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Notation

Some general conventions. Constant C can sometimes change from line to line. Analogously,
the meaning of ε as a quantity that can be chosen arbitrarily small may also change within the same
proof.

(a)[n] descending factorial: (a)[0] = 1, and (a)[n] = a(a− 1) · · · (a− n+ 1) for n ∈ N.

N the set {1, 2, 3, . . . } of natural numbers

[n] the set {1, 2, 3, . . . , n} for n ∈ N
x1,n shorthand for the n-vector (x1, . . . , xn)

Z+ the set {0, 1, 2, 3, . . . } of nonnegative integers

1̄ the vector (1, 1, . . . , 1) of all ones

\ set difference: A \B = A ∩Bc

vii





CHAPTER 1

The corner growth model and some of its relatives

In this introductory chapter we define the corner growth model and then discuss somewhat
informally models related to it. The precise mathematical study of the corner growth model begins
in Chapter 2 with laws of large numbers.

1.1. The corner growth model

The corner growth model is a simple mathematical model of a randomly growing cluster that
over time invades the entire first quadrant of the plane. The first quadrant of the plane is represented
here by N2, that is, by the set of points (i, j) with positive integer coordinates. At the outset each
point (i, j) ∈ N2 is given a weight, or waiting time Yi,j . See Figure 1. The values {Yi,j : (i, j) ∈ N2}
are nonnegative random variables.
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Figure 1. A portion of N2. The squares represent points (i, j) ∈ N2. Each point
(i, j) has a weight Yi,j attached to it.

The values {Yi,j} determine the evolution of a growing subset of N2 called the cluster whose
value at time t is denoted by B(t). The general rule is that Yi,j is the time it takes to occupy point
(i, j) but only after its two neighbors to the left and below are either occupied or lie outside N2. So
at the boundaries the rule is that point (1, 1) needs no occupied neighbors to start, points (1, j) on
the left boundary wait only for the neighbor below to be occupied, and points (i, 1) on the bottom
boundary wait only for the left neighbor to be occupied. Alternatively, we can imagine that the
outside boundary points {(i, j) : i = 0 or j = 0} are occupied at the outset.

To illustrate, if all Yi,j > 0, then initially the cluster is empty: B(0) = ∅. At time Y1,1 the
cluster occupies point (1, 1):

B(t) = ∅ for 0 ≤ t < Y1,1, B(Y1,1) = {(1, 1)}.

1



2 1. THE CORNER GROWTH MODEL AND SOME OF ITS RELATIVES

Next in line are points (1, 2) and (2, 1). Point (1, 2) is occupied at time Y1,1 + Y1,2 and point (2, 1)
is occupied at time Y1,1 + Y2,1. And so on.

By contrast, if values Yi,j = 0 are possible then the cluster may invade some points immediately:
B(0) = {(k, `) ∈ N2 : Yi,j = 0 ∀ (i, j) ∈ {1, . . . , k} × {1, . . . , `} }.

Once occupied, a point remains occupied. Thus the growing cluster never loses points, only
adds them. Such a model is called totally asymmetric.

It is convenient to describe the evolution in terms of the times when points join the cluster. Let
G(m,n) denote the time when point (m,n) becomes occupied. The above explanation is summarized
by the equation

(1.1) G(m,n) = G(m− 1, n) ∨G(m,n− 1) + Ym,n for (m,n) ∈ N2,

together with the boundary conditions

(1.2) G(m,n) = 0 if m = 0 or n = 0.

Equation (1.1) can be iterated backwards until the corner (1, 1) is reached, resulting in this
last-passage formula for G:

(1.3) G(m,n) = max
π∈Π(m,n)

∑
(i,j)∈π

Yi,j , (m,n) ∈ N2.

Π(m,n) is the collection of nearest-neighbor up-right paths π from (1, 1) to (m,n). Figure 2 repre-
sents one such path for (m,n) = (5, 4). Precisely speaking, an element π of Π(m,n) is a sequence

π = {(1, 1) = (i1, j1), (i2, j2), . . . , (im+n−1, jm+n−1) = (m,n)}
such that (is, js)−(is−1, js−1) = (1, 0) or (0, 1) for s = 1, 2, . . . ,m+n−1. In terms of the last-passage
times, the growing cluster at time t is given by

(1.4) B(t) = {(m,n) ∈ N2 : G(m,n) ≤ t}.
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Figure 2. An admissible path from (1, 1) to (5, 4)

More generally, we will consider last-passage times between two points (k, `) and (m,n) in N2

such that k ≤ m and ` ≤ n:

(1.5) G((k, `), (m,n)) = max
π∈Π((k,`),(m,n))

∑
(i,j)∈π

Yi,j .

Π((k, `), (m,n)) is the collection of paths

π = {(k, `) = (i1, j1), (i2, j2), . . . , (im+n−k−`+1, jm+n−k−`+1) = (m,n)}
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such that (is, js) − (is−1, js−1) = (1, 0) or (0, 1) for s = 1, 2, . . . ,m + n − k − ` + 1. The earlier
G(m,n) is now G((1, 1), (m,n)) but we continue to use the notation G(m,n) for this special case.

This model and others of its kind are called directed last-passage percolation models. “Directed”
refers to the restrictions on admissible paths, and “last-passage” to the feature that the occupation
time G(m,n) is determined by the slowest path to (m,n). (By contrast, in first-passage percolation
occupation times are determined by quickest paths.)

When the weights Yi,j have exponential or geometric distribution, the growing cluster B(t)
becomes a Markov chain in the state space of possible finite clusters in N2. For later use in Chapter
2 we prove this claim here for the case of geometric weights, together with a description of the
transition probability.

Fix a parameter 0 < p < 1 with q = 1− p and let the independent random variables {Yi,j} have
common probability distribution given by

(1.6) P{Yi,j = k} = pqk−1, k ∈ N.

As above, define the last-passage times G(m,n) by (1.3) and the cluster process B(t) by (1.4).
Since the last-passage times are integers, we can think of B(t) as a discrete-time process indexed by
t ∈ Z+. Since each Yi,j ≥ 1, B(0) = ∅ and for t ≥ 1, B(t) is a subset of the square [0, t]× [0, t] and
in particular a finite set. Thus B(t) is a discrete-time process in the countable state space

Γ = {U ⊆ N2 : U is finite, and (i, j) ∈ U implies that U contains

the entire discrete rectangle {1, . . . , i} × {1, . . . , j}}
(1.7)

We take the description above to include the empty set, so ∅ ∈ Γ.
Let U ∈ Γ. A point (m,n) /∈ U is a growth corner or growth site for U if {1, . . . ,m}×{1, . . . , n} ⊆

U ∪ {(m,n)}. In other words, both the left and lower neighbors of (m,n) lie either outside N2 or in
U , and (m,n) can be added to U to create a new element U ∪ {(m,n)} ∈ Γ.

Proposition 1.1. The process B(t) is a Markov chain on the state space Γ with initial state
B(0) = ∅ and with transition probability given by the following description: given B(t), B(t + 1) is
obtained by adding to B(t) each of its growth sites independently with probability p.

Proof. Let us use boldface symbols x, y to denote points of N2. Fix U ∈ Γ and let U ′ be the
set of growth sites of U . Let U ′ = L ∪M be an arbitrary partition of U ′ into two disjoint sets, one
of which can be empty. We need to show that, for arbitrary sets U1, . . . , Ut−1 ∈ Γ such that

P{B(1) = U1, . . . ,B(t− 1) = Ut−1,B(t) = U} > 0

we have the Markov property:

(1.8) P
[
B(t+ 1) = U ∪ L

∣∣B(1) = U1, . . . ,B(t− 1) = Ut−1,B(t) = U
]

= p|L|q|M |.

There exist integers s(y) ≤ t for y ∈ U such that

{B(1) = U1, . . . ,B(t− 1) = Ut−1,B(t) = U}
= {G(y) = s(y) for y ∈ U and G(x) > t for x ∈ U ′}.

Let e1 = (1, 0) and e2 = (0, 1) denote the standard basis vectors. For x ∈ U ′ let S(x) = G(x −
e1)∨G(x− e2) so that G(x) = S(x) + Yx. For the definition of S(x) remember again the boundary
conditions (1.2) if x− e1 or x− e2 lies outside N2. For the calculation below note that the variables
{S(x) : x ∈ U ′} are functions of {G(y) : y ∈ U}.
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Write the conditional probability in (1.8) as a ratio of two probabilities. The numerator is

P
{
B(1) = U1, . . . ,B(t− 1) = Ut−1,B(t) = U,B(t+ 1) = U ∪ L

}
= P

{
G(y) = s(y) for y ∈ U , G(x) = t+ 1 for x ∈ L and G(x) > t+ 1 for x ∈M

}
= P

{
G(y) = s(y) for y ∈ U , Yx = t+ 1− S(x) for x ∈ L

and Yx > t+ 1− S(x) for x ∈M
}

by the independence of {Yx : x ∈ U ′} and {G(y) : y ∈ U}

= E
[∏
y∈U

1{G(y) = s(y)} ·
∏
x∈L

pqt−S(x) ·
∏
x∈M

qt+1−S(x)
]

= p|L|q|M |E
[∏
y∈U

1{G(y) = s(y)} ·
∏

x∈U ′
qt−S(x)

]
= p|L|q|M |P

{
G(y) = s(y) for y ∈ U and Yx > t− S(x) for x ∈ U ′

}
= p|L|q|M |P

{
B(1) = U1, . . . ,B(t− 1) = Ut−1,B(t) = U

}
.

Equation (1.8) has been verified. �

The reader should notice how crucially the last calculation depended on the special structure
of the geometric distribution.

To complement the proof by calculation, here is the seasoned probabilist’s hand-waiving proof of
Proposition 1.1, by a clever construction. Give each point x ∈ N2 a {0, 1}-valued sequence (ζxk )k∈N
whose entries come from independent coin flips with success probability P{ζxk = 1} = p. Let the
initial cluster be empty. At each time t = 1, 2, 3, . . . inspect the first coin of each growth site. If this
coin is 1, include the site in B(t). If this coin is 0, leave the site out of B(t) but discard the used coin
and move the next coin to the front. This procedure realizes the transition probability described in
Proposition 1.1. The waiting time for site x is Yx = inf{k : ζxk = 1} which has distribution (1.6).

