
632 Introduction to Stochastic Processes

Markov Chain Supplement

Let S be a countable state space, and P = {p(x, y)}x,y∈S a transition matrix on S. Let
Ω = SZ+ be the space of sequences ω = (x0, x1, x2, . . . ) with entries from S. On Ω we define
the coordinate random variables Xn by Xn(ω) = xn for n = 0, 1, 2, . . .

The general construction theory of stochastic processes assures that for every choice of
initial distribution µ on S there exists a probability measure Pµ on Ω with the property that

Pµ

{
X0 = x0, X1 = x1, X2 = x2, . . . , Xn = xn

}
= µ(x0)p(x0, x1)p(x1, x2) · · · p(xn−1, xn)

(1)

for any choice of states x0, x1, x2, . . . , xn ∈ S. Under this probability measure, the process
{Xn} is the Markov chain with initial distribution µ and transition matrix P.

When µ is concentrated on a state x (the initial state X0 is not really random but equals
x), then Pµ is denoted by Px.

Given a stochastic process {Xn} the basic Markov property is usually stated as

Pµ

[
Xn+1 = xn+1

∣∣ Xn = xn, Xn−1 = xn−1, . . . , X0 = x0

]
= p(xn, xn+1). (2)

This is required to hold whenever the conditioning event has positive probability. It is true
for the process {Xn} constructed above, no matter what the initial distribution is. Note that
we are discussing here the case of a time-homogeneous Markov chain, where the transition
probability does not change with time.

We state here some extensions of (2) that are useful for computations. They all embody
the idea that if we know the present state, then the past does not influence probabilities of
the future, and each time the Markov chain restarts itself anew, using the current state as
the new initial state. The most general form of this statement is Theorem 1 below. The
lemmas lead up to it by establishing successively more general statements.

After Theorem 1 we establish a result in the opposite direction: that an arbitrary process
with the Markov property (2) satisfies the multiplicative formula (1). This is Theorem 2.

Lemma 1 Assume (1). For any states y0, . . . , yn, x1, . . . , xm from S, and any initial distri-
bution µ,

Pµ

[
Xn+m = xm, . . . , Xn+2 = x2, Xn+1 = x1 |Xn = yn, Xn−1 = yn−1, . . . , X0 = y0

]
= p(yn, x1)p(x1, x2) · · · p(xm−1, xm)

= Pyn

[
X1 = x1, X2 = x2, . . . , Xm = xm

]
.

(3)

provided the conditioning event has positive probability.
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Proof. We compute using property (1):

Pµ

[
Xn+m = xm, . . . , Xn+2 = x2, Xn+1 = x1 |Xn = yn, Xn−1 = yn−1, . . . , X0 = y0

]
=

Pµ

[
Xn+m = xm, . . . , Xn+1 = x1, Xn = yn, . . . , X0 = y0

]
Pµ

[
Xn = yn, . . . , X0 = y0

]
=

µ(y0)p(y0, y1) · · · p(yn−1, yn)p(yn, x1) · · · p(xm−1, xm)

µ(y0)p(y0, y1) · · · p(yn−1, yn)

= p(yn, x1)p(x1, x2) · · · p(xm−1, xm)

= Pyn

[
X1 = x1, X2 = x2, . . . , Xm = xm

]
.

The second last equality follows from cancelling, the last equality by property (1).

Eq. (3) remains valid if we add a condition on Xn inside the probability:

Pµ

[
Xn+m = xm, . . . , Xn+1 = x1, Xn = x0 |Xn = yn, Xn−1 = yn−1, . . . , X0 = y0

]
= Pyn

[
X0 = x0, X1 = x1, . . . , Xm = xm

]
.

(4)

If x0 = yn then adding or removing the condition Xn = x0 does not affect the value of the
first probability above, and adding or removing the condition X0 = x0 does not affect the
value of the second probability. Then (4) reduces to (3). On the other hand, if x0 6= yn, then
both probabilities above are zero because Xn (and X0) cannot simultaneously equal both x0

and yn.

Lemma 2 Assume (1). For any states y0, . . . , yn from S, any subset U ⊆ Sm+1, and any
initial distribution µ,

Pµ

[
(Xn, Xn+1, . . . , Xn+m) ∈ U |Xn = yn, Xn−1 = yn−1, . . . , X0 = y0

]
= Pyn

[
(X0, X1, . . . , Xm) ∈ U

]
.

(5)

provided the conditioning event has positive probability.

Proof. This follows from property (4) by addition:

Pµ

[
(Xn, . . . , Xn+m) ∈ U |Xn = yn, . . . , X0 = y0

]
=

∑
(x0,...,xm)∈U

Pµ

[
Xn+m = xm, . . . , Xn = x0 |Xn = yn, . . . , X0 = y0

]
=

∑
(x0,...,xm)∈U

Pyn

[
X0 = x0, . . . , Xm = xm

]
= Pyn

[
(X0, . . . , Xm) ∈ U

]
.
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Lemma 3 Assume (1). For any states y0, . . . , yn from S, any event U ⊆ SZ+, and any
initial distribution µ,

Pµ

[
(Xn, Xn+1, Xn+2, . . . ) ∈ U |Xn = yn, Xn−1 = yn−1, . . . , X0 = y0

]
= Pyn

[
(X0, X1, X2, . . . ) ∈ U

]
.

