521 Analysis I Spring 2011 Exam 1

Be sure to justify your answers. The point total is 100. Unless otherwise stated, the setting is a metric space (X, d).

- 1. (a) (10 pts) State the definition of a limit point and the closure \bar{A} of a set A.
 - (b) (40 pts) The distance of a point x to a set A is defined as $\operatorname{dist}(x,A)=\inf\{d(x,a):a\in A\}.$

Show that if dist(x, A) = 0 then $x \in \overline{A}$.

(b) $dist(x,A) = 0 \Rightarrow \forall r > 0 \exists a \in A$ such that $a \in N_r(x)$.

Thus either x itself is a member of A, or every ubhd of x contains a point a EA s.t. a + x.

So either $X \in A$ or $X \in A'$, which says that $X \in \overline{A}$.

- 2. (a) (10 pts) State the definition of a compact set in a general metric space.
 - (b) (40 pts) Define the following subsets of the metric space \mathbb{R} :

$$B = \{\frac{1}{n} : n \in \mathbb{N}\} = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\} \text{ and } A = B \cup \{0\}.$$

At least one of the sets A and B is compact. Pick one of them and show that it is compact by verifying the definition. (A solution by other means may get some partial credit.)

(b) To show A compact: Let {Ga} be an open cover of A.

Pick χ_0 s.t. $0 \in G_{\chi_0}$. Since G_{χ_0} is open and contains 0, $\exists r > 0$ s.t. $(-r,r) \subseteq G_{\chi_0}$.

Consequently Gxo contains all to for $n \ge n_0$ where n_0 is an integer chosen so that $n_0 > \frac{1}{r}$.

For $n=1,2,...,n_0-1$ pick G_{α_n} so that $\frac{1}{n} \in G_{\alpha_n}$.

Now all points in A have been accounted for, so A C GLOUGA, U--- U GLOOI.