Totally asymmetric simple exclusion process. Next we relate the last-passage model to a
discrete-time particle process which is one variant of the totally asymmetric simple exclusion process
(TASEP). TASEP is a Markov process that describes the motion of particles on the integer lattice
Z. Particles are constrained by the exclusion rule which entails that two particles cannot occupy
the same integer site at the same time. Label the particles with integers i ∈ I where the index set
I is a subinterval of Z, possibly all of Z. Let Xi(t) ∈ Z be the position of particle i at time t ∈ Z+.
Each particle retains its label throughout the evolution.

One can imagine several ways of updating the particle locations. Let us consider the following
discrete-time evolution where particles make random jumps to the right but subject to the exclusion
rule. During time period (t−1, t), each particle flips a p-coin to decide whether it attempts to jump
one step to the right. The coin flips are all independent. Suppose the coin flip for particle i indicates
a jump attempt. Then inspect the next site Xi(t − 1) + 1. If this site was vacant at time t − 1,
particle i moves one step to the right. But if at time t− 1 the next site to the right was occupied,
particle i remains in its current location. Also if the coin indicated no jump attempt particle i
remains in its current location.
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Here are the rules summarized. Assume given an initial particle configuration {Xi(0)}. Then
for each t ∈ N:

If site Xi(t− 1) + 1 is occupied at time t− 1 then Xi(t) = Xi(t− 1).(1.9)

If site Xi(t− 1) + 1 is vacant at time t− 1 then(1.10)

Xi(t) =

{
Xi(t− 1) + 1 with probability p
Xi(t− 1) with probability q.

This defines a Markov process {Xi(t)}i∈I in discrete time t ∈ Z+ because the rules for the step from
time t − 1 to t do not look into the past before time t − 1 and because the coin flips used in that
step are independent of the past evolution.

To connect TASEP with the corner growth model, let the particles evolve from the following
special initial configuration: all sites to the left of the origin are occupied, and all sites to the right
of the origin, including the origin itself, are vacant. Thinking of a long line of vehicles stopped
behind a red light we call this the “jam initial condition.” At time t = 0 the light turns green, and
the vehicles start moving randomly to the right. Let us label the particle-vehicles from right to left
with positive integers, so that initially Xi(0) = −i.

As a corollary of Proposition (1.1) we show that TASEP with jam initial condition is actually
the last-passage model in disguise. Let the particles determine a growing cluster A(t) on N2 by the
formula

(1.11) A(t) = {(i, j) ∈ N2 : 1 ≤ j ≤ Xi(t) + i}.

In other words, the height of the column above i in the cluster A(t) is Xi(t)−Xi(0), the number of
steps taken by particle i up to time t.

Proposition 1.2. Let B(t) be the cluster process of the last-passage model with geometric
weights (1.6). Then the processes {A(t) : t ∈ Z+} and {B(t) : t ∈ Z+} are equal in distribution.

Proof. Initially A(0) = ∅ = B(0). In light of Proposition 1.1, we only need to observe that
A(t) is a Markov chain with the transition probability described in Proposition 1.1. Point (i, j) is
a growth site of A(t) iff Xi(t) + i = j − 1 and either i = 1 or Xi−1(t) + i− 1 ≥ j. This is equivalent
to saying that the site Xi(t) + 1 = j − i is vacant at time t. Thus by rule (1.10) an independent
p-coin flip determines whether Xi jumps to j − i and thereby (i, j) joins A(t+ 1).

Since the distribution of a discrete-time Markov chain on a countable state space is uniquely
determined by the initial state and the transition probability, the claim of the Proposition follows.

�

Most often TASEP evolution is studied in continuous time. To run the process in continuous
time give each particle a rate 1 Poisson process on the time line (0,∞) (a “Poisson clock”) and
stipulate that whenever the Poisson clock of a particle jumps, this particle attempts to jump one
step to the right. The jump is executed if the position on the right is vacant, otherwise not, so that
the exclusion rule is not violated.

The waiting times between successive jump attempts of a particle have rate 1 exponential dis-
tribution. This is a continuous distribution with density e−t on (0,∞). Consequently simultaneous
jump attempts by different particles do not happen, or more precisely, happen with probability 0,
and we do not need a rule for resolving conflicts that might arise from simultaneous jump attempts.

Proposition 1.2 can be proved again, this time for the last-passage model whose weights {Yi,j}
are i.i.d. rate 1 exponential random variables.
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A queueing model. The last-passage model arises also in situations that do not immediately
seem to describe a growing cluster. Here is a queueing situation. Imagine that there are n customers
that go through a system with m service stations. The customers are labeled 1, . . . , n and the servers
are labeled 1, . . . ,m. Each customer visits the servers 1, . . . ,m in order and then leaves the system.
Each server serves one customer at a time, takes the customers in the order in which they arrive
(first-in-first-out or FIFO discipline), and rests if there are no customers waiting to be served. Let
Yi,j be the amount of service time that customer j requires with server i. Initially all n customers
are queued up at server 1. At time t = 0 customer 1 begins service at server 1. At time Y1,1 server
1 is finished with customer 1. At this point server 1 begins serving customer 2, while customer 1
moves to server 2. And so on. Let τk,` be the time when customer ` leaves server k. How is τk,`
expressed in terms of {Yi,j}?

A moment’s thought reveals that τk,` = G(k, `). To see this, note that the rules of the queueing
process imply that the service of customer ` with server k starts at time τk,`−1 ∨ τk−1,`, for this is
the earliest time at which server k is done with customer `−1 and customer ` is through with server
k − 1. (To make this correct for k = 1 or ` = 1 we add the boundary conditions τi,0 = τ0,j = 0 for
all i, j ≥ 1.) After the service customer ` departs server k and so τk,` = τk,`−1 ∨ τk−1,` + Yk,`. We
have exactly the same equations that determine G(m,n).

Comments

Among the seminal works to connect the last-passage model with queueing systems is Glynn and
Whitt [GW91]. Rost [Ros81] connected the growth model with TASEP in one of the early papers
on hydrodynamic limits of asymmetric particle systems, but he did not utilize the last-passage
formulation.



CHAPTER 2

Deterministic large scale limits

In this chapter we begin the study of the corner growth model with results that describe de-
terministic limits on large scales. We work with the last-passage times defined in the previous
chapter:

(2.1) G((k, `), (m,n)) = max
π∈Π((k,`),(m,n))

∑
(i,j)∈π

Yi,j ,

for (k, `), (m,n) ∈ N2. Π((k, `), (m,n)) is the collection of nearest-neighbor up-right paths π
from (k, `) to (m,n). For the special case where the paths start at (1, 1) we write G(m,n) =
G((1, 1), (m,n)). The first result in Section 2.1 is the existence of the deterministic limit

lim
N→∞

N−1G(bNxc, bNyc) = Ψ(x, y) almost surely.

In Section 2.2 we add boundary conditions to the last passage model to help us find an explicit
formula for Ψ(x, y) in the case of geometric weights. Then we turn to study a queueing model related
to the last passage model with geometric weights, namely discrete-time M/M/1 queues in series.
Section 2.3 establishes the invariant distributions for the queues. Section 2.4 proves a hydrodynamic
limit for a bi-infinite system of such queues, a model that can also be called a discrete-time zero
range particle system. The hydrodynamic limit gives another proof of the explicit limit earlier done
in Section 2.2. (The second proof is not fundamentally different.) In the final Section 2.5 we develop
a connection between the last-passage model with boundaries from Section 2.2 and the system of
queues.

2.1. Law of large numbers

The general objective is to understand the behavior of the random variables G(m,n) for large
values of m and n. The most basic result is a law of large numbers that says that, along any direction
(x, y) ∈ R2

+, the value G([Nx], [Ny]) grows asymptotically at a precise, deterministic rate.

Theorem 2.1. Assume that the random variables {Yi,j : (i, j) ∈ N2} are independent and
identically distributed and satisfy 0 ≤ Yi,j < ∞. Then there exists a deterministic function Ψ :
(0,∞)2 → [0,∞] such that for all (x, y) ∈ (0,∞)2

(2.2) Ψ(x, y) = lim
N→∞

N−1G(bNxc, bNyc) almost surely.

Either Ψ = ∞ or Ψ < ∞ on all of (0,∞)2. In the latter case Ψ is superadditive, concave, contin-
uous, homogeneous, and symmetric on (0,∞)2. Ψ is nondecreasing in both arguments, and more
quantitatively Ψ(x+ h, y) ≥ Ψ(x, y) + hE(Y1,1,) for h > 0.

Here are precise expressions for several properties listed above, for (x1, y1), (x2, y2) ∈ (0,∞)2,
0 < s < 1 and c > 0: superadditivity is

(2.3) Ψ(x1, y1) + Ψ(x2, y2) ≤ Ψ(x1 + x2, y1 + y2),

7
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concavity is

(2.4) sΨ(x1, y1) + (1− s)Ψ(x2, y2) ≤ Ψ(s(x1, y1) + (1− s)(x2, y2)),

homogeneity is

(2.5) Ψ(cx1, cy1) = cΨ(x1, y1)

and symmetry Ψ(x1, y1) = Ψ(y1, x1).

Proof of Theorem 2.1. The idea is to exploit the superadditivity

(2.6) G(k, `) +G((k + 1, `+ 1), (k +m, `+ n)) ≤ G(k +m, `+ n)

that is a direct consequence of (2.1).
We start the proof of (2.2) with an integer point (x, y) ∈ N2. For 0 ≤ m < n let Zm,n =

G((mx + 1,my + 1), (nx, ny)). Zm,n is a superadditive process that satisfies the assumptions of
Corollary A.3 in Appendix A. Thus by that theorem there exists a function Ψ : N2 → [0,∞] such
that

(2.7) Ψ(x, y) = lim
N→∞

N−1G(Nx,Ny) almost surely, for all (x, y) ∈ N2.

