MATH 521 - HOMEWORK 2

JOANNA NELSON

Problem (1.15). For **x**, $y \in \mathbb{R}^k$, the Schwarz inequality is given by

$$
|\mathbf{x} \cdot \mathbf{y}| \leq |\mathbf{x}| |\mathbf{y}|,
$$

We will show equality holds if and only if $\mathbf{x} = \alpha \mathbf{y}$ or $\mathbf{y} = \alpha \mathbf{x}$ for some $\alpha \in \mathbb{R}$. Proof. Recall that the Schwarz inequality may be written as

$$
\left(\sum x_i y_i\right)^2 \le \left(\sum x_i^2\right) \left(\sum y_i^2\right).
$$

For notational ease we denote

$$
A = \sum x_i^2, \quad B = \sum y_i^2, \quad C = \sum x_i y_i.
$$

Then equality is equivalent to

$$
0 = AB - C2
$$

= B(AB - C²)
= B²A - BC²
= B² - 2BC² + C²B
= $\sum (B2xi2 - 2BCxiyi + C2yi2)$
= $\sum (Bxi - Cyi)2$

This implies

$$
0 = \sum (Bx_i - Cy_i)^2.
$$

Then $Bx_i = Cy_i$ for all i. Now we have two cases to consider.

Case I: $B = 0$. Then $y = 0$, and we may write $y = 0 \cdot x$.

Case II: $B \neq 0$. Then $y \neq 0$, so we may write $x = \frac{C}{B}$ $\frac{C}{B}$ y.

Thus we have shown equality implies there exists a constant $\alpha \in \mathbb{R}$ such that either $\mathbf{x} = \alpha \mathbf{y}$ or $\mathbf{y} = \alpha \mathbf{x}$.

Now we show the reverse implication. We show $\mathbf{x} = \alpha \mathbf{y}$ implies equality.

$$
\begin{array}{rcl} |\mathbf{x} \cdot \mathbf{y}| & = & |\alpha \mathbf{y} \cdot \mathbf{y}| \\ & = & |\alpha| |\mathbf{y} \cdot \mathbf{y}| \\ & = & |\alpha| |\mathbf{y}|^2 \\ & = & |\mathbf{x}| |\mathbf{y}| \end{array}
$$

The same computation yields the case $y = \alpha x$.

 \Box