep-
resents all the information about the experiment, and sub-o-algebras A of
F represent partial information. “Knowing o-algebra A” means knowing
for each event A € A whether A happened or not. A common way to
create sub-o-algebras is to generate them with random variables. If X is
a random variable on €2, then the o-algebra generated by X is denoted
by o(X) and it is given by the collection of inverse images of Borel sets:
o(X) = {{X € B} : B € Br}. Measurability of X is exactly the same as
o(X)CF.

Knowing the actual value of X is the same as knowing whether {X € B}
happened for each B € Br. But of course there may be many sample
points w that have the same values for X, so knowing X does not allow
us to determine which outcome w actually happened. In this sense o{X}
represents partial information. Here is an elementary example.

Example 1.21. Suppose we flip a coin twice. The sample space is 2 =
{(0,0),(0,1),(1,0),(1,1)} and the generic sample point w = (wi,ws) €
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{0,1}2. Let X (w) = wy+ws. Then o{X} consists of §, {(0,0)}, {(0,1),(1,0)},
{(1,1)} and all their unions. But knowing c{X } cannot distinguish whether
outcome (0,1) or (1,0) happened. In English: if you tell me only that one
flip came out heads, I don’t know if it was the first or the second flip.

Elementary probability courses define that two events A and B are inde-
pendent if P(AN B) = P(A)P(B). The conditional probability of A, given
B, is defined as
P(ANB)

P(B)
provided P(B) > 0. Thus the independence of A and B can be equivalently
expressed as P(A|B) = P(A). This reveals the meaning of independence:
knowing that B happened (in other words, conditioning on B) does not
change our probability for A.

(1.28) P(A|B) =

One technical reason we need to go beyond these elementary definitions
is that we need to routinely condition on events of probability zero. For ex-
ample, suppose X and Y are independent random variables, both uniformly
distributed on [0, 1], and we set Z = X + Y. Then we would all agree that
P(Z >3y = %) = %, yet since P(Y = %) = 0 this conditional probability
cannot be defined in the above manner.

The general definition of independence, from which various other defini-
tions follow as special cases, is for the independence of o-algebras.

Definition 1.22. Let Ay, As,..., A, be sub-c-algebras of F. Then A,

Ay, ..., A, are mutually independent (or simply independent) if, for every
choice of events Ay € Ay, Ay € Ay, ..., Ay € A,

An arbitrary collection {A; : ¢ € Z} of sub-o-algebras of F is independent
if each finite subcollection is independent.

The more concrete notions of independence of random variables and
independence of events derive from the above definition.

Definition 1.23. A collection of random variables {X; : ¢ € Z} on a prob-
ability space (Q, F, P) is independent if the o-algebras {o(X;) : i € Z} gen-
erated by the individual random variables are independent. Equivalently,
for any finite set of distinct indices i1,19,...,7, and any measurable sets
Bi, Bo,..., B, from the range spaces of the random variables, we have

n
(1.30) P{X;, € By, X;, € By,.... X, € By} = [[ P{Xi, € Bi}.

k=1
Finally, events {A; : i € Z} are independent if the corresponding indicator
random variables {14, : i € Z} are independent.
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Some remarks about the definitions. The product property extends to
all expectations that are well-defined. If Ay, ..., A, are independent o-
algebras, and 71, ..., Z, are integrable random variables such that Z; is
A;-measurable (1 <i <n) and the product Z;Z, - -- Z,, is integrable, then

(1.31) E|Z1Zy---Zy| = EZy-EZy --- EZ,.

If the variables Z; are [0, co]-valued then this identity holds regardless of
integrability because the expectations are limits of expectations of truncated
random variables.

Independence is closely tied with the notion of product measure. Let
u be the distribution of the random vector X = (X1, Xs,...,X,) on R,
and let u; be the distribution of component X; on R. Then the variables
X1,Xo,..., X, are independent iff p = 1 @ o @ -+ - Q fin,.

Further specialization yields properties familiar from elementary prob-
ability. For example, if the random vector (X,Y’) has a density f(z,y) on
R2 then X and Y are independent iff f(x,y) = fx(x)fy(y) where fx and
fy are the marginal densities of X and Y. Also, it is enough to check prop-
erties (1.29) and (1.30) for classes of sets that are closed under intersections
and generate the o-algebras in question. (A consequence of the so-called
m-\ theorem, see Lemma B.5 in the Appendix.) Hence we get the familiar
criterion for independence in terms of cumulative distribution functions:

n
(1.32) P{X;, <t1,Xi, <ta,..., X;, <tn} = [[ P{Xi, <t}
k=1

Independence is a special property, and always useful when it is present.
The key tool for handling dependence (that is, lack of independence) is the
notion of conditional expectation. It is a nontrivial concept, but fundamen-
tal to just about everything that follows in this book.

Definition 1.24. Let X € L}(P) and let A be a sub-o-field of F. The con-
ditional expectation of X, given A, is the integrable, A-measurable random
variable Y that satisfies

(1.33) /XdP = / YdP forall A€ A.
A A

The notation for the conditional expectation is Y (w) = E(X|A)(w). It is
almost surely unique, in other words, if ¥ is A-measurable and satisfies
(1.33), then P{Y =Y} =1.
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Justification of the definition. The existence of the conditional expec-
tation follows from the Radon-Nikodyn theorem. Define a finite signed mea-
sure v on (92, A) by

= / XdpP, AecA
A
P(A) = 0 implies v(A) = 0, and so v < P. By the Radon-Nikodym theorem

there exists a Radon-Nikodym derivative Y = dv/dP which is A-measurable
and satisfies

/YdP:V(A):/XdP for all A € A.
A A

Y is integrable because

/Y*dP:/ YdP =v{Y >0} = / X dpP
Q {v>0} {Y>0}

g/|XydP<oo
Q

and a similar bound can be given for [, Y~ dP.

To prove uniqueness, suppose Y satisfies the same properties as Y. Let
= {Y >Y}. This is an A-measurable event. On 4, Y —Y = (Y — Y)*,
Whlle on A¢, (Y —Y)T = 0. Consequently

/(Y—?)*dP /(Y Y)dP = /de /AYdP
/XdP /XdP_O

The integral of a nonnegative function vanishes iff the function vanishes
almost everywhere. Thus (Y — Y)T = 0 almost surely. A similar argument
shows (Y —Y)~™ =0, and so |Y — Y| = 0 almost surely. O

The defining property (1.33) of the conditional expectation E(X|A) ex-
tends to

(1.34) /QZXdP:/QZE(X]A)dP

for any bounded .4-measurable random variable Z. Boundedness of Z guar-
antees that ZX and Z E(X|.A) are integrable for an integrable random vari-
able X.

Some notational conventions. When X = 1p is the indicator random
variable of an event B, we can write P(B|A) for E(1p|A). When the con-

ditioning o-algebra is generated by a random variable Y, so A = o{Y'}, we
can write E(XY) instead of E(X|o{Y}).
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Sometimes one also sees the conditional expectation E(X|Y = y), re-
garded as a function of y € R (assuming now that Y is real-valued). This
is defined by an additional step. Since E(X|Y) is o{Y }-measurable, there
exists a Borel function h such that E(X|Y) = h(Y'). This is an instance of a
general exercise according to which every o{Y }-measurable random variable
is a Borel function of Y. Then one uses h to define E(X|Y = y) = h(y). This
conditional expectation works with integrals on the real line with respect to
the distribution py of Y: for any B € B,

(1.35) PILs(Y)X] = | BOXY = y) o (d).

The definition of the conditional expectation is abstract, and it takes
practice to get used to the idea of conditional probabilities and expecta-
tions as random variables rather than as numbers. The task is to familiarize
oneself with this concept by working with it. Eventually one will under-
stand how it actually does everything we need. The typical way to find
conditional expectations is to make an educated guess, based on an intu-
itive understanding of the situation, and then verify the definition. The
A-measurability is usually built into the guess, so what needs to be checked
s (1.33). Whatever its manifestation, conditional expectation always in-
volves averaging over some portion of the sample space. This is especially
clear in this simplest of examples.

Example 1.25. Let A be an event such that 0 < P(A) < 1, and A =
{0,9Q, A, A°}. Then

E(14X) E(14:X)

(1.36) BEX|A) @) = =5y L) + =5~

. 1Ac(w).

Let us check (1.33) for A. Let Y denote the right-hand side of (1.36).
Then

/de /E (14X) )P(dw):wAlA(w)P(dw)

=FE(14X) = /XdP

A similar calculation checks [,.Y dP = [,. X dP, and adding these together
gives the integral over €. () is of course trivial, since any integral over () equals
zero. See Exercise 1.15 for a generalization of this.

Here is a concrete case. Let X ~ Exp(\), and suppose we are allowed
to know whether X < ¢ or X > ¢. What is our updated expectation for
X7 To model this, let us take (Q,F,P) = (R4, Br,,n) with p(dz) =
Ae~*dzx, the identity random variable X (w) = w, and the sub-o-algebra
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A={Q,0,[0,c], (¢,00)}. Following (1.36), for w € (¢,0) we compute

E(lyxon X o
E(X|A)(w) = 1(31({)?>}c)) = ,u(c,loo)/ e dx

= e ATeT) =+ AT

You probably knew the answer from the memoryless property of the expo-
nential distribution? If not, see Exercise 1.13. Exercise 1.16 asks you to
complete this example.

The next theorem lists the main properties of the conditional expecta-
tion. Equalities and inequalities for conditional expectations are almost sure
statements because the conditional expectation itself is defined only up to

null sets. So each statement below except (i) comes with an “a.s.” modifier.
Theorem 1.26. Let (Q, F, P) be a probability space, X and Y integrable
random variables on 0, and A and B sub-o-fields of F.

(i) E[E(X]A)] = EX.

(ii) ElaX + BY |A] = aE[X|A] + BE[Y |A] for a, 5 € R.

(iii) If X >Y then E[X|A] > E[Y|A].

(iv) If X is A-measurable, then E[X|A] = X.

(v) If X is A-measurable and XY is integrable, then

(1.37) E[XY|A] = X - E[Y|A].

(vi) If X is independent of A (which means that the o-algebras o{X}
and A are independent), then E[X|A] = EX.

(vii) If A C B, then
E{E(X|A)|B} = E{E(X|B) |A} = E[X|A].
(viii) If A C B and E(X|B) is A-measurable, then E(X|B) = E(X|A).

(ix) (Jensen’s inequality) Suppose f is a convex function on (a,b), —oco <
a < b<oo. This means that

flz+(1—-0)y) <0f(x)+(1—-0)f(y) forz,yec (a,b) and0 <O <1.
Assume P{a < X < b} =1. Then
(1.38) F(EXIA) < BIA(X) | A

provided the conditional expectations are well defined.

(x) Suppose X is a random variable with values in a measurable space
(S1,H1), Y is a random variable with values in a measurable space (Sa, Ha),
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and ¢ : S1xS2 — R is a measurable function such that ¢(X,Y) is integrable.
Assume that X is A-measurable while Y is independent of A. Then

(1.39) E[p(X,Y)|Al(w) = /ch(X(W)’ Y(w)) P(dw).

Proof. The proofs must appeal to the definition of the conditional expecta-
tion. We leave them mostly as exercises or to be looked up in any graduate
probability textbook. Let us prove (v) and (vii) as examples.

Proof of part (v). We need to check that X - E[Y|.A] satisfies the defi-
nition of F[XY|A]. The A-measurability of X - E[Y|A] is true because X
is A-measurable by assumption, E[Y|A] is A-measurable by definition, and
multiplication preserves A-measurability. Then we need to check that

(1.40) E(14XY)=E(14 X E[Y|A])

for an arbitrary A € A. If X were bounded, this would be a special case of
(1.34) with Z replaced by 14X. For the general case we need to check the
integrability of X E[Y|A] before we can honestly write down the right-hand
side of (1.40).

Let us assume first that both X and Y are nonnegative. Then also
E(Y|A) > 0 by (iii), because E(0].A) = 0 by (iv). Let X*) = X Ak be a
truncation of X. We can apply (1.34) to get

(1.41) E14XWY] = E[1aXx® BE(Y]4)].

Inside both expectations we have nonnegative random variables that increase
with k. By the monotone convergence theorem we can let k¥ — oo and recover
(1.40) in the limit, for nonnegative X and Y. In particular, this tells us that,
at least if X, Y > 0, the integrability of X, Y and XY imply that X E(Y|.A)
is integrable.

Now decompose X = XT — X~ and Y =Y — Y. By property (ii),
E(Y|A) = E(YT|A) — E(Y™|A).
The left-hand side of (1.40) becomes
E[14X YT = E[14X Y| - E[1aX'Y |+ E[14X Y|

The integrability assumption is true for all pairs X*Y* and X*YF, so to
each term above we can apply the case of (1.40) already proved for nonneg-
ative random variables. The expression becomes

E[1.XTE(Y'|A)] - E[14X E(YT|A)] — E[14XTE(Y ™ |A)]
+ E[14X E(Y™|4)].
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For integrable random variables, a sum of expectations can be combined
into an expectation of a sum. Consequently the sum above becomes the
right-hand side of (1.40). This completes the proof of part (v).

Proof of part (vii). That E{E(X|A)|B} = E[X|A] follows from part
(iv). To prove E{E(X|B)|A} = E[X|A], we show that E[X|.A| satisfies
the definition of E{FE(X|B)|A}. Again the measurability is not a problem.
Then we need to check that for any A € A,

/ E(X|B)dP = / E(X|A)dP.
A A
This is true because A lies in both A and B, so both sides equal [ 4, XdpP. O

There is a geometric way of looking at F(X|.A) as the solution to an
optimization or estimation problem. Assume that X € L?(P). Then what
is the best A-measurable estimate of X in the mean-square sense? In other
words, find the A-measurable random variable Z € L?(P) that minimizes
E[(X — Z)?. This is a “geometric view” of E(X|.A) because it involves
projecting X orthogonally to the subspace L?(Q2, A, P) of A-measurable L?-
random variables.

Proposition 1.27. Let X € L?(P). Then E(X|A) € L*(Q, A, P). For all
Z e LX), A, P),

E[(X — E[X|A])?] < E[(X - 2)*]
with equality iff Z = E(X|A).

Proof. By Jensen’s inequality,
E{E[X|A’} < E{E[X?*A]} = B{X?}.
Consequently E[X|A] is in L?(P).
B[(X - 2)?] = B[(X — E[X|.A| + E[X|4] - 2)?] = B[(X — E[X|4)’]
+2E((X — E[X|A|)(E[X|A] - Z)] + E[(E[X]A] - 2)*]
= B[(X — E[X|A)])*] + E[(E[X|A4] — 2)?].

The cross term of the square vanishes because E[X|A] — Z is A-measurable,
and this justifies the last equality. The last line is minimized by the unique
choice Z = E[X|A]. O

1.2.4. Construction of probability spaces. In addition to the usual
construction issues of measures that we discussed before, in probability the-
ory we need to construct stochastic processes which are infinite collections
{X¢ :t € I} of random variables. Often the naturally available ingredients
for the construction are the finite-dimensional distributions of the process.
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These are the joint distributions of finite vectors (X¢,, Xt,, ..., Xt,) of ran-
dom variables. Kolmogorov’s Extension Theorem, whose proof is based
on the general machinery for extending measures, states that the finite-
dimensional distributions are all we need. The natural home for the con-
struction is a product space.

To formulate the hypotheses below, we need to consider permutations
acting on n-tuples of indices from an index set Z and on n-vectors from a

product space. A permutation 7 is a bijective map of {1,2,...,n} onto itself,
for some finite n. If s = (s1, s2,...,5,) and t = (¢1,t2,...,t,) are n-tuples,
then t = 7s means that (t1,t2,...,tn) = (Sx(1) Sx(2)>- - - » Sx(n))- The action

of m on any n-vector is defined similarly, by permuting the coordinates.

Here is the setting for the theorem. Z is an arbitrary index set, and for
each t € Z, (4, B;) is a complete, separable metric space together with its
Borel o-algebra. Let Q = [[€; be the product space and B = @) B; the
product o-algebra. A generic element of ) is written w = (w¢)tez.

Theorem 1.28 (Kolmogorov’s extension theorem). Suppose that for each
ordered n-tuple t = (t1,ta,...,t,) of distinct indices we are given a probabil-

ity measure Qg on the product space (¢, Bt) = (szl Ry Btk>, for

alln > 1. We assume two properties that make {Q¢} a consistent family of
finite-dimensional distributions:

(i) Ift = 7s, then Q¢ = Qs om L.
(11) Ift = (tl,tQ,...,tnfl,tn) and s = (tl,tg,.. . ,tnfl), then for A€
B®, Qs(A) = Q¢(A x Qy,,).

Then there exists a probability measure P on (£, B) whose finite-dimensional
marginal distributions are given by {Q¢}. In other words, for any t =
(t1,t2, ..., tn) and any B € Bt,

(142) P{WEQZ (wtl,th,...,th) GB}:Qt(B)

We refer the reader to [4, Chapter 12] for a proof of Kolmogorov’s the-
orem in this generality. [5] gives a proof for the case where Z is countable
and ©; = R for each ¢. The main idea of the proof is no different for the
more abstract result.

To construct a stochastic process (X¢)iez with prescribed finite-dimensional
marginals
Qt(A) = P{(th,XtQ, - ,th) S A},
apply Kolmogorov’s theorem to these inputs, take (€2, B, P) as the probabil-
ity space, and for w = (w;)ter € Q define the coordinate random variables
Xi(w) = wy. When Z is countable, such as Z,, this strategy is perfectly
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adequate, and gives for example all infinite sequences of i.i.d. random vari-
ables. When Z is uncountable, such as R, we typically want something
more from the construction than merely the correct distributions, namely
some regularity for the random function ¢t — X;(w). This is called path
regularity. This issue is addressed in the next chapter.

We will not discuss the proof of Kolmogorov’s theorem. Let us observe
that hypotheses (i) and (ii) are necessary for the existence of P, so nothing
unnecessary is assumed in the theorem. Property (ii) is immediate from
(1.42) because (wi,,wry, ... ,wi,—1) € A M (W, Wiy, ... wi,) € A X Q..
Property (i) is also clear on intuitive grounds because all it says is that if
the coordinates are permuted, their distribution gets permuted too. Here is
a rigorous justification. Take a bounded measurable function f on Q%. Note
that f o7 is then a function on 2%, because

w=(wi,...,wn) EL <= w; €8, (1<i<n)
> wr(p) € (1<i<n)
— TW = (wﬂ(l),...,wﬂ(n)) e Qb

Compute as follows, assuming P exists:
/ fth = / f(wtl,th, e ,wtn) P(dw)
Qt Q
— /Qf(wsﬂ(l),wswm,...,wsw(n))P(dw)
= /Q(f 0T ) (Wsy, Wsgy« - - Ws, ) P(dw)
~ [[Gomiqu= [ fi@on).
Qs Ot

Since f is arbitrary, this says that Q¢ = Qs o7 1.

Exercises

Exercise 1.1. (a) Suppose F is continuous on [0, 7], has a continuous de-
rivative F' = f on (0,7, and f0T|f(s)\ ds < oo (equivalently, f € L1(0,7)).
What formula does Lemma 1.15 give for f(o 7] o(s) dF(s)?

(b) Let F be as in part (a), tg € (0,7], ¢ € R and define

e = F(t) t € [0, o)
C\F@t) +¢ telto,T)

Give the formula for f(o ) @(s) dG(s) in terms of ¢, f, to and c.
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Exercise 1.2. In case you wish to check your understanding of the Lebesgue-
Stieltjes integral, compute f(o 34] xdF(x) with a > 0 and

, 0<zx<a
Flz)=<44a—-z, a<z<2a
(v —2a)?, x> 2a.

You should get 8a3/3 + a*/2 — (4 + 7)a.

Exercise 1.3. Let V be a continuous, nondecreasing function on R and A
its Lebesgue-Stieltjes measure. Say t is a point of strict increase for V if
Vi(s) < V(t) < V(u) for all s < t and all u > t. Let I be the set of such
points. Show that I is a Borel set and A(I¢) = 0.

Hint. For rationals ¢ let a(q) = inf{s € [¢ —1,¢] : V(s) = V(q)} and
b(q) = sup{s € [¢,q+1] : V(s) = V(¢)}. Considering ¢ such that a(q) < b(q)
show that I¢ is a countable union of closed intervals with zero A-measure.
The restriction of a(q) and b(q) to [¢ — 1,¢ + 1] is there only to guarantee
that a(q) and b(q) are finite.

Exercise 1.4. Show that in the definition (1.14) of total variation one can-
not in general replace the supremum over partitions by the limit as the mesh
of the partition tends to zero. (How about the indicator function of a single
point?) But if F' has some regularity, for example right-continuity, then the
supremum can be replaced by the limit as mesh(7) — 0.

Exercise 1.5. Let G be a continuous BV function on [0, 7] with Lebesgue-
Stieltjes measure Ag on (0,77, and let h be a Borel measurable function on
[0,T] that is integrable with respect to Ag. Define a function F' on [0, 7]
by F(0) =0 and F(t) = f(o,t} h(s)dG(s) for t > 0. Building on Lemma 1.15
and its proof, and remembering also (1.16), show that F' is a continuous BV

function on [0, T]. Note in particular the special case F(t) = fot h(s)ds.

Exercise 1.6. For a simple example of the failure of uncountable additiv-
ity for probabilities, let X be a [0, 1]-valued uniformly distributed random
variable on (€2, F, P). Then P(X = s) = 0 for each individual s € [0, 1] but
the union of these events over all s is 2.

Exercise 1.7. Here is a useful formula for computing expectations. Suppose
X is a nonnegative random variable, and h is a nondecreasing function on
R such that hA(0) = 0 and h is absolutely continuous on each bounded
interval. (This last hypothesis is for ensuring that h(a) = [ h/(s) ds for all
0 <a < o0.) Then

(1.43) Eh(X) = /00 h'(s)P[X > s]ds.
0
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Exercise 1.8. Suppose we need to prove something about a o-algebra B =
o(€) on a space X, generated by a class £ of subsets of X. A common
strategy for proving such a result is to identify a suitable class C containing
£ whose members have the desired property. If C can be shown to be a
o-field then B C C follows and thereby all members of B have the desired
property. Here are useful examples.

(a) Fix two points z and y of the underlying space. Suppose that for
each A € &, {z,y} C Aor {z,y} C A°. Show that the same property is true
for all A € B. In other words, if the generating sets do not separate x and
1y, neither does the o-field.

(b) Suppose @ is a collection of functions from a space X into a mea-
surable space (Y, H). Let B=o{f: f € ®} be the smallest o-algebra that
makes all functions f € ® measurable, as defined in (1.1). Suppose g is a
function from another space 2 into X. Let Q have o-algebra F. Show that
g is a measurable function from (€, F) into (X, B) iff for each f € ®, foyg
is a measurable function from (2, F) into (Y, H).

(c) In the setting of part (b), suppose two points x and y of X satisfy
f(x) = f(y) for all f € ®. Show that for each B € B, {z,y} C B or
{z,y} € B

(d) Let S C X such that S € B. Let

Bi={BeB:BCS}={AnS:AcB}

be the restricted o-field on the subspace S. Show that By is the o-field
generated on the space S by the collection

S={ENS:Eecf&}
Show by example that B; is not necessarily generated by
E={Fe&:ECS}.
Hint: Consider C = {B C X : BN S € B;}. For the example, note that

Br is generated by the class {(—o0,a] : @ € R} but none of these infinite
intervals lie in a bounded interval such as [0, 1].

(e) Let (X, A,v) be a measure space. Let U be a sub-o-field of A, and
let N = {A € A: v(A) = 0} be the collection of sets of v-measure zero
(v-null sets). Let U* = o(U UN) be the o-field generated by U and N.
Show that

U*={A e A: there exists U € U such that UANA € N'}.

U* is called the augmentation of U.
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Exercise 1.9. Suppose {A;} and {B;} are sequences of measurable sets in
a measure space (X, A,v) such that v(A4;AB;) = 0. Then

Exercise 1.10. (Product o-algebras.) Recall the setting of Example 1.3.
For a subset L C Z of indices, let B, = o{f; : i € L} denote the o-algebra
generated by the projections f; for i € L. So in particular, Br = @), A; is
the full product o-algebra.

(a) Show that for each B € Bz there exists a countable set L C Z such
that B € By. Hint. Do not try to reason starting from a particular set
B € Bz. Instead, try to say something useful about the class of sets for
which a countable L exists.

(b) Let R[> be the space of all functions = : [0,00) — R, with the
product o-algebra generated by the projections x — x(t), t € [0,00). Show
that the set of continuous functions is not measurable.

Exercise 1.11. (a) Let &;,...,&, be collections of measurable sets on
(Q, F, P), each closed under intersections (if A, B € & then AN B € &).
Suppose

P(AlﬂAgﬂﬂAn):P(Al)P(Ag) P(An)

for all Ay € &1,..., A, € &,. Show that the o-algebras o(&1),...,0(&,) are
independent. Hint. A straight-forward application of the 7—\ theorem B.3.

(b) Let {A; : i € I} be a collection of independent o-algebras. Let I,
..., I, be pairwise disjoint subsets of Z, and let By = o{A; : i € I} for
1 <k <n. Show that By, ..., B, are independent.

(c) Let A, B, and C be sub-o-algebras of F. Assume o{B,C} is indepen-
dent of A, and C is independent of B. Show that A, B and C are independent,
and so in particular C is independent of o{.A, B}.

(d) Show by example that the independence of C and o{A, B} does not
necessarily follow from having B independent of A, C independent of A, and
C independent of B. This last assumption is called pairwise independence of
A, B and C. Hint. An example can be built from two independent fair coin
tosses.

Exercise 1.12. If you have never done so, compute the moments of a cen-
tered Gaussian random variable: for Z ~ N(0,02) and k € N, E(Z?+1) = 0
and E(Z%) = (2k — 1)(2k — 3) --- 1 - 0¥, This is useful to know.

Exercise 1.13. (Memoryless property.) Let X ~ Exp(\). Show that, condi-
tional on X > ¢, X —c¢ ~ Exp(A). In plain English: given that I have waited
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for ¢ time units, the remaining waiting time is still Exp(\)-distributed. This
is the memoryless property of the exponential distribution.

Exercise 1.14. Independence allows us to average separately. Here is a
special case that will be used in a later proof. Let (€2, F, P) be a probability
space, U and V measurable spaces, X : 1 - U and Y : Q — V measurable
mappings, f: U x V — R a bounded measurable function (with respect to
the product o-algebra on U x V). Assume that X and Y are independent.
Let 1 be the distribution of Y on the V-space, defined by u(B) = P{Y € B}
for measurable sets B C V. Show that

E[f(X,Y)] = /V ELf(X, )] pu(dy).

Hints. Start with functions of the type f(x,y) = g(x)h(y). Use Theorem
B.4 from the appendix.

Exercise 1.15. Let {D; : i € N} be a countable partition of £, by which we
mean that {D;} are pairwise disjoint and Q = | J D;. Let D be the o-algebra
generated by {D;}.

(a) Show that G € D iff G = J,c; D; for some I C N.
(b) Let X € LY(P). Let U = {i € N : P(D;) > 0}. Show that

BXD)w) = Y Lo

inclU P(Dl) ‘]'Di(w)-

Exercise 1.16. Complete the exponential case in Example 1.25 by finding
E(X|A)(w) for w € [0,¢]. Then verify the identity E[E(X|A)] = EX. Do
you understand why E(X|.A) must be constant on [0, ¢] and on (¢, 00)?

Exercise 1.17. Suppose P(A) = 0or 1 for all A € A. Show that E(X|A) =
EX for all X € L'(P).

Exercise 1.18. Let (X,Y) be an R?-valued random vector with joint den-
sity f(x,%). This means that for any bounded Borel function ¢ on R2,

oY) = [[ ownsededy.

The marginal density of Y is defined by
frw) = [t

Let
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(a) Show that f(z|y)fy (y) = f(z,y) for almost every (x,y), with respect
to Lebesgue measure on R?. Hint: Let

H={(z,y) : f(zly)fy (y) # f(z,9)}-
Show that m(H,) = 0 for each y-section of H, and use Tonelli’s theorem.

(b) Show that f(z|y) functions as a conditional density of X, given that
Y =y, in this sense: for a bounded Borel function h on R,

E[h(X)Y](W)Z/ h(z) f(2]Y (w)) da.

R

Exercise 1.19. (Gaussian processes.) Let Z be an arbitrary index set,
and ¢ : Z? — R a positive definite function, which means that for any
t1,...,tn, € Z and real o, ..., an,,
(144) Z oziozjc(ti,tj) Z 0.

1<i,j<n
Then there exists a probability space (§2, F, P) and on that space a stochas-
tic process {X; : t € Z} such that, for each choice of indices t1,...,t, € Z,
the n-vector (Xy,...,Xs,) has N(0,T") distribution with covariance ma-
trix Ty, 1, = c(ti,tj). A process whose finite dimensional distributions are
Gaussian is called a Gaussian process.

Exercise 1.20. It is not too hard to write down impossible requirements
for a stochastic process. Suppose {X; : 0 < ¢ < 1} is a real-valued stochastic
process that satisfies

(i) X5 and X; are independent whenever s # t.
(ii) Each X; has the same distribution, and variance 1.

(iii) The path t — X;(w) is continuous for almost every w.

Show that a process satisfying these conditions cannot exist.



Chapter 2

Stochastic Processes

This chapter first covers general matters in the theory of stochastic processes,
and then discusses the two most important processes, Brownian motion and
Poisson processes.

2.1. Filtrations and stopping times

The set of nonnegative reals is denoted by Ry = [0,00). Similarly Q. for
nonnegative rationals and Z, = {0,1,2,...} for nonnegative integers. The
set of natural numbers is N = {1,2,3,...}.

The discussion always takes place on a fixed probability space (2, F, P).
We will routinely assume that this space is complete as a measure space.
This means that if D € F and P(D) = 0, then all subsets of D lie in F and
have probability zero. This is not a restriction because every measure space
can be completed. See Section 1.1.4.

A filtration on a probability space (€2, F, P) is a collection of o-fields
{F: :t € Ry} that satisfy

Fs CFCF forall0<s<t< oo.

Whenever the index ¢ ranges over nonnegative reals, we write simply {F;}
for {F; : t € Ry}. Given a filtration {F;} we can add a last member to it
by defining

(2.1) Foo = a< ng ]—"t>.

Foo is contained in F but can be strictly smaller than F.
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Example 2.1. The natural interpretation for the index t € Ry is time.
Let X; denote the price of some stock at time ¢ and assume it makes sense
to imagine that it is defined for all ¢ € R4. At time ¢ we know the entire
evolution {Xs : s € [0,¢]} up to the present. In other words, we are in
possession of the information in the o-algebra FiX = o{X, : s € [0,t]}.
{F{X} is a basic example of a filtration.

We will find it convenient to assume that each F; contains all subsets
of F-measurable P-null events. This is more than just assuming that each
F: is complete, but it entails no loss of generality. To achieve this, first
complete (2, F, P), and then replace F; with

(2.2) F;={B € F: there exist A € F; such that P(AAB) =0 }.

Exercise 1.8(e) verified that J; is a o-algebra. The filtration {F;} is some-
times called complete, or the augmented filtration.

At the most general level, a stochastic process is a collection of random
variables {X; : i € T} indexed by some arbitrary index set Z, and all defined
on the same probability space. For us the index set is most often R or
some subset of it. Let X = {X; : t € Ry} be a process on (2, F,P). It
is convenient to regard X as a function on Ry x € through the formula
X(t,w) = X¢(w). Indeed, we shall use the notations X (¢,w) and X;(w)
interchangeably. When a process X is discussed without explicit mention of
an index set, then R is assumed.

If the random variables X; take their values in a space S, we say X =
{X¢:t € Ry} is an S-valued process. To even talk about S-valued random
variables, S needs to have a c-algebra so that a notion of measurability
exists. Often in general accounts of the theory S is assumed a metric space,
and then the natural o-algebra on S is the Borel o-field Bg. We have no
cause to consider anything more general than S = R¢, the d-dimensional
Euclidean space. Unless otherwise specified, in this section a process is
always R%valued. Of course, most important is the real-valued case with
state space R! = R.

A process X = {X; : t € Ry} is adapted to the filtration {F;} if X, is
Fi-measurable for each 0 < t < oo. The smallest filtration to which X is
adapted is the filtration that it generates, defined by

FX=0{X,:0<s<t}.

A process X is measurable if X is Br, ® F-measurable as a function
from Ry x Q into R?. Furthermore, X is progressively measurable if the
restriction of the function X to [0, 7] x Q2 is By 7 ® Fr-measurable for each
T'. More explicitly, the requirement is that for each B € Bra, the event

{(t,w) € [0,T] x Q: X(t,w) € B}
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lies in the o-algebra Bjg 7 ® Fr. If X is progressively measurable then it is
also adapted, but the reverse implication does not hold (Exercise 2.6).

Properties of random objects are often interpreted in such a way that
they are not affected by events of probability zero. For example, let X =
{X¢:teRi}and Y = {Y; : t € Ry} be two stochastic processes defined
on the same probability space (2, F, P). As functions on Ry x Q, X and Y
are equal if X;(w) = Yi(w) for each w € Q and t € Ry. A useful relaxation
of this strict notion of equality is called indistinguishability. We say X and
Y are indistinguishable if there exists an event Q¢ C € such that P(£y) =1
and for each w € Qp, X¢(w) = Yi(w) for all ¢ € Ry. Since most statements
about processes ignore events of probability zero, for all practical purposes
indistinguishable processes can be regarded as equal.

Another, even weaker notion is modification: Y is a modification (also
called version) of X if for each t, P{X; =Y;} = 1.

Equality in distribution is also of importance for processes X and Y:

X £V means that P{X € A} = P{Y € A} for all measurable sets for which
this type of statement makes sense. In all reasonable situations equality in
distribution between processes follows from the weaker equality of finite-
dimensional distributions:

P{th S Bl,Xt2 S BQ,. . .,Xtm S Bm}

2.3

( ) :P{}/;flEBI;EQGB21"'7)/tmEBm}
for all finite subsets {t1,t2,...,tn} of indices and all choices of the measur-
able sets Bi, Bo, ..., By, in the range space. This can be proved for example

with Lemma B.5 from the appendix.

Assuming that the probability space (2, F, P) and the filtration {F;}
are complete conveniently avoids certain measurability complications. For
example, if X is adapted and P{X; = Y;} = 1 for each t € R4, then Y is
also adapted. To see the reason, let B € Bra, and note that

{Vie B}={X; e BU{Y; € B, X; ¢ B}\ {Y: ¢ B, X; € B}.

Since all subsets of zero probability events lie in F;, we conclude that there
are events Dy, Dy € F; such that {Y; € B} = {X; € B} U D \ D2, which
shows that Y is adapted.

In particular, since the point of view is that indistinguishable processes
should really be viewed as one and the same process, it is sensible that such
processes cannot differ in adaptedness or measurability.

A stopping time is a random variable 7 : @ — [0,00] such that {w :
T(w) < t} € F; for each 0 < ¢t < oo. Many operations applied to stopping
times produce new stopping times. Often used ones include the minimum
and the maximum. If o and 7 are stopping times (for the same filtration)
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then

{onT<ty={o<tju{r<t}eF
S0 o AT is a stopping time. Similarly o V 7 can be shown to be a stopping
time.

Example 2.2. Here is an illustration of the notion of stopping time.

(a) If you instruct your stockbroker to sell all your shares in company
ABC on May 1, you are specifying a deterministic time. The time of sale
does not depend on the evolution of the stock price.

(b) If you instruct your stockbroker to sell all your shares in company
ABC as soon as the price exceeds 20, you are specifying a stopping time.
Whether the sale happened by May 5 can be determined by inspecting the
stock price of ABC Co. until May 5.