From the limit itself we get homogeneity (2.5) for (x, y) ∈ N2 and c ∈ N. For superadditivity
rewrite (2.6) as

N−1G(Nx1, Ny1) +N−1G((Nx1 + 1, Ny1 + 1), (Nx1 +Nx2, Ny1 +Ny2))

≤ N−1G(Nx1 +Nx2, Ny1 +Ny2).
(2.8)

The first and last terms converge by (2.7). For the middle term we can assert convergence to
Ψ(x2, y2) along a subsequence because G((Nx1 + 1, Ny1 + 1), (Nx1 + Nx2, Ny1 + Ny2)) has the
same distribution as G(Nx2, Ny2). (This point is in Lemma A.1 in Appendix A.) Taking the limit
in (2.8) along this subsequence leads to superadditivity (2.3) for (x1, y1), (x2, y2) ∈ N2. Lastly, it is
immediate that Ψ(x, y) is nondecreasing in both arguments separately.

Suppose Ψ(a, b) = ∞ for some (a, b) ∈ N2. Pick an arbitrary point (x, y) ∈ N2. Take k ∈ N
large enough so that kx > a and ky > b. Then

Ψ(x, y) = k−1Ψ(kx, ky) = lim
N→∞

(kN)−1G(Nkx,Nky) ≥ lim
N→∞

(kN)−1G(Na,Nb)

= k−1Ψ(a, b) =∞.

Thus one infinite value forces Ψ =∞ on all of N2.

Let us finish off the case Ψ = ∞ by showing that the limit (2.2) holds with Ψ(x, y) = ∞ for
any fixed (x, y) ∈ (0,∞)2. Pick k ∈ N so that x, y > 1/k. Write each integer N as N = Mk + r for
M ∈ Z+ and a remainder r ∈ {0, . . . , k − 1}. Then bNxc ≥ bN/kc = M and similarly for y, from
which

lim
N→∞

N−1G(bNxc, bNyc) ≥ lim
N→∞

N−1G(M,M) = k−1Ψ(1, 1) =∞.

This completes the proof for the case Ψ =∞.

For the remainder of the proof we can assume Ψ < ∞ on N2. The next step is to extend the
limit (2.7) and the properties of Ψ to rational points. For any rational (x, y) ∈ (0,∞)2 define

(2.9) Ψ(x, y) = k−1Ψ(kx, ky)

for any positive integer k such that (kx, ky) ∈ N2. The definition is independent of the choice of k
by the homogeneity (2.5) already established for integers. Homogeneity (2.5), superadditivity (2.3)
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and the monotonicity extend to all rational arguments, including rational c > 0 in (2.5). Keep the
choice of k and write again N = Mk + r with r ∈ {0, . . . , k − 1}. Then

Mkx ≤ bMkx+ rxc = bNxc ≤Mkx+ rx < (M + 1)kx,

the same inequalities hold for y, and the monotonicity of last-passage times gives

G(Mkx,Mky) ≤ G(bNxc, bNyc) ≤ G((M + 1)kx, (M + 1)ky).

Divide by N and let N →∞:

k−1Ψ(kx, ky) ≤ lim
N→∞

1
N
G(bNxc, bNyc) ≤ lim

N→∞

1
N
G(bNxc, bNyc) ≤ k−1Ψ(kx, ky).

We now have the limit (2.2) for rational (x, y) ∈ (0,∞)2.
The final extension of the limiting function is done as follows. For (x, y) ∈ (0,∞)2 set

(2.10) Ψ(x, y) = sup{Ψ(u, v) : 0 < u ≤ x, 0 < v ≤ y, and u, v ∈ Q}.

For rational (x, y) this is an identity that follows from the monotonicity of Ψ(x, y). Once more
extend the properties.

For homogeneity, take (x, y) ∈ (0,∞)2 but first consider rational c > 0. Below u, v range over
rationals and then u1 = cu, v1 = cv.

cΨ(x, y) = c sup
u≤x
v≤y

Ψ(u, v) = sup
u≤x
v≤y

cΨ(u, v) = sup
u≤x
v≤y

Ψ(cu, cv) = sup
u1≤cx
v1≤cy

Ψ(u1, v1) = Ψ(cx, cy).

For general c > 0 find rational c1, c2 so that c1 < c < c2. By monotonicity

c1Ψ(x, y) = Ψ(c1x, c1y) ≤ Ψ(cx, cy) ≤ Ψ(c2x, c2y) = c2Ψ(x, y).

Letting c1 ↗ c and c2 ↘ c completes the proof of homogeneity.
Superadditivity (2.3) and monotonicity are fairly immediate from the definition (2.10).
Superadditivity and homogeneity together imply concavity: for 0 < s < 1 and (x1, y1), (x2, y2) ∈

(0,∞)2,

sΨ(x1, y1) + (1− s)Ψ(x2, y2) = Ψ(sx1, sy1) + Ψ((1− s)x2, (1− s)y2)

≤ Ψ(sx1 + (1− s)x2, sy1 + (1− s)y2).
(2.11)

A finite concave function on an open set is continuous [Roc70, Theorem 10.1]. Hence we get the
continuity of Ψ.

For the last and most general form of the limit (2.2) for (x, y) ∈ (0,∞)2 pick rational points
(x1, y1), (x2, y2) such that 0 < x1 < x < x2 and 0 < y1 < y < y2. Then by monotonicity

G(bNx1c, bNy1c) ≤ G(bNxc, bNyc) ≤ G(bNx2c, bNy2c)

and by passing to the limit

Ψ(x1, y1) ≤ lim
N→∞

1
N
G(bNxc, bNyc) ≤ lim

N→∞

1
N
G(bNxc, bNyc) ≤ Ψ(x2, y2).

Let (x1, y1) and (x2, y2) tend to (x, y) and use the continuity of the function Ψ. The limit (2.2) has
now been justified for all points.

The remaining pointa are the symmetry and the inequality Ψ(x + h, y) ≥ Ψ(x, y) + hE(Y1,1,)

for h > 0. Symmetry follows from the distributional symmetry G(m,n) d= G(n,m) and an ar-
gument like the one used for the middle term of (2.8). The bound on the slope comes from
G(bNx+Nhc, bNyc) ≥ G(bNxc, bNyc) +

∑bNx+Nhc
i=bNxc+1 Yi,bNyc. �
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2.2. Explicit limit for geometric weights

We turn to the problem of computing the limit

(2.12) Ψ(x, y) = lim
N→∞

G(bNxc, bNyc)
N

explicitly, and for this we need very specialized assumptions. Essentially only one distribution can
be currently handled: the exponential, and its discrete counterpart, the geometric. Fix a parameter
0 < p < 1 with q = 1−p and take the random variables {Yi,j} to be i.i.d. geometric random variables
with common probability distribution γ as given here:

(2.13) P{Yi,j = k} = γ(k) = pqk, k ∈ Z+.

This is the geometric distribution with parameter p. Here is the result.

Theorem 2.2. Under assumption (2.13) the limit in (2.12) is given for (x, y) ∈ (0,∞)2 by

(2.14) Ψ(x, y) = p−1
(
qx+ qy + 2

√
qxy

)
.

The boundary curve of the limit shape is an arc of the ellipse...

The rest of this section proves the theorem. The difficulty with finding the explicit limit has
to do with the superadditivity. The subadditive ergodic theorem (Theorem A.2 in Appendix A
gives only an asymptotic expression for the limit. Assuming the moment bounds needed for the
subadditive ergodic theorem (Theorem A.2), in our case this limit expression would be

Ψ(x, y) = lim
N→∞

E[G(Nx,Ny)]
N

for (x, y) ∈ N2.

We need a new ingredient to find an explicit formula for Ψ(x, y). We shall augment the model with
suitable boundary conditions so that it becomes meaningful to talk about a notion of steady state
or invariant distribution. Through these invariant distributions we can do explicit calculations.

The last-passage model with boundaries lives on the quadrant Z2
+ and there are two parameters

0 < r < p < 1. The weights {Yi,j : (i, j) ∈ Z2
+} are independent and distributed as follows: for

k ∈ Z+,

P{Y0,0 = 0} = 1,(2.15)

P{Yi,0 = k} =
p− r
1− r

(
q

1− r

)k
for i ∈ N,(2.16)

P{Y0,j = k} = r(1− r)k for j ∈ N,(2.17)

P{Yi,j = k} = pqk for i, j ∈ N.(2.18)

To clarify, in the interior of the model (that is, on N2) we have the same old i.i.d. geometric weights
given in (2.13). The boundary values {Yi,j : (i, j) ∈ Z2

+ \N2} are an auxiliary construction that will
assist us in the task of computing the limit Ψ(x, y) explicitly as a function of p.

Let G0(m,n) = G((0, 0), (m,n)) denote last-passage times over paths that emanate from the
origin and are allowed to collect weights on the boundaries:

(2.19) G0(m,n) = max
π∈Π((0,0),(m,n))

∑
(i,j)∈π

Yi,j , (m,n) ∈ Z2
+.

Π((0, 0), (m,n)) is the collection of nearest-neighbor up-right paths π from (0, 0) to (m,n) in Z2
+.

To be precise, paths in Π((0, 0), (m,n)) include the origin (0, 0) even though the weight Y0,0 = 0.
We also continue to use the abbreviation G(m,n) = G((1, 1), (m,n)).
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In the last-passage model with boundaries we define some new random variables. Horizontal
and vertical increments are given by

Ii,j = G0(i, j)−G0(i− 1, j) for i ≥ 1, j ≥ 0

and Ji,j = G0(i, j)−G0(i, j − 1) for i ≥ 0, j ≥ 1.
(2.20)

An alternative formula for Ii,j develops as follows, if i, j ≥ 1:

Ii,j = G0(i, j)−G0(i− 1, j)

= G0(i− 1, j) ∨G0(i, j − 1) + Yi,j −G0(i− 1, j − 1)

− [G0(i− 1, j)−G0(i− 1, j − 1)]
= Ji−1,j ∨ Ii,j−1 + Yi,j − Ji−1,j

= (Ii,j−1 − Ji−1,j)+ + Yi,j .