(6)

provided the conditioning event has positive probability.

Proof. This follows from (5) with a little leap of faith (let m →∞). Rigorous justification
needs measure theory.

Finally the most general formula where we add an arbitrary event in the condition.

Theorem 1 Assume (1). Let x ∈ S, B ⊆ Sn+1 and U ⊆ SZ+. Then for any initial
distribution µ,

Pµ

[
(Xn, Xn+1, Xn+2, . . . ) ∈ U

∣∣ Xn = x, (X0, . . . , Xn) ∈ B
]

= Px

[
(X0, X1, X2, . . . ) ∈ U

] (7)

provided the conditioning event has positive probability.

Proof. Let B0 be the set of (n + 1)-tuples (y0, . . . , yn) in B that satisfy yn = x. Then{
Xn = x, (X0, . . . , Xn) ∈ B

}
=

{
(X0, . . . , Xn) ∈ B0

}
.

Use (6) in the next calculation.

Pµ

[
(Xn, Xn+1, Xn+2, . . . ) ∈ U

∣∣ Xn = x, (X0, . . . , Xn) ∈ B
]

=
Pµ

[
(Xn, Xn+1, Xn+2, . . . ) ∈ U,Xn = x, (X0, . . . , Xn) ∈ B

]
Pµ

[
Xn = x, (X0, . . . , Xn) ∈ B

]
=

∑
(y0,...,yn)∈B0

Pµ

[
(Xn, Xn+1, Xn+2, . . . ) ∈ U, (X0, . . . , Xn) = (y0, . . . , yn)

]
Pµ

[
Xn = x, (X0, . . . , Xn) ∈ B

]
=

{ ∑
(y0,...,yn)∈B0

Pµ

[
(Xn, Xn+1, Xn+2, . . . ) ∈ U

∣∣ (X0, . . . , Xn) = (y0, . . . , yn)
]

× Pµ

[
(X0, . . . , Xn) = (y0, . . . , yn)

] }
× 1

Pµ

[
Xn = x, (X0, . . . , Xn) ∈ B

]
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=

∑
(y0,...,yn)∈B0

Px

[
(X0, X1, X2, . . . ) ∈ U

]
· Pµ

[
(X0, . . . , Xn) = (y0, . . . , yn)

]
Pµ

[
Xn = x, (X0, . . . , Xn) ∈ B

]
=

Px

[
(X0, X1, X2, . . . ) ∈ U

]
· Pµ

[
Xn = x, (X0, . . . , Xn) ∈ B

]
Pµ

[
Xn = x, (X0, . . . , Xn) ∈ B

] .

Cancelling above leaves the right side of (7).

Now for a result in the opposite direction.

Theorem 2 Let S be a countable state space, and P = {p(i, j)}i,j∈S a transition matrix on
S. Let (Xn : n ∈ Z+) be an S-valued stochastic process defined on an arbitrary probability
space (Ω,F , P ). Assume

P
[
Xn+1 = xn+1

∣∣ Xn = xn, Xn−1 = xn−1, . . . , X0 = x0

]
= p(xn, xn+1) (8)

for all states x0, x1, x2, . . . , xn+1 ∈ S such that

P
[
X0 = x0, X1 = x1, X2 = x2, . . . , Xn = xn

]
> 0,

in other words the conditioning event has positive probability. Then

P
{
X0 = x0, X1 = x1, X2 = x2, . . . , Xn = xn

}
= P [X0 = x0]p(x0, x1)p(x1, x2) · · · p(xn−1, xn)

(9)

for any choice of states x0, x1, x2, . . . , xn ∈ S.

Proof. Statement (9) is proved by induction on n. If n = 0 both sides are P [X0 = x0].
Assume (9) is true for n and any states x0, x1, x2, . . . , xn. Consider the probability

P
{
X0 = x0, X1 = x1, . . . , Xn = xn, Xn+1 = xn+1

}
for some choice of states x0, x1, x2, . . . , xn+1. We check the formula (9) for n + 1 separately
for two cases.

Case 1: P
[
X0 = x0, X1 = x1, . . . , Xn = xn

]
> 0.

In this case we can condition on the past, then apply (8) and induction to write

P
{
X0 = x0, X1 = x1, X2 = x2, . . . , Xn = xn, Xn+1 = xn+1

}
= P

{
X0 = x0, X1 = x1, X2 = x2, . . . , Xn = xn

}
× P

[
Xn+1 = xn+1

∣∣ Xn = xn, Xn−1 = xn−1, . . . , X0 = x0

]
= P [X0 = x0]p(x0, x1)p(x1, x2) · · · p(xn−1, xn) × p(xn, xn+1).
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Case 2: P
[
X0 = x0, X1 = x1, . . . , Xn = xn

]
= 0.

By the induction assumption it then also follows that

P [X0 = x0]p(x0, x1)p(x1, x2) · · · p(xn−1, xn) = 0.

The equality

P
{
X0 = x0, X1 = x1, X2 = x2, . . . , Xn = xn, Xn+1 = xn+1

}
= P [X0 = x0]p(x0, x1)p(x1, x2) · · · p(xn−1, xn)p(xn, xn+1)

then follows because both sides equal zero. The left-hand side equals zero because the event
that goes up to n + 1 is a subset of the event that goes up to n, so it also has probability
zero.

5