(¢) Suppose you instruct your stockbroker to sell all your shares in com-
pany ABC on May 1 if the price will be lower on June 1. Again the sale
time depends on the evolution as in case (b). But now the sale time is not
a stopping time because to determine whether the sale happened on May 1
we need to look into the future.

So the notion of a stopping time is eminently sensible because it makes
precise the idea that today’s decisions must be based on the information
available today and not on future information.

If 7 is a stopping time, the o-field of events known at time 7 is defined
by

(2.4) Fr={AeF:An{r <t}eF foral 0 <t < oo}.

A deterministic time is a special case of a stopping time. If 7(w) = u for all
w, then F. = F,.

If {X;} is a process and 7 is a stopping time, X, denotes the value of
the process at the random time 7, in other words X, (w) = X;(,)(w). The
random variable X, is defined on the event {7 < 0o}, so not necessarily on
the whole space €2 unless 7 is finite. Or at least almost surely finite so that
X, is defined with probability one.

Here are some basic properties of these concepts. Infinities arise natu-
rally, and we use the conventions that co < oo and co = oo are true, but
00 < 00 is not.

Lemma 2.3. Let o and T be stopping times, and X a process.
(i) For A € F,, the events AN{oc <71} and AN{o < 7} lie in Fr. In
particular, o < 7 implies F, C F.

(ii) Both 7 and o AT are Fr-measurable. The events {o < 7}, {0 < 7},
and {o = 7} lie in both F5 and F.



2.1. Filtrations and stopping times 43

(iii) If the process X is progressively measurable then X () is Fr-measurable
on the event {T < oo} .

Proof. Part (i). Let A € F,. For the first statement, we need to show that
(An{o <7})n{r <t} € F. Write
(An{o <7})n{r <t}
=(An{o<t}h)n{oAt<TAt}n{r <t}
All terms above lie in F;. (a) The first by the definition of A € F,. (b) The
second because both o At and 7 At are Fi-measurable random variables: for
any u € R, {o At <u} equals Q if u > ¢ and {0 < u} if u < ¢, a member of
Fi in both cases. (¢) {7 <t} € F; since 7 is a stopping time.
In particular, if o < 7, then F, C F;.
To show AN{o <7} € F;, write
An{o <7} = UAm{O'-i-%ST}.
n>1
All members of the union on the right lie in F.- by the first part of the proof,

because 0 < o + % implies A € F,41/,. (And you should observe that for a
constant u > 0, 0 + u is also a stopping time.)

Part (ii). Since {7 < s}N{r <t} = {7 < sAt} € F; Vs, by the definition
of a stopping time, 7 is Fr-measurable. By the same token, the stopping
time o A T is Foar-measurable, hence also F,-measurable.

Taking A = Q in part (a) gives {o < 7} and {o < 7} € F,. Taking the
difference gives {o = 7} € F;, and taking complements gives {0 > 7} and
{0 > 7} € F;. Now we can interchange o and 7 in the conclusions.

Part (iii). We claim first that w — X (7(w) A t,w) is Fi-measurable. To
see this, write it as the composition

w (T(w) Atw) = X(T(w) At,w).
The first step w — (7(w) A t,w) is measurable as a map from (€, F;) into
the product space ([O, t] x Q, Bjg4 @ .7-}) if the components have the correct
measurability (Exercise 1.8(b)). It was already argued above in part (i) that
w = 7(w) At is measurable from F; into Bjg4). The other component is the
identity map w — w.

The second step of the composition is the map (s,w) — X (s,w). By the
progressive measurability assumption for X, this step is measurable from
(10,¢] x €, By g ® F) into (R, Bra).

We have shown that {X,,; € B} € F; for B € Bra, and so

{X;eB, r<oo}n{r<t}={Xpr € B}Nn{r <t} € F.
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This shows that {X; € B, 7 < oo} € F; which was the claim. O

All the stochastic processes we study will have some regularity properties
as functions of ¢, when w is fixed. These are regularity properties of paths.
A stochastic process X = {X; : t € Ry} is continuous if for each w € €,
the path ¢t — X;(w) is continuous as a function of ¢. The properties left-
continuous and right-continuous have the obvious analogous meaning. An
R%valued process X is right continuous with left limits (or cadlag as the
French acronym for this property goes) if the following is true for all w € Q:

Xi(w) = li{n Xs(w) for all ¢ € Ry, and
s\t
the left limit X, (w) = li}% X,(w) exists in R for all ¢ > 0.
S

Above s N\, t means that s approaches ¢ from above (from the right), and
s /'t approach from below (from the left). Finally, we also need to consider
the reverse situation, namely a process that is left continuous with right
limits, and for that we use the term caglad. Regularity properties of these
types of functions are collected in Appendix A.1.

X is a finite variation process (FV process) if for each w € € the path
t — Xi(w) has bounded variation on each compact interval [0,7]. In other
words, the total variation function Vx(,,)(T") < oo for each w and T. But
Vx(w)(T') does not have to be bounded uniformly in w.

We shall use all these terms also of a process that has a particular path
property for almost every w. For example, if t — X;(w) is continuous for
all w in a set Qg of probability 1, then we can define X;(w) = X;(w) for
w € Qo and Xy(w) = 0 for w ¢ Q. Then X has all paths continuous, and
X and X are indistinguishable. Since we regard indistinguishable processes
as equal, it makes sense to regard X itself as a continuous process. When
we prove results under hypotheses of path regularity, we assume that the
path condition holds for each w. Typically the result will be the same for
processes that are indistinguishable.

Note, however, that processes that are modifications of each other can
have quite different path properties (Exercise 2.5).

The next two lemmas record some technical benefits of path regularity.

Lemma 2.4. Let X be adapted to the filtration {F;}, and suppose X is
either left- or right-continuous. Then X is progressively measurable.

Proof. Suppose X is right-continuous. Fix T' < oco. Define on [0,7] x Q
the function
2n—1
(k
Xn(t,w) = X(0,w) - 1oy (t) Z X +1 ,w) - L(gra—n, (g 1yr2—n) (£)-
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Xy, is a sum of products of Bjg 7] ® Fr-measurable functions, hence itself
Bjy,r) ® Fr-measurable. By right-continuity X, (t,w) — X(t,w) as n — oo,
hence X is also Bjy ) ® Fr-measurable when restricted to [0,77] x 2.

We leave the case of left-continuity as an exercise. O

Checking indistinguishability between two processes with some path reg-
ularity reduces to an a.s. equality check at a fixed time.

Lemma 2.5. Suppose X and Y are right-continuous processes defined on
the same probability space. Suppose P{X; =Y.} =1 for allt in some dense
countable subset S of Ry. Then X and Y are indistinguishable. The same
conclusion holds under the assumption of left-continuity if 0 € S.

Proof. Let Qy = (,cg{w : Xs(w) = Ys(w)}. By assumption, P(€o) = 1.
Fix w € p. Given t € R, there exists a sequence s, in S such that s, \, t.
By right-continuity,

Xy(w) = lim X,, (@) = lim Y, ) = Y(w).

n—oo

Hence X;(w) = Y;(w) for all t € Ry and w € Qp, and this says X and Y are
indistinguishable.

For the left-continuous case the origin t = 0 needs a separate assumption
because it cannot be approached from the left. [l

Filtrations also have certain kinds of limits and continuity properties.
Given a filtration {F;}, define the o-fields

(2.5) Fir= () Fe

s:8>1
{Fi+} is a new filtration, and Fy 2 F;. If Fy = Fyy for all ¢, we say {F;}
is right-continuous. Performing the same operation again does not lead to
anything new: if G, = Fi4+ then Gy = G, as you should check. So in
particular {F:+} is a right-continuous filtration.

Right-continuity is the important property, but we could also define

(2.6) Fo-=Fy and F_ = O’( U .7-"3> for ¢t > 0.

s:8<t
Since a union of o-fields is not necessarily a o-field, F;_ needs to be defined
as the o-field generated by the union of F; over s < t. The generation step
was unnecessary in the definition of F;; because any intersection of o-fields
is again a o-field. If 7, = F;_ for all t, we say {F:} is left-continuous. .

It is convenient to note that, since F5 depends on s in a monotone fash-
ion, the definitions above can be equivalently formulated through sequences.
For example, if s; >t is a sequence such that s; ¢, then F; = ﬂj Fs;-
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The assumption that {F;} is both complete and right-continuous is
sometimes expressed by saying that {F;} satisfies the usual conditions. In
many books these are standing assumptions. When we develop the sto-
chastic integral we assume the completeness. We shall not assume right-
continuity as a routine matter, and we alert the reader whenever that as-
sumption is used.

Since F; C Fit, {Fi+} admits more stopping times than {F;}. So there
are benefits to having a right-continuous filtration. Let us explore this a
little.

Lemma 2.6. A [0, c0]-valued random variable T is a stopping time with
respect to {Fiy} iff {T <t} € F; for allt € Ry.

Proof. Suppose 7 is an {F4 }-stopping time. Then for each n € N,
{r<t-— nil} € Flo—n-1)4+ C Ft,

andso {r <t} =, {r<t-n"1}eF.

Conversely, if {r <t+n"1} € F,,-1 for all n € N, then for all m € N,
{7 <t} =Mpmsmit <t+n '} € Fpp1. Andso {7 <t} €N, Figm-1 =
Fiy. B O

Given a set H, define
(2.7) T (w) = inf{t > 0: Xy(w) € H}.

This is called the hitting time of the set H. If the infimum is taken over
t > 0 then the above time is called the first entry time into the set H. These
are the most important random times we wish to deal with, so it is crucial
to know whether they are stopping times.

Lemma 2.7. Let X be a process adapted to a filtration {F;} and assume
X is left- or right-continuous. If G is an open set, then T¢ is a stopping
time with respect to {Fiy}. In particular, if {F;} is right-continuous, g 1is
a stopping time with respect to {F;}.

Proof. If the path s — X (w) is left- or right-continuous, 7¢(w) < ¢ iff
Xs(w) € G for some s € [0,1) iff X,(w) € G for some rational ¢ € [0,¢). (If
X is right-continuous, every value X for s € [0,t) can be approached from
the right along values X, for rational ¢. If X is left-continuous this is true
for all values except s = 0, but 0 is among the rationals so it gets taken care
of.) Thus we have

{ra<t}= |J {X,€G} € o{X,:0<s<t}CF. O
qEQ+m[01t)
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Example 2.8. Assuming X continuous would not improve the conclusion
to {rq¢ <t} € F;. To see this, let G = (b, 00) for some b > 0 and consider
the two paths

Xs(wo) = Xg(wy) =bs for0<s<1

Xs(wo) = bs
Xs(wr) =b(2 - s)} for s > 1.

while

Now 7G(wop) = 1 while 7g(w;) = oo. Since Xs(wp) and Xs(wy) agree for
s € [0, 1], the points wy and w; must be together either inside or outside any
event in Fj* [Exercise 1.8(c)]. But clearly wy € {7¢ < 1} while w; ¢ {7¢ <
1}. This shows that {rg < 1} ¢ Fi.

There is an alternative way to register arrival into a set, if we settle for
getting infinitesimally close. For a process X, let X[s,t] = {X(u):s <u <
t}, with (topological) closure X|s,t]. For a set H define

(2.8) og =inf{t > 0: X[0,t]NH # 0}.
Note that for a cadlag path,
(2.9) X[0,t] ={X(u): 0 <u<t}U{X(u—):0<u<t}

Lemma 2.9. Suppose X is a cadlag process adapted to {F;} and H is a
closed set. Then og is a stopping time.

Proof. Fix t > 0. First we claim that
{og <t} ={X(0) e H} U{X(s) € H or X(s—) € H for some s € (0,]}.

It is clear that the event on the right is contained in the event on the left. To
prove the opposite containment, suppose oy < t. If the event on the right
does not happen, then by the definition of oy as an infimum, for each k € N
there exists ¢ < up < t+ 1/k such that either X (uy) € H or X (uyp—) € H.
Then uy — ¢, and by the right-continuity of paths, both X (uy) and X (u;—)
converge to X (t), which thus must lie in H. The equality above is checked.

Let
H, = {y: there exists © € H such that |z —y| < n™1}

be the n~!-neighborhood of H. Let U contain all the rationals in [0,¢] and
the point ¢ itself. Next we claim

{X(0) e H}U{X(s) € H or X(s—) € H for some s € (0,t]}

= ﬂ U{X(Q) eHn}'

n=1qelU
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To justify this, note first that if X (s) =y € H for some s € [0,¢] or X (s—) =
y € H for some s € (0,t], then we can find a sequence ¢; € U such that
X(gj) = y, and then X (g;) € Hy, for all large enough j. Conversely, suppose
we have ¢, € U such that X(¢,) € H, for all n. Extract a convergent
subsequence ¢, — s. By the cadlag property a further subsequence of X (¢,)
converges to either X (s) or X(s—). By the closedness of H, one of these
lies in H.

Combining the set equalities proved shows that {og <t} € F;. O

Lemma 2.9 fails for caglad processes, unless the filtration is assumed
right-continuous (Exercise 2.15). For a continuous process X and a closed
set H the random times defined by (2.7) and (2.8) coincide. So we get this
corollary.

Corollary 2.10. Assume X is continuous and H is closed. Then g is a
stopping time.

Remark 2.11. (A look ahead.) The stopping times discussed above will
play a role in the development of the stochastic integral in the following way.
To integrate an unbounded real-valued process X we need stopping times
(k. " oo such that X;(w) stays bounded for 0 < ¢ < (i (w). Caglad processes
will be an important class of integrands. For a caglad X Lemma 2.7 shows
that
Cp=inf{t > 0:|Xy| > k}

are stopping times, provided {F;} is right-continuous. Left-continuity of X
then guarantees that |X;| < k for 0 <t < (.

Of particular interest will be a caglad process X that satisfies X; = Y;_
for t > 0 for some adapted cadlag process Y. Then by Lemma 2.9 we get
the required stopping times by

G =1inf{t > 0: Y| >k or |Yi—| > k}
without having to assume that {F;} is right-continuous.

Remark 2.12. (You can ignore all the above hitting time complications.)
The following is a known fact.

Theorem 2.13. Assume the filtration {F;} satisfies the usual conditions,
and X is a progressively measurable process with values in some metric space.
Then T defined by (2.7), or the same with infimum restricted to t > 0, are
stopping times for every Borel set H.

This is a deep theorem. A fairly accessible recent proof appears in [1].
The reader may prefer to use this theorem in the sequel, and always assume
that filtrations satisfy the usual conditions. We shall not do so in the text
to avoid proliferating the mysteries we have to accept without justification.
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2.2. Quadratic variation

In stochastic analysis many processes turn out to have infinite total variation
and it becomes necessary to use quadratic variation as a measure of path
oscillation. For example, we shall see in the next chapter that if a continuous
martingale M has finite variation, then M; = Mj.

Let Y be a stochastic process. For a partition 7 = {0 =t) < t; < --- <
tm@r) =t} of [0,¢] we can form the sum of squared increments

m(m)—1
Z (}/%iqu - Y;%)Q
i=0
We say that these sums converge to the random variable [Y]; in probability
as mesh(7) = max;(t;+1 —t;) — 0 if for each € > 0 there exists § > 0 such

that
m(m)—1
(2.10) PSS O -1 - )| 26} <
=0
for all partitions 7 with mesh(7) < d. We express this limit as
(2.11) mes%li(r;l)%o Z(Y;H_l —~Y;,)?=[Y]; in probability.

Definition 2.14. The quadratic variation process [Y] = {[Y]; : t € Ry} of
a stochastic process Y is a process such that [Y]y = 0, the paths t — [Y]{(w)
are nondecreasing for all w, and the limit (2.11) holds for all ¢ > 0.

We will see in the case of Brownian motion that limit (2.11) cannot be
required to hold almost surely, unless we pick the partitions carefully. Hence
limits in probability are used.

Between two processes we define a quadratic covariation in terms of
quadratic variations.

Definition 2.15. Let X and Y be two stochastic processes on the same
probability space. The (quadratic) covariation process [X,Y] = {[X,Y]; :
t € Ry} is defined by

1) X,Y) = B+ 7)] - [ -]

provided the quadratic variation processes on the right exist in the sense of
Definition 2.14.

From the identity ab = 1(a +b)? — 2(a — b)? applied to a = X,
and b =Y;, , —Y;, it follows that, for each t € Ry,

(2.13) lim > (X, — Xi,) (Y, — ¥3,) = [X,Y]; in probability.

mesh(7)—0

- X,

141

i
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Utilizing these limits together with the identities
ab=1((a+b)*—a*-v?) = 3(a® + b — (a — b)?)

gives these almost sure equalities at fixed times:

(2.14) XY =3([X+Y],— [X], - [Y);) as.
and
(2.15) (X Y] =g ((X]e + [Y]: = [X —Y]:) as

provided all the processes in question exist.

We defined [X,Y] by (2.12) instead of by the limits (2.13) so that the
property [Y, Y] = [Y] is immediately clear. Limits (2.13) characterize [X, Y]
only almost surely at each fixed ¢t and imply nothing about path properties.
This is why monotonicity was made part of Definition 2.14. Monotonicity
ensures that the quadratic variation of the identically zero process is indis-
tinguishable from the zero process. (Exercise 2.5 gives another process that
satisfies limits (2.11) for Y = 0.)

We give a preliminary discussion of quadratic variation and covariation
in this section. That quadratic variation exists for Brownian motion and
the Poisson process will be proved later in this chapter. The case of local
martingales is discussed in Section 3.4 of Chapter 3. Existence of quadratic
variation for FV processes follows purely analytically from Lemma A.10 in
Appendix A.

In the next proposition we show that if X is cadlag, then we can take
[X]¢ also cadlag. Technically, we show that for each t, [X];+ = [X]; almost
surely. Then the process [X];; has cadlag paths (Exercise 2.12) and satisfies
the definition of quadratic variation. From definition (2.12) it then follows
that [X,Y] can also be taken cadlag when X and Y are cadlag.

Furthermore, we show that the jumps of the covariation match the jumps
of the processes. For any cadlag process Z, the jump at t is denoted by

AZ(t) = Z(t) — Z(t—).

The statement below about jumps can be considered preliminary. After
developing more tools we can strengthen the statement for semimartingales
Y so that the equality A[Y]; = (AY;)? is true for all ¢ € R outside a single
exceptional event of probability zero. (See Lemma 5.40.)

Proposition 2.16. Suppose X andY are cadlag processes, and [X,Y] exists
in the sense of Definition 2.15. Then there exists a cadlag modification of
[X,Y]. For any t, AX,Y], = (AX})(AY}:) almost surely.
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Proof. It suffices to treat the case X =Y. Pick §,& > 0. Fix t < u. Pick
n > 0 so that
m(m)—1

(2.16) P{ ’[X]u XL = Y (X, — X)?

1=0

<€}>1—(5

whenever m = {t = top < t1 < -+ < ty(7) = u} is a partition of [t,u] with
mesh(m) < n. (The little observation needed here is in Exercise 2.10.) Pick
such a partition w. Keeping ¢; fixed, refine  further in [¢1,u] so that

m(m)—1

P{ ‘[X}u—[X]tl— S (X, — X4,)?

=1

<6}>1—5.

Taking the intersection of these events, we have that with probability at
least 1 — 24,

= (th - Xt)2 + Z (Xti+1 - Xti)2 +e€

< (Xpy = Xo)? + [X]u = [X]ey +2¢
which rearranges to
[XJe, < [X]e + (Xiy = X)? + 2¢.

Looking back, we see that this argument works for any ¢; € (¢,¢ + 7). By
the monotonicity [X];+ < [X]y, so for all these ¢,

P{[X]i+ < [X)e+ (Xp, — Xp)2 +2e} > 126
Shrink n > 0 further so that for ¢; € (t,¢ + n) by right continuity
P{(Xy, — Xp)? <e}>1-0.
The final estimate is
P{[X]; < [X]iy < [X]e+3e} > 130

Since €, > 0 were arbitrary, it follows that [X];4+ = [X]+ almost surely. As
explained before the statement of the proposition, this implies that we can
choose a version of [X] with cadlag paths.

To bound the jump at u, return to the partition 7 chosen for (2.16).
Let s = ty,(r)—1- Keeping s fixed refine 7 sufficiently in [¢, 5] so that, with
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probability at least 1 — 26,

m(m)—1
[X]u - [X]t < Z (Xti+1 - th‘)Q +e€
i=0
m(m)—2
= (Xu - XS)2 + Z (Xti+1 - Xti)2 +e
=0

< (Xu = Xo)? 4 [X]s — [X]s + 2¢
which rearranges, through A[X], < [X], — [X]s, to give
P{A[X]y < (Xu — Xs)* +2e} > 126

Here s € (u—n,u) was arbitrary. Again we can pick 7 small enough so that
for all such s with probability at least 1 — 9,

(2.17) [(Xu— Xs)? — (AXW)?| <e.
Since €, § are arbitrary, we have A[X], < (AX,)? almost surely.

For the other direction, return to the calculation above with partition m
and s = t,,(r)—1, but now derive opposite inequalities: with probability at
least 1 — 24,

[(Xu — [X]s > (Xy — X5)2 —e> (AX,)? — 2e.

We can take s close enough to u so that P{A[X], > [X],—[X]s—¢} > 1-6.
Then we have A[X], > (AX,)?— 3¢ with probability at least 1 —365. Letting
€,0 to zero once more completes the proof. O

In particular, we can say that in the cadlag case [Y] is an increasing
process, according to this definition.

Definition 2.17. An increasing process A = {A; : 0 < t < oo} is an
adapted process such that, for almost every w, Ap(w) = 0 and s — Ag(w) is
nondecreasing and right-continuous. Monotonicity implies the existence of
left limits A;_, so it follows that an increasing process is cadlag.

Next two useful inequalities.

Lemma 2.18. Suppose the processes below exist. Then at a fized t,

(2.18) XY < X2 as.
and more generally for 0 < s <t
(219) X Y] = XV < (K= (X)) 2 (V- V]) P as

Furthermore,

(2.20)  |[X] - (V]| < X - Y] +2X - Y2 as
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In the cadlag case the inequalities are valid simultaneously at all s <t € R4,
with probability 1.

Proof. The last statement follows from the earlier ones because the in-
equalities are a.s. valid simultaneously at all rational times and then limits
capture all time points.

Inequalities (2.18)—(2.19) follow from the Cauchy-Schwarz inequality

(2.21) ‘Zajzyl < (Z x?) i (Z yf) 1/2.

For (2.19) use also the observation (Exercise 2.10) that the increments of
the (co)variation processes are limits of sums over partitions, as in (2.16).

From the identity a® — b? = (a — b)? + 2(a — b)b applied to increments of
X and Y follows

(X]—[Y]=[X - Y] +2[X - V,Y].
Utilizing (2.18),
|[[X]-[Y]| < [X - Y]+ |20X - V,Y]|
< [X —Y]+2[X — Y]V y]V2 0

In all our applications [X, Y] will be a cadlag process. As the difference
of two increasing processes in Definition (2.12), [X, Y]; is BV on any compact
time interval. Lebesgue-Stieltjes integrals over time intervals with respect
to [X,Y] have an important role in the development. These are integrals
with respect to the Lebesgue-Stieltjes measure A[x y] defined by

Aixy)(a, 0] = [X, Y]y = [X,Y]s, 0<a<b<oo,

as explained in Section 1.1.9. Note that there is a hidden w in all these
quantities. This integration over time is done separately for each fixed w.
This kind of operation is called “path by path” because w represents the
path of the underlying process [X,Y].

When the origin is included in the time interval, we assume [X,Y]o— = 0,

so the Lebesgue-Stieltjes measure A[x yq gives zero measure to the singleton
{0}. The Lebesgue-Stieltjes integrals obey the following useful inequality.

Proposition 2.19 (Kunita-Watanabe inequality). Fiz w such that [X], [Y]
and [X,Y] exist and are right-continuous on the interval [0,T). Then for
any Bjo ) ® F-measurable bounded functions G and H on [0,T] x €,

G(t,w)H (t,w)d[X, Y]t(w)‘
[0.7]

(2.22) S { . Gty d[X]t(w)}1/2{

1/2

H(t,w)? d[Y]t(w)}
[0,7]
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The integrals above are Lebesgue-Stieltjes integrals with respect to the t-
variable, evaluated for the fized w.

Proof. Once w is fixed, the result is an analytic lemma, and the depen-
dence of G and H on w is irrelevant. We included this dependence so that
the statement better fits its later applications. It is a property of product-
measurability that for a fixed w, G(t,w) and H(t,w) are measurable func-
tions of ¢.

Consider first step functions

m—1
g(t) = 0401{0} (t) + Z O‘il(szwsiﬂ}(t)
=1
and
m—1
h(t) = Bolgoy(t) + > Bil(s, s00)(t)
i=1

where 0 = s; < -+ < s, = T is a partition of [0,7]. (Note that g and h
can be two arbitrary step functions. If they come with distinct partitions,
{si} is the common refinement of these partitions.) Then

/ g(t)h(t) d[Xa Y]t Zazﬂz([Xv Y]si+1 - [Xa Y]Si)

< D loaBil (Xsiss = [X]a) (Vo = V)
1/2
{0l (X - X0 | { SB[y - 1)

where we applied (2.19) and then Schwarz inequality (2.21).

1/2

Let g and h be two arbitrary bounded Borel functions on [0, T, and pick
0 < C < oo sothat |g| < C and |h| < C. Let € > 0. Define the bounded
Borel measure

p= A+ Ay + [Ax vl

on [0,T]. Above, Aixj is the positive Lebesgue-Stieltjes measure of the
function ¢ ~— [X]; (for the fixed w under consideration), same for Ap,
and [A[x y)| is the positive total variation measure of the signed Lebesgue-
Stieltjes measure A[xy]. By Lemma A.17 we can choose step functions g

and h so that || < C, |h| < C, and

~ ~ g
/(!g—g!+!h—h\)du<2c-
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On the one hand

/ ghd[X, Y], —/ ghd[X,Y),
(0,77 [0,T7]

< / lgh — gh | d|Arx, v
[0,7]

<c / 19— 3l Ay +C / h— Bl d|Apey] < <.
[0,7] [0,7]

On the other hand,
| Faxi- [ g,
(0,77 [0,7]

<20 | g—gldX]: <e,
[0.7]

S/ 9> — 3% | d[X]:
(0,T]

with a similar bound for h. Putting these together with the inequality
already proved for step functions gives

1/2 1/2
]/ ghd[X,Y]ts6+{s+/ de[Xh} {e+/ h?dmt} .
(0,7 (0,7 [0,T7]

Since € > 0 was arbitrary, we can let ¢ — 0. The inequality as stated in the
proposition is obtained by choosing ¢(t) = G(t,w) and h(t) = H(t,w). O

Remark 2.20. Inequality (2.22) has the following corollary. As in the proof,
let |A[ va](w)] be the total variation measure of the signed Lebesgue-Stieltjes
measure A[x y)) on [0,7]. For a fixed w, (1.13) implies that [A[x y)w)l <
A[x,y](w) and the Radon-Nikodym derivative

Ay
s(t) = ol
dA(x,y)(w)

on [0, 7] satisfies |¢(t)| < 1. For an arbitrary bounded Borel function g on
[0, 7]
| ol = [ goodx, Vi)
[0,T] [0,T]
Combining this with (2.22) gives

/[ |G(t,w)H (t,w)]| [Apx,y](w)l(dt)

(2.23) 1/2

g{ - G(t,w)Qd[X]t(w)}l/2{ H(t,w)Qd[Y]t(w)}

[0,7]
2.3. Path spaces and Markov processes

So far we have thought of a stochastic process as a collection of random
variables on a probability space. An extremely fruitful, more abstract view
regards a process as a probability distribution on a path space. This is a
natural generalization of the notion of probability distribution of a random
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variable or a random vector. If Y = (Y1,...,Y},) is an R"-valued random
vector on a probability space (2, F, P), its distribution y is the Borel prob-
ability measure on R defined by

u(B) = P{w:Y(w) € B}, B € Bgn.

One can even forget about the “abstract” probability space (€2, F, P), and
redefine Y on the “concrete” space (R",Brn,u) as the identity random
variable Y (s) = s for s € R™.

To generalize this notion for an R%valued process X = {X;: 0 <t <
oo}, we have to choose a suitable measurable space U so that X can be
thought of as a measurable map X : Q — U. For a fixed w the value X (w)
is the function ¢ — X;(w), so the space U has to be a space of functions,
or a “path space.” The path regularity of X determines which space U will
do. Here are the three most important choices.

(i) Without any further assumptions, X is a measurable map into the
product space (R%)[%°) with product o-field B(R%)®0:2),

(ii) If X is an R%valued cadlag process, then a suitable path space is
D = Dga[0,00), the space of R%valued cadlag functions ¢ on [0, 00), with
the o-algebra generated by the coordinate projections & — &(t) from D into
R, Tt is possible to define a metric on D that makes it a complete, separable
metric space, and under which the Borel o-algebra is the one generated by
the coordinate mappings. This is the so-called Skorohod metric, see for
example [2, 6]. Thus we can justifiably denote this o-algebra by Bp.

(iii) If X is an R?valued continuous process, then X maps into C' =
Cral0,00), the space of R%valued continuous functions on [0,00). This
space is naturally metrized by

(220) (0. =Y 27 (1A sup In(t) - (1)), mCeC
k=1

0<t<k

This is the metric of uniform convergence on compact sets. (C,r) is a
complete, separable metric space, and its Borel o-algebra B¢ is generated
by the coordinate mappings. C' is a subspace of D, and indeed the notions
of convergence and measurability in C coincide with the notions it inherits
as a subspace of D.

Generating the o-algebra of the path space with the coordinate functions
guarantees that X is a measurable mapping from €2 into the path space
(Exercise 1.8(b)). Then we can define the distribution p of the process on
the path space. For example, if X is cadlag, then define u(B) = P{X € B}
for B € Bp. As in the case of the random vector, we can switch probability
spaces. Take (D, Bp, i) as the new probability space, and define the process
{Y:} on D via the coordinate mappings: Y;(w) = w(t) for w € D. Then the
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old process X and the new process Y have the same distribution, because
by definition

P{XeB}=uB)=p{lweD:weB}=pu{weD:Y(w) e B}
= u{Y € B}.

One benefit from this construction is that it leads naturally to a theory
of weak convergence of processes, which is used in many applications. This
comes from specializing the well-developed theory of weak convergence of
probability measures on metric spaces to the case of a path space.

The two most important general classes of stochastic processes are mar-
tingales and Markov processes. Both classes are defined by the relationship
of the process X = {X;} to a filtration {F;}. It is always first assumed that
{X:} is adapted to {F;}.

Let X be a real-valued process. Then X is a martingale with respect to
{F:} if X is integrable for each ¢, and

E[Xi|Fs] = X, for all s < t.

For the definition of a Markov process X can take its values in an ab-
stract space, but RY is sufficiently general for us. An R%valued process X
satisfies the Markov property with respect to {F;} if

(2.25) P[X; € B|Fs] = P[X; € B|X{] for all s <t and B € Bga.

A martingale represents a fair gamble in the sense that, given all the
information up to the present time s, the expectation of the future fortune
X, is the same as the current fortune X;. Stochastic analysis relies heavily
on martingale theory. The Markov property is a notion of causality. It says
that, given the present state X, future events are independent of the past.

These notions are of course equally sensible in discrete time. Let us
give the most basic example in discrete time, since that is simpler than
continuous time. Later in this chapter we will have sophisticated continuous-
time examples when we discuss Brownian motion and Poisson processes.

Example 2.21. (Random Walk) Let X, X2, X3,... be a sequence of i.i.d.
random variables. Define the partial sums by Sp =0, and S, = X1+---+X,,
for n > 1. Then S, is a Markov chain (the term for a Markov process in
discrete time). If EX; = 0 then S, is a martingale. The natural filtration
to use here is the one generated by the process: F,, = o{X1,..., X, }.

Martingales are treated in Chapter 3. In the remainder of this section we
discuss the Markov property and then the strong Markov property. These
topics are not necessary for all that follows, but we do make use of the
Markov property of Brownian motion for some calculations and exercises.
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With Markov processes it is natural to consider the whole family of
processes obtained by varying the initial state. In the previous example,
to have the random walk start at z, we simply say Sy = z and S,, =
x4+ X1+ -+ X,,. The definition of such a family of processes is conveniently
expressed in terms of probability distributions on a path space. Below we
give the definition of a time-homogeneous cadlag Markov process. Time-
homogeneity means that the transition mechanism does not change with
time: given that the state of the process is x at time s, the chances of
residing in set B at time s + ¢ depend on (z,t, B) but not on s.

On the path space D, the coordinate variables are defined by X;(w) =
w(t) for w € D, and the natural filtration is F; = 0{X, : s < t}. We write
also X (t) when subscripts are not convenient. The shift maps 05 : D — D
are defined by (Osw)(t) = w(s +t). In other words, the path f,w has its
time origin translated to s and the path before s is deleted. For an event
A € Bp, the inverse image

0;'A={weD:fwec A}
represents the event that “A happens starting at time s.”

Definition 2.22. An R%valued Markov process is a collection {P* : z €
R?} of probability measures on D = Dga[0, 00) with these properties:

(a) PP{w € D : w(0) =z} = 1.
(b) For each A € Bp, the function z — P%(A) is measurable on R

(¢) P*[0;7 ' A|Fi)(w) = PXt(“(A) for P*-almost every w € D, for every
x € R%and A € Bp.

Requirement (a) in the definition says that x is the initial state under the
measure P?. You should think of P* as the probability distribution of the
entire process given that the initial state is . Requirement (b) is for tech-
nical purposes. If we wish to start the process in a random initial state X
with distribution p, then we use the path measure P#(A) = [ P*(A) p(dx).
P? itself is the special case yu = 6.

Requirement (c) is the Markov property. It appears qualitatively differ-
ent from (2.25) because the event A can depend on the entire process, but
in fact (c) would be just as powerful if it were stated with an event of the
type A = {Xs € B}. The general case can then be derived by first going
inductively to finite-dimensional events, and then by a 7m-A argument to all
A € Bp. In the context of Markov processes E¥ stands for expectation un-
der the measure P*. Parts (b) and (c) together imply (2.25), with the help
of property (viii) of Theorem 1.26.

What (c) says is that, if we know that the process is in state y at time ¢,
then regardless of the past, the future of the process behaves exactly as a new
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process started from y. Technically, conditional on X; = y and the entire
information in F;, the probabilities of the future process {Xiiy : u > 0}
obey the measure PY. Informally we say that at each time point the Markov
process restarts itself from its current state, forgetting its past. (Exercise
2.16 practices this in a simple calculation.)

The transition probability of the Markov process is p(t, z, B) = P*(X; €
B). For each fixed t € R, p(t,z, B) is a measurable function of z € R4
and a Borel probability measure in the set argument B € Bgra. It gives the
conditional probability in (2.25), regardless of the initial distribution:

(2.26) PH (X4t € B|Fs)(w) = p(t, Xs(w), B).
The next calculation justifies. Let A € Fs and B € BRra.

EM[141{ X, € B}] = /E””[lAl{Xs+t € B} u(dx)
_ / E*[1a(w)P*(Xy1s € B| Fy)(w)] u(da)
- / E*[1a(w)P"(0;{X; € B}| F)(w)] u(da)
_ / B [14(w)PX@){X, € BY] u(dx)

— /Ex[u(w)p(t,Xs(w),B)] pu(dz)
= E#[lAp(t’X&B)]'

The fourth equality above used property (c) of Definition 2.22. The inte-
gration variable w was introduced temporarily to indicate those quantities
that are integrated by the outside expectation E<.