Similar formula works for Ji,j by symmetry, so we have

Ii,j = (Ii,j−1 − Ji−1,j)+ + Yi,j

Ji,j = (Ji−1,j − Ii,j−1)+ + Yi,j
for (i, j) ∈ N2.(2.21)

Define

(2.22) Xi,j = Ii+1,j ∧ Ji,j+1 for (i, j) ∈ Z2
+.

We develop the invariant distributions. First a technical lemma.

Lemma 2.3. Let 0 < r < p < 1. Let I, J and Y be independent geometric random variables
with distributions

P [I = k] =
p− r
1− r

(
q

1− r

)k
, P [J = k] = r(1− r)k, P [Y = k] = pqk

for k ∈ Z+. Let I1 = (I − J)+ + Y , J1 = (J − I)+ + Y and X = I ∧ J . Then the triple (I1, J1, X)
has the same distribution as (I, J, Y ).

Proof. Compute the joint Laplace transform with u, v, w > 0:

E[e−uI1−vJ1−wX ] = E[e−u(I−J)+−v(J−I)+−w(I∧J)]E[e−(u+v)Y ]

=
{ ∑

0≤j≤i

p− r
1− r

(
q

1− r

)i
r(1− r)je−u(i−j)−wj

+
∑

0≤i<j

p− r
1− r

(
q

1− r

)i
r(1− r)je−v(j−i)−wi

} ∞∑
k=0

pqke−(u+v)k

=
p− r

1− r − qe−u
· r

1− (1− r)e−v
· p

1− qe−w

= E[e−uI ] · E[e−vJ ] · E[e−wY ]. �

Let Σ be the set of doubly-infinite down-right paths σ = {σ(`) : ` ∈ Z} in Z2
+. A down-right

path means that the increments between the points σ(`) = (σ1(`), σ2(`)) ∈ Z2
+ satisfy

(σ1(`), σ2(`))− (σ1(`− 1), σ2(`− 1)) = (1, 0) or (0,−1),

that is, direction → or ↓. The interior of the set enclosed by σ is defined by

U(σ) = {(i, j) ∈ Z2
+ : ∃` ∈ Z such that 0 ≤ i < σ1(`) and 0 ≤ j < σ2(`) }.
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We admit the possibility that σ is the union of the i- and j-coordinate axes, in which case U(σ) is
empty. For l ∈ Z the last-passage time increments along σ are the variables

Z`(σ) =

{
G0(σ(`+ 1))−G0(σ(`)) = Iσ(`+1) if σ(`+ 1)− σ(`) = (1, 0),
G0(σ(`))−G0(σ(`+ 1)) = Jσ(`) if σ(`+ 1)− σ(`) = (0,−1).

Theorem 2.4. For any σ ∈ Σ, the random variables

(2.23)
{
{Xi,j : (i, j) ∈ U(σ)}, {Z`(σ) : ` ∈ Z}

}
are independent and geometrically distributed. Xi,j has the interior distribution (2.18) with pa-
rameter p. If Z`(σ) = Iσ(`+1) it has the horizontal increment distribution (2.16) with parameter
(p − r)/(1 − r), while if Z`(σ) = Jσ(`) then it has the vertical increment distribution (2.17) with
parameter r.

Proof. We first consider the countable set of paths that connect the j-axis to the i-axis, in
other words those for which there exist finite n0 < n1 such that σ1(`) = 0 for ` ≤ n0 and σ2(`) = 0
for ` ≥ n1. For these paths we argue by induction on U(σ). When U(σ) is the empty set, the
statement reduces to the independence of the Yi,j-values on the i- and j-axes which is true by
construction.

Let σ ∈ Σ be a path that connects the j-axis to the i-axis and assume the statement holds for
σ. Let us say (i, j) is a growth corner for U(σ) if, for some index `0 ∈ Z,

(σ(`0 − 1), σ(`0), σ(`0 + 1)) = ((i, j + 1), (i, j), (i+ 1, j)).

A new valid σ̃ ∈ Σ can be defined by replacing σ(`0) with σ̃(`0) = (i+ 1, j+ 1) but keeping all other
points intact: σ̃(`) = σ(`) for ` 6= `0. The interior gained the point (i, j): U(σ̃) = U(σ) ∪ {(i, j)}.

In going from σ to σ̃ the change brought about in the set of random variables (2.23) is that

(2.24) {Ii+1,j , Ji,j+1}
have been replaced by

(2.25) {Ii+1,j+1, Ji+1,j+1, Xi,j}.
By (2.21) variables (2.25) are determined by variables (2.24) together with Yi+1,j+1. By the last-
passage construction Yi+1,j+1 is independent of (2.23) for the σ under consideration. By the in-
duction assumption the variables {Ii+1,j , Ji,j+1, Yi+1,j+1} are independent and independent from
all the other variables in (2.23). An application of Lemma 2.3 to this last triple then implies that
the new variables {Ii+1,j+1, Ji+1,j+1, Xi,j} are also independent, have the correct marginal distri-
butions, and are independent of all the other random variables of σ̃. Consequently σ̃ satisfies the
statement of the theorem.

We can build all the paths σ that connect the axes by starting with the empty U and adding
growth corners one at a time. Hence this inductive argument proves the theorem for this class of
paths.

For an arbitrary σ the statement follows because the independence of the random variables in
(2.23) follows from independence of finite subcollections. Consider any square R = {0 ≤ i, j ≤ M}
large enough so that the corner (M,M) lies outside σ ∪ U(σ). Then the X and Z(σ) variables
associated to σ that lie in R are a subset of the variables of the path σ̃ that goes through the points
(0,M), (M,M) and (M, 0). This path σ̃ connects the axes so the first part of the proof applies to
it. Thus the variables in (2.23) that lie inside an arbitrarily large square are independent. �

In particular this theorem tells us that along any horizontal line, for a fixed n ∈ Z+, the
increment process {Ii,n = G0(i, n) − G0(i − 1, n) : i ∈ N} is i.i.d. geometric with parameter (p −
r)/(1−r), exactly as the boundary values (2.16). Similarly, on each vertical line at fixed m ∈ Z+ we
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see an i.i.d. process {Jm,j = G0(m, j)−G0(m, j− 1) : j ∈ N} of geometric variables with parameter
r. From

(2.26) G0(m,n) =
n∑
j=1

J0,j +
m∑
i=1

Ii,n.

we can compute the expectation

(2.27) EG0(m,n) = nEJ0,1 +mEI1,n = m
q

p− r
+ n

1− r
r

.

The ease of this computation is in marked contrast with G(m,n) whose expectation seems very
difficult to find explicitly.

Note that it is not claimed (and not true) that all the variables on the right-hand side of (2.26)
are independent. The path taken there, from (0, 0) vertically up to (0, n) and then horizontally right
to (m,n), is not a down-right path for which Theorem 2.4 applies. In fact, the two sums on the
right-hand side of (2.26) are so strongly correlated with each other that the variance of G0(N,N)
is of order N2/3, instead of order N which it would be if the variables were all independent.

For the purpose of deriving limits we extract these further consequences.

Corollary 2.5. For (x, y) ∈ R2
+ we have the limit

(2.28) lim
N→∞

G0(bNxc, bNyc)
N

= Ψ0(x, y) ≡ x q

p− r
+ y

1− r
r

almost surely.

The limits of (2.12) and (2.28) satisfy the inequality

(2.29) Ψ(x, y) ≤ Ψ0(x, y) for (x, y) ∈ (0,∞)2.

Proof. We can construct the random variablesG(m,n) andG0(m,n) together from the weights
{Yi,j : (i, j) ∈ Z2

+}. (A joint construction is called a coupling of G(m,n) and G0(m,n).) In this
construction it is clear that

(2.30) G(m,n) ≤ G0(m,n)

since the steps from (0, 0) to (1, 0) to (1, 1) followed by a path from (1, 1) to (m,n) that is maximal
for G(m,n) is just one possible path for G0(m,n).

For the limit use increments:

(2.31) N−1G0(bNxc, bNyc) = N−1

bNyc∑
j=1

J0,j +N−1

bNxc∑
i=1

Ii,bNyc.

The strong law of large numbers gives

lim
N→∞

N−1

bNyc∑
j=1

J0,j = yEJ0,1 = y
1− r
r

a.s.

For the sum N−1
∑bNxc
i=1 Ii,bNyc we cannot use the strong law of large numbers because the sum-

mands also depend on N . Nevertheless, for each N the summands are i.i.d. geometric variables with
a constant parameter. By standard large deviation estimates (Lemma A.4), for each ε > 0 there is
a constant c(ε) > 0 such that

P
{∣∣∣N−1

bNxc∑
i=1

Ii,bNyc − xEI1,0
∣∣∣ ≥ ε} ≤ e−c(ε)N .
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Thus by the Borel-Cantelli lemma also

lim
N→∞

N−1

bNxc∑
i=1

Ii,bNyc = xEI1,0 = x
q

p− r
a.s.

Inequality (2.29) follows from the existence of the limits and (2.30). �

We develop a precise connection between the last-passage times G and G0. Recall the definition
(2.1) of the last-passage time between any two points on the integer square lattice. A maximal
path for G0(m,n) first collects some weights on one of the two axes, and then follows a path in the
interior N2. We separate the two contributions. For (m,n) ∈ N2,

(2.32)
G0(m,n) = max

k∈[m]

{
G0(k, 0) +G((k, 1), (m,n))

}
∨

max
k∈[n]

{
G0(0, k) +G((1, k), (m,n))

}
.

To clarify, in the first maximum on the right-hand side (k, 0) is the last point of the path on the
boundary and (k, 1) the point where the interior path begins. The notation [m] is for the integer
interval {1, . . . ,m}.

