c. If $G \subseteq E$ and G open, then $G \subseteq E^{\circ}$. *Proof.* Let G be an open set such that $G \subseteq E$. Take point $p \in G$. By definition of an open set, p is an interior point of G, meaning there exists neighborhood $N_r(p) \subseteq G \subseteq E$. Thus p is an interior point of E. Thus, $p \in E^{\circ}$. d. The complement of E° is the closure of the complement of E. *Proof.* (\subseteq) Take the point $x \notin E^{\circ}$. Then, every neighborhood around x is not a subset of E. Thus, every neighborhood around x contains a point not in E. Therefore, x is a limit point of E° . Thus, the complement of E° is a subset of the closure of the complement of E. Proof. (\supseteq) Note that $E^{\circ} \subseteq E$. Consider point x not in E, then x not in E° . So $(E^{\circ})^c \supseteq E^c$. The complement of an open set is always closed, thus by part a, $(E^{\circ})^c$ is closed. By Theorem 2.27, if a set is the subset of a closed set, then its closure is also a subset. So the closure of E^c is a subset of $(E^{\circ})^c$. Therefore, since the complement of E° is a subset and a superset of the closure of the complement of E, the complement of E° is the closure of the complement of E. e. Do E and \bar{E} always have the same interiors? No. Consider the set on \mathbb{R} , $E=(0,1)\cup(1,2)$. Then $E^{\circ}=E$, but $\bar{E}=[0,2]$ and its interior is the set (0,2). **f.** Do E and E° always have the same closures? No. Consider the set on \mathbb{R} , $E = (0,1) \cup \{2\}$. Then, $E^{\circ} = (0,1)$. The closure of E is the set $[0,1] \cup \{2\}$, but the closure of E° is the set [0,1]. ## 2.22 Separable \mathbb{R}^k -coordinate direction The set \mathbb{R}^k is separable. That is, it has a dense, countable subset. *Proof.* Consider the set $\mathbb{Q}^k \subset \mathbb{R}^k$. By theorem 2.13, the set \mathbb{Q}^k is countable. Let $p \in \mathbb{R}^k$. If $p \notin \mathbb{Q}^k$, then consider a neighborhood of radius r around $p = (p_1, p_2, ..., p_k)$, denoted $N_r(p)$. By theorem 1.20, for every dimension i we can find a rational number q_i such that $p_i < q_i < p_i + r$. Thus there exists a point $q \in N_r(p)$ such that q also in \mathbb{Q}^k . Therefore, since this was an arbitrary neighborhood, p is a limit point of \mathbb{Q}^k . Therefore, \mathbb{Q}^k is dense in \mathbb{R}^k , and \mathbb{R}^k is separable. ## 2.29 Every open set in \mathbb{R} is the union of an at most countable collection of disjoint segments. *Proof.* Let $G \subset \mathbb{R}$, where G is an open set. Construction of "largest open interval around a rational". Let $q \in \mathbb{Q}$ and $q \in G$. Define a set $V = \{x : [x,q] \subseteq G \text{ or } [q,x] \subseteq G\}$. Consider the open interval around q, (a_q,b_q) , where $a_q = \inf V$, $b_q = \sup V$, called the largest open interval around q. Intervals are Disjoint. Let $p, q \in G$ and $p, q \in \mathbb{Q}$. Without loss of generality, assume p < q. Let V_p, V_q be the largest open intervals around p, q, respectively. We then consider the two possible cases, Case: $[p,q] \subseteq G$. Because $[p,q] \subseteq G$, and since p < q, the statement for $x \in G$ that $[x,q] \subseteq G$ is equivalent to the statement that $[x,p] \subseteq G$. This implies that inf $V_p = \inf V_q$. Because $[p,q] \subseteq G$, and since p < q, the statement for $x \in G$ that $[p,x] \subseteq G$ is equivalent to the statement that $[q,x] \subseteq G$. This implies that $\sup V_p = \sup V_q$. Therefore, the two open intervals are the same. VK.