Finite-dimensional distributions of the Markov process are iterated in-
tegrals of the transition probabilities. For 0 = s < s1 < -+ < s, and a
bounded Borel function f on R4 "+1),

EF[f(Xsgs Xsyy- -y Xs,)] :/---/u(dxo)p(sl,xo,dxl)

p(s2 — s1,21,dx2) - p(Sn — Sn—1, Tn—1,dTy) f(To, T1,...,Tp).
(Exercise 2.17.)

There is also a related semigroup property for a family of operators. On
bounded measurable functions g on the state space, define operators S(t)
by
(2.28) S(t)g(x) = E*lg(X,)).

(The way to think about this is that S(¢) maps g into a new function S(t)g,
and the formula above tells us how to compute the values S(t)g(z).) S(0)

(2.27)
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is the identity operator: S(0)g = g. The semigroup property is S(s +1t) =
S(s)S(t) where the multiplication of S(s) and S(¢) means composition. This
can be checked with the Markov property:

S(s+t)g(x) = E*[g(Xewr)] = B* [E*{9(Xstt) | Fs}]
E*[EXO{g(X)}] = E2[(S(t)g)(Xs)]
(s)( (t)g)(x).

Another question suggests itself. Statement (c) in Definition 2.22 restarts
the process at a particular time ¢ from the state y that the process is at. But
since the Markov process is supposed to forget its past and transitions are
time-homogeneous, should not the same restarting take place for example
at the first visit to state y? This scenario is not covered by statement (c)
because this first visit happens at a random time. So we ask whether we
can replace time ¢ in part (c) with a stopping time 7. With some additional
regularity the answer is affirmative. The property we are led to formulate
is called the strong Markov property.

The additional regularity needed is that the probability distribution
P?(X; € -) of the state at a fixed time ¢ is a continuous function of the
initial state x. Recall the notion of weak convergence of probability mea-
sures for spaces more general than R introduced below Definition 1.19. A
Markov process { P*} is called a Feller process if for all t > 0, all z;,z € R,
and all g € Cy(R?) (the space of bounded continuous functions on R%)

(2.29) x; — x implies E%[g(X;)] = E¥[g(Xy)].

Equation (2.30) below is the strong Markov property, and a Markov pro-
cess that satisfies this property is a strong Markov process. It is formulated
for a function Y of both a time point and a path, hence more generally than
the Markov property in Definition 2.22(c). This is advantageous for some
applications. Again, the state space could really be any metric space but
for concreteness we think of R%.

Theorem 2.23. Let {P*} be a Feller process with state space R. Let
Y (s,w) be a bounded, jointly measurable function of (s,w) € R4y x D and
T a stopping time on D. Let the initial state x be arbitrary. Then on the
event {T < oo} the equality

(2.30) E*Y(1,X 00,) | Frl(w) = BXO[Y (1(w), X)]
holds for P*-almost every path w.

Before turning to the proof, let us sort out the meaning of statement
(2.30). First, we introduced a random shift 6, defined by (6,w)(s) =
w(T(w) + s) for those paths w for which 7(w) < oco. On both sides of
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the identity inside the expectations X denotes the identity random variable
on D: X(w) = w. The purpose of writing Y (7, X o 6,) is to indicate that
the path argument in Y has been translated by 7, so that the integrand
Y (7, X o 6;) on the left is a function of the future process after time 7. On
the right the expectation should be read like this:

ECDY (1(w), X)] = /D Y (r(w), @) P (d).

In other words, the first argument of Y on the right inherits the value 7(w)
which (note!) has been fixed by the conditioning on F; on the left side of
(2.30). The path argument w obeys the probability measure P<(7)in other
words it is the process restarted from the current state w(7).

Example 2.24. Let us perform a simple calculation to illustrate the me-
chanics. Let 7 =inf{t > 0: X; = z or X;_ = z} be the first hitting time of
point z, a stopping time by Lemma 2.9. Suppose the process is continuous
which means that P*(C) = 1 for all z. Suppose further that P*(7 < oo) = 1.
From this and path continuity P*(X, = z) = 1. Let us use (2.30) to
check that, for a fixed t > 0, P*(X;4; € A) = P*(X; € A). We take
Y(w) = 1{w(t) € A} so now the Y-function does not need a time argument.

PY(X;y4 € A)=E"[Y 00.] = E*[E*(Y 06, | ;)]
= B*[EX0) (V)] = E°[E*(Y)] = E*(Y) = P*(X, € A).

The E*-expectation goes away because the integrand E*(Y) is no longer
random, it is merely a constant.

Remark 2.25. Up to now in our discussion we have used the filtration {F;}
on D or C generated by the coordinates. Our important examples, such
as Brownian motion and the Poisson process, actually satisfy the Markov
property (part (c) of Definition 2.22) under the larger filtration {F;1}. The
strong Markov property holds also for the larger filtration because the proof
below goes through as long as the Markov property is true.

Proof of Theorem 2.23. Let A € F,. What needs to be shown is that
(2.31) E"[1alco)Y (1, X 00,)] = / ECOY (1(w), X)] P*(dw).
An{r<oo}

As so often with these proofs, we do a calculation for a special case and then
appeal to a general principle to complete the proof.
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First we assume that all the possible finite values of 7 can be arranged
in an increasing sequence t1 < to < t3 < ---. Then

E"[14l{rco}Y (1, X 007)] =Y E"[14l{roy 1Y (1, X 06,)]
= ZEw 1al(—, ) Y (tn, X 0 0y,)]
= Z E” [14(w)1 ()=t} B™{Y (tn, X 0 604,) | Fi, }(w)]
= ZE"’” [14(W) L7 )=ty EXUHY (£, X))

= B [La(@)1 () <00y B TOHY ((w), X)}]

where we used the basic Markov property and wrote w for the integration
variable in the last two E®-expectations in order to not mix this up with
the variable X inside the E“(7)-expectation. The expression w(7(w)) does
make sense since 7(w) € R4!

Now let 7 be a general stopping time. The next stage is to define 7, =
27"([2"7]+1). Check that these are stopping times that satisfy {7, < co} =
{r <o} and 7, \ T asn M oo. Since 7, > 7, A € F; C F. . The possible
finite values of 7, are {27k : k € N} and so we already know the result for
Tn:

E* [1A1{7'<00}Y<Tn7 Xo eTn)]
(2.32) _ / ECO0IY (7, (w), X)) P*(dow).
An{r<oco}

The idea is to let n oo above and argue that in the limit we recover (2.31).
For this we need some continuity. We take Y of the following type:

(2.33) Y(s,w) = fo(s) - [] filw(si)
i=1
where 0 < s1 < ... < s, are time points and fy, fi1,..., fim are bounded con-

tinuous functions. Then on the left of (2.32) we have inside the expectation

(Tn797nw fO Tn Hfl Tn“‘sz

m

— folr) - [[ filw(r + 1)) =Y (7, 0w).

n—00 !
i=1

The limit above used the right continuity of the path w. Dominated conver-
gence will now take the left side of (2.32) to the left side of (2.31).
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On the right of (2.32) we have inside the integral

B[y ( /Ym w) P ()

= fO Tn /Hfz Pn(Tn (dw)

In order to assert that the above converges to the integrand on the right
side of (2.31), we need to prove the continuity of

/Hﬁ )) P%(dw)

as a function of (s,z) € Ry x RY. Since products preserve continuity, what
really is needed is the extension of the definition (2.29) of the Feller property
to expectations of more complicated continuous functions of the path. We
leave this to the reader (Exercise 2.18). Now dominated convergence again
takes the right side of (2.32) to the right side of (2.31).

We have verified (2.31) for Y of type (2.33), and it remains to argue that
this extends to all bounded measurable Y. This will follow from Theorem
B.4. The class R in that Theorem are sets of the type B = {(s,w) : s €
Ag,w(s1) € Aq,y...,w(sm) € A} where A9 C Ry and A; € R? are closed
sets. (2.33) holds for 15 because we can find continuous 0 < f; , < 1 such
that f;,, — 14, as n — oo, and then the corresponding Y;, — 1p and (2.33)
extends by dominated convergence. Sets of type B generate Br, ® Bp
because this o-algebra is generated by coordinate functions. This completes
the proof of the strong Markov property for Feller processes. O

Next we discuss the two most important processes, Brownian motion
and the Poisson process.

2.4. Brownian motion

Informally Brownian motion could be characterized as random walk that
takes infinitesimal steps infinitely fast. Its paths are continuous but highly
oscillatory.

Definition 2.26. One some probability space (2, F, P), let {F;} be a filtra-
tion and B = {B; : 0 < t < oo} an adapted real-valued stochastic process.
Then B is a one-dimensional Brownian motion with respect to {F;} if it has
these two properties.

(i) For almost every w, the path t — B;(w) is continuous.

(ii)) For 0 < s < t, By — By is independent of Fy and has normal
distribution with mean zero and variance t — s.
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If furthermore
(iii) Bp = 0 almost surely

then B is a standard Brownian motion. Since the definition involves both
the process and the filtration, sometimes one calls this B an {F;}-Browian
motion, or the pair {By, F; : 0 <t < oo} is called the Brownian motion.

To be explicit, point (ii) of the definition can be expressed by the re-
quirement
22
E[Z h(B, - B / {~5i——}
(2 1By = By)] = m 2 —5)
for all bounded Fs;-measurable random variables Z and all bounded Borel

functions h on R. By an inductive argument, it follows that for any 0 <
sp < 81 < -+ < Sy, the increments

Bs, — By, Bs, — Bs,,...,Bs, — Bs,,_,

x) exp dx

are independent random variables and independent of Fy, (Exercise 2.20).
Furthermore, the joint distribution of the increments is not changed by a
shift in time: namely, the joint distribution of the increments above is the
same as the joint distribution of the increments

Bt+51 - Bt+807 Bt+52 - Bt+81a ceey Bt-i—sn - Bt-i-sn_l

for any t > 0. These two points are summarized by saying that Brownian
motion has stationary, independent increments.

A d-dimensional standard Brownian motion is an R%valued process
B; = (B},...,B{) with the property that each component B! is a one-
dimensional standard Brownian motion (relative to the underlying filtration
{F:}), and the coordinates B!, B2, ..., B¢ are independent. This is equiv-
alent to requiring that

(i) Bp = 0 almost surely.
(ii) For almost every w, the path ¢t — B;(w) is continuous.

(iii) For 0 < s < t, B; — By is independent of F;, and has multivariate
normal distribution with mean zero and covariance matrix (¢t —

s) I

dxd
Above, I is the d x d identity matrix.

dxd
To create a Brownian motion B; with a more general initial distribution
(the probability distribution of By), take a standard Brownian motion
(Bt,]-"t) and a pu-distributed random variable X mdependent of .7-"00, and
define B, = X + B,. The filtration is now .7-} =o{X, ft} Since By — By =
Bt —BS, ]-'oo is independent of X, and Bt s is independent of .7?3, Exercise
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1.11(c) implies that B; — By is independent of F,. Conversely, if a process B;
satisfies parts (i) and (ii) of Definition 2.26, then B, = B; — By is a standard
Brownian motion, independent of B.

The construction (proof of existence) of Brownian motion is rather tech-
nical, and hence relegated to Section B.2 in the Appendix. For the un-
derlying probability space the construction uses the “canonical” path space
C = Cr[0,00). Let Bi(w) = w(t) be the coordinate projections on C, and
FPB =0{B,:0 < s <t} the filtration generated by the coordinate process.

Theorem 2.27. There exists a Borel probability measure P° on the path
space C' = CR[0,00) such that the process B = {B; : 0 < t < oo} on
the probability space (C,Bc, P®) is a standard one-dimensional Brownian
motion with respect to the filtration {FP}.

The proof of this existence theorem relies on the Kolmogorov Extension
Theorem 1.28. The probability measure P° on C constructed in the theorem
is called Wiener measure to recognize that Norbert Wiener was the first to
give a rigorous construction of Brownian motion. Brownian motion itself
is sometimes also called the Wiener process. Once we know that Brownian
motion starting at the origin exists, we can construct Brownian motion with
an arbitrary initial point (random or deterministic) following the description
after Definition 2.26.

The construction gives us the following regularity property of paths. Fix
0<y< % For PY-almost every w € C,
| Bt(w) — Bs(w)]

(2.34) sup < oo forall T < oo.
0<s<t<T it —s|7

This property is expressed by saying that Brownian paths are Holder contin-
uous with exponent v. We shall show later in this section that this property
is not true for v > %

2.4.1. Brownian motion as a martingale and a strong Markov
process. We discuss mainly properties of the one-dimensional case. The
multidimensional versions of the statements follow naturally from the one-
dimensional case. We shall use the term Brownian motion to denote a
process that satisfies (i) and (ii) of Definition 2.26, and call it standard if
also By = 0.

A fundamental property of Brownian motion is that it is both a martin-
gale and a Markov process.

Proposition 2.28. Suppose B = {B.} is a Brownian motion with respect
to a filtration {F} on (Q,F,P). Then By and B} —t are martingales with
respect to {Fi}.
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Proof. Follows from the properties of Brownian increments and basic prop-
erties of conditional expectations. Let s < .

E[Bt|~7:s] = E[Bt - Bs|fs] +E[Bs|~7:s] = BS,
and

E[B%|F,] = E[(B; — B, + Bs)?|Fs]
= E((B; — B,)?|Fs| + 2B,E|[B; — B,|F,] + B2
= (t —s) + B2 O

Next we show that Brownian motion restarts itself independently of the
past. This is the heart of the Markov property. Also, it is useful to know
that the filtration of a Brownian motion can always be both augmented with
the null events and made right-continuous.

Proposition 2.29. Suppose B = {B.;} is a Brownian motion with respect
to a filtration {F:} on (Q, F, P).

(a) We can assume that Fy contains every set A for which there exists
an event N € F such that A C N and P(N) = 0. (This is the notion of a
complete or augmented filtration introduced earlier.) Furthermore, B = {B;}
is also a Brownian motion with respect to the right-continuous filtration
{Fit}-

(b) Fiz s € Ry and define Y; = Bsyy — Bs. Then the process Y = {Y; :
0 <t < oo} is independent of Fsy and it is a standard Brownian motion
with respect to the filtration {Gi} defined by Gy = Foys)4-

Proof. Definition (2.2) shows how to complete the filtration. Of course, the
adaptedness of B to the filtration is not harmed by enlarging the filtration,
the issue is the independence of F, and B; — B,. If G € F has A € F,
such that P(AAG) = 0, then P(GN H) = P(AN H) for any event H. In

particular, the independence of F; from B; — B, follows.

The rest follows from a single calculation. Fix s > 0 and 0 =ty < t1 <
to < --- < t,, and for h > 0 abbreviate

&(h) = (Bsth+t, — Bs+h, Bsthtts — Bsthttrs---s Bsthttn, — Bsthtn 1)

for a vector of Brownian increments. Let Z be a bounded F,;-measurable
random variable. For each h > 0, Z is Fsp-measurable. Since Brownian
increments are independent of the past (see the strengthening of property
(ii) of Definition 2.26 given in Exercise 2.20), £(h) is independent of Z. Let f
be a bounded continuous function on R™. By path continuity, independence,
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and finally the stationarity of Brownian increments,
B[Z- f(€&0))] = Jim B[Z- f(¢(h))]
— lim EZ - B[ f(£(h))] = EZ - E[ (£(0))]

(2.35) AN
- EZ : E[f(Bs-i-h - BS7 Bs+t2 - Bs+t17 ceey Bs-l—tn - Bs-i-tn_l)]

= EZ~E[f(Bt1 — By, By, — By, ..., DB, — Btn,l)]

The equality of the first and last members of the above calculation extends
by Lemma B.6 from continuous f to bounded Borel f.

Now we can harvest the conclusions. The independence of F,; and
B, — B; is contained in (2.35) so the fact that B is a Brownian motion
with respect to {F:4+} has been proved. Secondly, since £(0) = (Y3, Yz, —
Yi, .., Ys, — Y4, ) and the vector n = (Y4, Y:,,...,Y:,) is a function of
€(0), we conclude that 7 is independent of Fgy. This being true for all
choices of time points 0 < t; < to < --- < t,, implies that the entire process
Y is independent of Fgy, and the last member of (2.35) shows that given
Fst, Y has the distribution of standard Brownian motion.

Finally, the independence of Y;, — Y;, and G;, is the same as the inde-
pendence of Bsit, — Bsit, of F(544,)4 which was already argued. ([

Parts (a) and (b) of the lemma together assert that Y is a standard
Brownian motion, independent of F;,, the filtration obtained by replac-
ing {F:} with the augmented right-continuous version. (The order of the
two operations on the filtration is immaterial, in other words the o-algebra
MNs.s>1 Fs agrees with the augmentation of (..., Fs, see Exercise 2.4.)

The key calculation (2.35) of the previous proof used only right-continuity.
Thus the same argument gives us this lemma that we can apply to other
processes.

Lemma 2.30. Suppose X = (X; : t € Ry) is a right-continuous process
adapted to a filtration {F;} and for all s < t the increment Xy — X is
independent of Fs. Then Xy — X, is independent of Fsy.

Next we develop some properties of Brownian motion by concentrating
on the “canonical setting”. The underlying probability space is the path
space C = CRr[0,00) with the coordinate process Bi(w) = w(t) and the
filtration 7?7 = 0{Bs : 0 < s < t} generated by the coordinates. For each
x € R there is a probability measure P* on C under which B = {B;} is
Brownian motion started at x. Expectation under P” is denoted by E® and
satisfies

E®[H] = E°[H(z + B)]
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for any bounded Bg-measurable function H. On the right x + B is a sum
of a point and a process, interpreted as the process whose value at time ¢ is
x + B;. (In Theorem 2.27 we constructed P, and the equality above can
be taken as the definition of P*.)

On C we have the shift maps {#s : 0 < s < oo} defined by (fsw)(t) =
w(s + t) that move the time origin to s. The shift acts on the process B by
QSB = {Bert it 2 0}

A consequence of Lemma 2.29(a) is that the coordinate process B is a
Brownian motion also relative to the larger filtration }"ﬁ = Ng:sot FB. We
shall show that members of ¥ and fﬁ differ only by null sets. (These
o-algebras are different, see Exercise 2.13.) This will have interesting conse-
quences when we take t = 0. The next proposition establishes the Markov
property with respect to the larger filtration {]—"g .

Proposition 2.31. Let H be a bounded Bc-measurable function on C.
(a) E*[H] is a Borel measurable function of x.
(b) For each x € R

(2.36) E*[H o 05| FE J(w) = EBWIH]  for P*-almost every w.

In particular, the family {P*} on C satisfies Definition 2.22 of a Markov
process with respect to the filtration {]ﬂﬁ}

Proof. Part (a). Suppose we knew that x — P*(F’) is measurable for each
closed set FF C C. Then the 7m-A Theorem B.3 implies that x — P*(A) is
measurable for each A € B¢ (fill in the details for this claim as an exercise).
Since linear combinations and limits preserve measurability, it follows that
x — E®[H] is measurable for any bounded Bc-measurable function H.

To show that = — P*(F') is measurable for each closed set F', consider
first a bounded continuous function H on C. (Recall that C' is metrized by
the metric (2.24) of uniform continuity on compact intervals.) If 2; — x in
R, then by continuity and dominated convergence,

E%[H] = E°[H(z; + B)] — E°[H(z + B)] = E*[H]

so E*[H] is continuous in x, which makes it Borel measurable. The indicator
function 1 of a closed set can be written as a bounded pointwise limit of
continuous functions H,, (see (B.2) in the appendix). So it follows that

P*(F) = lim E*[H,)]
n—oo
is also Borel measurable in x.

Part (b). We can write the shifted process as §sB = Bs + Y where
Y: = Bs4+ — Bs. Let Z be a bounded fﬂ-measurable random variable. By
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Lemma 2.29(b), Y is a standard Brownian motion, independent of (Z, By)
because the latter pair is Fgr—measurable. Consequently

E*|Z-H(0,B)] = E*|Z-H(Bs +Y)]

_ /C E*[Z - H(Bs + ¢)] P*(dC).

By independence the expectation over Y can be separated from the expecta-
tion over (Z, B). (This was justified in Exercise 1.14.) P is the distribution
of Y because Y is a standard Brownian motion. Next move the P°(d() in-
tegral back inside, and observe that

[+ 0 P = e
for any point y, including y = Bs(w). This gives
E*[Z-H(0sB)] = E*[Z - EP*(H)].
The proof is complete. U

Proposition 2.32. Let H be a bounded Bc-measurable function on C'. Then
forany x € R and 0 < s < o0,

(2.37) E*[H|FB] = E*[H|FP] P-almost surely.

Proof. Suppose first H is of the type
H(w) =[] 1a ()
i=1

for some 0 <t <ty < --- < t, and A; € Br. By separating those factors
where t; < s, we can write H = Hy - (Hs o 05) where H is }"SB—measurable.
Then
E*[H|FB) = Hy - E"[Hy 0 05| F5 ) = Hy - EP+[Hy)

which is FZ-measurable. Since FZ contains FZ, (2.37) follows from prop-
erty (viii) of conditional expectations given in Theorem 1.26.

Let ‘H be the collection of bounded functions H for which (2.37) holds.
By the linearity and the monotone convergence theorem for conditional ex-
pectations (Theorem B.14), H satisfies the hypotheses of Theorem B.4. For
the m-system S needed for Theorem B.4 take the class of events of the form

{w:w(t)) € Ay,...,w(ty) € Ap}

for 0 <t; <ty <---<t,and A; € Br. We checked above that indicator
functions of these sets lie in 7. Furthermore, these sets generate B¢ because
B¢ is generated by coordinate projections. By Theorem B.4 H contains all
bounded Bg-measurable functions. O
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Corollary 2.33. If A € FE then there exists B € FP such that P*(AAB) =
0.

Proof. Let Y = E*(14]FP), and B = {Y = 1} € FP. The event AAB is
contained in {14 # Y}, because w € A\ B implies 14(w) = 1 # Y (w), while
w € B\ A implies Y(w) =1 # 0 = 14(w). By (2.37), 14 =Y P%-almost
surely. Hence {14 # Y}, and thereby AAB, is a P*-null event. O

Corollary 2.34. (Blumenthal’s 0-1 Law) Let x € R. Then for A € ]:(ﬁ,
P*(A) is 0 or 1.

Proof. The o-algebra .7-"63 satisfies the 0—1 law under P*, because P*{Bj €
G} = 1g(z). Then every P®-conditional expectation with respect to F
equals the expectation (Exercise 1.17). The following equalities are valid
P?-almost surely for A € ]-_(ﬁ:

14 = B*(14|Fy) = E*(1aF) = P(A).

Thus there must exist points w € C such that 14(w) = P*(A), and so the
only possible values for P?(A) are 0 and 1. O

From the 0-1 law we get a fact that suggests something about the fast
oscillation of Brownian motion: if it starts at the origin, then in any nontriv-
ial time interval (0,e) the process is both positive and negative, and hence
by continuity also zero. To make this precise, define

o=inf{t >0: B, >0}, 7 =inf{t > 0: By <0},

2.38
(2:38) and Tp = inf{t > 0: B; = 0}.

Corollary 2.35. P'-almost surely o =7 =Ty = 0.

Proof. To see that the event {o = 0} lies in F{, write

o
{e=0}= n {B, > 0 for some rational ¢ € (0, 1)} € F2.,.

m=n
Since this is true for every n € N, {0 = 0} € ,,en F21 = F&.. Same
argument shows {r = 0} € FJ,.
Since each variable By is a centered Gaussian,
Po <L} >PYBy),, >0 =1
and so

0fy — 0V — T 0 1 1
P{UfO}fnlgnooP{agm}Zz.

The convergence of the probability happens because the events {o < %}
shrink down to {o = 0} as m — co. By Blumenthal’s 0-1 law, P°{c =0} =
0 or 1, so this quantity has to be 1. Again, the same argument for 7.
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Finally, fix w so that o(w) = 7(w) = 0. Then there exist s,t € (0,¢)
such that Bs(w) < 0 < B(w). By continuity, By, (w) = 0 for some u between
s and t. Hence Tp(w) < e. Since ¢ > 0 can be taken arbitrarily small,

To(w) =0. O

Identity (2.36) verified that Brownian motion is a Markov process, also
under the larger filtration G; = ]-'t]i. The transition probability of Brownian
motion is a normal distribution and consequently has a density function.
Namely,

p(t,z, A) = / p(t,z,y) dy for A in Bgr
A
with

(2.39) p(t,x,y) =

1 { (z —y) }
expy ————— ;.
V2t 2t
This transition probability density of Brownian motion is called the Gauss-
ian kernel. An important analytic fact about the Gaussian kernel is that it
gives the fundamental solution of the heat equation p = %pm. (See Section

9.2 for an explanation of this.)

Next we strengthen the Markov property of Brownian motion to the
strong Markov property. Recall the definition from (2.30).

Proposition 2.36. Brownian motion is a Feller process, and consequently
a strong Markov process under the filtration {G;}.

Proof. It only remains to observe the Feller property: for g € Cy(R)

Y2
gz +vy) exp{f—} dx

E*[g(Bt)] \/ﬁ

and the continuity as a function of x is clear by dominated convergence. [

A natural way to understand the strong Markov property of Brownian
motion is that, on the event {7 < oo}, the process B, = Byt — B is a
standard Brownian motion, independent of G.. Formally we can extract
this point from the statement of the strong Markov property as follows.
Given a bounded measurable function g on the path space C', define h by
h(w) = g(w — w(0)). Then

E"[g(B)|G:](w) = E"[h o 0, | G;)(w) = E“V[h] = E%[g].
The last equality comes from the definition of the measures P<:
E*lh] = E'h(a + B)] = E°lg(x + B — 2)] = E'lg].

The Markov and strong Markov properties are valid also for d-dimensional
Brownian motion. The definitions and proofs are straightforward extensions.
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Continuing still in 1 dimension, a favorite application of the strong
Markov property of Brownian motion is the reflection principle, which is
useful for calculations. Define the running maximum of Brownian motion
by

(2.40) My = sup B
0<s<t

Proposition 2.37. (Reflection principle) Let a < b and b > 0 be real num-
bers. Then

(2.41) P%(B; < a,M; >b) = P*(B; > 2b—a).

Each inequality in the statement above can be either strict or weak, by
taking limits (Exercise 2.23) and because B; has a continuous distribution.

Proof. Let
m, = inf{t > 0: B; = b}
be the hitting time of point b. By path continuity M; > b is equivalent to

75 < t. In the next calculation w indicates quantities that are random for
the outer expectation but constant for the inner probability.

PO(Bt(w) <a,My(w)>b)= PO(Tb(w) <t, B(w) <a)
*[1{n(w) <t}PY(B; < a| Fr,)(w)]

O[1{m(w) < t}P*(By_y, () < a)]

O[1{n(w) < t}P"(B;_ry(w) = 2b — a)]

O[1{my(w) < t}P°(By > 2b— a| Fy,) (w)]

= PY(My(w) > b, By(w) > 2b—a) = P°(Bi(w) > 2b—a).

E
E
=F
=F

On the third and the fourth line 7,(w) appears in two places, and it is a
constant in the inner probability. Then comes the reflection: by symmetry,
Brownian motion started at b is equally likely to reside below a as above
b+ (b—a) = 2b—a. The last equality drops the condition on M; that is
now superfluous because 2b — a > b.

The reader may feel a little uncomfortable about the cavalier way of
handling the strong Markov property. Let us firm it up by introducing
explicitly Y (s,w) that allows us to mechanically apply (2.30):

Y(s,w)=1{s <t,w(t—s) >2b—a} —1{s < t,w(t —s) < a}.
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By symmetry of Brownian motion, for any s < ¢,
E[Y(s,B)] = P"{B;_y > 2b—a} — P’{B;_, < a}
=PYB;;>b—a}—P{B,s<a—b}=0.
In the next calculation, begin with this equality, note that b = B, (w) and

then apply the strong Markov property. Use X as the identity mapping on
C' in the first innermost expectation.

0= Eo[l{'rb(w) < t}Eb{Y(Tb(w),X)}}
= E° [1{Tb(w) < t}EO{Y(Tb, -,B) |.7:Tb}(w)]
= E°[1{n, < t}Y (13,6, B)]
=P, <t,B;>2b—a}— P {n <t B, <a}
= PY{B; > 2b—a} — P’{r, < t,B; < a}.
The second last step used
Y(7,0-,B) =1{m, <t,B; >2b—a} —1{r, < t,B; < a}

which is a direct consequence of the definition of Y. O

An immediate corollary of (2.41) is that M; has the same distribution
as |By|: taking a =b >0

P(M; > b) = PY(By < b, M; >b) + P°(B; > b, M; > b)

(2.42) = P(B; > b) + P*(B; > b) = 2P°(B; > b) = P°(|By| > b).

With a little more effort one can write down the joint density of (By, M)
(Exercise 2.24).

2.4.2. Path regularity of Brownian motion. As a byproduct of the
construction of Brownian motion in Section B.2 we obtained Holder conti-
nuity of paths with any exponent strictly less than %

Theorem 2.38. Fizx 0 < v < % The following is true almost surely for
Brownian motion: for every T' < oo there exists a finite constant C(w) such
that

(2.43) |Bt(w) — Bs(w)| < C(w)|t —s|7 forall0 < s,t<T.

Next we prove a result from the opposite direction. Namely, for an
exponent strictly larger than % there is not even local Holder continuity.

(“Local” here means that the property holds in a small enough interval
around a given point.)



74 2. Stochastic Processes

Theorem 2.39. Let B be a Brownian motion. For finite positive reals ,
C, and € define the event

G(7,C,¢e) = {there exists s € Ry such that |By — Bs| < C|t — s|?
forallt € [s—e,s+¢]}.

Then if v > %, P(G(% C, 5)) =0 for all positive C' and €.

Proof. Fix v > % Since only increments of Brownian motion are involved,
we can assume that the process in question is a standard Brownian motion.
(B¢ and Et = B; — By have the same increments.) In the proof we want to
deal only with a bounded time interval. So define

H(C,e) = {there exists s € [k, k + 1] such that |B; — Bs| < C|t — s|”
forallt € [s—e,s+¢e]Nk,k+1]}.

G(v,C,¢) is contained in | J, Hx(C, ), so it suffices to show P(Hy(C,¢)) =0
for all k. Since Y; = By;— By, is a standard Brownian motion, P(Hk(C, g)) =
P(Ho(C,¢)) for each k. Finally, what we show is P(Ho(C,¢)) = 0.

Fix m € N such that m(y—1) > 1. Let w € Ho(C,¢), and pick s € [0,1]
so that the condition of the event is satisfied. Consider n large enough so
that m/n < e. Imagine partitioning [0, 1] into intervals of length % Let

Xk :max{|B(j+1)/n—Bj/n| k<j<k4+m-1} for0<k<n-—m.

The point s has to lie in one of the intervals [%, ’”Tm], for some 0 < k < n—m.

For this particular k,

[B(j+1)/n — Bj/nl < 1B(y1)m — Bs| + |Bs — Bjul
SC(EE sl +ls— 4 <2003y

for all the j-values in the range k < j < k+m — L (Simply because
the points % and % are within ¢ of s. Draw a picture.) In other words,
Xk <20(%2)7 for this k-value.

Now consider all the possible k-values, recall that Brownian increments
are stationary and independent, and note that by basic Gaussian properties,
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B; has the same distribution as t1/2;.
n—m
P(Ho(C,e)) < Y P{Xnx < 2C(2)7} < nP{Xn0 < 2C(%2)7}
k=0

m—1
=n [ P{IBG+1)/m — Bjjnl <2C(2)7} = nP{|By,| < 2C(2)7}"
=0

=nP{|B| < 2C’n1/2_7m7}m

( 1 2001/ 2= 7m 2/ m 1 y m
=n|l — e 2 dy <n|——acn'?rm?
2T /—2Cn1/2—wmv ) - (\/ 2T

In the last stages above we bounded e=2*/2 above by 1, and then collected
some of the constants and m-dependent quantities into the function K(m).
The bound is valid for all large n, while m is fixed. Thus we may let n — oo,

and obtain P(Hy(C,¢)) = 0. This proves the theorem. O

Corollary 2.40. The following is true almost surely for Brownian motion:
the path t — By(w) is not differentiable at any time point.

Proof. Suppose t — B;(w) is differentiable at some point s. This means
that there is a real-valued limit

£ = lim 2t = Bs(),
t—s t—s
Thus if the integer M satisfies M > |£| + 1, we can find another integer k
such that for all t € [s — k™1, s + k71,
Bt ((JJ) — BS (W)
t—s

Consequently w € G(1, M, k~1).

This reasoning shows that if t — By(w) is differentiable at even a single

time point, then w lies in the union (J,,; U, G(1, M,k™'). This union has
probability zero by the previous theorem. O

—-M < < M which implies |B;(w) — Bs(w)| < M|t — s|.

Functions of bounded variation are differences of nondecreasing func-
tions, and monotone functions can be differentiated at least Lebesgue—almost
everywhere. Hence the above theorem implies that Brownian motion paths
are of unbounded variation on every interval.

To recapitulate, the previous results show that a Brownian path is Holder

continuous with any exponent v < % but not for any v > % For the sake of
completeness, here is the precise result. Proofs can be found for example in

[9, 14].
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Theorem 2.41. (Lévy’s modulus of continuity.) Almost surely,

o B; — By 1

im sup —— =

6\0 0§s<t%l 20log 61
t—s<

Next we show that Brownian motion has finite quadratic variation [Bl; =
t. Quadratic variation was introduced in Section 2.2. This notion occupies
an important role in stochastic analysis and will be discussed more in the
martingale chapter. As a corollary we get another proof of the unbounded
variation of Brownian paths, a proof that does not require knowledge about
the differentiation properties of BV functions.

Recall again the notion of the mesh mesh(7w) = max;(t;y1 — t;) of a
partition ™ = {0 =t <t <--- < tm(w) = t} of [O,t].

Proposition 2.42. Let B be a Brownian motion. For any partition m of

[0, 1],
m(m)—1 2
(2.44) E[( (Bt;y, — Bi,)* — t) ] < 2t mesh(n).
i=0
In particular
m(m)—1
(2.45) mes}’li(7rnl)—>0 Z (Bi,,, — Bi,)> =t in L*(P).

1=0

If we have a sequence of partitions ©" such that ), mesh(n™) < oo, then
the convergence above holds almost surely along this sequence.

Proof. Straightforward computation, utilizing the facts that Brownian in-
crements are independent, By — B, has mean zero normal distribution with
variance s — 7, and so its fourth moment is E[(Bs — B,)* = 3(s — r)?. Let
Aty =tip1 —t;.

m(m)—1 2
E [( Y (Buy, — Bi)’ - t) } => E[(Bi,, — By,)"]
i=0 i
+ Z E[(Bti+1 - Bti)2(Btj+1 - Btj)Q] —2t Z E[(Bti+1 - Bt¢)2] + t2
i£j i
=33 (At + > At At; =267+ =2) (AL + Y Aty - Aty — £
i i#j { i,J

=2 Z(Ati)2 < 2mesh(r) Z At; = 2mesh(7)t.
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By Chebychev’s inequality,

m(r™)—1

P{ ‘ > By, —By) - t‘ - 5}
=0
m(7")—1 2
: 5_2E[< > (By, —By)’ _t> }
=0

< 2te~? mesh(7").

If ), mesh(n™) < oo, these numbers have a finite sum over n (in short,
they are summable). Hence the asserted convergence follows from the Borel-
Cantelli Lemma. (]

Corollary 2.43. The following is true almost surely for a Brownian motion
B: the path t — B(w) is not a member of BV[0,T] for any 0 < T < co.