The key is to take formula (2.32) to the limit and use the known values for Ψ0(x, y) to solve for
Ψ(x, y). By the homogeneity of Ψ(x, y) it is sufficient to identify the one-variable function

(2.33) ψ(x) = Ψ(x, 1), x > 0.

Lemma 2.6. ψ is a strictly increasing, concave, continuous function on (0,∞). Setting ψ(0) =
q/p extends ψ to a strictly increasing, concave, continuous function on R+.

Proof. The properties of ψ on (0,∞) follow from the definition (2.33) and the corresponding
properties of Ψ given in Theorem 2.1. We need to extend ψ(x) continuously to x = 0. From (2.28)
and (2.29) comes the inequality

Ψ(x, y) ≤ x q

p− r
+ y

1− r
r

.

To minimize the right-hand side set r = p
√
y/(
√
qx+

√
y) and get

(2.34) Ψ(x, y) ≤ p−1
[
qx+ qy + 2

√
qxy

]
.

By taking any particular path π from (1, 1) to (bNxc, bNyc) we get the lower bound

G(bNxc, bNyc) ≥
∑

(i,j)∈π

Yi,j

from which by the strong law of large numbers

(2.35) Ψ(x, y) ≥ p−1q(x+ y).

In particular we have the bounds

(2.36) p−1q(x+ 1) ≤ ψ(x) ≤ p−1
[
qx+ q + 2

√
qx
]
.

Letting x↘ 0 brings the bounds together and verifies the claim about extending ψ to R+. �

Proposition 2.7. We have the identity

(2.37) Ψ0(1, 1) = sup
0≤z≤1

{
Ψ0(z, 0) + ψ(1− z)

}∨
sup

0≤z≤1

{
Ψ0(0, z) + ψ(1− z)

}
.
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Proof. By (2.32) for any 1 ≤ k ≤ N

(2.38)
G0(N,N) ≥

{
G0(k, 0) +G((k, 1), (N,N))

}∨{
G0(0, k) +G((1, k), (N,N))

}
.

We wish to use the fact that the random variable G((k, 1), (N,N)) has the same probability
distribution as G((1, 1), (N−k+1, N)). The elegant way to do this is to imagine the so-called canon-
ical construction for the random variables we are working with. The probability space (Ω,F ,P)
has Ω = (Z+)Z2

+ with generic element ω = (ωi,j)(i,j)∈Z2
+

and the product σ-algebra F . P is the
product probability measure that makes the coordinate random variables Yi,j(ω) = ωi,j independent
with marginal distributions (2.15)–(2.18). On Ω we have the shift maps (Tk,`(ω))i,j = ωi+k,j+` for
(k, `) ∈ Z2

+ that leave the probability distribution of the interior variables invariant: if f is any
Borel function on RM and (i1, j1), . . . , (iM , jM ) ∈ N2, then for any k, ` ≥ 0,∫

f(ωi1,j1 , . . . , ωiM ,jM )P(dω) =
∫
f(ωi1+k,j1+`, . . . , ωiM+k,jM+`)P(dω)

provided the integrals are well-defined. By considering the indices of the Y -variables that go into
formula (2.1) it should be evident that

(2.39) G((k, 1), (N,N)) = G((1, 1), (N − k + 1, N)) ◦ Tk−1,0.

Then from the invariance comes the distributional equality:

(2.40) P{G((k, 1), (N,N)) ∈ B} = P{G((1, 1), (N − k + 1, N)) ∈ B}

for all Borel sets B ⊆ R.
Take z ∈ [0, 1). Then for N > 1/(1 − z) (to guarantee dNze < N) take k = 1 + dNze so that

N − k + 1 = N − dNze = bN(1− z)c. From (2.38)

(2.41)
N−1G0(N,N) ≥

{
N−1G0(1 + dNze, 0) + N−1G(bN(1− z)c, N) ◦ TdNze,0

}∨{
N−1G0(0, 1 + dNze) + N−1G(N, bN(1− z)c) ◦ T0,dNze

}
.

We let N →∞. We know from Theorem 2.1 that N−1G(bN(1− z)c, N)→ ψ(1− z) a.s. This does
not imply the a.s. limit

(2.42) N−1G(bN(1− z)c, N) ◦ TdNze,0 → ψ(1− z)

for the shifted variables. The reason is that the distributions of the processes

{N−1G(bN(1− z)c, N) : N ≥ 1} and {N−1G(bN(1− z)c, N) ◦ TdNze,0 : N ≥ 1}

are not identical. But the equal distributions (2.40) give convergence in probability in (2.42), and this
in turn implies a.s. convergence along a subsequence. The same argument works for the transposed
shifted term N−1G(N, bN(1− z)c) ◦ T0,dNze on the second line of (2.41), and the limit is the same
ψ(1− z) by the symmetry Ψ(x, y) = Ψ(y, x).

The G0-terms in (2.41) converge a.s. by Corollary 2.5. Thus we take N →∞ in (2.41) along a
suitable subsequence to conclude that for z ∈ [0, 1),

Ψ0(1, 1) ≥
{

Ψ0(z, 0) + ψ(1− z)
}∨{

Ψ0(0, z) + ψ(1− z)
}
.

Continuity extends the conclusion to z = 1 and thereby we have verified that ≥ holds in (2.37).
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We turn to prove ≤ in (2.37). Introduce another integer parameter L. Consider N ≥ L so that
dNL−1me < dNL−1(m+ 1)e which justifies the first inequality below. From (2.32) develop:

G0(N,N) ≤ max
0≤m≤L−1

{
G0(dNL−1(m+ 1)e, 0) +G((dNL−1me+ 1, 1), (N,N))

}
∨

max
0≤m≤L−1

{
G0(0, dNL−1(m+ 1)e) +G((1, dNL−1me+ 1), (N,N))

}
= max

0≤m≤L−1

{
G0(dNL−1(m+ 1)e, 0) +G(bN(1− L−1m)c, N) ◦ TdNL−1me,0

}
∨

max
0≤m≤L−1

{
G0(0, dNL−1(m+ 1)e) +G(N, bN(1− L−1m)c) ◦ T0,dNL−1me

}
Letting N →∞ along a suitable subsequence gives

Ψ0(1, 1) ≤ max
0≤m≤L−1

{
Ψ0(L−1(m+ 1), 0) + ψ(1− L−1m)

}
∨

max
0≤m≤L−1

{
Ψ0(0, L−1(m+ 1)) + ψ(1− L−1m)

}
by the bilinearity of Ψ0(x, y) in x and y

≤ sup
0≤z≤1

{
Ψ0(z, 0) + ψ(1− z)

}∨
sup

0≤z≤1

{
Ψ0(0, z) + ψ(1− z)

}
+ CL−1.

Letting L→∞ completes the proof. �

The probabilistic part of the proof is over. The rest is analysis to extract the unknown ψ from
(2.37).

Completion of the proof of Theorem 2.14. We arrange things so that concave duality
from Appendix C.1 applies. The first task is to simplify (2.37). Rewrite it with explicit formulas
from (2.28):

(2.43)
q

p− r
+

1− r
r

= sup
0≤z≤1

{
z

q

p− r
+ ψ(1− z)

}∨
sup

0≤z≤1

{
z

1− r
r

+ ψ(1− z)
}
.

Observe that (1−r)/r ≥ q/(p−r) iff r ≤ 1−√q. We restrict the parameter r to the subset (0, 1−√q]
of its original range (0, p). Then we can drop the first expression in braces from the right-hand side
of (2.43) because at each z-value the second expression in braces dominates. Replace the variable z
with x = 1− z, multiply through by −1, and we have turned (2.43) into

− q

p− r
= inf

0≤x≤1

{
x

1− r
r
− ψ(x)

}
, r ∈ (0, 1−√q ].

Once more change variables to y = (1− r)/r to turn the above equation into

(2.44) − q(1 + y)
py − q

= inf
0≤x≤1

{
xy − ψ(x)

}
, y ∈ [p−1(

√
q + q), ∞).

Define the function

ψ̃(x) =


−∞, x < 0
ψ(x), 0 ≤ x ≤ 1
ψ(1), x > 1.

By the monotonicity, continuity and concavity of ψ on [0, 1], ψ̃ : R → [−∞,∞) is upper semicon-
tinuous and concave. Equation (2.44) implies that

− q(1 + y)
py − q

= inf
x∈R

{
xy − ψ̃(x)

}
, y ∈ [p−1(

√
q + q), ∞).



2.3. M/M/1 QUEUES IN SERIES 17

In particular, the values x > 1 cannot yield the infimum above since y > 0 and ψ̃ is constant on
[1,∞). In terms of concave duality, the above equation says that

(2.45) ψ̃∗(y) = − q(1 + y)
py − q

for y ∈ [p−1(
√
q + q), ∞).

By Corollary C.2

(2.46) ψ̃(x) = ψ̃∗∗(x) = inf
y∈R

{
xy − ψ̃∗(y)

}
.

Restrict the above to x ∈ [0, 1] so that ψ(x) = ψ̃(x). From (2.45) we can get a right derivative at
y = p−1(

√
q + q): (

ψ̃∗
)′((√q+q

p

)
+
)

=
q

(py − q)2

∣∣∣∣
y=
√
q+q
p

= 1.

Hence by concavity, for y < p−1(
√
q + q) and x ∈ [0, 1],

ψ̃∗(y) ≤ ψ̃∗
(√q+q

p

)
+ y −

√
q+q

p ≤ ψ̃∗
(√q+q

p

)
+ xy − x

√
q+q

p .

The conclusion is that for x ∈ [0, 1] the infimum in (2.46) is not affected by restricting y to [p−1(
√
q+

q), ∞). This is the range where we know ψ̃∗(y) from (2.45). Consequently for x ∈ [0, 1]

ψ(x) = inf
y≥p−1(

√
q+q)

{
xy +

q(1 + y)
py − q

}
= p−1

(
qx+ q + 2

√
qx
)
.(2.47)

The second step above is calculus.
Going back to the definition (2.33) of ψ and by the homogeneity of Ψ, for 0 < x ≤ y,

Ψ(x, y) = yΨ(x/y, 1) = yψ(x/y) = p−1
(
qx+ qy + 2

√
qxy

)
.

