Math 521 Homework #9

Chapter 6. Problem 2.

Proof. Proof by contradiction. Assume that there exists a number x_0 in [a,b], such that $f(x_0) > 0$.

Choose $\epsilon = \frac{1}{2}f(x_0) > 0$, because f is continuous on [a, b], we know that there exists a $\delta > 0$, such that for all $x \in [a, b] \cap (x_0 - \delta, x_0 + \delta)$, $f(x) > \frac{1}{2}f(x_0) > 0$.

Let $I = [a, b] \cap (x_0 - \delta, x_0 + \delta)$ and l = the length of I. We know that l > 0 and can find a partition $P_0=(x_0=a,x_1,\cdots,x_n=b)$ of [a,b], such that P_0 contains I. Given that $f(x)>\frac{1}{2}f(x_0)$ on I, we know $inf(f(x)) \ge \frac{1}{2}f(x_0)$ on I. Then, by definition of lower sum,

$$L(P_0,f)=\sum_{i=1}^n m_i \Delta x_i \geq rac{1}{2}f(x_0)l>0$$

Because $\int_a^b f(x)dx = \sup L(P, f)$, for all P of [a, b], we can get

 $\int_{a}^{b} f(x)dx \ge L(P_0, f) > 0$

This contradicts with $\int_a^b f(x)dx = 0$.

Chapter 6 Problem 4.

Proof. Given that rational and irrational are dense in \mathbb{R} , for any partition $P=(x_0=a,x_1,\cdots,x_n=b)$ of [a,b], each interval $[x_{i-1},x_i]$ contains both rational and irrational. Then, by definition, all L(P,f)=0, and all U(P, f) = b - a. Thus, we have

$$supL(P,f) \neq infU(p,f)$$

By definition of integral, we know that $\int_a^b f(x)dx$ does not exist.

Chapter 6. Problem 8.

Proof. First, we show that if $\int_1^\infty f(x)dx$ converges, then $\sum_1^\infty f(n)$ converges.

Because $\int_1^\infty f(x)dx$ converges, by definition, we know that there exists a number l, such that $l<\infty$ and $\int_{1}^{\infty} f(x)dx = l.$

By properties of integral, we know that for any $N \geq 1$ and $N \in \mathbb{N}$, we have

$$\int_{1}^{\infty}f(x)dx=\int_{1}^{N}f(x)dx+\int_{N}^{\infty}f(x)dx$$

Given that $f(x) \ge 0$, we know $\int_N^\infty f(x) dx \ge 0$. Thus, we have

$$\int_1^\infty f(x)dx = \int_1^N f(x)dx + \int_N^\infty f(x)dx \ge \int_1^N f(x)dx$$

Let $P_0 = (x_0 = 1, \dots, x_{N-1} = N)$ (each $x_i = i+1$) be a partition of [1, N]. Because f monotonically decreases on $[1, \infty)$, we know that in any subinterval [n-1, n] of P_0 , let $m_{n-1} = \inf(f(x))$ on [n-1, n], then $m_{n-1} = f(n)$. Furthermore, we have

$$\sum_{n=2}^{N} f(n) = L(P_0, f) \le \sup L(P, f), \text{ for all } P \text{ of } [1, N]$$

Given that we have shown $\int_1^N f(x)dx$ exists and $\int_1^N f(x)dx \le \int_1^\infty f(x)dx$ for any $N \ge 1$ above, we know that

$$\sum_{n=2}^{N} f(n) \le \int_{1}^{N} f(x) dx \le \int_{1}^{\infty} f(x) dx = l$$

Hence, $\sum_{n=2}^{N} f(n)$ is bounded above. Furthermore, the partial sum $\sum_{n=1}^{N} f(n) = f(1) + \sum_{n=2}^{N} f(n)$, and it is bounded above as well. Together with $f(n) \ge 0$, we know that $\sum_{n=1}^{\infty} f(n)$ converges.

Next, we prove that if $\sum_{n=1}^{\infty} f(n)$ converges, $\int_{1}^{\infty} f(x)dx$ converges.

Still use the same partition P_0 used above. Let $P_0 = (x_0 = 1, \dots, x_{N-1} = N)$ (each $x_i = i+1$). Because f monotonically decreases on $[1, \infty]$, $f(x) \leq f(n)$ for all $x \in [n, n+1]$. Thus, on each subinterval [n, n+1] of P_0 , we have

$$\int_{x}^{n+1} f(x)dx \le \int_{x}^{n+1} f(x)dx = f(n)$$

Let $b_N = \int_1^N f(x) dx$, then

$$b_N = \sum_{n=1}^{N-1} \int_n^{n+1} f(x) dx \le \sum_{n=1}^{N-1} f(n)$$

Because $f(x) \ge 0$ and $\sum_{n=1}^{\infty} f(n)$ converges, we further have

$$b_N \le \sum_{n=1}^{N-1} f(n) \le \sum_{n=1}^{\infty} f(n) < \infty$$

We have shown that b_N is bounded above for any natural number N. Next, we show that b_N is monotonically increasing.

$$b_{N+1} = \int_{1}^{N+1} f(x)dx = b_N + \int_{N}^{N+1} f(x)dx$$

Given that $f(x) \geq 0$, we have $\int_N^{N+1} f(x) dx \geq 0$. Thus, $b_{N+1} \geq b_N$. Because $\{b_N\}$ is bounded and monotonically increasing, we know that $\{b_N\}$ converges and hence $\int_1^\infty f(x) dx$ converges as well.

Extra problem.

See the attached.