Proof. Pick an w such that

an—1
. 2
Jim Z; (B(is1yr/2n (W) — Bigyon (w))" =T

=
for each T'= k~! for k € N. Such w’s form a set of probability 1 by the
previous proposition, because the partitions {i727" : 0 < ¢ < 2"} have
meshes 27" that form a summable sequence. Furthermore, by almost sure
continuity, we can assume that

Jim omax | | Bis1yr/2n (W) = Birjan(w)| =0

for each T = k~!. (Recall that a continuous function is uniformly continuous
on a closed, bounded interval.) And now for each such T,

2" —1

T= lim (Bi+1yr/2n (W) — Bigyan (W))2
i=0
< nlggo{og?gl%%(—l | B(i1)r/2n (W) = Bir/an (w)‘}
21
X Z ‘B(iJrl)T/Q" (W) — BiT/Z” (CU)‘
i=0

Since the maximum in braces vanishes as n — 0o, the last sum must converge
to co. Consequently the path ¢t — By(w) is not BV in any interval [0, k~1].
Any other nontrivial inteval [0, 7] contains an interval [0, k'] for some k,
and so this path cannot have bounded variation on any interval [0,7]. O
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2.5. Poisson processes

Poisson processes describe configurations of random points. The definition
and construction for a general state space is no more complex than for the
real line, so we define and construct the Poisson point process on an abstract
measure space first.

Let 0 < a < oco. A nonnegative integer-valued random variable X has
Poisson distribution with parameter o (Poisson(a)—distribution) if

2
P{X =k} = e—a% for k € Zy.
To describe point processes we also need the extreme cases: a Poisson vari-
able with parameter o« = 0 is identically zero, or P{X = 0} = 1, while a Pois-
son variable with parameter o = oo is identically infinite: P{X = oo} = 1.
A Poisson(«) variable has mean and variance a. A sum of independent Pois-
son variables (including a sum of countably infinitely many terms) is again
Poisson distributed. These properties make the next definition possible.

Definition 2.44. Let (S, A, ) be a o-finite measure space. A process
{N(A) : A € A} indexed by the measurable sets is a Poisson point pro-
cess with mean measure p if

(i) Almost surely, N () is a Z U {oo}-valued measure on (S, .A).
(ii) N(A) is Poisson distributed with parameter p(A).

(iii) For any pairwise disjoint Ay, Ao, ..., A, € A, the random variables
N(A;p), N(Az), ..., N(A,) are independent.

The interpretation is that N(A) is the number of points in the set A. N is
also called a Poisson random measure.

Observe that items (i) and (ii) give a complete description of all the
finite-dimensional distributions of { N(A)}. For arbitrary By, Ba, ..., By, €
A, we can find disjoint A, Ao, ..., A, € A so that each B; is a union of
some of the A;’s. Then each N(Bj) is a certain sum of N(4;)’s, and we see
that the joint distribution of N(By), N(Bs), ..., N(B,,) is determined by
the joint distribution of N(A;), N(Asg), ..., N(Ay).

Proposition 2.45. Let (S, A, p) be a o-finite measure space. Then a Pois-
son point process {N(A) : A € A} with mean measure i exists.

Proof. Let Sy, S2,S53,... be disjoint measurable sets such that S = |J.S;
and p(S;) < co. We shall first define a Poisson point process N; supported
on the subset S; (this means that N; has no points outside .S;). If p(S;) = 0,
define N;(A) = 0 for every measurable set A € A.
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With this trivial case out of the way, we may assume 0 < u(S;) < co. Let
{X}:j € N} be iid. S;-valued random variables with common probability
distribution

w(BNS;)

1(Si)
Independently of the {XJ’ : j € N}, let K; be a Poisson(u(S;)) random
variable. Define

P{X; € B} = for measurable sets B € A.

K;
N;(A) = Z lA(X;) for measurable sets A € A.
j=1

As the formula reveals, K; decides how many points to place in S;, and the
{X;} give the locations of the points in S;. We leave it as an exercise to
check that NV; is a Poisson point process whose mean measure is p restricted
to S;, defined by p;(B) = p(BNS;).

We can repeat this construction for each 5;, and take the resulting ran-
dom processes N; mutually independent by a suitable product space con-
struction. Finally, define

N(A) =) Ni(A).
i
Again, we leave checking the properties as an exercise. ([l

The most important Poisson processes are those on Euclidean spaces
whose mean measure is a constant multiple of Lebesgue measure. These are
called homogeneous Poisson point processes. When the points lie on the
positive real line, they naturally acquire a temporal interpretation. For this
case we make the next definition.

Definition 2.46. Let (2, F, P) be a probability space, {F;} a filtration on
it, and a > 0. A (homogeneous) Poisson process with rate « is an adapted
stochastic process N = {N; : 0 <t < oo} with these properties.

(i) No = 0 almost surely.

(ii) For almost every w, the path ¢t — Ny(w) is cadlag.

(iii) For 0 < s < t, Ny — N, is independent of F;, and has Poisson
distribution with parameter a(t — s).

Proposition 2.47. Homogeneous Poisson processes on [0,00) ezist.

Proof. Let {N(A) : A € B(g)} be a Poisson point process on (0,00)
with mean measure am. Define Ny = 0, Ny = N(0,t] for t > 0, and
FN=0{N,:0<s5<t}). Let 0 =89 < s, <--- <5, <s<t. Then

N(SO7 Sl]a N(Sb 82]7 ceey N(Sn*b Sn]v N(S,t]
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are independent random variables, from which follows that the vector (Nj,,
..., Ng, ) is independent of N (s,t]. Considering all such n-tuples (for various
n) while keeping s < t fixed shows that Fs is independent of N(s,t] =
N; — N;.

The cadlag path property of N; follows from properties of the Poisson
process. Almost every w has the property that N(0,7] < oo for all T' < oo.
Given such an w and t, there exist ty < ¢t < t1 such that N(tg,t) = N(t,t1) =
0. (There may be a point at ¢, but there cannot be sequences of points
converging to ¢ from either left or right.) Consequently N; is constant for
to < s < t and so the left limit NV;_ exists. Also Ny = N; fort < s < t
which gives the right continuity at ¢. ]

One can show that the jumps of N; are all of size 1 (Exercise 2.27). This
is because the Lebesgue mean measure does not let two Poisson points sit
on top of each other. The next lemma is proved just like its counterpart for
Brownian motion, so we omit its proof.

Proposition 2.48. Suppose N = {N.} is a homogeneous Poisson process
with respect to a filtration {Fi} on (Q, F, P).

(a) N is a Poisson process also with respect to the augmented right-
continuous filtration {Fiy}.

(b) DefineY; = Ngy1—Ns and G, = Fstt)+- ThenY = {V;:0<t< oo}
is a homogeneous Poisson process with respect to the filtration {Gi}, and
independent of Fsy.

Since the Poisson process is monotone nondecreasing it cannot be a
martingale. We need to compensate by subtracting off the mean, and so we
define the compensated Poisson process as

Mt :Nt—Oét.

Proposition 2.49. M is a martingale.

Proof. Follows from the independence of increments.

E[N¢|Fs| = E[Ny — Ng|Fs] + E[Ns|Fs] = ot — s) + Ns. ]

The Markov property of the Poisson process follows next just like for
Brownian motion. However, we should not take R as the state space, but
instead Z (or alternatively Z,). A Poisson process with initial state x € Z
would be defined as x+ Ny, where NN is the process defined in Definition 2.46,
and P* would be the distribution of {x 4+ N;}icr, on the space Dz[0,c0) of
Z-valued cadlag paths. Because the state space is discrete the Feller property
is automatically satisfied. (A discrete space is one where singleton sets {z}
are open. Every function on a discrete space is continuous.) Consequently
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homogeneous Poisson processes also satisfy the strong Markov property. The
semigroup for a rate a Poisson process is

o0 Odk
E*[g(Xy)] = E%lg(z + X)) = ) _gla + ke forzeZ
k=0 ’

The reader should also be aware of another natural construction of N
in terms of waiting times. We refer to [13, Section 4.8] for a proof.

Proposition 2.50. Let {1} : 1 < k < oo} be i.i.d. rate o exponential
random variables. Let S, = Ty + ---+ T, forn > 1. Then N(A) =
> 0 1a(Sn) defines a homogeneous rate o Poisson point process on Ry, and
Ny = max{n : S,, <t} defines a rate o Poisson process with respect to its
own filtration {F{N} with initial point No = 0 a.s.

Exercises

Exercise 2.1. To see that even increasing unions of o-algebras can fail to
be o-algebras (so that the generation is necessary in (2.1)), look at this
example. Let Q = (0,1], and for n € N let F,, be the o-algebra generated
by the intervals {(k27", (k+1)27"] : k € {0,1,2,...,2" — 1}}. How about
the intersection of the sets (1 — 27", 1]7

Exercise 2.2. To ward off yet another possible pitfall: uncountable unions
must be avoided. Even if A = UteR+ A; and each A; € F;, A may fail to be
a member of F,. Here is an example. Let 2 = R and let /; = Br, for
each t € Ry. Then also Foo = Br,. Pick a subset A of R that is not a
Borel subset. (The proof that such sets exist needs to be looked up from an
analysis text.) Then take A; = {t} if t € A and A; = ) otherwise.

Exercise 2.3. Let {F;} be a filtration, and let G; = F;. Show that G;_ =
Fi_ for t > 0.

Exercise 2.4. Assume the probability space (2, F, P) is complete. Let
{F:} be a filtration, G; = F;, its right-continuous version, and H; = F;
its augmentation. Augment {G;} to get the filtration {G;}, and define also
Hir = . s>¢ Hs. Show that G; = Hi+. In other words, it is immaterial
whether we augment before or after making the filtration right-continuous.
Hints. Gy C Hy, should be easy. For the other direction, if C' € Hy,
then for each s > t there exists Cs € Fs such that P(CACs) = 0. For any
sequence s; \, t, the set C' = Ny>1 Uisim Cs, lies in Fy1. Use Exercise 1.9.

Exercise 2.5. Let the underlying probability space be Q = [0, 1] with P
given by Lebesgue measure. Define two processes

Xi(w) =0 and Yi(w)=1g—y)-
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X is obviously continuous. Show that Y does not have a single continuous
path, but X and Y are modifications of each other.

Exercise 2.6. (Example of an adapted but not progressively measurable
process.) Let = [0, 1], and for each t let F; be the o-field generated by
singletons on . (Equivalently, F; consists of all countable sets and their
complements.) Let Xy(w) = 1{w = t}. Then {X;: 0 <t < 1} is adapted.
But X on [0,1] x € is not Bjg ;) ® Fi-measurable.

Hint. Show that elements of By ;; ® F1 are of the type

(U Box {s}) U (H x 19

sel

where [ is a countable subset of (2, each B; € Bjg 1}, and H is either empty
r [0,1]. Consequently the diagonal {(¢,w) : X;(w) = 1} is not an element
Of 8[071] X ./_"1.

Exercise 2.7. Let 7 be a stopping time and fix t € Ry. Let A € F; satisfy
A C {7 >t}. Show that then A € F;.

You might see this type of property expressed as F;N{r >t} C F,, even
though strictly speaking intersecting F; with {7 > t} is not legitimate. The
intersection is used to express the idea that the o-algebra F; is restricted
to the set {7 > t}. Questionable but convenient usage is called abuse of
notation among mathematicians. It is the kind of license that seasoned
professionals can take but beginners should exercise caution!

Exercise 2.8. Show that if A € F;, then AN {7 < 00} € Fs. Show that
any measurable subset of {7 = oo} is a member of F;.

The following rather contrived example illustrates that F, does not have
to lie inside Foo. Take Q = {0,1,2}, F = 2%, F = {{0}, {1,2},0,Q} for all
t € Ry, and 7(0) = 0, 7(1) = 7(2) = oo. Show that 7 is a stopping time
and find F..

Exercise 2.9. Let ¢ be a stopping time and Z an F,-measurable random
variable. Show that for any A € Bjgy, 1{,c4}Z is Fi-measurable.

Hint. Start with A = [0, s]. Use the 7-A theorem.

Exercise 2.10. Let t < u. Given that [X,Y]; and [X, Y], satisfy the limit
(2.13), show that

(2.46) (X, Y]y = [X, Y] = lim ) (X, - X,)(Y.

s
mesh(7)—0 : o

_Ysz)

where the limit is in probability and taken over partitions {s;} of [¢,u] as
the mesh tends to 0.
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Exercise 2.11. Suppose Y is a cadlag process. Show that while in the
definition (1.14) of total variation Vy (t) the supremum can be replaced by
the limit as the mesh tends to zero (Exercise 1.4), in the definition of the
quadratic variation [Y]; the limit cannot in general be replaced by the supre-
mum.

Exercise 2.12. Let f € BV[0,T] and define g(t) = f(t+) for t € [0,T) and
g(T) = f(T). Show that g is a cadlag function.

Hint. A BV function is the difference of two nondecreasing functions
(page 14).
Exercise 2.13. Let F; = o{w(s) : 0 < s <t} be the filtration generated by
coordinates on the space C' = CRr|[0, c0) of continuous functions. Let

H={we(C: tisalocal maximum for w }.

ShOW that H S ]:t+ \]:t

Hints. To show H € Fuy, note that w € H iff for all large enough
n € N, w(t) > w(q) for all rational ¢ € (t —n~1,t+n"1). To show H ¢ F,
use Exercise 1.8(b). For any w € H one can construct w ¢ H such that
w(s) =w(s) for s < t.

Exercise 2.14. Let 7 be a stopping time. Define

(2.47) Fr = a{fo v J@FEN > t})}.
t>0

See the remark in Exercise 2.7 that explains the notation.
(a) Show that for any stopping time o, F, N{oc < 7} C F,_.
(b) Let o, be a nondecreasing sequence of stopping times such that

on /' T and o, < 7 for each n. Show that F,, " F,_. This last convergence
statement means that Fr_ = o(U, Fy,, ).

Exercise 2.15. (a) Suppose X is a caglad process adapted to {F;}. Define
Z(t) = X(t+) for 0 <t < co. Show that Z is a cadlag process adapted to
{Fet -

(b) Show that Lemma 2.9 is valid for a caglad process under the addi-
tional assumption that {F;} is right-continuous.

(c) Let © be the space of real-valued caglad paths, X the coordinate

process X;(w) = w(t) on Q, and {F;} the filtration generated by coordinates.
Show that Lemma 2.9 fails for this setting.

Exercise 2.16. Check that you are able to use the Markov property with
this simple exercise. Let { P*} satisfy Definition 2.22. Let r < s < t be time
points and A, B € Bga. Assuming that P*(X, € B, X; = y) > 0, show that

P* (X € A|X, € B, X;=y)=PY(Xi—s € A)
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with the understanding that the conditional probability on the left is defined
in the elementary fashion by (1.28).

Exercise 2.17. Prove (2.27). Hint. Consider first functions of the type
f(zo,1,...,2n) = folxo) fi(z1) - - fu(xy). Condition on Fs, |, use (2.26),
and do induction on n. Then find a theorem in the appendix that allows
you to extend this to all bounded Borel functions f : R4+ — R.

Exercise 2.18. Let {P*} be a Feller process. Use the Markov property and
the Feller property inductively to show that

/D [t P

is a continuous function of € R for f1,..., fm € Cy(RY).

Exercise 2.19. Consider the coordinate Markov process on D space under
probability measure P*. Assume Feller continuity. Let 7 be a finite stopping
time, A € F; and B € Bp. Show that

P*(AN6O-'B| X,) = P*(A| X,) P*(0;'B| X,).

If 7 marks the present moment, this says that, given the present, the past
and the future are independent. Hint. Use the strong Markov property and
properties (vii) and (viii) from Theorem 1.26.

Exercise 2.20. Using property (ii) in Definition 2.26 show these two prop-
erties of Brownian motion, for any 0 < sp < s1 < -+ < sp,.

(a) The o-algebras Fy,, 0(Bs, — Bs,),0(Bs, — Bs,),-..,0(Bs, — Bs,_,)
are independent.

(b) The distribution of the vector

(Bt+81 - Bt+807 Bt+82 - Bt+81a LRI Bt+sn - Bt+8n,1)
is the same for all ¢ > 0.

Exercise 2.21. (Brownian motion as a Gaussian process.) A process {X;}
is Gaussian if for all finite sets of indices {t1,to, ..., t,} the vector (X, , X¢,,
..., Xy,) has multivariate normal distribution as in Example 1.18(iv). It
is a consequence of a m-A argument or Kolmogorov’s extension theorem
that the distribution of a Gaussian process is entirely determined by two
functions: the mean m(t) = EX; and the covariance c(s,t) = Cov(Xs, X;) =
E(X:X:) —m(s)m(t).

(a) Show that having Gaussian marginals does not imply that the joint
distribution is Gaussian.

Hint. Consider this example: X is a standard normal, £ is independent
of X with distribution P(§ = +1) =1/2, and Y = £X.
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(b) Starting with points (ii) and (iii) of Definition 2.26 show that stan-
dard Brownian motion is a Gaussian process with m(t) = 0 and ¢(s, t) = sAt.

Hint. A helpful observation might be that a linear transformation of a
jointly Gaussian vector is also jointly Gaussian.

Exercise 2.22. Let B; be a Brownian motion with respect to filtration
{F:} on probability space (2, F, P). Let A be another sub-c-algebra of F.
Assume that A and Fo, are independent. Let G, = o(F, A). That is, G, is
the smallest o-algebra that contains both F; and A, sometimes also denoted
by G; = F:V.A. Show that B; is a Brownian motion with respect to filtration
{G:}.

Hint. G, is generated by intersections F' N A with F' € F; and A € A.
Use the 7-\ theorem.

Exercise 2.23. Use (2.41), limits, and the continuous distribution of Brow-
nian motion to show

P%(B; < a, My > b) = PY(B; > 2b— a)

and
P%B; < a,M; >b) = P°(B; > 2b—a).

Exercise 2.24. Let B; be standard Brownian motion and M; its running
maximum. Show that the joint density f(z,y) of (By, M) is

_ 22y — =) 1 2
(2.48) flz,y) = W exp (* 27(2@ — ) )
on the domain 0 < y < 0o, —00 < = < y. Hint: Use (2.41) and convert
P°(B; > 2b — a) into a double integral of the form [ dy [*__dz f(z,y).

Can you give an argument for why it is enough to consider the events
{Bt < a,M; > b} for a <band b > 07

Exercise 2.25. Consider Brownian motion started at > 0 and let 79 =
inf{t > 0: B; = 0} be the first hitting time of the origin. The process

By, t<
X, = t 70
0, t> 19

is Brownian motion killed (or absorbed) at the origin. Show that on the pos-
itive half-line (0, 00), X started at « > 0 has density q(t, z,y) = p(t,z,y) —
p(t,x, —y) where p(t, z,y) is the Gaussian kernel (2.39). In other words, for
x,z > 0 derive

P*(B; > 2,19 > t) = / [p(t,z,y) — p(t, z, —y)| dy.
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Hint. Start from P®(B; > 2,70 > t) = P%(z + B; > 2z, ming<;(z + Bs) >
0), use symmetry and the reflection principle.

Exercise 2.26. Let B and X be two independent one-dimensional Brownian
motions. Following the proof of Proposition 2.42, show that

m(m)—1
(2.49) mes%li(ﬂ'In;—}O Zz; (Bti+1 - Bti)(Xti+1 - Xti) =0 in LQ(P)‘

As a consequence of your calculation, find the covariation [B, X].
Can you also find [B, X| from the definition in equation (2.12)7

Exercise 2.27. Let N be a homogeneous Poisson process. Show that for
almost every w, Ny(w) — Ny—(w) = 0 or 1 for all ¢.

Hint. If Ny — N;,— > 2 for some t € [0,7], then for any partition 0 =
to <ty <---<ty,=T, N(ti,tix1] > 2 for some i. A crude bound shows
that this probability can be made arbitrarily small by shrinking the mesh
of the partition.

Exercise 2.28. Let N be a homogeneous rate a Poisson process on R
with respect to a filtration {F;}, and M; = N; — at. Show that M? — at
and M? — N; are martingales.

Exercise 2.29. As in the previous execise, let N be a homogeneous rate «
Poisson process and My = N; — at. Use Corollary A.11 from the appendix
to find the quadratic variation processes [M] and [N].



Chapter 8

Martingales

Let (€2, F, P) be a probability space with a filtration {F;}. We assume that
{F:} is complete but not necessarily right-continuous, unless so specified.
As defined in the previous chapter, a martingale with respect to {F;} is a
real-valued stochastic process M = {M; : t € Ry} adapted to {F;} such
that M; is integrable for each ¢, and

E[M|Fs] = M; for all s < t.
If the equality above is relaxed to

E[M;|Fs] > M; for all s <t
then M is a submartingale. M is a supermartingale if —M is a submartingale.
M is square-integrable if E[M?] < oo for all t.

These properties are preserved by certain classes of functions.

Proposition 3.1. (a) If M is a martingale and ¢ a convex function such
that (M) is integrable for all t > 0, then (M) is a submartingale.

(b) If M is a submartingale and ¢ a nondecreasing convex function such
that (M) is integrable for all t > 0, then (M) is a submartingale.

Proof. Part (a) follows from Jensen’s inequality. For s < ¢,
Elp(My)| Fs] = ¢ (E[M|Fy]) = (M)

Part (b) follows from the same calculation, but now the last equality becomes
the inequality > due to the submartingale property E[M;|Fs] > M, and the
monotonicity of . O

The martingales we work with have always right-continuous paths. Then
it is sometimes convenient to enlarge the filtration to { F; } if the filtration is
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not right-continuous to begin with. The next proposition permits this move.
An example of its use appears in the proof of Doob’s inequality, Theorem
3.12.

Proposition 3.2. Suppose M is a right-continuous submartingale with re-
spect to a filtration {F¢}. Then M is a submartingale also with respect to

{Fer}

Proof. Let s < t and consider n > (t — s)~'. M; V c is a submartingale, so
E[MV ¢|Fypp-1] > My -1 Ve
Since Fop C Fgip-1,
E[M;V ¢|Fsy] > E[Mg -1V c|Foy).

By the bounds
C S Ms_;'_nfl Ve S E[Mt V C’fs—l-n*l]

and Lemma B.16 from the Appendix, for a fixed ¢ the random variables
{M,,,-1 V ¢} are uniformly integrable. Let n — oo. Right-continuity of
paths implies M, ,-1 V ¢ — M,V c. Uniform integrability then gives con-
vergence in L!. By Lemma B.17 there exists a subsequence {n;} such that
conditional expectations converge almost surely:

B[M,, 1V el For] = E[M, V | Fiy].

Consequently
E[Mt vV C|fs+] Z E[MS V C|f5+] = MS Ve Z Ms.

As ¢ — —o0, the dominated convergence theorem for conditional expecta-
tions (Theorem B.14) makes the conditional expectation on the left converge,
and in the limit E[M;|Fsi+] > Ms. O

The connection between the right-continuity of the (sub)martingale and
the filtration goes the other way too. The statement below is Theorem 1.3.13
in [11].

Proposition 3.3. Suppose the filtration {F;} satisfies the usual conditions,
in other words (2, F, P) is complete, Fy contains all null events, and F; =
Fir. Let M be a submartingale such that t — EM; is right-continuous.
Then there exists a cadlag modification of M that is an {F;}-submartingale.
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3.1. Optional stopping

Optional stopping has to do with extending the submartingale property
E[M;|Fs] > M from deterministic times s < ¢ to stopping times. We begin
with discrete stopping times.

Lemma 3.4. Let M be a submartingale. Let o and T be two stopping times
whose values lie in an ordered countable set {s1 < s2 < s3 < ---}U{oo} C
[0, 00] where s; /* co. Then for any T < oo,

(3.1) E[M 7| Fs] > Moprat-

Proof. Fix n so that s, <T < sp41. First observe that M, A7 is integrable,

because
n

[Mepr| =Y 1T = si} My, | + 1{r > s,}|Mr|
i=1

n
<> IM,| A+ | M.
=1

Next check that M, a7 is Fy-measurable. For discrete stopping times
this is simple. We need to show that {Msaar € B} N {o <t} € F; for all
B € Br and t. Let s; be the highest value not exceeding ¢. (If there is no
such s;, then ¢ < s1, the event above is empty and lies in F;.) Then

J
{(Mypsnr € BYN {0 <t} = U({am = s} N {My,nr € B} N {0 < t}).
i=1

This is a union of events in J; because s; <t and o A 7 is a stopping time.

Since both E[M ar|Fs| and Mya-a7 are Fy-measurable, (3.1) follows
from checking that

E{14 E[M a7\ Fs]} > E{1aMsprpar} for all A € F,.
By the definition of conditional expectation, this reduces to showing
E[lAMT/\T] > E[]-AMO'/\T/\T]'
Decompose A according to whether ¢ < T or ¢ > T. If ¢ > T, then
TAT =0 A7TAT and then
E[lAm{a>T}MT/\T] = E[lAﬂ{U>T}M0/\T/\T]'
To handle the case 0 < T we decompose it into subcases
Bl pno=syMrnr] 2 E[Lpn(o=s;y Monrat]
= E[lgn{o=s;}Ms;arnr] for 1 <i <mn.
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Since AN{o = s;} € Fs,, by conditioning again on the left, this last conclu-
sion will follow from

(3.2) E[M 7| Fs,] > Ms;penr for 1 <i<mn.
We check (3.2) by an iterative argument. First an auxiliary inequality: for
any 7,
E[Mg, nraT|Fs;] = E[M3j+1/\T1{T > 85} + Mg ararH{T < 85} ‘ fsj]
= E[Mg, 7| Fs;] - HT > 85} + Mg prar {7 < 55}
> Mg ar1{T > 8j} + Mg prpr1{T < 55}
= M nrnT

Above we used the fact that M, s;ATAT 18 fsj—measurable (which was checked
above) and then the submartingale property. Since 7 AT = s,41 ATAT
(recall that s, < T < sp+1), applying the above inequality to j = n gives

E[MTAT|~an] Z MSn/\’T/\T

which is case i = n of (3.2). Now do induction: assuming (3.2) has been
checked for ¢ and applying the auxiliary inequality again gives

E[MT/\T‘fsi—l] = E{E[MT/\T’}—&] ~FS%‘—1}
2 E{Msi/\T/\T ’ ]:Sifl} 2 Msifl/\T/\T

which is (3.2) for ¢ — 1. Repeat this until (3.2) has been proved down to
1= 1. U

To extend this result to general stopping times, we assume some regu-
larity on the paths of M. First we derive a moment bound.

Lemma 3.5. Let M be a submartingale with right-continuous paths and
T < co. Then for any stopping time p that satisfies P{p < T} =1,

E|M,| < 2E[Mf] — E[Mo).

Proof. Define a discrete approximation of p by p, = T if p = T, and
pn =2""T(|2"p/T| + 1) if p <T. Then p, is a stopping time with finitely
many values in [0, 7], and p, \, p as n — oo.
Averaging over (3.1) gives E[M 7] > E[Msprar]. Apply this to 7 = pj,

and o = 0 to get

EM,,, > EM,.
Next, apply (3.1) to the submartingale Mt+ = M, Vv 0, with 7 = T and
o = pp to get

EM} > EM .
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From the above
EM, = EM} — EM,, < EM] — EM.
Combining these,
E|M,,| = EM} + EM, <2EM] — EM.
Let n — o0, use right-continuity and apply Fatou’s Lemma to get

E|M,| < lim E|M,,| <2EM] — EM,. a
n—oo

The conclusion from the previous lemma needed next is that for any
stopping time 7 and T' € R, the stopped variable M ; is integrable. Here
is the extension of Lemma 3.4 from discrete to general stopping times.

Theorem 3.6. Let M be a submartingale with right-continuous paths, and
let o and T be two stopping times. Then for T < oo,

(33) E[MTAT|fO] > MO’/\T/\T'

Remark 3.7. See Exercise 3.2 for a standard example that shows that (3.3)
is not true in general without the truncation at a finite time 7.

Proof of Theorem 3.6. As pointed out before the theorem, M, 7 and
MgarpT are integrable random variables. In particular, the conditional ex-
pectation is well-defined.

Define approximating discrete stopping times by o, = 27"(|2"0 | + 1)
and 7, = 27"(|2"7] + 1). The interpretation for infinite values is that
op = o0 if 0 = 00, and similarly for 7,, and 7.

Let ¢ € R. The function z — z V ¢ is convex and nondecreasing, hence
M, V c is also a submartingale. Applying Lemma 3.4 to this submartingale
and the stopping times o, and 7, gives

E[M,.

n

AT V| Fo,] 2 My, aront VoC.

Since ¢ < op, Fo C Fs,, and if we condition both sides of the above
inequality on F,, we get

(34) E[MT AT V C|.F0—] Z E[MO'nATn/\T V C|fo—}.

n

The purpose is now to let n — oo in (3.4) and obtain the conclusion
(3.3) for the truncated process M; V ¢, and then let ¢ N\, —oo and get the
conclusion. The time arguments converge from the right: 7, AT \ 7 AT
and op A7y AT N\ o AT AT. Then by the right-continuity of M,

MT AT — MT/\T and MO'n/\Tn/\T — MG’/\T/\T'

n
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Next we justify convergence of the conditional expectations along a sub-
sequence. By Lemma 3.4

c< M, arVe< E[MT \Y C|f7—n]

and
c< MO'n/\Tn/\T Ve< E[MT \ C‘}—Un/\Tn]'

Together with Lemma B.16 from the Appendix, these bounds imply that the
sequences {M; rrVc:n € N} and {My, aroar V€ :n € N} are uniformly
integrable. Since these sequences converge almost surely (as argued above),
uniform integrability implies that they converge in L!. By Lemma B.17
there exists a subsequence {n;} along which the conditional expectations
converge almost surely:

E[M,

n

AT V| Fy] = E[Mopr V ¢|Fy)

and

E[Mgnj N ATV c|Fs] = E[Mgprpr V | Fyl.
(To get a subsequence that works for both limits, extract a subsequence for
the first limit by Lemma B.17, and then apply Lemma B.17 again to extract
a further subsubsequence for the second limit.) Taking these limits in (3.4)
gives

E[M a1 V c|Fo| > E[Mgprar V | Fol.

M is right-continuous by assumption, hence progressively measurable, and
S0 Mgprpt 18 Forrar-measurable. This is a sub-o-field of F,, and so

E[MT/\T V C’fa] > E[MO'/\T/\T V C|Fa] = MopraT V € 2> MoprnaT.

As ¢ \, —00, M a7 V ¢ = M ar pointwise, and for ¢ < 0 we have the
integrable bound |M a7V ¢| < |Myar|. Thus by the dominated convergence
theorem for conditional expectations, almost surely

lim E[M,ar V c|F,] = E[Mpr|Fs).

c——00
This completes the proof. ([l
Corollary 3.8. Suppose M is a right-continuous submartingale and T is

a stopping time. Then the stopped process M™ = {Mp; : t € Ry} is a
submartingale with respect to the original filtration {F;}.

If M is a also a martingale, then M7 is a martingale. And finally, if M
is an L?-martingale, then so is M.

Proof. In (3.3), take T'=1t, 0 = s < t. Then it becomes the submartingale
property for M7:

(3.5) E[MT/\t|f"s] Z MT/\S'
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If M is a martingale, we can apply this to both M and —M. And if M is
an L’-martingale, Lemma 3.5 implies that so is M. O

Corollary 3.9. Suppose M is a right-continuous submartingale. Let {o(u) :
u > 0} be a nondecreasing, [0, 00)-valued process such that o(u) is a bounded
stopping time for each u. Then {My,y : u > 0} is a submartingale with
respect to the filtration {Fy(,) 1 u > 0}.

If M is a martingale or an L?-martingale to begin with, then so is Mg ()

Proof. For u < v and T' > o(v), (3.3) gives E[My(y)|Fow)] = Moq- If

M is a martingale, we can apply this to both M and —M. And if M is

an L?-martingale, Lemma 3.5 applied to the submartingale M? implies that

E[Mg(u)] < 2E[M23] + E[M{]. O
The last corollary has the following implications:

(i) M7 is a submartingale not only with respect to {F;} but also with
respect to {Frat}.

(ii) Let M be an L2-martingale and 7 a bounded stopping time. Then
M; = M.,y — M, is an L?>-martingale with respect to F; = Fyys.

3.2. Inequalities and limits

Lemma 3.10. Let M be a submartingale, 0 < T < oo, and H a finite subset
of [0,T]. Then forr >0,

(3.6) P{%} M, > 'r} < r L E[M]
and
(3.7) P{?eng M, < —r} < rY(E[MF] - E[My).

Proof. Let 0 = min{t € H : M; > r}, with the interpretation that o = co
if My <rforallte H. (3.3) with 7 =T gives

E[Mr] > E[Mopt] = E[Mol{y<o0y] + E[Mrlis—oey,
from which
rP{rtIéag M, > r} — 1P{o < 00} < E[My1{yeny] < BE[Mr1yny]
< BIMf1g,c00] < E[Mf].
This proves (3.6).
To prove (3.7), let 7 =min{t € H : M; < —r}. (3.4) with o = 0 gives
E[My] < E[Mrpr] = E[M:1(;co0)] + E[Mrl—oyl,
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from which
- ‘ < pb=_ >
TP{?&? M, < r} rP{r < oo} > E[M:1{; )]
> E[Mo] — E[Mr1{—y] > E[Mo] — E[Mz]. O
Next we generalize this to uncountable suprema and infima.

Theorem 3.11. Let M be a right-continuous submartingale and 0 < T <
oo. Then forr >0,

(3.8) P{ sup M; > r} <r 'EM]]
0<t<T
and
(3.9) P{ it M < —r} < Y(E[M] - E[My)).

Proof. Let H be a countable dense subset of [0, 7] that contains 0 and T,
and let Hy C Hy C H3 C --- be finite sets such that H = |J H,. Lemma
3.10 applies to the sets H,. Let b < r. By right-continuity,

P{ sup M; > b} = P{ sup M; > b} = lim P{ sup M; > b}

0<t<T teH =0 teH,
< b 'E[M}].
Let b / r. This proves (3.8). (3.9) is proved by a similar argument. O

When X has either left- or right-continuous paths with probability 1,
we define
(3.10) X7r(w) = sup |X¢(w)l.

0<t<T

The measurability of X7 is checked as follows. First define U = sup, ¢ p| X
where R contains 7' and all rationals in [0,7]. U is Fr-measurable as a
supremum of countably many JFp-measurable random variables. On every
left- or right-continuous path U coincides with X7. Thus U = X7, at least
almost surely. By the completeness assumption on the filtration, all events of
probability zero and their subsets lie in F7, and so X7, is also Fr-measurable.

Theorem 3.12. (Doob’s Inequality) Let M be a nonnegative right-continuous
submartingale and 0 < T < co. Then for 1 < p < oo

p
(3.11) Bl swp M| < <p> E[MZ].
0<t<T p—1
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Proof. Since M is nonnegative, My = supo<;<p M. The first part of the
proof is to justify the inequality
(3.12) P{M} > r} <r 'E[Mp1{M; > r}]
for r > 0. Let
T =inf{t > 0: M; > r}.
This is an {F;+ }-stopping time by Lemma 2.7. By right-continuity M, > r
when 7 < co. Quite obviously M7, > r implies 7 < T, and so
rP{Mj >r} < E[M.1{M} > r}] < E[M.1{r <T}|.

Since M is a submartingale with respect to {F;4} by Proposition 3.2, The-
orem 3.6 gives

E[M:1r<y] = E[Mrar] = E[Mrlrory] < E[Mr] — E[M71{757)]

= E[MT]'{TST}] < E[MT].{M;: > T}] .

(3.12) has been verified.