By symmetry of Ψ the same formula works for all (x, y) ∈ (0,∞)2. This completes the proof of
formula (2.14). �

2.3. M/M/1 queues in series

We turn to study discrete-time M/M/1 queues in series, a model which can also be called a
discrete-time zero range process. This particle system is closely related to the last-passage model
with geometric weights studied in Section 2.2. However, results from Section 2.2 will not be used.
Instead, with the help of the queues, we give an alternate proof of Theorem 2.2 at the end of Section
2.4. The underlying idea of the proof is the same as for the one we just covered: explicit limits come
from knowing explicit invariant distributions.

In this section we study the stationary behavior first of a single queue and then queues in series.
In Section 2.4 we prove a hydrodynamic limit for the infinite process. In that proof a particle version
of the last-passage model appears in a variational property of the process (see equation (2.72)) that
gives a counterpart to equation (2.32).

As in the previous section, we have a fixed parameter p = 1 − q ∈ (0, 1), and an auxiliary
parameter r that varies in the interval r ∈ (0, p). A single-server discrete-time M/M/1 queue
operates as follows. Customers arrive one at a time at a service station, are served in the order
in which they arrive, and leave after the service is complete. This scheme is called FIFO, short
for first-in-first-out queueing discipline. The rule for the stochastic evolution is that for every time
point t ∈ N, during time period (t − 1, t) two things can happen. (i) If the queue is not empty at
time t− 1, then with probability p one customer departs by time t. (ii) One new customer arrives
with probability r. Our convention is that it is not possible for a customer to arrive and depart
during the same interval (t−1, t). The name M/M/1 for this model comes from memoryless arrivals
and services (that’s two M’s) and from having 1 server.
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For t ∈ N let
a(t) = 1{a customer arrives during (t− 1, t)}

and
d(t) = 1{a customer departs during (t− 1, t)},

and for t ∈ Z+ let Q(t) denote the number of customers in the system (queue length) at time t. The
arrival process is {a(t) : t ∈ N}, departure process is {d(t) : t ∈ N}, and the queue length process is
{Q(t) : t ∈ Z+}. We call the arrival process a mean r Bernoulli process because the variables a(t)
are independent mean r Bernoulli variables.

For a rigorous construction of the processes (a,Q, d) we need one more ingredient, namely the
probability distribution β for the initial queue length Q(0). Once β is picked, let (Ω,F ,Pβ) be a
probability space on which are defined these three independent random objects: (i) β-distributed
Q(0), (ii) mean r Bernoulli process {a(t) : t ∈ N}, and (iii) mean p Bernoulli process {κ(t) : t ∈ N}.
The variables κ(t) signal possible service completions. On this probability space we define the queue
length and departure processes for t ∈ N by

Q(t) = (Q(t− 1)− κ(t))+ + a(t)

and d(t) = κ(t) · 1{Q(t− 1) ≥ 1}.
(2.48)

Since a(t) and κ(t) are inputs that are independent of Q(0), . . . , Q(t − 1), the formula above
defines Q(t) as a discrete-time Markov chain with state space Z+ and transition matrix {P (x, y) :
x, y ∈ Z+} whose nonzero values are given by

(2.49)

P (x, x+ 1) =

{
r, x = 0
qr, x ≥ 1

P (x, x) =

{
1− r, x = 0
q(1− r) + pr, x ≥ 1

P (x, x− 1) = p(1− r), x ≥ 1.

We observe the state Q(t) of the queue at integer times t = 0, 1, 2, . . . . Between successive integer
times at most one arrival and at most one departure can happen. Consequently the transition
probabilities satisfy P (x, y) = 0 for y /∈ {x, x± 1}.

Set

(2.50) u =
qr

p(1− r)
∈ (0, 1)

and define this probability distribution on Z+:

(2.51) α(0) =
p− r
p

and α(x) =
p− r
pq

ux for x ≥ 1.

Lemma 2.8. Let 0 < r < p and let the arrival process be a mean r Bernoulli process. The
probability measure α is reversible for the transition P . If the distribution of the initial queue length
Q(0) is α, then under Pα the process Q(·) is a stationary Markov chain, the departure process is a
mean r Bernoulli process, and the departure process up to time t is independent of the queue length
at time t, for all t ∈ N. Precisely speaking, for all t ∈ N, k ∈ Z+, and (w1, . . . , wt) ∈ {0, 1}t:

(2.52) Pα{Q(t) = k, (d(1), . . . , d(t)) = (w1, . . . , wt)} = α(k) · r
Pt
i=1 wi(1− r)t−

Pt
i=1 wi .
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Proof. Reversibility amounts to checking α(x)P (x, y) = α(y)P (y, x) for all pairs (x, y) ∈ Z+.
Reversibility implies invariance (that is, αP = α) and this in turn that under Pα the Markov chain
Q(·) is stationary.

Equation (2.52) is checked by induction on t. We give parts of the calculation explicitly.

Case t = 1. Assume k ≥ 1, w1 = 1.

Pα{Q(1) = k, d(1) = 1} = Pα{Q(0) = k, κ(1) = 1, a(1) = 1}
+ Pα{Q(0) = k + 1, κ(1) = 1, a(1) = 0}

= α(k)pr + α(k + 1)p(1− r) = α(k)r.

Then k = 0, w1 = 1.

Pα{Q(1) = 0, d(1) = 1} = Pα{Q(0) = 1, κ(1) = 1, a(1) = 0}
= α(1)p(1− r) = α(0)r.

The cases with w1 = 0 come by complementation.

Induction step. Assume (2.52) is valid up to time t− 1. Abbreviate

Dw1,t = {(d(1), . . . , d(t)) = (w1, . . . , wt)}.
Assume k ≥ 1, wt = 1.

Pα{Q(t) = k,Dw1,t} = Pα{Q(t− 1) = k,Dw1,t−1 , κ(t) = 1, a(t) = 1}
+ Pα{Q(t− 1) = k + 1, Dw1,t−1 , κ(t) = 1, a(t) = 0}

utilizing the independence of (κ(t), a(t)) from everything that has happened up to time t− 1

= Pα{Q(t− 1) = k,Dw1,t−1}pr + Pα{Q(t− 1) = k + 1, Dw1,t−1}p(1− r)

by induction

= α(k)r
Pt−1
i=1 wi(1− r)t−1−

Pt−1
i=1 wipr + α(k + 1)r

Pt−1
i=1 wi(1− r)t−1−

Pt−1
i=1 wip(1− r)

= α(k)r
Pt
i=1 wi(1− r)t−

Pt
i=1 wi .

Similarly for the case k = 0, wt = 1 and then the wt = 0 cases by complementation. �

We build on this lemma to describe invariant distributions for a process that consists of a bi-
infinite sequence of queues. Customers departing queue i immediately join the arrival process of
queue i+ 1. The state of the process is η(t) = (ηi(t) : i ∈ Z), where ηi(·) is the queue length process
of queue i. The state space of the process η(·) is X = (Z+)Z. Generic elements of X are denoted by
η = (ηi)i∈Z.

To define the evolution, assume given an initial state η(0) and let {κi(t) : i ∈ Z, t ∈ N} be
a collection of i.i.d. {0, 1}-valued Bernoulli random variables with mean p. Variable κi(t) signals
a possible service completion at server i during time period (t − 1, t). The initial state η(0) is
independent of the process {κi(t)}. For t ∈ N, the move from η(t− 1) to η(t) follows the equation

(2.53) ηi(t) = (ηi(t− 1)− κi(t))+ + κi−1(t) · 1{ηi−1(t− 1) ≥ 1}, i ∈ Z.
The equation expresses the two events that can happen at queue i. The first term on the right
represents a possible departure at queue i, and the second term a new arrival to queue i from queue
i − 1. The evolution η(t) is well-defined for any initial state η(0) ∈ X and it is a Markov process.
Let ai(t) be the arrival process to queue i and di(t) the departure process from queue i. Since the
departures from queue i− 1 feed directly into queue i,

ai(t) = di−1(t) = κi−1(t) · 1{ηi−1(t− 1) ≥ 1}.
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Let us use the notation ai[s, t] = {ai(m) : s ≤ m ≤ t} for segments of these processes.
In the particle system literature, process η(·) would be called a discrete-time zero range process.

The name comes from the property that a particle interacts only with particles on its site, and not
with particles at other sites (zero range of interaction). Our process is a simple case of the zero range
process. More generally, the dynamics is determined by a function g(ηi) that gives, as a function of
the number of particles at site i, the probability or the rate of moving one particle out of site i.

Let ν = α⊗Z be the probability measure on X under which the coordinates ηi are i.i.d. α-
distributed. Explicitly, for any n distinct indices i1, . . . , in ∈ Z and any x1, . . . , xn ∈ Z+,

ν{η ∈ X : ηi1 = x1, . . . , ηin = xn} =
n∏
j=1

α(xj).

Note that there is actually a family of measures indexed by r ∈ (0, p) (considering p fixed).

Lemma 2.9. Consider p ∈ (0, 1) fixed. Then for each r ∈ (0, p) the probability measure ν is
invariant for the process η(·). Let the initial state have distribution ν. Then at each time t and
for each i the departure process di[1, t] is a mean r Bernoulli process and independent of the queue
lengths {ηj(t) : j ≤ i}.

Proof. Fix t ∈ N. Assuming that η(0) has distribution ν we show that η(t) also has distribution
ν.

Let Yi = (ηi(t), (di[1, t]). Yi is a Markov chain indexed by i and with countable state space
Z+ × {0, 1}t. The Markov property is true because the only information from {Yj : j < i} used
to compute Yi is the arrival process ai[1, t] = di−1[1, t]. The rest come from independent inputs.
The transition probability from Yi−1 to Yi can be described informally by saying: take the arrival
process ai[1, t] = di−1[1, t], pick independently an α-distributed initial queue length ηi(0) and the
Bernoulli variables κi[1, t], and compute the variables Yi = (ηi(t), (di[1, t]) according to equations
(2.48).

