MATH 521 - HOMEWORK 2

JOANNA NELSON

Problem (1.15). For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^k$, the Schwarz inequality is given by

$$|\mathbf{x} \cdot \mathbf{y}| \le |\mathbf{x}| |\mathbf{y}|,$$

We will show equality holds if and only if $\mathbf{x} = \alpha \mathbf{y}$ or $\mathbf{y} = \alpha \mathbf{x}$ for some $\alpha \in \mathbb{R}$. *Proof.* Recall that the Schwarz inequality may be written as

$$\left(\sum_{i} x_i y_i\right)^2 \le \left(\sum_{i} x_i^2\right) \left(\sum_{i} y_i^2\right).$$

For notational ease we denote

$$A = \sum x_i^2, \quad B = \sum y_i^2, \quad C = \sum x_i y_i.$$

Then equality is equivalent to

$$\begin{array}{rcl}
0 &=& AB - C^2 \\
&=& B(AB - C^2) \\
&=& B^2A - BC^2 \\
&=& B^2 - 2BC^2 + C^2B \\
&=& \sum \left(B^2 x_i^2 - 2BC x_i y_i + C^2 y_i^2\right) \\
&=& \sum \left(Bx_i - Cy_i\right)^2
\end{array}$$

This implies

$$0 = \sum (Bx_i - Cy_i)^2.$$

Then $Bx_i = Cy_i$ for all *i*. Now we have two cases to consider.

Case I: B = 0. Then $\mathbf{y} = \mathbf{0}$, and we may write $\mathbf{y} = 0 \cdot \mathbf{x}$.

Case II: $B \neq 0$. Then $\mathbf{y} \neq \mathbf{0}$, so we may write $\mathbf{x} = \frac{C}{B}\mathbf{y}$.

Thus we have shown equality implies there exists a constant $\alpha \in \mathbb{R}$ such that either $\mathbf{x} = \alpha \mathbf{y}$ or $\mathbf{y} = \alpha \mathbf{x}$.

Now we show the reverse implication. We show $\mathbf{x} = \alpha \mathbf{y}$ implies equality.

$$|\mathbf{x} \cdot \mathbf{y}| = |\alpha \mathbf{y} \cdot \mathbf{y}|$$
$$= |\alpha||\mathbf{y} \cdot \mathbf{y}|$$
$$= |\alpha||\mathbf{y}|^2$$
$$= |\mathbf{x}||\mathbf{y}|$$

The same computation yields the case $\mathbf{y} = \alpha \mathbf{x}$.