Let 0 < b < co. By (1.43) and Holder’s inequality,

b b
E[(Mj’i A b)p} = /0 prp_lP[M} > r|dr < /0 prp_QE[MTl{M} > 7‘}} dr

bAM, D

- E[MT : / prP? dr} = L BMr(o A M7y
0 b=
P 1 p—1
<—— - E[MP]PE[(bAMF)P] » .
p—
The truncation at b guarantees that the last expectation is finite so we can
divide by it through the inequality to get

p
—1.E[M;’] :

3=

E[(M AbYP]7 <

Raise both sides of this last inequality to power p and then let b 7 oo.
Monotone convergence theorem gives the conclusion. ([l

The obvious application would be to M = |X| for a martingale X.
By applying the previous inequalities to the stopped process M;s,, we can
replace T' with a bounded stopping time 7. We illustrate the idea with
Doob’s inequality.

Corollary 3.13. Let M be a nonnegative right-continuous submartingale
and T a bounded stopping time. The for 1 < p < oo

(3.13) B[ ( suwp Mt)p} < (ﬂ)pE[Mﬂ.

0<t<t
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Proof. Pick T so that 7 < T. Since supo<;<p Miar = supg<i<, M; and
Mrpnr = M, the result follows immediately by applying (3.11) to Mia,. O

Our treatment of martingales would not be complete without mention-
ing martingale limit theorems, although strictly speaking we do not need
them for developing stochastic integration. Here is the basic martingale
convergence theorem that gives almost sure convergence.

Theorem 3.14. Let M be a right-continuous submartingale such that

sup E(M;") < o0.
teR 4+

Then there exists a random variable My, such that E|Ms| < oo and My(w) —
My (w) as t — oo for almost every w.

Now suppose M = {M; : t € R} is a martingale. When can we take
the limit M, and adjoin it to the process in the sense that {M; : t € [0, c0]}
is a martingale? The integrability of M is already part of the conclusion of
Theorem 3.14. However, to also have E(My|F;) = M; we need an additional
hypotheses of uniform integrability (Definition B.15 in the appendix).

Theorem 3.15. Let M = {M; : t € Ry} be a right-continuous martingale.
Then the following four conditions are equivalent.

(i) The collection {M; : t € R4} is uniformly integrable.

(ii) There exists an integrable random variable My, such that

lim E|M; — M| =0 (L* convergence).
t—00

(iii) There exists an integrable random variable My, such that M(w) —
My (w) almost surely and E(Mso|Fi) = My for allt € Ry.

(iv) There ezists an integrable random variable Z such that My = E(Z|F)
forallt € Ry.

As quick corollaries we get for example the following statements.
Corollary 3.16. (a) For Z € LY(P), E(Z|F;,) — E(Z|Fx) ast — co both
almost surely and in L.

(b) (Lévy’s 0-1law) For A € Foo, E(14|Ft) — 14 ast — oo both almost
surely and in L'.

Proof. Part (b) follows from (a). To see (a), start by defining M; = E(Z|F)
so that statement (iv) of Theorem 3.15 is valid. By (ii) and (iii) we have
an a.s. and L! limit My, (explain why there cannot be two different limits).
By construction M, is Fs-measurable. For A € F; we have for t > s and
by L' convergence

E14Z] = E[14M] — E[14M)].
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A 7-\ argument extends F[147Z] = F[14My] to all A € Fi. O

3.3. Local martingales and semimartingales

For a stopping time 7 and a process X = {X; : t € R}, the stopped process
X7 is defined by X7 = X .

Definition 3.17. Let M = {M,; : t € Ry} be a process adapted to a
filtration {F;}. M is a local martingale if there exists a sequence of stopping
times 71 < 79 < 73 < --- such that P{r;; / oo} =1 and for each k M is a
martingale with respect to {F;}. M is a local square-integrable martingale if
M is a square-integrable martingale for each k. In both cases we say {7}
is a localizing sequence for M.

Remark 3.18. (a) Since Mj* = M the definition above requires that My is
integrable. This extra restriction can be avoided by phrasing the definition
so that Minr, 1i7,50) s @ martingale [12, 14]. Another way is to require
that Minr, — My is a martingale [3, 10]. We use the simple definition since
we have no need for the extra generality of nonintegrable Mj.

(b) In some texts the definition of local martingale also requires that
Mk is uniformly integrable. This can be easily arranged (Exercise 3.10).

(c) Further localization gains nothing. That is, if M is an adapted
process and p, ' oo (a.s.) are stopping times such that M#~ is a local
martingale for each n, then M itself is a local martingale (Exercise 3.5).

(d) Sometimes we consider a local martingale {M; : ¢ € [0, T]} restricted
to a bounded time interval. Then it seems pointless to require that 7, 7 co.
Indeed it is equivalent to require a nondecreasing sequence of stopping times
oy such that {Mips, : t € [0,7]} is a martingale for each n and, almost
surely, o, > T for large enough n. Given such a sequence o, one can check
that the original definition can be recovered by taking 7, = o, - 1{o, <
T}+o00-1{o, >T}.

We shall also use the shorter term local L?-martingale for a local square-
integrable martingale.

Lemma 3.19. Suppose M is a local martingale and o is an arbitrary stop-
ping time. Then M9 is also a local martingale. Similarly, if M is a local
L2-martingale, then so is M. In both cases, if {Ti} is a localizing sequence
for M, then it is also a localizing sequence for M@ .

Proof. Let {7} be a sequence of stopping times such that 7, oo and
M7 is a martingale. By Corollary 3.8 the process M)k, = (M?){* is a
martingale. Thus the stopping times 7, work also for M?.
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If M™ is an L*-martingale, then so is M_%, = (M?)}*, because by
applying Lemma 3.5 to the submartingale (M)

E[MZprni] < 2BIMZ ] + EIMg). O

Only large jumps can prevent a cadlag local martingale from being a
local L2-martingale. See Exercise 3.12.

Lemma 3.20. Suppose M is a cadlag local martingale, and there is a con-
stant ¢ such that |My(w) — My—(w)| < ¢ for allt € Ry and w € Q. Then M
is a local L?-martingale.

Proof. Let 7, ' oo be stopping times such that M7 is a martingale. Let
pr = inf{t > 0: |My| or |M;_| > k}

be the stopping times defined by (2.8) and (2.9). By the cadlag assumption,
each path ¢t — M;(w) is locally bounded (means: bounded in any bounded
time interval), and consequently pi(w) 0o as k 7 co. Let o, = 7 A py.
Then o, 7 00, and M?* is a martingale for each k. Furthermore,

[M7*| = [Monpentl < sap [ M|+ My, — M, | <k +c
0<s<py,

So M°* is a bounded process, and in particular M is an L?-process. [

Recall that the usual conditions on the filtration {F;} meant that the
filtration is complete (each F; contains every subset of a P-null event in F)
and right-continuous (F; = Fiy).

Theorem 3.21 (Fundamental Theorem of Local Martingales). Assume
{F} is complete and right-continuous. Suppose M is a cadlag local martin-
gale and ¢ > 0. Then there exist cadlag local martingales M and A such that
the jumps 0f]\7 are bounded by ¢, A is an FV process, and M = M+ A.

A proof of the fundamental theorem of local martingales can be found in
Section II1.6 of [12]. Combining this theorem with the previous lemma gives
the following corollary, which we will find useful because L?-martingales are
the starting point for developing stochastic integration.

Corollary 3.22. Assume {F;} is complete and right-continuous. Then a
cadlag local martingale M can be written as a sum M = M + A of a cadlag
local L?-martingale M and a local martingale A that is an FV process.

Definition 3.23. A cadlag process Y is a semimartingale if it can be written
as Y; = Yo + My + V; where M is a cadlag local martingale, V is a cadlag
FV process, and My = Vy = 0.
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By the previous corollary, we can always select the local martingale
part of a semimartingale to be a local L?-martingale. The normalization
My = Vi = 0 does not exclude anything since we can always replace M with
M — M, without losing either the local martingale or local L?-martingale
property, and also V' — Vj has the same total variation as V' does.

Remark 3.24. (A look ahead.) The definition of a semimartingale appears
ad hoc. But stochastic analysis will show us that the class of semimartingales
has several attractive properties. (i) For a suitably bounded predictable pro-
cess X and a semimartingale Y, the stochastic integral [ X dY is again a
semimartingale. (i) f(Y) is a semimartingale for a C? function f. The class
of local L2-martingales has property (i) but not (ii). In order to develop a
sensible stochastic calculus that involves functions of processes, it is neces-
sary to extend the class of processes considered from local martingales to
semimartingales.

3.4. Quadratic variation for semimartingales

Quadratic variation and covariation were discussed in general in Section
2.2, and here we look at these notions for martingales, local martingales and
semimartingales. We begin with the examples we already know.

Example 3.25 (Brownian motion). From Proposition 2.42 and Exercise
2.26, for two independent Brownian motions B and Y, [B]; =t and [B,Y]; =
0.

Example 3.26 (Poisson process). Let N be a homogeneous rate o Poisson
process, and My = N; — at the compensated Poisson process. Then [M] =
[N] = N by Corollary A.11. If N is an independent rate & Poisson process

with My = Ny — at, [M, M] = 0 by Lemma A.10 because with probability
one M and M have no jumps in common.

Next a general existence theorem. A proof can be found in Section 2.3
of [6].

Theorem 3.27. Let M be a right-continuous local martingale with respect to
a filtration {F;}. Then the quadratic variation process [M] exists in the sense
of Definition 2.14. There is a version of [M] with the following properties.
[M] is a real-valued, right-continuous, nondecreasing adapted process such
that [M]O = 0.

Suppose M is an L?-martingale. Then the convergence in (2.11) for
Y = M holds also in L', namely for any t € R,
(3.14) lim E’ > (M, — Myn)* = [M],[ =0

i

n—oo
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for any sequence of partitions 7" = {0 =t <t} < --- <" )= t} of [0,1]

m(n
with mesh(7") = max;(t} | — t}') — 0. Furthermore,

(3.15) E([M];) = E(M} — Mg).
If M is continuous, then so is [M].

We check that the quadratic variation of a stopped submartingale agrees
with the stopped quadratic variation. Our proof works for local L? martin-
gales which is sufficient for our needs. The result is true for all local mar-
tingales. The statement for all local martingales can be derived from the
estimates in the proof of Theorem 3.27 in [6], specifically from limit (3.26)
on page 70 in [6].

Lemma 3.28. Let M be a right-continuous L*-martingale or local L?-
martingale. Let T be a stopping time. Then [M7T] = [M]", in the sense
that these processes are indistinguishable.

Proof. The processes [M7] and [M]™ are right-continuous. Hence indistin-
guishability follows from proving almost sure equality at all fixed times.

Step 1. We start with a discrete stopping time 7 whose values form
an unbounded, increasing sequence u; < ug < --- < u; " oco. Fix t and
consider a sequence of partitions 7" = {0 =t <t} < --- < by = t} of
[0,t] with mesh(7™) — 0 as n — co. For any wu;,

Z(M“J‘Mﬁrl - Mu‘j/\t?)2 — [M]u,;a¢  in probability, as n — oo.
1
We can replace the original sequence 7™ with a subsequence along which
this convergence is almost sure for all j. We denote this new sequence again
by 7". (The random variables above are the same for all j large enough so
that u; > t, so there are really only finitely many distinct j for which the
limit needs to happen.)

Fix an w at which the convergence happens. Let u; = 7(w). Then the
above limit gives

[MT]o(w) = lim > (M (w) - M (w))”

N—r00
7
= Z(MTM?H (@) = Mrpgp (@)
7
- nh_?;o Z(M“j/\t?;rl (w) - M’I.Lj/\t? ((AJ))2

)

= [M]u;nt(w) = [M]rpe(w) = [M]; (w).



3.4. Quadratic variation for semimartingales 101

The meaning of the first equality sign above is that we know [M7]; is given
by this limit, since according to the existence theorem, [M7]; is given as a
limit in probability along any sequence of partitions with vanishing mesh.

We have shown that [M7]; = [M]] almost surely for a discrete stopping
time 7.

Step 2. Let 7 be an arbitrary stopping time, but assume M is an L*-
martingale. Let 7, = 27"(|2"7] + 1) be the discrete approximation that
converges to 7 from the right. Apply (2.20) to X = M™ and Y = M7, take
expectations, use (3.15), and apply Schwarz inequality to get

E{|[M™]—[M]¢| }

< B{[M™ — M"};} + 2E{[M™ — M"),;”*[M"]}"*}

< B{(M]" — M7 )?} + 2E{[M™ — M7}, }' P E{ M)}

1/2 1/2
= B{(Mypt — Mong)?} + 2B{ (Mo, ps — Mope)? Y2 E{ M2}

< (B{M2 ) — B{M2,}) + 2(E{M2 5} — E{M2,}) 2 E{ M2},

In the last step we used (3.3) in two ways: For a martingale it gives equality,

and so

E{(Mpne — Myn)?} = B{MZ ,} = 2B{ B(My,nt| Frne) Mrpc} + E{M7,}
= E{anm} - E{MTQ/\t}~

Second, we applied (3.3) to the submartingale M? to get
B{M2,}"* < B{M2}'*.
The string of inequalities allows us to conclude that [M™]; converges to
[MT]; in L' as n — oo, if we can show that

(3.16) B{MZ,,} — B{MZ,}.

To argue this last limit, first note that by right-continuity, M2 ., — M2,,
almost surely. By optional stopping (3.6),

0< M2, < E(MZ|Front).

This inequality and Lemma B.16 from the Appendix imply that the sequence
{an At © 1 € N} is uniformly integrable. Under uniform integrability, the
almost sure convergence implies convergence of the expectations (3.16).

To summarize, we have shown that [M™]; — [M7]; in L' as n — oo.
By Step 1, [M™]; = [M],, s which converges to [M],,; by right-continuity
of the process [M]. Putting these together, we get the almost sure equality
[M7]; = [M]5 for L?-martingales.
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Step 3. Lastly a localization step. Let {o}} be stopping times such
that o, ' oo and M°* is an L?-martingale for each k. By Step 2

[MUkAT]t — [Mak]TAt-

On the event {0} > t}, throughout the time interval [0, t], M7*"T agrees with
MT7T and M agrees with M. Hence the corresponding sums of squared
increments agree also. In the limits of vanishing mesh we have almost
surely [M7+"\T], = [M7];, and also [M7k]; = [M]s for all s € [0,¢] by right-
continuity. We can take s = 7 At, and this way we get the required equality
[MT]; = [M]ra¢- O

Theorem 3.29. (a) If M is a right-continuous L?-martingale, then M7 —
[M]; is a martingale.

(b) If M is a right-continuous local L?-martingale, then M2 — [M]; is a
local martingale.
Proof. Part (a). Let s <tand A € Fs. Let 0 =) < --- < t,,, =1t be a

partition of [0, ¢], and assume that s is a partition point, say s = t;.

E[1a(M? — M — [M]; + [M];)]

(3.17a) = :1A< nf(M,?i+1 — Mg) = [M]; + [ML)]

(3.17b) =FE :1 A( iol(th — My,)? - [M]t>]
(3.17¢) +F [1A ([M]S - f;:(th - Mti)2>] .

The second equality above follows from

E[Mt2i+1 - Mt% ‘ ]:ti} = E[(Mt - Mti)2 ’ ]:ti]'

i+1
To apply this, the expectation on line (3.17a) has to be taken apart, the
conditioning applied to individual terms, and then the expectation put back
together. Letting the mesh of the partition tend to zero makes the expec-
tations on lines (3.17b)—(3.17c) vanish by the L' convergence in (2.11) for
L?-martingales.

In the limit we have
E[14(M} — [M])] = B[1a4(M — [M],)]
for an arbitrary A € Fs, which implies the martingale property.
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(b) Let X = M? — [M] for the local L?>-martingale M. Let {7} be a
localizing sequence for M. By part (a), (M™)? — [M™]; is a martingale.
Since [M7™]; = [M]inr, by Lemma 3.28, this martingale is the same as
M, — [M]inr, = X{*. Thus {7} is a localizing sequence for X. O

From Theorem 3.27 it follows also that the covariation [M, N] of two
right-continuous local martingales M and N exists. As a difference of in-
creasing processes, [M, N] is a finite variation process.

Lemma 3.30. Let M and N be cadlag L?>-martingales or local L>-martingales.
Let T be a stopping time. Then [M™,N]=[M",N"] =[M,N]".

Proof. [M7,N7] = [M, N]" follows from the definition (2.12) and Lemma
3.28. For the first equality claimed, consider a partition of [0,¢]. If0 < 7 < ¢,
let ¢ be the index such that ¢, < 7 < tpy1. Then

Z(Mt7;+1 - Mt:)(NtiJrl - Nti) = (MT - Mte)(Nt£+1 - NT)1{0<T§t}

(2

+ > (M7, — M{)(NT,, — Np).
%

(If 7 = 0 the equality above is still true, for both sides vanish.) Let the
mesh of the partition tend to zero. With cadlag paths, the term after the
equality sign converges almost surely to (M, — M:_)(N; — N7)11g<r<y = 0.
The convergence of the sums gives [M7, N| = [M7, N7]. O

Theorem 3.31. (a) If M and N are right-continuous L?-martingales, then
MN — [M, N] is a martingale.

(b) If M and N are right-continuous local L*-martingales, then M N —
[M, N] is a local martingale.

Proof. Apply (2.14) to write
MN = [M,N] = 3{(M + N)? = [M + N]} — 5{M? — [M]} — 3{N* — [N]}.
Both (a) and (b) now follow from Theorem 3.29. O

As the last issue we extend the existence results to semimartingales.

Corollary 3.32. Let M be a cadlag local martingale, V a cadlag F'V process,
My=Vy =0, andY =Yy + M +V the cadlag semimartingale. Then the
cadlag quadratic variation process [Y] exists and satisfies

Y] = [M]s +2[M, V] + [V]:

(3.18) =[M];+2 > AMAV,+ > (AVL)2
s€(0,t] 5€(0,t]
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Furthermore, [Y] = [Y]|" for any stopping time T and the covariation [X,Y]
exists for any pair of cadlag semimartigales.

Proof. We already know the existence and properties of [M]. According
to Lemma A.10 the two sums on line (3.18) converge absolutely. Thus the
process given by line (3.18) is a cadlag process. (Recall Example 1.13.)
Theorem 3.27 and Lemma A.10 combined imply that line (3.18) is the limit
(in probability) of sums Y, (Y3, — Y, ,)? as mesh(m) — 0. Denote the process
on line (3.18) temporarily by U;. It follows from the limits that Us < Uy
a.s. for each pair of times s < t, and hence simultaneously for all rational
s < t. By taking limits, the cadlag property of paths extends monotonicity
from rational times to all times. Thus U is an increasing process and gives
a version of [Y] with nondecreasing paths. This proves the existence of [Y].

[Y7] = [Y]" follows by looking at line (3.18) term by term and by using
Lemma 3.28. Since quadratic variation exists for semimartingales, so does
(X, Y] =[(X+Y)/2] - [(X -Y)/2]. O

3.5. Doob-Meyer decomposition

In addition to the quadratic variation [M] there is another increasing pro-
cess with similar notation, the so-called predictable quadratic variation (M),
associated to a square-integrable martingale /M. We will not use (M) much
in this text, except in Chapter 9 on stochastic partial differential equations.
For the sake of completeness we address the relationship between [M] and
(M). Tt turns out that for continuous square-integrable martingales [M]
and (M) coincide, so in that context one can use them interchangeably. In
particular, books that restrict their treatment of stochastic integration to
continuous integrators need only discuss (M).

Throughout this section we work with a fixed probability space (2, F, P)
with a filtration {F;} assumed to satisfy the usual conditions (complete,
right-continuous).

In order to state a precise definition we need to introduce the predictable
o-algebra P on the space Ry x Q. P is the sub-o-algebra of Br, ® F
generated by left-continuous adapted processes. More precisely, P is gen-
erated by events of the form {(¢,w) : X¢(w) € B} where X is an adapted,
left-continuous process and B € Br. Such a process is measurable, even pro-
gressively measurable (Lemma 2.4), so these events lie in Br, ® F. There
are other ways of generating P. For example, continuous processes would
also do. Left-continuity has the virtue of focusing on the “predictability”:
if we know X for all s < ¢ then we can “predict” the value X;. A thorough
discussion of P has to wait till Section 5.1 where stochastic integration with
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respect to cadlag martingales is introduced. Any P-measurable function
X R4 xQ — R is called a predictable process.

Here is the existence and uniqueness statement. It is a special case of
the Doob-Meyer decomposition.

Theorem 3.33. Assume the filtration {F;} satisfies the usual conditions.
Let M be a right-continuous square-integrable martingale. Then there is a
unique predictable process (M) such that M? — (M) is a martingale.

If M is a right-continuous local L?-martingale, then there is a unique
predictable process (M) such that M? — (M) is a local martingale.

Uniqueness above means uniqueness up to indistinguishability. (M) is
called the predictable quadratic variation. For two such processes we can
define the predictable covariation by (M,N) = (M + N) — H(M — N).
From Theorem 3.29 and the uniqueness of (M) it follows that if [M] is
predictable then [M] = (M).

Proposition 3.34. Assume the filtration satisfies the usual conditions.

(a) Suppose M is a continuous square-integrable martingale. Then (M) =
[M].

(b) Suppose M is a right-continuous square-integrable martingale with
stationary independent increments: for all s,t > 0, Mg+ — My is inde-
pendent of Fs and has the same distribution as My — My. Then (M); =
t- B[M} — M2

Proof. Part (a). By Theorems 3.27 and 3.29, [M] is a continuous, increasing
process such that M? — [M] is a martingale. Continuity implies that [M] is
predictable. Uniqueness of (M) implies (M) = [M].

Part (b). The deterministic, continuous function ¢ ~— tE[M? — M¢] is
predictable. For any ¢ > 0 and integer k

k—1
E[Mlgt - Mg] = ZE[M(Qj+1)t - Mth] = ZE[(M(j+1)t - th)Q]
j=0

= kE[(M; — My)?] = kE[M}? — MZ).
Using this twice, for any rational k/n,
B[My, — Mg) = kE[M;),, — Mg] = (k/n)E[M{ — Mg).

Given an irrational ¢ > 0, pick rationals ¢, \ t. Fix T > ¢,,. By right-
continuity of paths, M, — M; almost surely. Uniform integrability of
{M 3”1} follows by the submartingale property

0< M. < E[M;|F,,]
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and Lemma B.16. Uniform integrability gives convergence of expectations
E[M? ] — E[M?]. Applying this above gives

E[M? — M3] = tE[M} — M3].
Now we can check the martingale property.
E[MP|F] = M7 + E[M{ — M?|Fy] = M? + E[(M; — M;)*|F,]
= M + E[(My—s — Mo)’] = M + E[M}., — Mg)
= M2+ (t — s)E[M? — M3]. 0

This proposition was tailored to handle our two main examples.

Example 3.35. For a standard Brownian motion (B); = [B]; = t. For a
compensated Poisson process M; = N; — adt,

(M); = tE[M?) = tE[(N; — a)?] = at.

We continue this discussion for a while, although what comes next makes
no appearance later on. It is possible to introduce (M) without reference to
P. We do so next, and then state the Doob-Meyer decomposition. Recall
Definition 2.17 of an increasing process

Definition 3.36. An increasing process A is natural if for every bounded
cadlag martingale M = {M (t) : 0 <t < oo},

(3.19) E M(s)dA(s) = FE M(s—)dA(s) for 0 <t < oco.
(0,t] (0,t]

The expectation—integral on the left in condition (3.36) is interpreted
in the following way. First for a fixed w, the function s — M(s,w) is
integrated against the (positive) Lebesgue-Stieltjes measure of the function
s+ A(s,w). The resulting quantity is a measurable function of w (Exercise
3.13). Then this function is averaged over the probability space. Similar
interpretation on the right in (3.36), of course. The expectations in (3.36)
can be infinite. For a fixed w,

M(s)dA(s)
(0.4

< sgp|M(s)|A(t) < 0

so the random integral is finite.

Lemma 3.37. Let A be an increasing process and M a bounded cadlag
martingale. If A is continuous then (3.19) holds.

Proof. A cadlag path s — M (s,w) has at most countably many disconti-
nuities. If A is continuous, the Lebesgue-Stieltjes measure A4 gives no mass
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to singletons: Aa{s} = A(s)— A(s—) = 0, and hence no mass to a countable
set either. Consequently

/(O () =25 das) =0 0

Much more is true. In fact, an increasing process is natural if and only if
it is predictable. A proof can be found in Chapter 25 of [10]. Consequently
the characterizing property of (M) can be taken to be naturalness rather
than predictability.

Definition 3.38. For 0 < u < o0, let 7, be the collection of stopping times
7 that satisfy 7 < u. A process X is of class DL if the random variables
{X;: 7 €T,} are uniformly integrable for each 0 < u < occ.

The main example is the following.

Lemma 3.39. A right-continuous nonnegative submartingale is of class

DL.

Proof. Let X be a right-continuous nonnegative submartingale, and 0 <
u < 00. By (3.3)
0 < X, < E[X,|F7]

By Lemma B.16 the collection of all conditional expectations on the right
is uniformly integrable. Consequently these inequalities imply the uniform
integrability of the collection {X, : 7 € T, }. O

Here is the main theorem. For a proof see Theorem 1.4.10 in [11].

Theorem 3.40. (Doob-Meyer Decomposition) Assume the underlying fil-
tration is complete and right-continuous. Let X be a right-continuous sub-
martingale of class DL. Then there is an increasing natural process A,
unique up to indistinguishability, such that X — A is a martingale.

Let us return to a right-continuous square-integrable martingale M. We
can now equivalently define (M) as the unique increasing, natural process
such that M? — (M), is a martingale, given by the Doob-Meyer decomposi-
tion.

3.6. Spaces of martingales

Stochastic integrals will be constructed as limits. To get the desirable path
properties for the integrals, it is convenient to take these limits in a space
of stochastic processes rather than simply in terms of individual random
variables. This is the purpose of introducing two spaces of martingales.
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Given a probability space (2, F, P) with a filtration {F;}, let My denote
the space of square-integrable cadlag martingales on this space with respect
to {F:}. The subspace of My of martingales with continuous paths is M.
My and M$ are both linear spaces.

We measure the size of a martingale M € My with the quantity
oo
(3.20) 1My =Y 27F (LA 1M 2(p)) -
k=1

| Mll2py = E[|Mj|?)"/? is the L? norm of My. |||, is not a norm
because ||aM || a1, is not necessarily equal to |« - || M||pm, for a real number
a. But the triangle inequality

[M + Ny < [[M][ a1 + [1N] a1
is valid, and follows from the triangle inequality of the L? norm and because
IN(a+b)<1Aa + 1Ab fora,b>0.

Hence we can define a metric, or distance function, between two martingales

M, N € Ms by
(3.21) dpy (M, N) = [[M — N|| pm,-

A technical issue arises here. A basic property of a metric is that the
distance between two elements is zero iff these two elements coincide. But
with the above definition we have da,(M,N) = 0 if M and N are in-
distinguishable, even if they are not exactly equal as functions. So if we
were to precisely follow the axiomatics of metric spaces, indistinguishable
martingales should actually be regarded as equal. The mathematically so-
phisticated way of doing this is to regard Ms not as a space of processes
but as a space of equivalence classes

{M} ={N : N is a square-integrable cadlag martingale on (2, F, P),
and M and N are indistinguishable}

Fortunately this technical point does not cause any difficulties. We shall
continue to regard the elements of My as processes in our discussion, and
remember that two indistinguishable processes are really two “representa-
tives” of the same underlying process.

Theorem 3.41. Assume the underlying probability space (2, F, P) and the
filtration {F} complete. Let indistinguishable processes be interpreted as
equal. Then Mgy is a complete metric space under the metric dyq,. The
subspace M5 is closed, and hence a complete metric space in its own right.

Proof. Suppose M € My and |M||p, = 0. Then E[M?] = 0 for each
k € N. Since M} is a submartingale, E[M?] < E[M?] for t < k, and
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consequently E[M?] = 0 for all ¢ > 0. In particular, for each fixed ¢,
P{M; = 0} = 1. A countable union of null sets is a null set, and so there
exists an event Qy C Q such that P(Qo) = 1 and M,(w) = 0 for all w € Qg
and ¢ € Q4. By right-continuity, then M;(w) = 0 forallw € Qp and t € Ry.
This shows that M is indistinguishable from the identically zero process.

The above paragraph shows that daq, (M, N) = 0 implies M = N, in the
sense that M and NN are indistinguishable. We already observed above that
dam, satisfies the triangle inequality. The remaining property of a metric is
the symmetry daq, (M, N) = da, (N, M) which is true by the definition.

To check completeness, let {M () : n € N} be a Cauchy sequence in the
metric daq, in the space M. We need to show that there exists M € M,y
such that ||M™ — M|r, — 0 as n — oo.

For any ¢ < k € N, first because (Mt(m) — Mt(n))2 is a submartingale,
and then by the definition (3.20),

LA E[(M™ — MM <1 a B[(M{™ — M)

< 2 MO — M o

It follows that for each fixed ¢, {Mt(n)} is a Cauchy sequence in L?(P). By
the completeness of the space L?(P), for each ¢t > 0 there exists a random
variable Y; € L?(P) defined by the mean-square limit

(3.22) lim E[(M —Y;)?] =o0.

n—oo

Take s < tand A € F,. Let n — oo in the equality E[lAMt(n)] = E[lAMs(n)].
Mean-square convergence guarantees the convergence of the expectations,
and in the limit
(3.23) E[14Y] = E[14Y;].
We could already conclude here that {Y;} is a martingale, but {Y;} is not
our ultimate limit because we need the cadlag path property.

To get a cadlag limit we use a Borel-Cantelli argument. By inequality
(3.8),
(3.24) P{ sup |M™ — M| > e} <e2B[(M{™ — MM

0<t<k
This enables us to choose a subsequence {n} such that
(3.25) P{ sup [M™) - M| > 07k < o7k,
0<t<k
To achieve this, start with ng = 1, and assuming n;_; has been chosen, pick
ng > ni_1 so that
1M — M| gy < 273
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for m,n > ng. Then for m > ny,

1A E[(M,Em) . M]g”k))2]1/2 < QkHM(m) _ M(nk)HM2 < 272k’

and the minimum with 1 is superfluous since 272* < 1. Substituting this
back into (3.24) with € = 27% gives (3.25) with 272¥ on the right-hand side.

By the Borel-Cantelli lemma, there exists an event ; with P(Q;) =1
such that for w € Qq,

sup ’Mt(nk+l)(w) _ Mt(nk)((A)” <9k

0<t<k
for all but finitely many k’s. It follows that the sequence of cadlag functions
t— Mt(n’“)(w) are Cauchy in the uniform metric over any bounded time
interval [0, 7]. By Lemma A.5 in the Appendix, for each T' < oo there exists
a cadlag process {Nt(T) (w) : 0 <t < T} such that Mt(n’“)(w) converges to
Nt(T) (w) uniformly on the time interval [0,7], as k — oo, for any w € Q.
Nt(s) (w) and Nt(T) (w) must agree for ¢t € [0,.S A T}, since both are limits of
the same sequence. Thus we can define one cadlag function ¢ — M;(w) on
R, for w € €y, such that Mt(n’“)(w) converges to M;(w) uniformly on each
bounded time interval [0,7]. To have M defined on all of €2, set M;(w) =0
for w ¢ Q.

The event €2 lies in F; by the assumption of completeness of the filtra-
tion. Since Mt(m“) — M, on @y while M; = 0 on Qf, it follows that M, is
Fi-measurable. The almost sure limit M; and the L? limit Y; of the sequence
{Mt(n'“)} must coincide almost surely. Consequently (3.23) becomes
(3.26) E[14M] = E[14M]
for all A € F, and gives the martingale property for M.

To summarize, M is now a square-integrable cadlag martingale, in other
words an element of My. The final piece, namely ||[M™ — M|, — 0,
follows because we can replace Y; by M; in (3.22) due to the almost sure
equality M; =Y;.

If all M are continuous martingales, the uniform convergence above

produces a continuous limit M. This shows that M$ is a closed subspace of
M under the metric day,. O

By adapting the argument above from equation (3.24) onwards, we get
this useful consequence of convergence in M.

Lemma 3.42. Suppose |M™ — M| r, — 0 as n — oo. Then for each
T < oo ande >0,

(3.27) lim P{ sup M — M| > e} =0.
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Furthermore, there exists a subsequence {M(")} and an event Qg such that
P(Q0) =1 and for each w € Qg and T < o,

(3.28) lim sup |M"™ (w) — My(w)| = 0.
n—)ooOStST

When (3.27) holds for all 7' < oo and € > 0, it is called uniform conver-
gence in probability on compact intervals.

We shall write My o for the space of cadlag local L?-martingales with
respect to a given filtration {#;} on a given probability space (2, F, P). We
do not introduce a distance function on this space.

Exercises

Exercise 3.1. Create a simple example that shows that E(M.|F,) = M,
cannot hold for general random times ¢ < 7 that are not stopping times.

Exercise 3.2. Let B be a standard Brownian motion and 7 = inf{t > 0 :
B, = 1}. Show that P(1 < c0) = 1, E(Bran) = E(By) for all n € N but
E(B;) = E(By) fails. In other words, optional stopping does not work for
all stopping times.

Exercise 3.3. Let 7 be a stopping time and M a right-continuous mar-
tingale. Corollaries 3.8 and 3.9 imply that M" is a martingale for both
filtrations {F;} and {Fiar}. This exercise shows that any martingale with
respect to {Fia-} is also a martingale with respect to {F;}.

So suppose {X;} is a martingale with respect to {Fia-}. That is, X; is
Fin--measurable and integrable, and E(X; | Fspr) = X for s < t.

(a) Show that for s < ¢, 1{r < s} X; = 1{7 < s} X,. Hint. 1{r < s} X;
is Fspr-measurable. Multiply the martingale property by 1{7 < s}.

(b) Show that {X;} is a martingale with respect to {F;}. Hint. With
s <tand A € F;, start with E(14X;) = E(141{7 < s}X;) + E(141{7 >
S}Xt).

Exercise 3.4. (Brownian motion with a random speed.) Let B; be a stan-
dard Brownian motion with filtration 77 = o{Bs : s € [0,#]}. Let U be
a nonnegative finite random variable, independent of fo]i, and such that
E(U'?) = co. Define the filtration G; = o{F,o(U)}. Show that for each
s >0, sU is a stopping time under filtration {G;}. Let X; = By, a process
adapted to F; = Gyy. (G is defined as in (2.4).) Show that X is not a
martingale but it is a local martingale. Hints. You need Exercise (2.22).
Compute E|X;|. There are localizing stopping times that take only values
0 and oo, or you can look at Exercise 3.6 below.
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Exercise 3.5. (a) Suppose X is an adapted process and 71, ..., 73 stopping
times such that X™,..., X7 are all martingales. Show that then X7tV V7
is a martingale. Hint. In the case k = 2 write X™V™ in terms of X™, X
and X71AT2,

(b) Let M be an adapted process, and suppose there exists a sequence
of stopping times p, " oo (a.s.) such that M~ is a local martingale for
each n. Show that then M is a local martingale.

Exercise 3.6. Let X be a continuous local martingale. Show that X can
be localized by the stopping times v, = inf{t > 0: | X;| > n}.

Exercise 3.7. Let X be a nonnegative local martingale such that £ Xy < oco.
Show that then X is a supermartingale, and X is a martingale iff FX; =
EXj for all t > 0. Hint. Consider processes of the type Y; = X, rt A K.

Exercise 3.8. Let M be a right-continuous local martingale such that M;" €
LY(P) for all t € R. Show that then M is a martingale. Hint. Let n — oo
in the equality E[1aMns, | = E[1aMspr, ] for s <t and A € Fs.

Exercise 3.9. Let M be a local martingale with localizing sequence {7y }.
Suppose that for each ¢t € R, the sequence { Minr, }nen is uniformly inte-
grable. Show that then M is a martingale. Same hint as above.