Lemma 2.8 implies that the probability measure described by (2.52) is an invariant distribution
for the Markov chain Yi. Markov chain Yi is irreducible, for the state (t, (0, 0, . . . , 0)) communicates
with every other state. To move from state (x,w1,t) to (t, (0, . . . , 0)), pick the next initial queue
length Q(0) = t −

∑t
i=1 wi and κ[1, t] = (0, . . . , 0). To move from (t, (0, . . . , 0)) to (x,w1,t), pick

Q(0) = x+
∑t
i=1 wi and κ[1, t] = w1,t. Finally, Yi is aperiodic because state (t, (0, . . . , 0)) has period

1.
Thus the convergence theorem for Markov chains applies [Dur04, Ch. 5, Theorem (5.5)] and

implies that {Yi} is the stationary Markov chain with each Yi distributed as in (2.52). To make this
assertion rigorously for a fixed segment (Yi0 , Yi0+1, . . . , Yi1), imagine the Markov chain Yi starting
at index value i = N and take N to −∞.

Fix i0 ∈ Z. We appeal once more to Lemma 2.8 to prove the following claim: for i ≥ i0, the
variables {ηi0(t), ηi0+1(t), . . . , ηi(t), di[1, t]} are mutually independent, with each ηj(t) α-distributed
and di[1, t] a mean r Bernoulli process. This claim finishes the lemma.

The case i = i0 is the above conclusion that Yi0 has the distribution in (2.52).
Assume the claim is true for some i ≥ i0. Then by the independence built into the inputs,

also the larger collection of random variables
{
ηi0(t), ηi0+1(t), . . . , ηi(t), di[1, t], ηi+1(0), κi+1[1, t]

}
is

mutually independent. Let I and J be the functions defined by (2.48) that give the queue length
and the departure process as functions of the inputs:

ηi+1(t) = I
(
ai+1[1, t], ηi+1(0), κi+1[1, t]

)
and di+1[1, t] = J

(
ai+1[1, t], ηi+1(0), κi+1[1, t]

)
.
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It seems clearest to make the argument through an expectation. Let f1, f2, f3 be bounded functions
defined on the appropriate spaces so that the expectations below make sense.

Eν

[
f1

(
ηi0(t), . . . , ηi(t)

)
f2

(
ηi+1(t)

)
f3

(
di+1[1, t]

)]
= Eν

[
f1

(
ηi0(t), . . . , ηi(t)

)
f2

(
I
(
di[1, t], ηi+1(0), κi+1[1, t]

))
× f3

(
J
(
di[1, t], ηi+1(0), κi+1[1, t]

))]
by the induction hypothesis

= Eν

[
f1

(
ηi0(t), . . . , ηi(t)

)]
×Eν

[
f2

(
I
(
di[1, t], ηi+1(0), κi+1[1, t]

))
f3

(
J
(
di[1, t], ηi+1(0), κi+1[1, t]

))]
= Eν

[
f1

(
ηi0(t), . . . , ηi(t)

)]
Eν

[
f2

(
ηi+1(t)

)
f3

(
di+1[1, t]

)]
by another application of Lemma 2.8 and the part of the induction assumption that says the arrival
process ai+1[1, t] is mean r Bernoulli

= Eν

[
f1

(
ηi0(t), . . . , ηi(t)

)]
Eν

[
f2

(
ηi+1(t)

)]
Eν

[
f3

(
di+1[1, t]

)]
.

Since we already know that ηi+1(t) and di+1[1, t] have the desired marginal distributions, this extends
the claim to i+ 1 and thereby completes the proof of the lemma. �

2.4. Hydrodynamic limit for M/M/1 queues in series

A hydrodynamic limit is a law of large numbers that describes deterministic behavior of an
interacting particle system on large space and time scales. We consider a sequence of processes
ηN (·) indexed by N ∈ N. Each process is of the type studied in the previous section, with the state
ηN (t) = (ηNi (t) : i ∈ Z) ∈ X that consists of a sequence of queue lengths and evolution described by
equation (2.53). Let dNi (·) be the departure process from queue ηNi . We write PN for the probability
measure on the probability space on which processes (ηN (·), dN (·)) are defined.

The only hypothesis needed is that the initial states ηN (0) approximate a deterministic profile.

There exists a nondecreasing function U0 : R→ R such that U0(0) = 0 and,
for all a < b in R and ε > 0,

lim
N→∞

PN
{ ∣∣∣N−1

bNbc∑
i=bNac+1

ηNi (0)−
(
U0(b)− U0(a)

)∣∣∣ ≥ ε} = 0.
(2.54)

Example 2.10. Here is the simplest example of initial variables that satisfy assumption (2.54).
Suppose U ′0 is continuous. For each N let the variables {ηNi (0) : i ∈ Z} be independent with means
EN [ηNi (0)] = U ′0(i/N). Assume there is a finite constant C such that EN [ηNi (0)2] ≤ C for all N
and i.

Define a function g on R+ by

(2.55) g(x) =

{
−
(√

p(1− x)−√qx
)2
, 0 ≤ x ≤ p

0, x > p.

Then define a function U on R+ × R by setting U(0, x) = U0(x) and

(2.56) U(t, x) = sup
y:y≤x

{
U0(y) + tg

(x− y
t

)}
, t > 0, x ∈ R.
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The resulting function U(t, x) continues to be nondecreasing in x. This operation defines a semi-
group, in the sense that once U is defines as above, then for all 0 ≤ s < t,

(2.57) U(t, x) = sup
y:y≤x

{
U(s, y) + (t− s)g

(x− y
t− s

)}
.

Since g ≤ 0 and U(s, y) is nondecreasing in y, U(t, x) is nonincreasing in t.
Function U describes the process on space and time scales of order N as made precise in the

next theorem.

Theorem 2.11. Assume (2.54). Then for all a < b in R, t > 0 and ε > 0,

(2.58) lim
N→∞

PN
{ ∣∣∣N−1

bNbc∑
i=bNac+1

ηNi (bNtc) −
(
U(t, b)− U(t, a)

)∣∣∣ ≥ ε} = 0

and

(2.59) lim
N→∞

PN
{ ∣∣∣N−1

bNtc∑
s=1

dNbNac(s) −
(
U(0, a)− U(t, a)

)∣∣∣ ≥ ε} = 0.

Along the way to the proof we will also give another proof of Theorem 2.2. This appears as
Corollary 2.16 in the final stage of the proof.

The theorem says that the function g of (2.55) summarizes all the information needed about
the process for describing its large scale evolution. In the proof we define this function in terms of
the limit of a system that starts with infinitely many customers in a single queue and the rest of
the system empty. It turns out that g is the concave dual of the particle flux f defined as follows:

f(ρ) = r with r uniquely determined by
∞∑
x=0

xα(x) = ρ.

Here α is the stationary distribution of a single queue defined in (2.51). The flux f(ρ) gives the
average departure rate as a function of the mean queue length, or particle density, ρ. (This meaning
of the parameter r was clear from Lemma 2.8.) The explicit formula is

(2.60) f(ρ) = 1
2

(
1 + ρ−

√
(1 + ρ)2 − 4pρ

)
, ρ ∈ [0,∞).

The connection between g and f is, for ρ, x ∈ R+,

(2.61) f(ρ) = inf
x∈R+

{ρx− g(x)} and g(x) = inf
ρ∈R+

{ρx− f(ρ)}.

This will arise in the final stage of the proof.
What formula (2.56) tells us about the particle system becomes clearer through its connection

with partial differential equations. For this discussion let us assume that

U0 is Lipschitz continuous.

Then definition (2.56) can be used to show that U is a Lipschitz function on R+ × R.
The relevant p.d.e. for U is the following Hamilton-Jacobi equation

(2.62) Ut(t, x) + f(Ux(t, x)) = 0, U(0, x) = U0(x).

As a Lipschitz function U is differentiable almost everywhere. If (t, x) is a point of differentiability
for U , then the partial derivatives Ut(t, x) and Ux(t, x) at this point satisfy equation (2.62).

For each t ≥ 0 we can also define the partial derivative ρ(t, x) = Ux(t, x) at Lebesgue almost
every x. This function represents the limiting density of customer particles, for we can paraphrase
limit (2.58) by saying that the random Radon measure N−1

∑
i η
N
i (bNtc)δi/N converges vaguely,



2.4. HYDRODYNAMIC LIMIT FOR M/M/1 QUEUES IN SERIES 23

in probability, to the measure ρ(t, x)dx. Formally differentiating through equation (2.62) suggests
that the correct p.d.e. for ρ(t, x) is the scalar conservation law

(2.63) ρt(t, x) + f(ρ(t, x))x = 0, ρ(0, x) = (U0)x(x).

A measurable function ρ(t, x) is a weak solution of the initial value problem (2.63) if it satisfies
this integral criterion for all compactly supported, continuously differentiable test functions φ on
R+ × R:

(2.64)
∫ ∞

0

∫
R

[
ρ(t, x)φt(t, x) + f(ρ(t, x))φx(t, x)

]
dxdt+

∫
R
ρ(0, x)φ(0, x) dx = 0.

That ρ(t, x) = Ux(t, x) satisfies (2.64) can be checked by multiplying equation (2.62) with φx and
integrating by parts. Thus one message of the hydrodynamic limit is that the large scale motion of
customer particles is governed by the conservation law (2.63).