Exercise 3.10. Let M be a local martingale with localizing sequence {7 }.
Show that M™\™ is uniformly integrable (in other words, that the family
of random variables {M;”\™ : t € R} is uniformly integrable). Hint. Use
Lemma B.16.

Exercise 3.11. Let M be some process and Xy = M; — My. Show that if
M is a local martingale, then so is X, but the converse is not true. For the
counterexample, consider simply M; = £ for a fixed random variable &.

Exercise 3.12. Let (Q, F, P) be a complete probability space, N = {N €
F : P(N) = 0} the class of null sets, and take a random variable X € L'(P)
but not in L?(P). For t € Ry define

= {a(/\f), 0<t<l1 EX, 0<t<1
t:

X, t>1.

and M; =
F, t>1

Then {F;} satisfies the usual conditions and M is a martingale but not a
local L? martingale. Hint. Show that {r < 1} € o(N) for any stopping
time 7.

Exercise 3.13. Let A be an increasing process, and ¢ : Ry x 2 — R a
bounded Br, ® F-measurable function. Let T' < co. Show that

9o(w) = ¢(t, w)dAs(w)
(0,7]
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is an F-measurable function. Show also that, for any Br, ® F-measurable
nonnegative function ¢ : R4 x Q@ — Ry,

gp(w) = /(0 . o(t,w)dAy(w)

is an F-measurable function. The integrals are Lebesgue-Stieltjes integrals,
evaluated separately for each w. The only point in separating the two cases
is that if ¢ takes both positive and negative values, the integral over the
entire interval [0, 00) might not be defined.

Hint. One can start with ¢(t,w) = 1(4yxr(t,w) for 0 < a < b < oo and
I' € 7. Then apply Theorem B.4 from the Appendix.

Exercise 3.14. Let N = {N(¢) : 0 < t < oo} be a homogeneous rate «
Poisson process with respect to {F;} and M; = N; — at the compensated
Poisson process. We have seen that the quadratic variation is [M]; = N¢
while (M); = at. It follows that N cannot be a natural increasing process.
In this exercise you show that the naturalness condition fails for V.

(a) Let A > 0. Show that
X(t) = exp{=AN(t) + at(1 — e )}
is a martingale.

(b) Show that NV is not a natural increasing process, by showing that for
X defined above, the condition

E X(s)dN(s)=FE X(s—)dN(s)
(0,t] (0,]

fails. (In case you protest that X is not a bounded martingale, fix 7" > ¢
and consider X (s AT).)






Chapter 4

Stochastic Integral
with respect to
Brownian Motion

As an introduction to stochastic integration we develop the stochastic inte-
gral with respect to Brownian motion. This can be done with fewer tech-
nicalities than are needed for integrals with respect to general cadlag mar-
tingales, so the basic ideas of stochastic integration are in clearer view. The
same steps will be repeated in the next chapter in the development of the
more general integral. For this reason we leave the routine verifications in
this chapter as exercises. We develop only enough properties of the inte-
gral to enable us to get to the point where the integral of local integrands
is defined. This chapter can be skipped without loss. Only Lemma 4.2 is
referred to later in Section 5.5. This lemma is of technical nature and can
be read independently of the rest of the chapter.

Throughout this chapter, (2, F, P) is a fixed probability space with a
filtration {F;}, and B = {B;} is a standard one-dimensional Brownian mo-
tion with respect to the filtration {F;} (Definition 2.26). We assume that F
and each F; contains all subsets of events of probability zero, an assumption
that entails no loss of generality as explained in Section 2.1.

To begin, let us imagine that we are trying to define the integral fg BsdB;
through an approximation by Riemann sums. The next calculation reveals
that, contrary to the familiar Riemann and Stieltjes integrals with reason-
ably regular functions, the choice of point of evaluation in a partition interval
matters.

115
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Lemma 4.1. Fiz a number u € [0,1]. Given a partition m = {0 =tg < t; <
s <y =t} let s; = (1 —u)t; + utiy1, and define

m(m)—1
S(m) = Z Bsi(Bti+1 - By,).
=0
Then
lim S(x)=3iB? - st+ut in L*(P).

mesh(7)—0 2

Proof. First check the algebra identity

a2 02 a—c2

+(b—c)?+ (a—Db)(b—c).
Applying this,
S(ﬂ-) = %Btz - % (Bti+1 - Bti)2 + Z(Bsi - Bti)2

i
+ Z(Bti+1 - Bsi)(BSi - Bti)
7

= %B? — Sl(ﬂ') + 52(71') + 53(71')
where the last equality defines the sums Sp(7), Sa(7), and S3(7). By Propo-
sition 2.42,
lim Si(7) =3t in L*(P).

mesh(7)—0

For the second sum,

E[SQ(T[')] = Z(Sz — ti) = UZ(ti_H - tl‘) = ut,

)

and

Var[Sy(7)] = ZVar[(Bsi —B,)? =2 Z(si — ;)2

<2 (tip1 —ti)* < 2t mesh()

1

which vanishes as mesh(7) — 0. The factor 2 above comes from Gaussian
properties: if X is a mean zero normal with variance o2, then

Var[X?) = E[X?] - (B[X?)? = 30 — 0* = 20°.
The vanishing of the variance of So(7) as mesh(mw) — 0 is equivalent to

lim 052(71') —ut in L*(P).

mesh(r)—
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Lastly, we show that S3(7) vanishes in L?(P) as mesh(m) — 0.

E[S3(m)?] = E[ <Z(Bti+1 — By,)(Bs, — Bti)>2]

i

= Z E[(Bti+1 - Bsi)Q(Bsi - Bti)Q]

+ Z E[(Bti+1 - Bsi)(BSi - Bti)(Btj+1 - st)(st - Btj )]
i#]
= Z(tm —5)(si —t;) < Z(tm — ;)% < t mesh(n)

which again vanishes as mesh(w) — 0. O

According to Proposition 2.28, there is a unique choice that makes the
limit of S(7) into a martingale, namely u = 0, in other words taking s; = ¢;,
the initial point of the partition interval. This is the choice for the [to
integral. After developing some background we revisit this calculation in
Example 4.9 and establish the [t6 integral

t
/ BydB, = 1B} — 1t.
0
The choice u = % leads to the Stratonovich integral given by

t
/ ByodBs = 1B}
0

A virtue of the Stratonovich integral is that the rules of ordinary calculus
apply, as in the example above. But for developing the theory the It6 integral
reigns supreme. We shall revisit the Stratonovich integral in some exercises
later on.

We turn to develop the It6 stochastic integral with respect to Brownian
motion. The first issue is to describe the spaces of stochastic processes X
that serve as integrands in the integral fot X dB.

For a measurable process X, the L2-norm over the set [0,7] x Q is

1/2
(4.1) 1X o) = <E /[0 T]|X<t,w>|2dt) .

Let L2(B) denote the collection of all measurable, adapted processes X such
that

HXHLQ([O,T]xQ) < o0
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for all T < co. A metric on L3(B) is defined by dz,(X,Y) = | X = Y|z, (p)
where

(4.2) XN 22(8) = 22 (LA NX | 2o, %)) -

As for ||||am, in Section 3.6 we use the norm notation even though |||z, ()
is not a genuine norm. The triangle inequality

1X +Yllzo) < 1 XN 2oy + 1Y [ 228)
is valid, and this gives the triangle inequality
dﬁz(Xa Y) < dCQ(Xv Z) +dﬁ2(Za Y)
required for dr,(X,Y) to be a genuine metric.

To have a metric, one also needs the property d,(X,Y) = 0 iff X =
Y. We have to adopt the point of view that two processes X and Y are
considered “equal” if the set of points (t,w) where X (t,w) # Y (t,w) has
m ® P-measure zero. Equivalently,

(4.3) /0 T PIX() £ Y () di = 0.

In particular processes that are indistinguishable, or modifications of each
other have to be considered equal under this interpretation.

The symmetry dg,(X,Y) = dg, (Y, X) is immediate from the defini-
tion. So with the appropriate meaning assigned to equality, L2(B) is a

metric space. Convergence X,, — X in L9(B) is equivalent to X,, = X in
L2([0,T] x Q) for each T' < oc.

The symbol B reminds us that L2(B) is a space of integrands for sto-
chastic integration with respect to Brownian motion.

The finite mean square requirement for membership in L9(B) is restric-
tive. For example, it excludes some processes of the form f(B;) where f is a
smooth but rapidly growing function. Consequently from Lo(B) we move to
a wider class of processes denoted by L£(B), where the mean square require-
ment is imposed only locally and only on integrals over the time variable.
Precisely, £L(B) is the class of measurable, adapted processes X such that

T
(4.4) P{w:/ X(t,w)*dt < 0o forallT<oo}:1.
0

This will be the class of processes X for which the stochastic integral process
with respect to Brownian motion, denoted by

t
(X-B) = / X, dB,
0

will ultimately be defined.
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The development of the integral starts from a class of processes for which
the integral can be written down directly. There are several possible starting
places. Here is our choice.

A simple predictable process is a process of the form

(4.5) X(t,w) = &o(w) oy (t) + Z §i(W) Ly, 0,01 (1)

where n is finite integer, 0 =ty = t; < t3 < --- < t, are time points, and for
0 <i<n-—1,¢& is a bounded F;,-measurable random variable on (2, F, P).
Predictability refers to the fact that the value X; can be “predicted” from
{Xs : s < t}. Here this point is rather simple because X is left-continuous so
X; =lim X, as s / t. In the next chapter we need to deal seriously with the
notion of predictability but in this chapter it is not really needed. We use
the term only to be consistent with what comes later. The value &y at ¢t = 0
is irrelevant both for the stochastic integral of X and for approximating
general processes. We include it so that the value X (0,w) is not artificially
restricted.

A key point is that processes in L2(B) can be approximated by simple
predictable processes in the Lo(B)-distance. We split this approximation
into two steps.

Lemma 4.2. Suppose X is a bounded, measurable, adapted process. Then
there exists a sequence {X,} of simple predictable processes such that, for
any 0 < T < o0,

T
lim E/ | X (t) —X(t)th:o.
0

n—oo

Proof. We begin by showing that, given T' < oo, we can find simple pre-
dictable processes Yk(T) that vanish outside [0, 7] and satisfy

k—o00

(4.6) lim E/TyY,jT) (t) — X ()" dt = 0.
0

Extend X to R x Q by defining X (¢,w) = 0 for ¢ < 0. For each n € N and
s € [0, 1], define

VAR t w ZX S+ 2” ], ) (s+2*"j,s+2*”(j+1)](t) . l[O,T] (t)
JjEZ

Z™*% is a simple predictable process. It is jointly measurable as a function of
the triple (s,t,w), so it can be integrated over all three variables. Fubini’s
theorem allows us to perform these integrations in any order we please.
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We claim that

T 1
(4.7) lim E/ dt/ ds |2 (t) — X (t)|” = 0.

This limit relies on the property called LP-continuity (Proposition A.18).

To prove (4.7), start by considering a fixed w and rewrite the double
integral as follows:

T 1
/ dt/ ds |27 (t,w) — X (t,w)|?
0 0

T 1
= [ a3 [ sl 2w) = X)Lz ngarz g
JEZ

T 1
n. 2
= / dt Z/ ds ‘X(s +27",w) — X(t,w)| 1[t_27n(j+1)’t_27nj)(3).
0 0
JEZ
For a fixed t, the s-integral vanishes unless
O<t—2"jandt—2""(G+1) <1,

which is equivalent to 2"(t—1) —1 < j < 2"t. For each fixed ¢ and j, change
variables in the s-integral: let h =t—s—27"j. Thens € [t—27"(j+1),t—
2774) iff h € (0,27"]. These steps turn the integral into

T 2—"m
/(; dt Z 1{2"(t—1)—1<j<2"t} /0 dh |X(t — h, W) — X(t, (AJ)‘

JEZ

2

2-n T
§(2”+1)/ dh/ dt | X (t — hyw) — X (t,w)[*.
0 0
The last upper bound follows because there are at most 2™ 4+ 1 j-values
that satisfy the restriction 2"(t — 1) — 1 < j < 2"t. Now take expectations
through the inequalities. We get

T 1
n,8 _ 2
E/o dt/o ds | Z™5(t) — X (t)|” dt

< (2"+1)/02 dh{E/TdﬂX(t—h,w)—X(t,w)f}.

0
The last line vanishes as n — oo for these reasons: First,

T
lim [ dt|X(t - h,w) - X(t,w)| =0
h—0 0
for each fixed w by virtue of LP-continuity (Proposition A.18). Since X is
bounded, the expectations converge by dominated convergence:
T

lim E [ dt|X(t —hw) - X(t,w)|" =0.
h—0 0
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Last,

lim (2”+1)/02_n dh{E/TdﬂX(t—h,w)—X(t,w)f} =0

n—oo 0

follows from this general fact, which we leave as an exercise: if f(z) — 0 as
x — 0, then

1 £
8/ f(z)de -0 ase—0.
0

We have justified (4.7).
We can restate (4.7) by saying that the function

T 2
Pn(s) :E/o dt|Z™*(t) — X(t)|" dt

satisfies ¢, — 0 in L1[0,1]. Consequently a subsequence ¢y, (s) — 0 for
Lebesgue-almost every s € [0, 1]. Fix any such s. Define Yk(T) = Z"% and

we have (4.6).

To complete the proof, create the simple predictable processes {Yk(m)}
for all T'=m € N. For each m, pick k,, such that

E/ dt [y, () — X (t)|* dt < L
0 " m

Then X,, = Yk(;n) satisfies the requirement of the lemma. O

Proposition 4.3. Suppose X € Lo(B). Then there exists a sequence of
simple predictable processes {Xn} such that || X — Xy| z,5) — 0.

Proof. Let X(*) = (X Ak)V(—Fk). Since |[X®) —X| < |X]and [X®) —X| =0
pointwise on R4 x €,

m

lim E [ |X® () - x ()| dt =0

k—oo 0
for each m € N. This is equivalent to || X — X(k)HLQ(B) — 0. Given € > 0,
pick k such that || X — X(k)”EQ(B) < ¢/2. Since X*) is a bounded process,
the previous lemma gives a simple predictable process Y such that || X (k)
Y o) < €/2. By the triangle inequality || X — Y||z,5) < e. Repeat this
argument for each ¢ = 1/n, and let X,, be the Y thus selected. This gives
the approximating sequence {X,,}. O

We are ready to proceed to the construction of the stochastic integral.
There are three main steps.

(i) First an explicit formula is given for the integral X - B of a sim-
ple predictable process X. This integral will be a continuous L?*-
martingale.
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(ii) A general process X in L9(B) is approximated by simple processes
X,. One shows that the integrals X, - B of the approximating
simple processes converge to a uniquely defined continuous L°*-
martingale which is then defined to be the stochastic integral X - B.

(iii) A localization step is used to get from integrands in Lo(B) to in-
tegrands in £(B). The integral X - B is a continuous local L2-
martingale

The lemmas needed along the way for this development make valuable
exercises. So we give only hints for the proofs, and urge the first-time reader
to give them a try. These same properties are proved again with full detail
in the next chapter when we develop the more general integral. The proofs
for the Brownian case are very similar to those for the general case.

We begin with the integral of simple processes. For a simple predictable
process of the type (4.5), the stochastic integral is the process X - B defined
by

(18) (0B = X 6N (Buanl®) — Bun(w).

Note that our convention is such that the value of X at t = 0 does not
influence the integral. We also write I(X) = X - B when we need a symbol
for the mapping I : X — X - B.

Let S5 denote the space of simple predictable processes. It is a subspace
of Lo5(B). An element X of Sy can be represented in the form (4.5) in many
different ways. We need to check that the integral X - B depends only on
the process X and not on the particular representation. Also, we need to
know that Sy is a linear space, and that the integral I(X) is a linear map
on Ss.

Lemma 4.4. (a) Suppose the process X in (4.5) also satisfies

Xi(w) = mo(@) Loy (¢ +Z% o))

for all (t,w), where 0 = sp = 51 < 53 < -++ < 8y < 00 and n; is Fs;-
measurable for 0 < j < m — 1. Then for each (t,w),

m—1

z_: fz‘(w) (Btiﬂ/\t( ) Bt /\t 7% sl+1/\t(w) - Bsi/\t(w))'
— =

In other words, X - B is independent of the representation.
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(b) Sz is a linear space, in other words for X,Y € Sy and reals o and
B, aX + BY € Sy. The integral satisfies

(aX+8Y) -B=a(X-B)+B(Y -B).

Hints for proof. Let {uy} = {s;} U {t;} be the common refinement of
the partitions {s;} and {t;}. Rewrite both representations of X in terms
of {ur}. The same idea can be used for part (b) to write two arbitrary
simple processes in terms of a common partition, which makes adding them
easy. U

Next we need some continuity properties for the integral. Recall the
distance measure || - ||, defined for continuous L?-martingales by (3.20).

Lemma 4.5. Let X € Sy. Then X - B is a continuous square-integrable
martingale with respect to the original filtration {F;}. We have these isome-
tries:

t

(4.9) E[(X-B)}] = E/ X2%ds forallt>0,
0

and

(4.10) X Bllms = 11X 2o()-

Hints for proof. To show that X - B is a martingale, start by proving this
statement: if u < v and £ is a bounded JF,-measurable random variable,
then Z; = £(Biay — Biaw) is a martingale.

To prove (4.9), first square:

n—1
2
(X B)tQ = Z&Q (BtAtHl - Bt/\ti)
i=1
+2 Z §i&j(Binti o — Bint;)(Biat; 1 — Bint;)-
1<j
Then compute the expectations of all terms. O

From the isometry property we can deduce that simple process approx-
imation gives approximation of stochastic integrals.

Lemma 4.6. Let X € Lo(B). Then there is a unique continuous L>-
martingale Y such that, for any sequence of simple predictable processes
{X,} such that

1X = Xolleom) — 0,
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we have
Y — X, - Bljm, — 0.

Hints for proof. It all follows from these facts: an approximating sequence
of simple predictable processes exists for each process in Lo(B), a convergent
sequence in a metric space is a Cauchy sequence, a Cauchy sequence in a
complete metric space converges, the space M of continuous L?-martingales
is complete, the isometry (4.10), and the triangle inequality. O

Note that uniqueness of the process Y defined in the lemma means
uniqueness up to indistinguishability: any process Y indistinguishable from
Y also satisfies |Y — X, - B||m, — 0.

Now we can state the definition of the integral of Lo(B)-integrands with
respect to Brownian motion.

Definition 4.7. Let B be a Brownian motion on a probability space (22, F, P)
with respect to a filtration {F;}. For any measurable adapted process
X € Ly(B), the stochastic integral I1(X) = X - B is the square-integrable
continuous martingale that satisfies

lim | X-B— X, -B||m, =0
n—oo
for any sequence X,, € Sy of simple predictable processes such that
1 X = Xnllzo8) = 0

The process I(X) is unique up to indistinguishability. Alternative notation
for the stochastic integral is the familiar

t
/ X,dB, = (X - B),.
0

The reader familiar with more abstract principles of analysis should note
that the extension of the stochastic integral X -B from X € Sz to X € Lo(B)
is an instance of a general, classic argument. A uniformly continuous map
from a metric space into a complete metric space can always be extended to
the closure of its domain (Lemma A.3). If the spaces are linear, the linear
operations are continuous, and the map is linear, then the extension is a
linear map too (Lemma A.4). In this case the map is X — X - B, first
defined for X € Sy. Uniform continuity follows from linearity and (4.10).
Proposition 4.3 implies that the closure of Sy in L2(B) is all of Lo(B).

Some books first define the integral (X - B); at a fixed time ¢ as a map
from L?([0,¢] x Q, m® P) into L?(P), utilizing the completeness of L2-spaces.
Then one needs a separate argument to show that the integrals defined for
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different times ¢ can be combined into a continuous martingale ¢ — (X - B);.
We defined the integral directly as a map into the space of martingales M§
to avoid the extra argument. Of course, we did not really save work. We
just did part of the work earlier when we proved that M is a complete
space (Theorem 3.41).

Example 4.8. In the definition (4.5) of the simple predictable process we
required the &; bounded because this will be convenient later. For this
section it would have been more convenient to allow square-integrable &;.
So let us derive the integral for that case. Let

m—1
= Z ni1(8i78i+1] (t)
=1

where 0 < s; < -+- < sy, and each n; € L*(P) is Fs,-measurable. Check
that a sequence of approximating sirnple processes is given by

Z 771 (52751+1] )

with truncated variables 771‘( ) = (ni ANk)V (—k). And then that

m—1

/ X dB = Z i Bt/\sH_l Bt/\sz)

=1

There is something to check here because it is not immediately obvious that
the terms on the right above are square-integrable. See Exercise 4.4.

Example 4.9. One can check that Brownian motion itself is an element of
L2(B). Let tI =i27" and

2"n—1

Z BinLgngn, (1)

Xy, ¢ S2 but it can be used to approximate B. By Example 4.8
2"n—1

[ xraB =3 By B, ~ Buy)
=1

For any T' < n,

2"n—1 oy
i+

E/ | X, (s) — Bg|?dt < Z/ E[(Bm — By)?] ds
Z % i+l T 2:%n2_n'
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Thus X, converges to B in L9(B) as n — co. By the isometry (4.12) in the
next Proposition, this integral converges to fot BydB, in L? as n — 00, so
by Lemma 4.1,

t
/ B,dB, = B} — 1t.
0

Before developing the integral further, we record some properties.

Proposition 4.10. Let X,Y € Ly(B).

(a) Linearity carries over:
(aX +BY) B =a(X -B)+ (Y - B).

(b) We have again the isometries

t

(4.11) E[(X-B){] = E/ XZ%ds forallt >0,
0

and

(4.12) [ X - Bl a, = 1 X, ()

In particular, if X,Y € Lo(B) are m ® P-equivalent in the sense (4.3), then
X - B andY - B are indistinguishable.

(c) Suppose T is a stopping time such that X (t,w) =Y (t,w) fort < 7(w).
Then for almost every w, (X - B)i(w) = (Y - B)i(w) fort < 7(w).

Hints for proof. Parts (a)—(b): These properties are inherited from the
integrals of the approximating simple processes X,. One needs to justify
taking limits in Lemma 4.4(b) and Lemma 4.5.

The proof of part (c) is different from the one that is used in the next
chapter. So we give here more details than in previous proofs.

By considering Z = X —Y, it suffices to prove that if Z € Lo(B) satisfies
Z(t,w) =0 for t < 7(w), then (Z - B);(w) =0 for ¢t < 7(w).

Assume first that Z is bounded, so |Z(t,w)| < C. Pick a sequence {Z,}
of simple predictable processes that converge to Z in Lo(B). Let Z,, be of
the generic type (recall (4.5))

m(n)—1
Zotw) = 3 € (0)
i=1
(To approximate a process in L£o(B) the ¢ = 0 term in (4.5) is not needed
because values at ¢ = 0 do not affect dt-integrals.) We may assume [£]'| < C
always, for if this is not the case, replacing &' by (¢' A C) V (—C) will only
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improve the approximation. Define another sequence of simple predictable

processes by
m(n)—1

Z U <t g (D).
i=1

We claim that

(4.13) Zn — Z in Ly(B).

To prove (4.13), note first that Z,1{7 <t} — Z1{r <t} = Z in L2(B). So
it suffices to show that

(4.14) Z1{T <t} — Z, — 0 in Lo(B).
Estimate

| Za(6) {7 < t} — Zy( <CZ‘I{T<t}—1{7<t”}‘1tntl+1(t)

SO> Ut <7 <t M

7

().

z z+1

Integrate over [0,7] x €2, to get

T
E/ | Zn ()17 < t} — Z,,(t)|* dt

< C? ZP{t" <7< tm}/ L n (1) dt

< Cgmax{T/\tH_l TAt}:1<i<m(n)—1}.
We can artificially add partition points ¢}’ to each Z,, so that this last quan-
tity converges to 0 as n — oo, for each fixed 7. This verifies (4.14), and
thereby (4.13).
The integral of Zn is given explicitly by
m(n)—1
(Z B Z fz 1{7’ < t }(Bt/\t" - Bt/\t”)
=1
By inspecting each term, we see that (2 -B); = 01if t < 7. By the definition
of the integral and (4.13), Z, - B — Z - B in M¢$. Then by Lemma 3.42
there exists a subsequence an B and an event )y of full probability such
that, for each w € Qp and T < o0,
(Zn, - B)i(w) = (Z - B)i(w) uniformly for 0 <t < T.
For any w € €, in the limit (Z - B)¢(w) = 0 for ¢t < 7(w). Part (c) has been
proved for a bounded process.

To complete the proof, given Z € Lo(B), let ZF) (t,w) = (Z(t,w) ANk) V
(—k), a bounded process in Lo(B) with the same property Z®*) (¢, w) = 0 if
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t < 7(w). Apply the previous step to Z (k) and justify what happens in the
limit. (]

Next we extend the integral to integrands in £(B). Given a process
X € L(B), define the stopping times

(4.15) Ta(w) = inf{t >0: /OtX(s,w)g ds > n}

These are stopping times by Corollary 2.10 because the function

t
t»—>/ X(s,w)?ds
0

is continuous for each w in the event in the definition (4.4). By this same
continuity, if 7, (w) < oo,

e Tn(w)
/ X(5,w)?1{s < my(w)} ds = / X (s,w)?ds = n.
0 0

Let

Xp(t,w) = X(t,w)1{t < 7 (w)}.
Adaptedness of X,, follows from {t < 7,} = {7, < t}° € F;. The function
(t,w) = 1{t < 7,(w)} is Br, ® F-measurable by Exercise 4.3, hence X, is
a measurable process. Together these properties say that X,, € L2(B), and
the stochastic integrals X, - B are well-defined.

The goal is to show that there is a uniquely defined limit of the processes
X, - B as n — 0o, and this will then serve as the definition of X - B.

Lemma 4.11. For almost every w, (X, - B)i(w) = (X, - B)i(w) for all
t < T (W) A T (w).

Proof. Immediate from Proposition 4.10(c). O

The lemma says that, for a given (¢,w), once n is large enough so that
Tn(w) > t, the value (X, - B);(w) does not change with n. The definition
(4.4) guarantees that 7,(w) * oo for almost every w. These ingredients
almost justify the next extension of the stochastic integral to £(B).

Definition 4.12. Let B be a Brownian motion on a probability space
(Q, F, P) with respect to a filtration {F;}, and X € L(B). Let Qq be
the event of full probability on which 7,, oo and the conclusion of Lemma
4.11 holds for all pairs m,n. The stochastic integral X - B is defined for
w € Qo by

(4.16) (X - B)¢(w) = (X, - B)t(w) for any n such that 7,(w) > t.
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For w ¢ Qp define (X - B)¢(w) = 0. The process X - B is a continuous local
L?-martingale.

To justify the claim that X - B is a local L?-martingale, just note that
{mn} serves as a localizing sequence:

(X - B)i" = (X - B)iar, = (Xn - Binr, = (X - B)[",

so (X - B)™ = (X,, - B)™, which is an L?-martingale by Corollary 3.8. The
above equality also implies that (X - B)¢(w) is continuous for ¢ € [0, 7, (w)],
which contains any given interval [0, 7] if n is taken large enough.

It seems somewhat arbitrary to base the definition of the stochastic
integral on the particular stopping times {7,}. The property that enabled
us to define X - B by (4.16) was that X (¢)1{t < 7,,} is a process in the space
Lo(B) for all n. Let us make this into a new definition.

Definition 4.13. Let X be an adapted, measurable process. A nonde-
creasing sequence of stopping times {o,} is a localizing sequence for X if
X(t)1{t < o,} is in Lo(B) for all n, and o,, / co with probability one.

One can check that X € £(B) if and only if X has a localizing sequence
{on} (Exercise 4.6). Lemma 4.11 and Definition 4.12 work equally well
with {7,,} replaced by an arbitrary localizing sequence {o,}. Fix such a
sequence {o,} and define X, (¢) = 1{t < 0,} X(t). Let Q; be the event of
full probability on which o, 0o and for all pairs m, n, ()~(m ‘B)y = ()N(n-B)t
for t < o A op. (In other words, the conclusion of Lemma 4.11 holds for
{on}.) Let Y be the process defined by

(4.17) Yi(w) = (X, - B)y(w) for any n such that o,(w) > t,
for w € 4, and identically zero outside €2;.

Lemma 4.14. Y = X - B in the sense of indistinguishability.

Proof. Let 25 be the intersection of the full-probability events €2y and 2
defined previously above (4.16) and (4.17). By applying Proposition 4.10(c)
to the stopping time o, AT, and the processes X,, and )~(n, we conclude that
for almost every w € Qg, if t < o, (w) A T (w),

Yi(w) = (X Bi(w) = (Xn - B)i(w) = (X - B)y(w).

Since oy, (w) A Th(w) 7 o0, the above equality holds almost surely for all
0<t<oo. O

This lemma tells us that for X € £(B) the stochastic integral X - B can
be defined in terms of any localizing sequence of stopping times.
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Exercises

Exercise 4.1. Show by example that it is possible to have E f01|Xt| dt < oo
but still F|X;| = oo for some fixed time ¢ € [0, 1].

Exercise 4.2. Let X be a continuous, adapted process such that

E( sup |X¢]?) < o0 for all T' < 0.
te[0,7)
Let 7" = {0 = s{ < s} < s§ < --- } be any sequence of partitions of R} such
that, for each fixed n, s} /oo asi / oo while mesh 7™ = sup; (sj,; —s}') =

0 as n — oo. Let g, be the truncation g,(x) = (x An) V (—n). Show that
the processes

Xa(t) =D gn(X (7)) Liop, o3, (8)

i>0 '

are simple predictable processes that satisfy || X, — X||z,5) — 0.
Exercise 4.3. Show that for any [0, co]-valued measurable function Y on
(2, F), the set {(s,w) € Ry x Q:Y(w) > s} is Br, ® F-measurable.

Hint. Start with a simple Y. Show that if Y,, 7 Y pointwise, then
{(s,w) : Y(w) > s} =, {(s,w) : Yn(w) > s}.
Exercise 4.4. Suppose 1 € L?(P) is F; measurable and ¢ > s. Show that

E[n*(By — B,)?] = E[n*] - E[(B; — Bs)?]

by truncating and using monotone convergence. In particular, this implies
that n(B; — Bs) € L*(P).

Complete the details in Example 4.8. You need to show first that X; —
X in L5(B), and then that

m—1

t
| Xel)aBe = Y B~ Buns) i M5,
0 i=1

Exercise 4.5. Show that B? is a process in £2(B) and evaluate

t
/ B2dB,.
0

Hint. Follow the example of fot B, dB,. Answer: %BE — fot By ds.

Exercise 4.6. Let X be an adapted, measurable process. Show that X €
L(B) if and only if X has a localizing sequence {0, } in the sense of Definition
4.13.
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Exercise 4.7. (Integral of a step function in £(B).) Fix 0 =ty < t; <
- < tpr < oo, and random variables 7g,...,ny—1. Assume that n; is al-
most surely finite and F¢,-measurable, but make no integrability assumption.

Define
Z Th 1(tl,tl+1 ( )

The task is to show that g € £(B ) (v1rtually immediate) and that
" M—1
/ g(s)dBs = Z 77@'(Bti+1At - Bti/\t)
0 i=0
as one would expect.

Hints. Show that op(w) = inf{t : |g(¢t,w)| > n} defines a localizing
sequence of stopping times. (Recall the convention inf () = co.) Show that
gn(t,w) = g(t,w)1{t < o,(w)} is also a simple predictable process with the
same partition. Then we know what the approximating integrals

t
Yo (t,w) :/ gn(s,w) dBs(w)
0
look like.

Exercise 4.8. Let f be a (nonrandom) Borel function on [0, T] such that
fo |f|? dt < co. Find the distribution of the random variable fo t) dBi(w).






Chapter 5

Stochastic Integration
of Predictable
Processes

The main goal of this chapter is the definition of the stochastic integral
f(O,t] X (s)dY (s) where the integrator Y is a cadlag semimartingale and X
is a locally bounded predictable process. The most important special case
is the one where the integrand is of the form X (t—) for some cadlag process
X. In this case the stochastic integral f(O,t] X(s—)dY(s) can be realized as
the limit of Riemann sums

S(t) = X(si)(Y(siy1 At) = Y(si At))
=0

when the mesh of the partition {s;} tends to zero. The convergence is then
uniform on compact time intervals, and happens in probability. Random
partitions of stopping times can also be used.

These results will be reached in Section 5.3. Before the semimartingale
integral we explain predictable processes and construct the integral with
respect to L?-martingales and local L?-martingales. Right-continuity of the
filtration {F:} is not needed until we define the integral with respect to a
semimartingale. And even there it is needed only for guaranteeing that the
semimartingale has a decomposition whose local martingale part is a local
L2-martingale. Right-continuity of {F;} is not needed for the arguments
that establish the integral.

133
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5.1. Square-integrable martingale integrator

Throughout this section, we consider a fixed probability space (2, F, P) with
a filtration {F;}. M is a square-integrable cadlag martingale relative to the
filtration {F;}. We assume that the probability space and the filtration are
complete. In other words, if N € F has P(N) = 0, then every subset F' C N
is a member of F and each F;. Right-continuity of the filtration {F;} is not
assumed unless specifically stated.

5.1.1. Predictable processes. Predictable rectangles are subsets of R x
Q of the type (s,t] x F where 0 < s < t < oo and F € Fg, or of the
type {0} x Fy where Fy € Fy. R stands for the collection of all predictable
rectangles. We regard the empty set also as a predictable rectangle, since
it can be represented as (s,t] x . The o-field generated by R in the space
R x Q is denoted by P and called the predictable o-field. P is a sub-o-field
of Br, ® F because R C Br, ® F. Any P-measurable function X from
R x Q into R is called a predictable process.

A predictable process is not only adapted to the original filtration {F;}
but also to the potentially smaller filtration {F;_} defined in (2.6) [Exercise
5.1]. This gives some mathematical sense to the term “predictable”, because
it means that X, is knowable from the information “immediately prior to ¢”
represented by Fi_.

Predictable processes will be the integrands for the stochastic integral.
Before proceeding, let us develop additional characterizations of the o-field

P.

Lemma 5.1. The following o-fields on R4 x ) are all equal to P.
(a) The o-field generated by all continuous adapted processes.
(b) The o-field generated by all left-continuous adapted processes.

(c) The o-field generated by all adapted caglad processes (that is, left-
continuous processes with right limits).

Proof. Continuous processes and caglad processes are left-continuous. Thus
to show that o-fields (a)—(c) are contained in P, it suffices to show that all
left-continuous processes are P-measurable.

Let X be a left-continuous, adapted process. Let

Xy (t,w) = Xo(w)1y(0) + Z Xig-n(W)1(ia—n (i41)2-7](1)-
i=0
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Then for B € Br,
{(t,w) : Xp(t,w) € B} = {0} x {w: Xo(w) € B}

oo
U U{(irn, (i 41)27] % {w: Xipn(w) € B}}
i=0
which is an event in P, being a countable union of predictable rectangles.
Thus X,, is P-measurable. By left-continuity of X, X, (t,w) — X (t,w) as
n — oo for each fixed (¢,w). Since pointwise limits preserve measurability,
X is also P-measurable.

We have shown that P contains o-fields (a)—(c).

The indicator of a predictable rectangle is itself an adapted caglad pro-
cess, and by definition this subclass of caglad processes generates P. Thus
o-field (c) contains P. By the same reasoning, also o-field (b) contains P.

It remains to show that o-field (a) contains P. We show that all pre-
dictable rectangles lie in o-field (a) by showing that their indicator functions
are pointwise limits of continuous adapted processes.

IfX = 1{0}><F0 fOI' F() S .F'()7 let

l1—nt, 0<t<1/n
gn(t) =
0, t>1/n,

and then define X, (t,w) = 1g,(w)gn(t). X, is clearly continuous. For a
fixed ¢, writing

X,(0) = {gn(t)lpo, 0<t<1/n
0, t>1/n,
and noting that Fy € F; for all ¢ > 0, shows that X,, is adapted. Since
Xn(t,w) = X(t,w) as n — oo for each fixed (¢,w), {0} x Fy lies in o-field
(a).
If X =1(xr for F' € Fy, let

n(t —u), u<t<u+1/n
() = 1 & utl/n<t<uv
U 1=t —v), v<t<v+1/n

0, t<wort>v+1/n.

Consider only n large enough so that 1/n < v — u. Define X, (t,w) =
1r(w)hn(t), and adapt the previous argument. We leave the missing details
as Exercise 5.3. O

The previous lemma tells us that all continuous adapted processes, all
left-continuous adapted processes, and any process that is a pointwise limit
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[at each (t,w)] of a sequence of such processes, is predictable. It is impor-
tant to note that left and right continuity are not treated equally in this
theory. The difference arises from the adaptedness requirement. Not all
right continuous processes are predictable. However, an arbitrary determin-
istic process, one that does not depend on w, is predictable. (See Exercises
5.2 and 5.4).

Given a square-integrable cadlag martingale M, we define its Doléans
measure pys on the predictable o-field P by

(51) MM(A) =F 000 1A(t,w)d[M]t(w), AeP.

The meaning of formula (5.1) is that first, for each fixed w, the function
t = 14(t,w) is integrated by the Lebesgue-Stieltjes measure Afys,y of the
nondecreasing right-continuous function ¢ — [M];(w). The resulting integral
is a measurable function of w, which is then averaged over the probability
space (€2, F, P) (Exercise 3.13). Recall that our convention for the measure
A{an)(w){0} of the origin is

Apry(){0} = [M]o(w) — [M]o—(w) =0—0=0.

Consequently integrals over (0, 00) and [0, 00) coincide in (5.1).

Formula (5.1) would make sense for any A € Br, ® F. But we shall
see that when we want to extend pjs beyond P in a useful manner, formula
(5.1) does not always provide the right extension. Since

(5.2) ([0, T] x Q) = B([M]r) = E(Mf — M§) < oo
for all T' < oo, the measure pys is o-finite.

Example 5.2 (Brownian motion). If M = B, standard Brownian motion,
we saw in Proposition 2.42 that [B]; = ¢. Then

up(A) =E 1A(t,w)dt = m @ P(A)
[0,00)

where m denotes Lebesgue measure on Ry. So the Doléans measure of
Brownian motion is m ® P, the product of Lebesgue measure on R, and
the probability measure P on §2.

Example 5.3 (Compensated Poisson process). Let N be a homogeneous
rate « Poisson process on R4 with respect to the filtration {F;}. Let M; =
N; — at. We claim that the Doléans measure of uys is am ® P, where as
above m is Lebesgue measure on R;. We have seen that [M] = N (Example
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3.26). For a predictable rectangle A = (s,t] x F with F' € Fj,

upm(A)=FE o )1A(u,w)d[M]u(w) =F o )1F(w)1(57t} (u)dNy(w)
= E[1p - (Ny — N,)] = E[1p] E[(N; — N;)]

= P(F)a(t—s) =am® P(A).

A crucial step above used the independence of Ny — Ny and Fs which is
part of the definition of a Poisson process. Both measures pps and am ® P
give zero measure to sets of the type {0} x Fy. We have shown that pps
and am ® P agree on the class R of predictable rectangles. By Lemma B.5
they then agree on P. For the application of Lemma B.5, note that the
space Ry x  can be written as a countable disjoint union of predictable
rectangles: Ry x Q= ({0} x Q) UU,>0(n,n+1] x €.

For predictable processes X, we define the L? norm over the set [0, T'] x {2
under the measure pys by

1/2
1X s =( / rX|2duM)
[0,T]xQ

(53) |
- (E/[O,T]|X “’w”?d[Mh(w))l/Q.

Let Lo = Lo(M,P) denote the collection of all predictable processes X
such that | X||u,,, 7 < oo for all T < co. A metric on Ly is defined by
dr, (X, Y) = ||X = Y|z, where

o
(5-4) 1Xles = Y27 * (LA IX llung i) -
k=1

Lo is not an L? space, but instead a local L? space of sorts. The discussion
following definition (3.20) of the metric on martingales can be repeated
here with obvious changes. In particular, to satisfy the requirement that
dr, (X, Y) =0iff X =Y, we have to regard two processes X and Y in Lo
as equal if

(5.5) pn{(t,w) : X(t,w) #Y(t,w)} =0.
Let us say processes X and Y are pps-equivalent if (5.5) holds.

Example 5.4. For both Brownian motion and the compensated Poisson
process, the form of ups tells us that a predictable process X lies in Lo if
and only if

T
E/ X(s,w)*ds < oo forall T < 0.
0
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For Brownian motion this is the same integrability requirement as imposed
for the space Lo(B) in Chapter 4, except that now we are restricted to
predictable integrands while in Chapter 4 we were able to integrate more
general measurable, adapted processes. This shortcoming will be fixed in
Section 5.5

Example 5.5. Suppose X is predictable and bounded on bounded time
intervals, in other words there exist constants Cp < oo such that, for almost
every w and all T' < oo, | X¢(w)| < Cp for 0 < ¢ <T. Then X € Lo(M,P)
because

E X(s)%d[M]s < C2E{[M]r} = CZE{M? — M2} < cc.
0,7

5.1.2. Construction of the stochastic integral. In this section we de-
fine the stochastic integral process (X - M); = f(O,t] X dM for integrands
X € L. There are two steps: first an explicit definition of integrals for a
class of processes with a particularly simple structure, and then an approx-
imation step that defines the integral for a general X € L.

A simple predictable process is a process of the form

(5.6) Xi(w) = &o(w)lgoy(t) + Z& Lt t,,4)(8)

where n is a finite integer, 0 =ty = t; < tz < --- < t, are time points, &; is
a bounded Fi,-measurable random variable on (Q, F, P) for 0 <i <n — 1.
We set t1 = tg = 0 for convenience, so the formula for X covers the interval
[0,t,] without leaving a gap at the origin.

Lemma 5.6. A process of type (5.6) is predictable.

Proof. Immediate from Lemma 5.1 and the left-continuity of X.

Alternatively, here is an elementary argument that shows that X is P-
measurable. For each & we can find F; -measurable simple functions

m(i,N)
N __ i, N
= E Bj ]_FN
=1

such that 7V (w) — &(w) as N — oo. Here B;’N are constants and F;N €
Fi,- Adding these up, we have that

Xt(W) = ]\;E’)n { 1{0} + Z 77@ tl,ti+1](t) }

n—1 ( 7N)
0,N z‘,N
6j 1{0}><F](.)’N (t,w) + Z Z Bj tz,tl-s-1]><FZ w (t, w)}
i=1 j=1
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The last function is clearly P-measurable, being a linear combination of indi-
cator functions of predictable rectangles. Consequently X is PP-measurable
as a pointwise limit of P-measurable functions. O

Definition 5.7. For a simple predictable process of the type (5.6), the
stochastic integral is the process X - M defined by

n—1
(5.7) (X - M)y(w) =D &i(w) (M, nt(w) = My ni(w)).
=1

Note that our convention is such that the value of X at ¢ = 0 does not
influence the integral. We also write I(X) = X - M when we need a symbol
for the mapping [ : X — X - M.

Let So denote the subspace of Lo consisting of simple predictable pro-
cesses. Any particular element X of Ss can be represented in the form (5.6)
with many different choices of random variables and time intervals. The
first thing to check is that the integral X - M depends only on the process X
and not on the particular representation (5.6) used. Also, let us check that
the space 8> is a linear space and the integral behaves linearly, since these
properties are not immediately clear from the definitions.

Lemma 5.8. (a) Suppose the process X in (5.6) also satisfies

Xi(w) = no(w) Loy () + Z 15(@) L (s;,511 ()

for all (t,w), where 0 = sp = 51 < 53 < -++ < 8, < 00 and n; is Fs;-
measurable for 0 < j < m — 1. Then for each (t,w),

n—1
D &iw) (Miyni(w) = My a(w Zm (M, nt(w) — My pe(w)).
=1

In other words, X - M is independent of the representation.

(b) Sy is a linear space, in other words for X,Y € Ss and reals o and
B, aX + BY € Sy. The integral satisfies

(aX4+8Y) M=«oX-M)+ (Y -M).

Proof. Part (a). We may assume s,, = t,. For if say ¢, < s,,, replace n
by n + 1, define t,,11 = s, and &,(w) = 0, and add the term &1, 4.,
to the {¢,t;}-representation (5.6) of X. X did not change because the
new term is zero. The stochastic integral X - M then acquires the term
En(My,  nt — My, n¢) which is identically zero. Thus the new term in the
representation does not change the value of either X;(w) or (X - M)¢(w).
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Let T' = s, = tp, and let 0 = u; < up < --- < u, = T be an ordered
relabeling of the union {s; : 1 < j < m}U{t; : 1 <i < n}. Then for each
1 <k < p—1 there are unique indices ¢ and j such that

(upe; 1] = (i, tia] O (85, s541]-
For t € (up, up41], Xi(w) = &(w) and Xy(w) = n;(w). So for these particular
i and j, & = ;.

The proof now follows from a reordering of the sums for the stochastic
integrals.

n—1

Z gi(Mti+1At - Mti/\t)

=1
n—1 p—1

= §’L (Muk+1At - Muk/\t)]-{(uh 'U/k+ﬂ g (t27 ti+1]}
=1 k=1
p—1 n—1

= Z(Mukﬂ/\t — Muy,nt) Zfil{(uk,umﬂ C (tistiv1]}
k=1 i=1
p—1 m—1

= (Mo nt = Mugne) > i1 { (g, wera] € (5, 85411}
k=1 j=1
m—1 p—1

= Ui (Muk+1/\t - Muk/\t)l{<uka uk+1] - (Sj7 Sj‘f'l]}
J=1 k=1
m—1

’r’j(MSj+1/\t - MS]‘/\t)-

<.
Il
—_

Part (b). Suppose we are given two simple predictable processes

n—1
Xt =&lyy(t) + Z §il it t:14)(1)
i=1
and
m—1
Yy =nolgoy(t) + Y 0j1(ss000) (1.
=1

As above, we can assume that T' = t,, = s,,, by adding a zero term to one of
these processes. As above, let {uy : 1 < k < p} be the common refinement
of {s; : 1 < j < m}and {t; : 1 < i < n}, as partitions of [0,7]. Given
1<k<p-—1,leti=1i(k) and j = j(k) be the indices defined by

(wk, 1) = (ti, tige1] N (55, 8541]-
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Define pp(w) = &) (w) and (x(w) = njx)(w). Then
p—1

Xi=&liop(t) + D prLugup ] (1)
k=1

and
p—1

Yy =n0lop(t) + Y el ugugsr) (t)-

The representation
p—1
aX; + BY; = (ao + Bno)Lioy(t) + > _(apr + BG)L(uy w11 ()
k=1
shows that aX + BY is a member of S;. According to part (a) proved
above, we can write the stochastic integrals based on these representations,
and then linearity of the integral is clear. O

To build a more general integral on definition (5.7), we need some con-
tinuity properties.

Lemma 5.9. Let X € So. Then X - M is a square-integrable cadlag mar-
tingale. If M is continuous, then so is X - M. These isometries hold: for
allt >0

(5.8) E[(X - M) :/ X2 duyy
[0,t]x2

and

(5.9) [ X - M| pp = [1X ] 2,

Proof. The cadlag property for each fixed w is clear from the definition
(5.7) of X - M, as is the continuity if M is continuous to begin with.

Linear combinations of martingales are martingales. So to prove that
X - M is a martingale it suffices to check this statement: if M is a mar-
tingale, © < v and £ is a bounded JF,-measurable random variable, then
Zy = &(Mygpny — Mipy,) is @ martingale. The boundedness of £ and integrabil-
ity of M guarantee integrability of Z;. Take s < t.

First, if s < u, then
Zt‘f Mt/\v Mt/\u) ‘ fs]

= E[¢
E[ E{Mt/\v Mt/\u‘]:u} } J—"s]
0=
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because Mipy, — Miny = 0 for t < u, and for ¢ > u the martingale property
of M gives

E{Mt/\v - Mt/\u’]:u} = E{Mt/\v‘]:u} - Mu =0.

Second, if s > wu, then also t > s > wu, and it follows that & is Fs-
measurable and M;in, = M, = Mg, is also Fs-measurable. Then

E[Zi|Fs) = E[§(Mipy — Minu) | Fi]
= §E[Mt/\u — Mspn ‘ ]:s]
= {(B[Mipo|Fs] = Mspu)
= f(Ms/\v - Ms/\u) = Zs.
In the last equality above, either s > v in which case Miny, = M, = Mgp,

is Fs-measurable, or s < v in which case we use the martingale property of
M.

We have proved that X - M is a martingale.

Next we prove (5.8). After squaring,

n—1
2
(X ’ M)% - Z 57,2 (Mt/\tH_l - Mt/\ti)
=1
+ 2 Z fz’fj(Mt/\tH_l - Mt/\ti)(Mt/\t]'+1 - Mt/\tj)'
1<j

We claim that each term of the last sum has zero expectation. Since i < 7,
tiy1 < t; and both § and ¢; are ]-"tj-measurable.

E [Eigj(MtAti+1 - Mt/\ti)(Mt/\tj+1 - Mt/\tj)]
= E[§i§j<Mt/\ti+1 - Mt/\ti)E{Mt/\t]‘+1 - Mt/\t]' ’ftj }:| =0
because the conditional expectation vanishes, either trivially if ¢ < ¢;, or by

the martingale property of M if ¢ > t;.

Now we can compute the mean of the square. Let ¢ > 0. The key point
of the next calculation is the fact that M? — [M] is a martingale.

n—1
E[(X ) M)?] = Z E[&E (Mt/\tz'+1 - Mt/\ti)2]
=1

n—1

- Z E[&Z?E{(Mt/\tprl - Mt/\ti)2 ’ ‘Bz}]
=1
n—1

- Z E[ng{MIfQAt1+1 - Mtz/\ti
=1

Fti}]
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:ZE@E{ Jintip — [M] ]

= Z B[ ([Mlintsyr — [M]ine,)]
=1
n—1
= ; E[ﬁ /[O’t] 1(t¢,ti+1}(5) d[M}s}
=k {/[0 (501{0} + Z 52 twtz+1] ) [M]S]
_ { /{0 (o100 (s) + Z@ ot )2 d[M]S}

= / X2duy.
[0,¢]xQ

In the third last equality we added the term £31yoy(s) inside the d[M],-
integral because this term integrates to zero (recall that A {0} = 0). In
the second last equality we used the equality

n—1
631{0} (s) + Z gizl(tmtiﬂ]( ({01{0} + Z &il( tutzﬂ] >
=1

which is true due to the pairwise disjointness of the time intervals.

The above calculation checks that
(X M)l 2Py = 1K [ ar o
for any ¢ > 0. Comparison of formulas (3.20) and (5.4) then proves (5.9). O

Let us summarize the message of Lemmas 5.8 and 5.9 in words. The
stochastic integral I : X — X - M is a linear map from the space Ss of
predictable simple processes into Ms. Equality (5.9) says that this map is
a linear isometry that maps from the subspace (Sz,dr,) of the metric space
(L2,dg,), and into the metric space (Mg, da,). In case M is continuous,
the map goes into the space (M$, d,).

A consequence of (5.9) is that if X and Y satisfy (5.5) then X - M and
Y - M are indistinguishable. For example, we may have Y; = X; 4+ (1{t = 0}
for a bounded Fp-measurable random variable . Then the integrals X - M
and Y - M are indistinguishable, in other words the same process. This is
no different from the analytic fact that changing the value of a function f
on [a,b] at a single point (or even at countably many points) does not affect
the value of the integral ff f(z)dx



144 5. Stochastic Integral

We come to the approximation step.

Lemma 5.10. For any X € Lo there exists a sequence X, € Sy such that
X = Xnllz, = 0.

Proof. Let £y denote the class of X € L, for which this approximation is
possible. Of course S, itself is a subset of Ls.
Indicator functions of time-bounded predictable rectangles are of the

form

1{0}><F0 (t,w) = 1r, (w)l{O} (t),
or

1(u,v]><F(t7 U.)) = 1F(w)1(u,v] (t),
for Fp € Fy, 0 <u < v < oo, and F € F. They are elements of S due to
(5.2). Furthermore, since S is a linear space, it contains all simple functions
of the form

(5.10) X(t,w) = cilg,(t,w)
=0

where {c;} are finite constants and {R;} are time-bounded predictable rect-
angles.

The approximation of predictable processes proceeds from constant mul-
tiples of indicator functions of predictable sets through P-measurable simple
functions to the general case.

Step 1. Let G € P be an arbitrary set and ¢ € R. We shall show that
X = clg lies in Lo. We can assume ¢ # 0, otherwise X =0 € S;. Again by
(5.2) clg € L2 because

1/2
1e16 n 7 = Il - (G 1 ([0, T x 2))? < 00

for all T < 0.

Given € > 0 fix n large enough so that 27" < /2. Let G,, = GN ([0, n] X
). Consider the restricted o-algebra

P,={AeP:AC0,n]xQt={BN([0,n] xQ): BeP}

P is generated by the collection R, of predictable rectangles that lie in
[0,n] x 2 (Exercise 1.8 part (d)). Ry, is a semialgebra in the space [0, n] x Q.
(For this reason it is convenient to regard () as a member of R,,.) The algebra
A, generated by R, is the collection of all finite disjoint unions of members
of R, (Lemma B.1). Restricted to [0, n] x €, us is a finite measure. Thus by
Lemma B.2 there exists R € A, such that py(G,AR) < |c| =22 /4. We can
write R = R1U---UR,, as a finite disjoint union of time-bounded predictable
rectangles.
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Let Z = c1i. By the disjointness,

p p
Z = ClR = Cl{U Rl} = ZClRi
=1 i=1

so in fact Z is of type (5.10) and a member of Sa. The Lo-distance between
Z = cli and X = clg is now estimated as follows.

n
1Z = X||g, < Z 27]{”613 - C]-GH#M,k +27"
k=1

n 1/2
§Z2k’6|</ ]13—1@\2d,uM> +¢e/2
k=1 [0,k]x2

1/2
§|C|</ |1R—1Gn|2d,uM> +¢e/2
[0,n]x$2

= |e|pup (GuAR)V? +6/2 < e.
Above we bounded integrals over [0, k] x © with the integral over [0,n] x §2

for 1 < k < n, then noted that 15(t,w) = 1¢, (t,w) for (t,w) € [0,n] x Q,
and finally used the general fact that

|14 —1p| =14aB

for any two sets A and B.

To summarize, we have shown that given G € P, ¢ € R, and ¢ > 0,
there exists a process Z € Sy such that [|[Z — clgl|z, < €. Consequently
clg € Zz.

Let us observe that Lo is closed under addition. Let XY € Lo and
X, Y, € S be such that || X, — Xz, and ||Y;, — Y|z, vanish as n — oo.
Then X,, + Y, € S and by the triangle inequality

(X +Y) = (X +Yo)llz, < 1Xn — Xz, + [[Xn = X[|2, = 0.

From this and the proof for c1g we conclude that all simple functions of the
type

n
(5.11) X =) ¢lg, withe € Rand G € P,
=1

lie in /32.

Step 2. Let X be an arbitrary process in L5. Given £ > 0, pick n so
that 27" < ¢/3. Find simple functions X, of the type (5.11) such that | X —
Xm| <|X| and X, (t,w) = X (t,w) for all (¢,w). This is just an instance of
the general approximation of measurable functions with simple functions, as
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for example in (1.3). Since X € L2([0,n] %, Py, uar), Lebesgue’s dominated
convergence theorem implies for 1 < k < n that

1/2
limsup|| X — Xop [y, 1 < lim </ X — Xp)? d,uM) =0.
[0,n]x$2

m—00 m—oo

Consequently

n
limsup|| X — Xz, < ZQ_k limsup||X — Xop || g,k +€/3 =€/3.
Fix m large enough so that || X — X, ||z, < e/2. Using Step 1 find a process
Z € 8y such that || X, — Z||z, < /2. Then by the triangle inequality
| X — Z||z, <e. We have shown that an arbitrary process X € Ly can be
approximated by simple predictable processes in the Ls-distance. O

Now we can state formally the definition of the stochastic integral.

Definition 5.11. Let M be a square-integrable cadlag martingale on a
probability space (2, F, P) with filtration {F;}. For any predictable process
X € Lo(M,P), the stochastic integral I(X) = X - M is the square-integrable
cadlag martingale that satisfies

lim | X -M - X, - M|m, =0

n—oo

for every sequence X,, € Sy of simple predictable processes such that || X —
Xnllz, = 0. The process I(X) is unique up to indistinguishability. If M is
continuous, then so is X - M.

Justification of the definition. Here is the argument that justifies the
claims implicit in the definition. It is really the classic argument about
extending a uniformly continuous map into a complete metric space to the
closure of its domain.

Existence. Let X € Lo. By Lemma 5.10 there exists a sequence X,, € Sy
such that [|[X — X,||z, — 0. From the triangle inequality it then follows
that {X,} is a Cauchy sequence in Lo: given £ > 0, choose ng so that

| X — Xullz, <e/2 for n > ng. Then if m,n > ny,
[ X — Xnllz, < 1 Xm — Xllzo +[[X = Xnllz, <e.

For X,, € Sy the stochastic integral X,, - M was defined in (5.7). By the
isometry (5.9) and the additivity of the integral,

HXm M- X, MHMz = H(Xm - Xn) : MHMz = HXm - Xnuﬁz-

Consequently { X,,- M} is a Cauchy sequence in the space My of martingales.
If M is continuous this Cauchy sequence lies in the space M. By Theorem
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3.41 these spaces are complete metric spaces, and consequently there exists
a limit process Y = lim,, o0 X, - M. This process Y we call [(X) =X - M.

Uniqueness. Let Z, be another sequence in Sy that converges to X in
Lo. We need to show that Z,, - M converges to the same Y = X - M in Mo.
This follows again from the triangle inequality and the isometry:

HY_Zn'MHMz < HY_XR‘MHMz+HXTL'M_Z7L'MHMQ
=Y = Xy - M| pm, + [ X0 — Znll,
< ||Y - Xn - M”Mz + HXn - X”llz + ||X - Zn”llz'

All terms on the last line vanish as n — co. This shows that Z,, - M — Y,
and so there is only one process Y = X - M that satisfies the description of
the definition.

Note that the uniqueness of the stochastic integral cannot hold in a sense
stronger than indistinguishability. If W is a process that is indistinguishable
from X - M, which meant that

Plw: Wi(w) = (X - M)¢(w) forallte Ry} =1,

then W also has to be regarded as the stochastic integral. This is built into
the definition of I(X) as the limit: if || X - M — X,, - M||pm, — 0 and W is
indistinguishable from X - M, then also |W — X,, - M||pq, — 0. O

The definition of the stochastic integral X - M feels somewhat abstract
because the approximation happens in a space of processes, and it may not
seem obvious how to produce the approximating predictable simple processes
X,. When X is caglad, one can use Riemann sum type approximations
with X-values evaluated at left endpoints of partition intervals. To get Lo
approximation, one must truncate the process, and then let the mesh of the
partition shrink fast enough and the number of terms in the simple process
grow fast enough. See Proposition 5.32 and Exercise 5.13.

We took the approximation step in the space of martingales to avoid
separate arguments for the path properties of the integral. The completeness
of the space of cadlag martingales and the space of continuous martingales
gives immediately a stochastic integral with the appropriate path regularity.

As for the style of convergence in the definition of the integral, let us
recall that convergence in the spaces of processes actually reduces back to
familiar mean-square convergence. || X,, — X||z, — 0 is equivalent to having

/ 1 X,, — X|>dppys — 0 for all T < oo.
0,T]xQ
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Convergence in My is equivalent to L?(P) convergence at each fixed time ¢:
for martingales N, N € Mo,

INV = N|ag, = 0
if and only if
E| (Nt(j) - Nt)Q] — 0 for each t > 0.

In particular, at each time ¢ > 0 the integral (X - M), is the mean-square
limit of the integrals (X,, - M), of approximating simple processes. These
observations are used in the extension of the isometric property of the inte-
gral.

Proposition 5.12. Let M € My and X € Lo(M,P). Then we have the
1sometries

(5.12) E[(X - M) :/ X%dup  for allt >0,
[0,t]x§2

and

(5.13) [ X M| pp = [1X 2,

In particular, if X,Y € Lo(M,P) are pnr-equivalent in the sense (5.5), then
X -M andY - M are indistinguishable.

Proof. As already observed, the triangle inequality is valid for the distance

measures |- ||z, and || [|ar,. From this we get a continuity property. Let
Z,W € Ls.
1Zlc; = Wl < 12 = Wlieo + W, — IWle,
<1Z = Wllg,.
This and the same inequality with Z and W switched give
(5.14) 122y = Wlleo | <12 = Wle,.
This same calculation applies to || - || s, also, and of course equally well to

the L? norms on € and [0,7] x Q.

Let X, € Sz be a sequence such that ||X,, — X||z, — 0. As we proved
in Lemma 5.9, the isometries hold for X,, € §. Consequently to prove the
proposition we need only let n — oo in the equalities

R T
[0,t] x Q2
and
[ Xn - M| pmy = ([ Xnll

that come from Lemma 5.9. Each term converges to the corresponding term
with X, replaced by X.



5.1. Square-integrable martingale integrator 149

The last statement of the proposition follows because || X — Y|z, =0
iff X and Y are pupr-equivalent, and | X - M —Y - M||apm, = 0 iff X - M and
Y - M are indistinguishable. O

Remark 5.13 (Enlarging the filtration). Throughout we assume that M
is a cadlag martingale. By Proposition 3.2, if our original filtration {F;}
is not already right-continuous, we can replace it with the larger filtration
{Fi+}. Under the filtration {F;+} we have more predictable rectangles than
before, and hence Py (the predictable o-field defined in terms of {F;y})
is potentially larger than our original predictable o-field P. The relevant
question is whether switching to {F;+} and P, gives us more processes X
to integrate? The answer is essentially no. Only the value at t = 0 of a P-
measurable process differentiates it from a P-measurable process (Exercise
5.5). And as already seen, the value Xy is irrelevant for the stochastic
integral.

5.1.3. Properties of the stochastic integral. We prove here basic prop-
erties of the L? integral X - M constructed in Definition 5.11. Many of these
properties really amount to saying that the notation works the way we would
expect it to work. Those properties that take the form of an equality between
two stochastic integrals are interpreted in the sense that the two processes
are indistinguishable. Since the stochastic integrals are cadlag processes,
indistinguishability follows from showing almost sure equality at all fixed
times (Lemma 2.5).

The stochastic integral X - M was defined as a limit X,, - M — X - M
in Mo-space, where X, - M are stochastic integrals of approximating simple
predictable processes X,,. Recall that this implies that for a fixed time ¢, (X -
M), is the L?(P)-limit of the random variables (X,,- M);. And furthermore,
there is uniform convergence in probability on compact intervals:

(5.15) lim P{ sup (X, - M)y — (X - M),| > g} =0
for each ¢ > 0 and T < oo. By the Borel-Cantelli lemma, along some
subsequence {n;} there is almost sure convergence uniformly on compact
time intervals: for P-almost every w

lim sup [(Xp, - M)i(w) — (X - M)¢(w)| =0 for each T < oo.
These last two statements are general properties of Mo-convergence, see
Lemma 3.42.

A product of functions of ¢, w, and (¢,w) is regarded as a process in
the obvious sense: for example, if X is a process, Z is a random variable
and f is a function on Ry, then fZX is the process whose value at (¢,w)
is f(t)Z(w)X (t,w). This just amounts to taking some liberties with the
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notation: we do not distinguish notationally between the function ¢ — f(t)
on Ry and the function (¢,w) — f(t) on Ry x Q.

Throughout these proofs, when X,, € Sy approximates X € Lo, we write
X, generically in the form

(5.16) X(t,w) = &(w) 1oy (t +Za Lt 500 (1)-

We introduce the familiar integral notation through the definition

(5.17) XdM =(X -M);— (X -M)s for0<s<t.

(st]
To explicitly display either the time variable (the integration variable), or
the sample point w, this notation has variants such as

/ XdM = | XpdMy= [  Xu(w)dMy(w).
(s,t] (s,t] (st]

When the martingale M is continuous, we can also write

t
/XdM

because then including or excluding endpoints of the interval make no dif-
ference (Exercise 5.6). We shall alternate freely between the different nota-
tions for the stochastic integral, using whichever seems more clear, compact
or convenient.

Since (X - M) = 0 for any stochastic integral,

XdM = (X - M),.
(0,¢]

It is more accurate to use the interval (0,¢] above rather than [0,¢] because
the integral does not take into consideration any jump of the martingale at
the origin. Precisely, if  is an Fp-measurable random variable and M; =
¢ + My, then [M] = [M], the spaces Lo(M,P) and L(M,P) coincide, and
X M = X - M for each admissible integrand. (It starts with definition
(5.7).)

An integral of the type

G(s,w)d[M]s(w)
(u,v]
is interpreted as a path-by-path Lebesgue-Stieltjes integral (in other words,

evaluated as an ordinary Lebesgue-Stieltjes integral over (u, v] separately for
each fixed w).
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Proposition 5.14. (a) Linearity:
(aX+p8Y) M=a(X-M)+p(Y - -M).
(b) For any 0 <u <w,

(5.18) / 1, X dM = XdM
(0,¢] (0,uAt]

and

/( | L) X dM = (X - M)ops — (X - M)une
0,t

= / X dM.
(uAt,uAt]

The inclusion or exclusion of the origin in the interval [0, v] is immaterial be-
cause a process of the type 110y (t) X (t,w) for X € La(M,P) is pps-equivalent
to the identically zero process, and hence has zero stochastic integral.

(5.19)

(c) For s <t, we have a conditional form of the isometry:

(520)  E[((X M), — (X-M),)*| F] = E[ o X2 d[M],,

]-"S] .
This implies that

(X-M)f = [ Xyd[M],
(0]

s a martingale.
Proof. Part (a). Take limits in Lemma 5.8(b).

Part (b). If X,, € Sy approximate X, then
k—1
Lo, (D Xn(t) = Sog01(t) + > &il(tnvtiyinn) ()
=1

are simple predictable processes that approximate 1, X.

k—1
((1[0,U]XTL) : M)t = Zfi(Mti+1/\’I)/\t - Mti/\v/\t)
i=1
= (Xn : M)v/\t'
Letting n — oo along a suitable subsequence gives in the limit the almost
sure equality
(LX) - M), = (X - M)one

which is (5.18). The second part (5.19) comes from 1(, X = 1) X —
L[, X, the additivity of the integral, and definition (5.17).
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Part (c). First we check this for the simple process X,, in (5.16). This
is essentially a redoing of the calculations in the proof of Lemma 5.9. Let
s < t. If s > si, then both sides of (5.20) are zero. Otherwise, fix an index
1 <m <k —1such that ¢t,, <s < ty4+1. Then

k—1

(Xn - M)y = (X - M) = &My, o0 — M)+ Y &G( My yne — M)
i=m+1

= Z éz w1 AE T ul/\t)

where we have temporarily defined u,, = s and u; = t; for ¢ > m. After
squaring,

(X - M)y — (X - M), Zsi wiint — Mune)”

+2 Z §ilj (Muy, ot — Muygae) (M at — Muygat)-

m<li<j<k

We claim that the cross terms vanish under the conditional expectation.
Since @ < j, ui+1 < u; and both §; and &; are JF,;-measurable.

[glg‘]( U1 NE T Mui/\t)(MUj+1/\t - MUj/\t) ‘ fs]
- E[&l&]( U1 A\t Mui/\t)E{Muj+1/\t - Muj‘/\t’fu]‘} ‘ ]:s] —

because the inner conditional expectation vanishes by the martingale prop-
erty of M.

Now we can compute the conditional expectation of the square.

k—1
E[((Xa - M): = (X, - M), B (6 (Muornt = Muine)” | Fi]

i=m

??‘
>—A
.

E[@E{ vt = Mun)? | Fu} | Fo

I
)
3

T
L

E[é’t E{ uz+1/\t M’gi/\t ‘ ’Fuz} ‘ 'FS]

Il
(]

I}
3

T
L

E[&iQE{[M]UHU\t - [M]Ui/\t } ]:Uz} ‘ ‘7:3]

I
I\¢

=
L3

E[&?([M]uwl/\t - [M]Uz‘/\t) ‘ fs]

i
3
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kzlE[ / Vg () 1M | 7]
—E /,t] (501{0} +;£ Lt (v )> d[M]. fs]
= /(s,t] €110} (u +Z£Z1(tutz+1]( )>2d[M]u fs]
. / Xl dale) | 7]

Inside the d[M],, integral above we replaced the w;’s with ¢;’s because for
u € (s,t], Loy u,0)(w) = L1, (w). Also, we brought in the terms for
1 < m because these do not influence the integral, as they are supported on
[0, t,,] which is disjoint from (s, ].

Next let X € L9 be general, and X,, — X in L. The limit n — oo is
best taken with expectations, so we rewrite the conclusion of the previous
calculation as

E[(Xn M)y — (Xp - M)s)?*14] = E[lA » Xﬁ(u)d[M]u]

for an arbitrary A € Fs. Rewrite this once again as
B[(X, - M)?14] — E[(X,, - M)?14] = /( K
S,t]|x A

All terms in this equality converge to the corresponding integrals with X,
replaced by X, because (X, - M); — (X - M); in L?*(P) and X,, — X in
L2((0,t] x Q, upr) (see Lemma A.16 in the Appendix for the general idea).
As A € F; is arbitrary, (5.20) is proved. O

Given stopping times ¢ and 7 we can define various stochastic intervals.
These are subsets of R x (). Here are two examples which are elements of
P:

0,7 ={(t,w) e Rt x2:0<t < 7(w)},
and
(o,7] ={(t,w) e Ry x Q:0(w) <t < 7(w)}.

If 7(w) = o0, the w-section of [0, 7] is [0, 00), because (co,w) is not a point
in the space Ry x . If o(w) = oo then the w-section of (o, 7] is empty. The
path t — 1) (¢, w) = 1), T(w)] (t) is adapted and left-continuous with right
limits. Hence by Lemma 5.1 the indicator function 1 ;j is P-measurable.
The same goes for 1(, ). If X is a predictable process, then so is the product
l[O,T}X
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Recall also the notion of a stopped process M7 defined by M; = M.
If M € My then also M™ € Ms, because Lemma 3.5 implies

E[M?) < 2E[M?] + E[Mg).
We insert a lemma on the effect of stopping on the Doléans measure.

Lemma 5.15. Let M € My and T a stopping time. Then for any P-
measurable nonnegative function Y,

R+><Q R+><Q

Proof. Consider first a nondecreasing cadlag function G on [0,00). For
u > 0, define the stopped function G* by G"(t) = G(u At). Then the
Lebesgue-Stieltjes measures satisfy

/ h dAGu - / 1(07,“]]1 AG
(0,00) (0,00)

for every nonnegative Borel function h. This can be justified by the m-A
Theorem. For any interval (a, b],

Agu(s,t] = G*(t) — G*(s) = Glunt) — G(uAs) = Ag((s, 8] N (0,u]).

Then by Lemma B.5 the measures Agu and Ag(- N (0,u]) coincide on all
Borel sets of (0,00). The equality extends to [0, 00) if we set G(0—) = G(0)
so that the measure of {0} is zero under both measures.

Now fix w and apply the preceding. By Lemma 3.28, [M"] = [M]7, and

SO
[ Yeware = [ vwde)
[0,00) [0,00)
:/[0700)1[0,T(w)](3)Y(87w)d[M]s(w)-
Taking expectation over this equality gives the conclusion. ([

The lemma implies that the measure py - is absolutely continuous with
respect to pps, and furthermore that Lo(M,P) C Lo(MT,P).

Proposition 5.16. Let M € My, X € Lo(M,P), and let T be a stopping
time.

(a) Let Z be a bounded Fr-measurable random variable. Then Z1(; )X
and 1(; .y X are both members of Lo(M,P), and

(5.22) / Z1(; 00)X dM = Z/ 1(7,00)X dM.
(0,4] ' 04



5.1. Square-integrable martingale integrator 155

(b) The integral behaves as follows under stopping:
(5.23) (Lo X) - M), = (X - M)rps = (X - M),

(c) Let also N € My and 'Y € Lo(N,P). Suppose there is a stopping
time o such that Xy(w) = Yy(w) and My(w) = Ni¢(w) for 0 <t < o(w). Then
(X - M)opt = (Y - N)gpr for all t > 0.

Remark 5.17. Equation (5.23) implies that 7 can appear in any subset of
the three locations. For example,

(X : M)T/\t = (X . M)T/\T/\t = (X . MT)T/\t

(5.24) = (X - M) jprnt = ((1[07T]X) : MT)

TAL®

Proof. (a) Z1(; ) is P-measurable because it is an adapted caglad process.
(This process equals Z if ¢ > 7, otherwise it vanishes. If ¢ > 7 then F; C F;
which implies that Z is Fi-measurable.) This takes care of the measurability
issue. Multiplying X € Lo(M,P) by something bounded and P-measurable
creates a process in Lo( M, P).

Assume first 7 = u, a deterministic time. Let X,, as in (5.16) approxi-
mate X in L£o. Then

k—1
l(u,oo)X = Z fil(u\/t,‘,u\/ti_',l]
i=1
approximates 1(, )X in £2. And
k—1
Zl(u,OO)Xn = Z Zgil(u\/ti,u\/tiH]
i=1

are elements of Sy that approximate Z1(, o)X in Lo. Their integrals are

k—1
(ZLuo0) Xn) - M), =D ZE&(Muvtyne = Meuviae)

7

(
1
Z((L(y,00)Xn) - M)

Letting n — oo along a suitable subsequence gives almost sure convergence

of both sides of this equality to the corresponding terms in (5.22) at time ¢,
in the case 7 = u.

"

Now let 7 be a general stopping time. Define 7" by

m i27™m if (1 —1)27™ <7 <i27™ for some 1 <3 < 2™m
T =

0, if 7> m.
Pointwise 7 \ 7 as m " 00, and 1(;m o) /" L(r,00)- Both

lii-n2-m<rcio—my and 1y 1)e-m<rcio-myZ
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are F;o—m-measurable for each i. (The former by definition of a stopping
time, the latter by Exercise 2.9.) The first part proved above applies to each

such random variable with v = 27™.
2Mm,

(Z1(rm o) X) - M = ( > 1{(i1)2‘"‘<T<i2—m}Zl(i2—m,oo)X> M
=1
2Mm
=72 Vrp-merczmy (Lapmo X) - M
=1

2Mm
= Z< Z 1{(1'1)2—m§7<¢2—m}1(i2_m’oo)X> M
=1

= Z((L(m o) X) - M).

Let m — oo. Because Zl(Tm,OO)X — Z].(T’OO)X and 1(7—m700)X — ]-(T,oo)X
in L9, both extreme members of the equalities above converge in My to the
corresponding martingales with 7" replaced by 7. This completes the proof
of part (a).

Part (b). We prove the first equality in (5.23). Let 7, =27"(|2"7| + 1)
be the usual discrete approximation that converges down to 7 as n — oc.
Let ¢(n) = |2"t| + 1. Since 7 > k27" iff 7, > (k +1)27",

£(n)

(X - M)ppt = Z 1{r > k27n}((X ) M)(k+1)2*n/\t —(X- M)k:Q*"/\t)
k=0
L(n)
— N

k t

£(n)
= /(O ]<1{0}X + Z 1{T > k2_"}1(k2_",(k+1)2—n}X> dM
! k=0

= / 1j0,) X dM.
(0.1

In the calculation above, the second equality comes from (5.19), the third
from (5.22) where Z is the Fyo-—n-measurable 1{7 > k27"}. The next to
last equality uses additivity and adds in the term 175 X that integrates to
zero. The last equality comes from the observation that for s € [0, ¢]

1[0 Tn](s w = 1{0} + Z 1{T>k2 ”} (k2*",(k+1)2*"}(8)'
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Now let n — oco. By right-continuity, (X - M), ant = (X - M)-a¢. To show
that the last term of the string of equalities converges to ((I[O’T]X )- M ) o 1t
suffices to show, by the isometry (5.12), that

. 2
lim ‘ 107X — 1[0771X| duy = 0.
=00 J10,t]x 0
This follows from dominated convergence. The integrand vanishes as n — oo
because
0 T(w) = 0

tor (@) = Ton () = {1’{T(w) <t<m@) T(w) <o

and 7, (w) \( 7(w). The integrand is bounded by | X|? for all n, and

/ | X |2 dups < oo
[0,t]x Q2

by the assumption X € L. This completes the proof of the first equality in
(5.23).

We turn to proving the second equality of (5.23). Let X,, € S as in
(5.16) approximate X in Lo(M,P). By (5.21), X € Lo(MT™,P) and the
processes X,, approximate X also in Lo(M7™,P). Comparing their integrals,
we get

(XM7Y = 3 &M e = M)
7

= Zfz’(MtiH/\t/\r - Mti/\t/\T)

1

== (Xn : M)t/\T
By the definition of the stochastic integral X - M7, the random variables
(X, - M7); converge to (X - M7)y in L? as n — oc.

We cannot appeal to the definition of the integral to assert the con-
vergence of (X, - M)inr to (X - M)iar because the time point is random.
However, martingales afford strong control of their paths. Y, (t) = (X, -
M)y — (X - M)y is an L? martingale with Y,,(0) = 0. Lemma 3.5 applied to
the submartingale Y;2(¢) implies

E[Y2(t A7) < 2B[VA(0)] = 2B[((Xa - M)r — (X - M)y)°]

and this last expectation vanishes as n — oo by the definition of X - M.
Consequently

(Xp - M)ipr = (X - M)ypr in L2
This completes the proof of the second equality in (5.23).
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Part (c). Since 1jg ;X = 1j9 Y and M7 = N°,
(X : M)t/\a = ((1[0,0]X) : Ma)t = ((1[0?U}Y) : NU)t = (Y . N)t/\a- O

Example 5.18. Let us record some simple integrals as consequences of the
properties.

(a) Let 0 < 7 be two stopping times, and £ a bounded F,-measurable
random variable. Define X = {1, ), or more explicitly,

X (w) = g(w) l(a(w),T(w)} (t)

As an adapted caglad process, X is predictable. Let M be an L?>-martingale.
Pick a constant C' > |{(w)|. Then for any T < oo,

/[OT] QX2 duns = E{&([M]rnr — [M]ont) } < CPE{[M]:rr}
= C?E{M2%,;} < C?E{M2} < oc.
Thus X € Lo(M,P). By (5.22) and (5.23),

X -M= (51(0,00)1[0,7']) M = 5((1(0,00)1[0,7}) ’ M) = 6((1[0,7'] - 1[0,0]) ’ M)
:5((1~M)T—(1-M)U) =&(MT — M?).

Above we used 1 to denote the function or process that is identically one.

(b) Continuing the example, consider a sequence 0 < 03 < g9 < +-- <
o; /* oo of stopping times, and random variables {n; : ¢ > 1} such that »; is
Fo;-measurable and C' = sup;, ,|n;(w)| < co. Let

[o¢]
X(t) = Z nil(ai,oi.;_l](t)'
i=1
As a bounded caglad process, X € Lo(M,P) for any L?-martingale M. Let

Xn(t) = Z 771'1(0'1',0'1'+1] (t)
=1

By part (a) of the example and the additivity of the integral,

n
X+ M =Y mi(M7# — M%),
i=1
X, — X pointwise. And since | X — X, | < 2C,

/[OT} Q]X — X2 dppr — 0
T x

for any T' < oo by dominated convergence. Consequently X, — X in
Lo(M,P), and then by the isometry, X, - M — X - M in Msy. From the
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formula for X, - M it is clear where it converges pointwise, and this limit
must agree with the My limit. The conclusion is

0o
X -M = Zm(McrH-l _ Mm‘).
i=1

As the last issue of this section, we consider integrating a given process
X with respect to more than one martingale.

Proposition 5.19. Let M,N € My, o, € R, and X € Lo(M,P) N
Lo(N,P). Then X € Lao(aM + BN,P), and

(5.25) X - (aM + BN) = a(X - M) + B(X - N).

Lemma 5.20. For a predictable process Y,

1/2
{/ ’Y|2 dMaM+,BN}
[0,7]x$2
1/2 1/2
ga\{/ |Y|2duM} +|ﬁ|{/ \Y\Qd/uv}-
[0, 7] [0,T]xQ

Proof. The linearity
[0M + BN] = o®[M] + 208[M, N] + 5*[N]

is inherited by the Lebesgue-Stieltjes measures. By the Kunita-Watanabe
inequality (2.22),

| P+ on). =a® [
(0,7

[0,T7]
+ﬂ2/ Y32 [NV,
(0,17

1/2
Y,[2d[M], + 2 { YSQdMs} {
P, + 24l /[O’T]r 2 M) /[OT

+ 62/ Y32 d[V]..
[0,T

Y d[M], + 208 / VL[ d[M, N],
[0,1]

1/2
\Ysﬁdms}
]

§a2/
0

)

The above integrals are Lebesgue-Stieltjes integrals over [0, T], evaluated at
a fixed w. Take expectations and apply Schwarz inequality to the middle
term. ([l

Proof of Proposition 5.19. The Lemma shows that X € Lo(aM+5N,P).
Replace the measure pps in the proof of Lemma 5.10 with the measure



160 5. Stochastic Integral

= pp + pn. The proof works exactly as before, and gives a sequence of
simple predictable processes X,, such that

/[0 . Q\X — XoPd(pps + ) = 0
, T x

for each T' < oo. This combined with the previous lemma says that X,, - X
simultaneously in spaces Lo(M,P), Lo(N,P), and Lo(aM + BN, P). (5.25)
holds for X,, by the explicit formula for the integral of a simple predictable
process, and the general conclusion follows by taking the limit. O
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5.2. Local square-integrable martingale integrator

Recall that a cadlag process M is a local L?-martingale if there exists a
nondecreasing sequence of stopping times {0y} such that o oo almost
surely, and for each k the stopped process M7 = {My s : t € Ry} is an
L?-martingale. The sequence {o},} is a localizing sequence for M. Moy o 18
the space of cadlag, local L?-martingales.

We wish to define a stochastic integral X - M where M can be a local L?-
martingale. The earlier approach via an L? isometry will not do because the
whole point is to get rid of integrability assumptions. We start by defining
the class of integrands. Even for an L?-martingale this gives us integrands
beyond the Ls-space of the previous section.

Definition 5.21. Given a local square-integrable martingale M, let L(M,P)
denote the class of predictable processes X which have the following prop-
erty: there exists a sequence of stopping times 0 < 7 < <713 < -+ <
7, < --- such that

(i) P{Tk /‘ OO} = 1,
(i) M™ is a square-integrable martingale for each k, and
(iii) the process 1jg X lies in Lo(M ™, P) for each k.
Let us call such a sequence of stopping times a localizing sequence for the

pair (X, M).

By our earlier development, for each k the stochastic integral
Y= (1,5 X) - M

exists as an element of Ms. The idea will be now to exploit the consistency
in the sequence of stochastic integrals Y*, which enables us to define (X -
M)y (w) for a fixed (¢,w) by the recipe “take Y}¥(w) for a large enough k.”
First a lemma that justifies the approach.

Lemma 5.22. Let M € Moy o and let X be a predictable process. Sup-
pose o and T are two stopping times such that M° and M7 are cadlag
L?-martingales, 10 1 X € L2(M?,P) and 191X € Lo(MT,P). Let

Zt = / 1[070.}X dMJ and Wt = / 1[077—]X dMT
(0,¢] (0,¢]
denote the stochastic integrals, which are cadlag L?-martingales. Then

Zt/\a/\T - Wt/\a/\T

where we mean that the two processes are indistinguishable.



162 5. Stochastic Integral

Proof. A short derivation based on (5.23)—(5.24) and some simple ob-
servations: (M?)" = (M7)? = M?", and 1jg 5 X, 1jpX both lie in
Lo(MNT,P).

Zinonr = ((1[0,0]X) ' Mo—)t/\o'/\/r = ((1[0,T]1[0,U}X) ' (MJ)T)t/\U/\T

= (Lo, 20 X) - (M) pgpr = (L0, X) - MT) 0
= Wt/\a/\T- 0

Let €y be the following event:
Qo ={w :7k(w) S oo as k oo, and for all (k,m),

(5.26) . .
)/;,/\Tk/\Tm (w) = Y;f/\Tk/\Tm (w) for all ¢ € R+}

P () = 1 by the assumption P{7; /" oo} = 1, by the previous lemma, and
because there are countably many pairs (k,m). To rephrase this, on the
event €)g, if £ and m are indices such that ¢ < 73 A 7., then Y;k =Y/". This
makes the definition below sensible.

Definition 5.23. Let M € My oc, X € L(M,P), and let {75} be a localiz-
ing sequence for (X, M). Define the event {2y as in the previous paragraph.
The stochastic integral X - M is the cadlag local L?>-martingale defined as
follows: on the event g set

(X . M)t(w) = ((1[07Tk}X) . MTk)t(w)

(5.27)
for any k such that 75 (w) > t.

Outside the event Qg set (X - M); = 0 for all ¢.

This definition is independent of the localizing sequence {74} in the sense
that using any other localizing sequence of stopping times gives a process
indistinguishable from X - M defined above.

Justification of the definition. The process XM is cadlag on any boun-
ded interval [0, T'] for the following reasons. If w ¢ € the process is constant
in time. If w € Qp, pick k large enough so that 74(w) > T, and note that
the path ¢ — (X - M)¢(w) coincides with the cadlag path ¢ — Y,*(w) on the
interval [0,7]. Being cadlag on all bounded intervals is the same as being
cadlag on R, so it follows that X - M is cadlag process.

The stopped process satisfies
(X : M)tTk = (X : M)Tk/\t = YTIZAt = (Yk)tTk

because by definition X - M = Y* (almost surely) on [0,7]. Y* is an
L?-martingale, hence so is (Y*)™. Consequently (X - M)™ is a cadlag L>-
martingale. This shows that X - M is a cadlag local L?-martingale.
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To take up the last issue, let {o;} be another localizing sequence of
stopping times for (X, M). Let

Wi = / L(0,0,) X dM73.
(0.4

Corresponding to the event £y and definition (5.27) from above, based on
{o;} we define an event ; with P(€2;) = 1, and on ; an “alternative”
stochastic integral by

(5.28) Wi(w) = W/ (w) for j such that oj(w) > t.

Lemma 5.22 implies that the processes WtjAUj Ar,, and Yt’XUj Ar, are indistin-
guishable. Let 29 be the set of w € 2y N Q; for which

Wihgnry (@) = Vi, pry(w)  for all t € Ry and all pairs (j, k).

P(92) = 1 because it is an intersection of countably many events of proba-
bility one. We claim that for w € Qg, (X - M)i(w) = Wi(w) for all t € Ry.
Given ¢, pick j and k so that oj(w) A 7(w) > t. Then, using (5.27), (5.28)
and w € (g, A

(X - M)(w) = Y (w) = W] (w) = Wi(w).
We have shown that X - M and W are indistinguishable, so the definition
of X - M does not depend on the particular localizing sequence used.

We have justified all the claims made in the definition. U

Remark 5.24 (Irrelevance of the time origin). The value Xy does not af-
fect anything above because 7z ({0} x Q) = 0 for any L?-martingale Z. If
a predictable X is given and X; = 1(0,00)(t) X, then pz{X # X} =0. In
particular, {7} is a localizing sequence for (X, M) iff it is a localizing se-
quence for ()Z' , M), and X - M = X -Mifa localizing sequence exists. Also,
in part (iii) of Definition 5.21 we can equivalently require that 10,7, X lies
in Lo(M™,P).

Remark 5.25 (Path continuity). If the local L2-martingale M has continu-
ous paths to begin with, then so do M ™, hence also the integrals 1jg ;M ™
have continuous paths, and the integral X - M has continuous paths.

Example 5.26. Compared with Example 5.4, with Brownian motion and
the compensated Poisson process we can now integrate predictable processes
X that satisfy

T
/ X(s,w)*ds < oo for all T < oo, for P-almost every w.
0

(Exercise 5.7 asks you to verify this.) Again, we know from Chapter 4
that predictability is not really needed for integrands when the integrator is
Brownian motion.
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Property (iii) of Definition 5.21 made the localization argument of the
definition of X - M work. In important special cases property (iii) follows
from this stronger property:

(5.20) there exist stopping times {0y} such that o} * co almost

surely and 1(g,]X is a bounded process for each k.
Let M be an arbitrary local L2-martingale with localizing sequence {v}},
and assume X is a predictable process that satisfies (5.29). A bounded
process is in Lo(Z, P) for any L?-martingale Z, and consequently 10,5)X €
Lo(M"+,P). By Remark 5.24 the conclusion extends to 1, X. Thus the
stopping times 7, = o) Ay localize the pair (X, M), and the integral X - M
is well-defined.

The time origin is left out of 1, X because 1|y ,,) X cannot be bounded
unless Xy is bounded. This would be unnecessarily restrictive.

The next proposition lists the most obvious types of predictable pro-
cesses that satisfy (5.29). In certain cases demonstrating the existence of
the stopping times may require a right-continuous filtration. Then one re-
places {F;} with {F;+}. As observed in the beginning of Chapter 3, this
can be done without losing any cadlag martingales (or local martingales).

Recall also the definition

(5.30) X7r(w) = sup |Xi(w)]
0<t<T

which is Fr-measurable for any left- or right-continuous process X, provided
we make the filtration complete. (See discussion after (3.10) in Chapter 3.)
Proposition 5.27. The following cases are examples of processes with stop-
ping times {o}} that satisfy condition (5.29).

(i) X is predictable, and for each T' < oo there exists a constant Cp < oo
such that, with probability one, X; < Cp for all 0 <t <T. Take o, = k.

(ii) X is adapted and has almost surely continuous paths. Take
o =1inf{t > 0:|X;| > k}.
(iii) X s adapted, and there exists an adapted, cadlag process Y such
that X(t) =Y (t—) fort > 0. Take
o =1nf{t >0:|Y(t)| > k or |Y(t—)| > k}.
(iv) X is adapted, has almost surely left-continuous paths, and X7} < 0o
almost surely for each T < 0o. Assume the underlying filtration {F} right-

continuous. Take
Ok = inf{t >0: ’Xt| > k}
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Remark 5.28. Category (ii) is a special case of (iii), and category (iii) is a
special case of (iv). Category (iii) seems artificial but will be useful. Notice
that every caglad X satisfies X (t) = Y (¢t—) for the cadlag process Y defined
by Y (t) = X(t+), but this Y may fail to be adapted. Y is adapted if {F;}
is right-continuous. But then we find ourselves in Category (iv).

Let us state the most important special case of continuous processes as
a corollary in its own right. It follows from Lemma 3.20 and from case (ii)
above.

Corollary 5.29. For any continuous local martingale M and continuous,
adapted process X, the stochastic integral X - M is well-defined.

Proof of Proposition 5.27. Case (i): nothing to prove.

Case (ii). By Lemma 2.10 this oy, is a stopping time. A continuous path
t — X¢(w) is bounded on compact time intervals. Hence for almost every
w, ox(w) " co. Again by continuity, |X;| < k for 0 < s < o;. Note that
if [Xo| > k then o = 0, so we cannot claim 1y ,,1|Xo| < k. This is why
boundedness cannot be required at time zero.

Case (iii). By Lemma 2.9 this oy is a stopping time. A cadlag path is
locally bounded just like a continuous path (Exercise A.1), and so oy, 7~ c0.
If o, > 0, then |X(t)] < k for t < oy, and by left-continuity | X (oy)| < k.
Note that |Y (o) < k may fail so we cannot adapt this argument to Y.

Case (iv). By Lemma 2.7 oy, is a stopping time since we assume {F;}
right-continuous. As in case (iii), by left-continuity |X,| < k for 0 < s <
op. Given w such that XJ(w) < oo for all T' < oo, we can choose kp >
supg<i<7|Xt(w)| and then of(w) > T for k > kp. Thus o oo almost
surelgf._ [l

Example 5.30. Let us repeat Example 5.18 without boundedness assump-
tions. 0 < o1 < 09 < -+ < g; ' oo are stopping times, 7; is a finite
Fs;-measurable random variable for ¢ > 1, and

o0
Xt = Z 771'1(01-,01-_,_1] (t)
=1

X is a caglad process, and satisfies the hypotheses of case (iii) of Proposition
5.27. We shall define a concrete localizing sequence. Fix M € My, and
let {pr} be a localizing sequence for M. Define

G = oj, if maxi<i<j—1|n;| <k < |n;| for some j
g oo, if |n;| <k for all i.
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That (i is a stopping time follows directly from

[e.e]

{G <t} = Ul({lglg;gllm\ <k <|nl}n{o; < t})-
]:

Also ( " oo since g; " co. The stopping times 7, = pp A (i localize the

pair (X, M).

Z.(k) = (miNk)V (=k). If t € (0; ATk, 041 A T] then necessarily

0; < 7. This implies (x > ;41 which happens iff n, = nék) for 1 </ <.
Hence

Truncate n

- k
1[077_kr] (t)Xt = ZTIE )1(0','/\Tk,0'i+1/\7'k](t)'
=1

This process is bounded, so by Example 5.18,

[e's)
k
((1[07Tk]X) ’ MTk)t = an( )<M0'i+1/\7'k/\t - MO’i/\Tk/\t)'
i=1

Taking k£ so that 1, > t, we get

o0
(X . M)t - Z /rli(M(J'i+1/\t - Mgi/\t)'
=1

We use the integral notation
XdM=(X -M),— (X -M),
(s,t]
and other notational conventions exactly as for the L? integral. The stochas-
tic integral with respect to a local martingale inherits the path properties
of the L? integral, as we observe in the next proposition. Expectations and

conditional expectations of (X - M); do not necessarily exist any more so we
cannot even contemplate their properties.

Proposition 5.31. Let M\N € Masjo., X € L(M,P), and let T be a
stopping time.
(a) Linearity continues to hold: if also Y € L(M,P), then
(aX+pY) M=a(X-M)+p(Y - -M).

(b) Let Z be a bounded Fr-measurable random variable. Then Z1(; )X
and 1(; .y X are both members of L(M,P), and

(5.31) / Z1 (700X AM = Z/ 1700 X dM.
(0,¢] (0,¢]

Furthermore,

(5.32) (Lo X) - M), = (X - M)op = (X - M),
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(c) Let Y € L(N,P). Suppose Xi(w) = Yi(w) and My(w) = Ny(w) for
0<t<7(w). Then
(X : M)T/\t = (Y : N)T/\t~

(d) Suppose X € LIM,P)NL(N,P). Then for o, 3 € R, X € L(aM +
BN,P) and
X -(aM+pBN)=a(X -M)+pB(X-N).

Proof. The proofs are short exercises in localization. We show the way by
doing (5.31) and the first equality in (5.32).

Let {o}} be a localizing sequence for the pair (X, M). Then {0y} is
a localizing sequence also for the pairs (1(50)X, M) and (Z1(5 .\ X, M).
Given w and t, pick k large enough so that o (w) > ¢t. Then by the definition
of the stochastic integrals for localized processes,

Z((l(T,oo)X) : M)t(w) = Z((l[(),Uk]]-(Tpo)X) : Mgk)t(w)

and
((Z1(7,00)X) - M)t (w) = ((L0,0,] 21 (r,00)X) - M7 )e(w).
The right-hand sides of the two equalities above coincide, by an application
of (5.22) to the L?-martingale M°* and the process 1j9,¢,,)X in place of X.
This verifies (5.31).
The sequence {0y} works also for (19 1 X, M). If t < oy (w), then

(LX) - M), = (Lo LX) - M), = ((Ljo,0X) - M%) _,
= (X . M)T/\t'

The first and the last equality are the definition of the local integral, the
middle equality an application of (5.23). This checks the first equality in
(5.32). O

We come to a very helpful result for later development. The most im-
portant processes are usually either caglad or cadlag. The next proposition
shows that for left-continuous processes the integral can be realized as a
limit of Riemann sum-type approximations. For future benefit we include
random partitions in the result.

However, a cadlag process X is not necessarily predictable and therefore
not an admissible integrand. The Poisson process is a perfect example, see
Exercise 5.4. It is intuitively natural that the Poisson process cannot be
predictable, for how can we predict when the process jumps? But it turns
out that the Riemann sums still converge for a cadlag integrand. They just
cannot converge to X - M because this integral might not exist. Instead,



168 5. Stochastic Integral

these sums converge to the integral X_ - M of the caglad process X_ defined
by
X_(0)=X(0) and X _(t)=X(t—) fort>D0.
We leave it to the reader to verify that X_ has caglad paths (Exercise 5.9).
The limit in the next proposition is not a mere curiosity. It will be
important when we derive It6’s formula. Note the similarity with Lemma
1.12 for Lebesgue-Stieltjes integrals.

Proposition 5.32. Let X be an adapted process and M € My .. Suppose
0=13 <7 <13 <13 < -+ are stopping times such that for each n,
7' — o0 almost surely as i — 0o, and 0, = sup,;(7]; — 7;') tends to zero
almost surely as n — oo. Define the process

(5.33) Rn(t) = Z X (M(fq A t) — M(1" A ).
1=0

(a) Assume X is left-continuous and satisfies (5.29). Then for each fized
T <o ande >0,
lim P{ sup |Ry(t) — (X - M) > 8} =0.

n—oo 0<t<T

In other words, R, converges to X - M in probability, uniformly on compact
time intervals.

(b) If X is a cadlag process, then R, converges to X_ - M in probability,
uniformly on compact time intervals.

Proof. Since X_ = X for a left-continuous process, we can prove parts (a)
and (b) simultaneously.

Assume first Xg = 0. This is convenient for the proof. At the end we lift
this assumption. By left- or right-continuity X is progressively measurable
(Lemma 2.4) and therefore X (7') is F;»-measurable on the event 7;* < oo
(Lemma 2.3). Define

Ya(t) = S0 X (2L o (1) — X_(2).
=0

By the hypotheses and by Example 5.30, Y, is an element of £(M,P) and
its integral is
Yo M=R,—X_-M.
Consequently we need to show that Y;, - M — 0 in probability, uniformly on
compacts.
Let {ox} be a localizing sequence for (X_, M) such that 1 5 X~ is
bounded. In part (a) existence of {o}} is a hypothesis. For part (b) apply
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part (iii) of Proposition 5.27. As explained there, it may happen that X (o)
is not bounded, but X (t—) will be bounded for 0 < t < oy

Pick constants by such that |X_(t)| < by for 0 < t < o (here we rely on
the assumption Xo = 0). Define X*) = (X A by) V (—by) and

o0

Y () =S XO ()1 (1) - X P (1),

=0
In forming X ® (t), it is immaterial whether truncation follows the left limit
or vice versa.

We have the equality
1[0,0k]Yn(t) = 1[O,ak]Yn(k) (t)

For the sum in Y,, this can be seen term by term:

10,04 (0) 1z (O X(T]) = 10,0, ()L (0 o

(3 ’L+1]

(6)x® ()

1

because both sides vanish unless 7" < t < oy, and | X (s)| < b for 0 < s < oy,.
Thus {0} is a localizing sequence for (Y;,, M). On the event {o}, > T'},

for 0 <t < T, by definition (5.27) and Proposition 5.16(b)—(c),

(Yo M) = (L, Yn) - M%)y = (Y,F) - MO,

Fix € > 0. In the next bound we apply martingale inequality (3.8) and
the isometry (5.12).

P{ sup [(Ya- M)i| 2 e} < P{oy < T}
0<t<T

RETACRRTONESS:
0<t<T
< Ploy < T} +e2E[(Y,P - Mo*)3]
<Pl <Th+e? [ MO0 pm (it do),
[0,T]xQ
Let €1 > 0. Fix k large enough so that P{ox < T} < e1. As n — oo,

Yn(k)(t,w) — 0 for all ¢, if w is such that the path s — X_(s,w) is left-
continuous and the assumption d,(w) — 0 holds. This excludes at most a
zero probability set of w’s, and so this convergence happens pyser-almost
everywhere. By the bound |Y,§k)] < 2b;, and dominated convergence,

/[OT} Q’Yék)PduM"k — 0 asn — oo.
T %

Letting n — oo in the last string of inequalities gives

T P{ sup (¥, M)| = e} <ey.
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Since €1 > 0 can be taken arbitrarily small, the limit above must actually
equal zero.

At this point we have proved

(5.34) lim p{ sup |Rn(t) — (X_ - M);| > g} —0

n—oo 0<t<T

under the extra assumption Xo = 0. Suppose X satisfies the hypotheses
of the proposition, but Xy is not identically zero. Then (5.34) is valid
for Xi = 19,00)(t)X¢. Changing value at ¢t = 0 does not affect stochastic

integration, so X - M = X - M. Let
o~ © ~
Ru(t) =) X(r) (M7 At) = M (7] A1),
i=0

The conclusion follows for X if we can show that

sup |Rn(t) — Rp(t)] = 0 as n — oo.
0<t<oo

Since Ry (t) — Ry (t) = X (0) (M({* At) — M(0)), we have the bound

sup |Rn(t) — Ra(t)] < [X(0)] - sup |M(t) = M(0)].
0<t<oo 0<t<dn
The last quantity vanishes almost surely as n — oo, by the assumption
0, — 0 and the cadlag paths of M. In particular it converges to zero in
probability.
To summarize, (5.34) now holds for all processes that satisfy the hy-
potheses. O

Remark 5.33 (Doléans measure). We discuss here briefly the Doléans mea-
sure of a local L2-martingale. It provides an alternative way to define the
space L(M,P) of admissible integrands. The lemma below will be used to
extend the stochastic integral beyond predictable integrands, but that point
is not central to the main development, so the remainder of this section can
be skipped.

Fix a local L?-martingale M and stopping times o; ,* oo such that
Mk € My for each k. By Theorem 3.27 the quadratic variation [M] exists
as a nondecreasing cadlag process. Consequently Lebesgue-Stieltjes integrals
with respect to [M] are well-defined. The Doléans measure pps can be
defined for A € P by

(5.35) par(A) < B | La(t)dM) (),
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exactly as for L2-martingales earlier. The measure pyy is o-finite: the union
of the stochastic intervals {[0, 0% A k] : k € N} exhausts Ry x , and

pa([0,0 ANK]) = E o) 10,0y, (w)rk] (1) d[M]e(w) = E{[M]o, rr}

= B{[M]x} = B{(M*)* = (Mg*)?} < oc.

Along the way we used Lemma 3.28 and then the square-integrability of
MOk,

The following alternative characterization of membership in £(M, P) will
be useful for extending the stochastic integral to non-predictable integrands
in Section 5.5.

Lemma 5.34. Let M be a local L?>-martingale and X a predictable process.
Then X € L(M,P) iff there exist stopping times py, / oo (a.s.) such that
for each k,

/ 1[0,pk]|X|2dﬂM <oo forall T < oc.
(0,7]x

We leave the proof of this lemma as an exercise. The key point is that
for both L2-martingales and local L?-martingales, and a stopping time 7,
pn(A) = up(AN0,7]) for A € P. (Just check that the proof of Lemma
5.15 applies without change to local L?-martingales.)

Furthermore, we leave as an exercise proof of the result that if X,Y €
L(M,P) are ppr-equivalent, which means again that

HM{(tvw) : X(tvw) # Y(tvw)} =0,
then X - M =Y - M in the sense of indistinguishability.

5.3. Semimartingale integrator

First a reminder of some terminology and results. A cadlag semimartingale
is a process Y that can be written as Y; = Yy + M, + V; where M is a cadlag
local martingale, V is a cadlag F'V process, and My = Vj = 0. To define the
stochastic integral, we need M to be a local L?-martingale. If we assume
the filtration {F;} complete and right-continuous (the “usual conditions”),
then by Corollary 3.22 we can always select the decomposition so that M is
alocal L?-martingale. Thus usual conditions for {F;} need to be assumed in
this section, unless one works with a semimartingale Y for which it is known
that M can be chosen a local L?-martingale. If ¢ is a function of bounded
variation on [0,7], then the Lebesgue-Stieltjes measure A, of g exists as a
signed Borel measure on [0, 7] (Section 1.1.9).
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In this section the integrands will be predictable processes X that satisfy
this condition:

there exist stopping times {0, } such that o, ' co almost

5.36
(5.36) surely and 1o, )X is a bounded process for each n.

In particular, the categories listed in Proposition 5.27 are covered. We
deliberately ask for 1(g,,1X to be bounded instead of 1jy,,;X because Xo
might not be bounded.

Definition 5.35. Let Y be a cadlag semimartingale. Let X be a predictable
process that satisfies (5.36). Then we define the integral of X with respect
to Y as the process

(5.37) XedY,= | XgdM,+ | X, Ay(ds).
(0,¢] (0,¢] (0,t]

Here Y = Yy + M +V is some decomposition of Y into a local L?>-martingale
M and an FV process V,

XsdMs = (X -M),
(0,4]
is the stochastic integral of Definition 5.23, and
XsAy(ds) = X dVy
(0,t] (0,¢]
is the path-by-path Lebesgue-Stieltjes integral of X with respect to the

function s — V. The process [ X dY thus defined is unique up to indistin-
guishability and it is a semimartingale.

As before, we shall use the notations X -Y and [ X dY interchangeably.

Justification of the definition. The first item to check is that the inte-
gral does not depend on the decomposition of Y chosen. Suppose ¥ =
Yo+ M + V is another decomposition of Y into a local L?-martingale M
and an FV process V. We need to show that
X, dM, + X, Ay (ds) = XodMs+ [ X Ap(ds)
(0,¢] (0,¢] (0,¢] (0,¢]

in the sense that the processes on either side of the equality sign are indistin-
guishable. By Proposition 5.31(d) and the additivity of Lebesgue-Stieltjes
measures, this is equivalent to

X,d(M — M), = / XsAg_, (ds).
(0,¢] (0,¢]

FromY:M+V:M+‘7weget
M-M=V-V
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and this process is both a local L?-martingale and an FV process. The
equality we need is a consequence of the next proposition.

Proposition 5.36. Suppose Z is a cadlag local L?-martingale and an FV
process. Let X be a predictable process that satisfies (5.36). Then for almost
every w

(5.38) X(s,w)dZs(w) = X(s,w)Az(ds) forall 0 <t < oo.
(0,¢] (0,¢]

On the left is the stochastic integral, on the right the Lebesque-Stieltjes in-

tegral evaluated separately for each fized w.

Proof. Both sides of (5.38) are right-continuous in ¢, so it suffices to check
that for each t they agree with probability 1.

Step 1. Start by assuming that Z is an L?-martingale. Fix 0 < ¢ < oo.
Let

H ={X: X is a bounded predictable process and (5.38) holds for ¢}.

By the linearity of both integrals, H is a linear