We leave the discussion of the p.d.e. side at this informal level because a complete treatment
would take up a significant amount of space. Here are some closing comments. The claims made
above can be proved with small adjustments to the arguments used in Sections 3.3 and 3.4 of
[Eva98]. Equation (2.56) is an example of a Hopf-Lax formula and in principle it identifies U as the
unique viscosity solution of the Hamilton-Jacobi equation (2.62). The viscosity solution is the weak
solution appropriate for these equations, originally developed in [CEL84] and [CL83]. [Eva98,
Chapter 10] contains a general treatment of viscosity solutions for Hamilton-Jacobi equations, but
the hypotheses used do not cover our case. To show that (2.56) defines the unique viscosity solution
to (2.62), one can adapt the proof from [Eva98, Chapter 10] to show that U is a viscosity solution
and then appeal to a uniqueness theorem for unbounded viscosity solutions from [Ish84].

Like the Hamilton-Jacobi equation, the conservation law (2.63) can possess multiple weak so-
lutions. There are auxiliary conditions that select the physically relevant entropy solution. The
solution ρ(t, x) = Ux(t, x) defined above is the entropy solution, and the hydrodynamic limit shows
that the particle system converges to the entropy solution.

The rest of this section proves Theorem 2.11. The only item we utilize from the past development
is the existence of the general limit of Theorem 2.1. The proof separates naturally into four stages:

Stage 1. Derivation of a particle-level variational property that mimics formula (2.56).
Stage 2. Initial definition of the function g by the limit of the process that starts with the

special initial conditions we already met in the discussion about exclusion and queues in Section
1.1.

Stage 3. Limits (2.58) and (2.59) under assumption (2.54) but with only partial knowledge
about g.

Stage 4. Explicit evaluation of the function g. This is equivalent to proving Theorem 2.2.

Stage 1: The server process and the envelope property. For the proof we switch point of
view: instead of having the customer particles jump from queue to queue, we let the server particles
jump from customer to customer. Let random variable zi(t) represent the position of server i at
time t. The connection between the queue lengths ηi(t) and the server positions zi(t) is

(2.65) ηi(t) = zi(t)− zi−1(t).

Completion of a service at queue i is now signified by a leftward jump of zi. The entire process of
server particles is denoted z(t) = (zi(t))i∈Z.

As in the earlier description of the customer motion, we take i.i.d. {0, 1}-valued mean p random
variables {κi(t) : i ∈ Z, t ∈ N} that are independent of the initial state z(0). Variable κi(t) signals
a possible service completion at server i during time period (t − 1, t). Reflecting the earlier rule
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(2.53), the evolution from state z(t− 1) to state z(t) obeys the equation

(2.66) zi(t) = zi(t− 1)− κi(t) · 1{zi−1(t− 1) < zi(t− 1)} i ∈ Z, t ∈ N.

Each server completes a service each time t ∈ N with probability p, provided this server had at
least one customer in its queue at time t − 1. The departure process from queue i is given by
di(t) = zi(t− 1)− zi(t). Also, comparison with rule (1.9)–(1.10) shows that zi(t) + i is an exclusion
process where particles march to the left. We make no use of this connection.

The state space of the server process z(t) is

Z = {(zi)i∈Z : zi ∈ Z ∪ {−∞}, zi−1 ≤ zi ∀i}.

The value −∞ is included to admit the possibility that there is a first server j in which case zi = −∞
for i < j. Servers at −∞ never move and do not communicate in any way with the rest of the process.
A similar convention for a last server is not really needed. Any server k can be regarded as the “last
server” because as far as the evolution of servers (zi : i ≤ k) goes, the subsequent servers (zi : i > k)
are irrelevant.

To construct a queue length process η(·) from a given initial configuration η(0), define an initial
server configuration by

(2.67) zi(0) =



i∑
j=1

ηj(0), i > 0

0, i = 0

−
0∑

j=i+1

ηj(0), i < 0,

run the server process z(·) according to (2.66) and define η(t) by (2.65).
The next envelope property for coupled server processes is our tool for proving the hydrodynamic

limit. LetM be a countable index set, and let z(·) and {xm(·) : m ∈M} be server processes defined
on the same probability space so that they obey the same coin flips. In other words each process
z(·) and xm(·) obeys equation (2.66) by itself, but the values {κi(t)} are shared by all. We say that
the server processes are coupled through the shared coin flips {κi(t)}.

Lemma 2.12. (Envelope property) In the situation described above, assume the initial configu-
rations satisfy

(2.68) zi(0) = sup
m∈M

xmi (0) for all i ∈ Z, a.s.

Then

(2.69) zi(t) = sup
m∈M

xmi (t) for all i ∈ Z and t ∈ Z+, a.s.

Proof. If zi(0) = −∞ then the hypothesis implies that wmi (0) = −∞ for all m ∈ M. These
servers remain at −∞ for the duration of the process, and so the conclusion holds for these indices
i. We can restrict consideration to those particles that satisfy zi(t) ∈ Z for all time.

Step 1. We claim that xmi (t) ≤ zi(t) for all i, t ∈ Z+, and m ∈ M a.s. Proof is by induction
on time. Suppose the property holds up to time t− 1.

If xmi (t− 1) < zi(t− 1) then one jump cannot reverse the ordering.
If xmi (t − 1) = zi(t − 1) then since xmi−1(t − 1) ≤ zi−1(t − 1), variable zi cannot jump without

variable xmi also jumping. Thus the ordering xmi (t) ≤ zi(t) continues to hold at time t.
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Step 2. We need to show that, given i and t, some m ∈ M satisfies xmi (t) = zi(t). Assume
(2.69) holds up to time t− 1. Pick m1 and m2 such that

xm1
i−1(t− 1) = zi−1(t− 1) and xm2

i (t− 1) = zi(t− 1) .

If xm2
i does not jump during (t − 1, t) then neither can zi by Step 1 and we conclude that

xm2
i (t) = zi(t).

Similarly, if both xm2
i and zi jump during (t− 1, t) again we have xm2

i (t) = zi(t).
Suppose xm2

i jumps during (t− 1, t) but zi does not. Then zi must have been blocked by zi−1,
and we have

xm1
i−1(t− 1) = zi−1(t− 1) = zi(t− 1).

By Step 1 and the ordering in the process xm1

xm1
i−1(t− 1) = zi−1(t− 1) = xm1

i (t− 1) = zi(t− 1).

This implies that xm1
i cannot jump during (t− 1, t) and thereby xm1

i (t) = zi(t). This completes the
proof. �

A consequence of the lemma is a form of monotonicity (proved in Step 1 of the proof) that we
also state for future reference.

Lemma 2.13. If z and x are two server processes coupled through shared coin flips and zi(0) ≥
xi(0) for all i, then zi(t) ≥ xi(t) continues to hold for all i and t.

The auxiliary processes xm(·) we use in Lemma 2.12 will be of the following special type. For
m ∈ Z let the process wm(·) evolve from the initial condition

(2.70) wmi (0) =

{
0, i ≥ m
−∞, i < m.

Then given an arbitrary initial configuration z(0), for m ∈ Z define the processes

(2.71) xmi (t) = zm(0) + wmi (t).

Lemma 2.12 applies and yields

(2.72) zi(t) = sup
m∈Z :m≤i

{
zm(0) + wmi (t)

}
, i ∈ Z, t ∈ Z+.

The condition m ≤ i can be added to the supremum because wmi (t) = −∞ for m > i. The equation
is true also for the case zi(t) = −∞ because then zm(0) = −∞ for all m ≤ i. The virtue of equation
(2.72) is that inside the braces on the right the initial condition has been separated from the coin
flips and for distinct m the processes (wmi−m(·) : i ∈ Z) are identical in distribution.

Stage 2: Limit for process w(·) = w0(·). At this stage we define the function g in terms of
a limit of a special case of the process itself. We could appeal to Theorem 2.2 to give an explicit
formula for g. However, we prefer to derive the formula for g from the particle system in Stage 4 of
the proof.

Theorem 2.14. Let w(·) = w0(·) be the process with initial condition given in (2.70) with
m = 0. Then there exists a continuous, concave, nondecreasing function g : [0,∞) → [−p, 0] such
that g(0) = −p, g(x) < 0 for 0 ≤ x < p, g(x) = 0 for p ≤ x <∞, and for all x ∈ R+ and t ∈ (0,∞)

(2.73) lim
N→∞

N−1wbNxc(bNtc) = tg(x/t) almost surely.
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Proof. To prove the existence of the limit in (2.73) we could resort to another application of
the subadditive ergodic theorem together with the approximations necessary, as was done in the
proof of Theorem 2.1. Let us bypass this work and take the limit from Theorem 2.1 by recasting
the problem as one involving a last passage model.

Define a growing cluster on N2 by

Ã(t) = {(i, j) ∈ N2 : 1 ≤ j ≤ −wi−1(t)}.

Rule (2.66) implies that Ã fills in growth sites with independent p-coin flips. Therefore by Propo-
sition 1.1 the process {τ(i, j) : (i, j) ∈ N2} of hitting times

τ(i, j) = inf{t ∈ Z+ : (i, j) ∈ Ã(t)} = inf{t ∈ Z+ : wi−1(t) ≤ −j}

has the same distribution as the process {G(i, j) : (i, j) ∈ N2} of last-passage times defined by (1.3)
with weights Yi,j geometrically distributed as in (1.6). By Theorem 2.1 the event

{ lim
N→∞

N−1G(bNxc, bNyc) = Ψ(x, y)}

has probability 1 for any fixed (x, y) ∈ (0,∞)2, where Ψ is the limit function of that theorem. By
the distributional equality {τ(i, j)} d= {G(i, j)} of the processes, also

(2.74) P
{

lim
N→∞

N−1τ(bNxc, bNyc) = Ψ(x, y)
}

= 1.

We use a simple large deviation bound to show that Ψ <∞. There are
(

2N−2
N−1

)
≤ 4N paths from

(1, 1) to (N,N). Fix any particular path π from (1, 1) to (N,N). The geometric distribution has
an exponential moment. By Lemma A.4 we can pick t > 0 large enough so that, for some C > 0,

P{G(N,N) ≥ Nt} ≤ 4NP
{∑

x∈π
Yx ≥ Nt

}
≤ e−CN → 0 as N →∞.

The first inequality above is true because the sum of weights along any path has the same distribution
as the sum along π. Then Ψ(1, 1) ≤ t and by Theorem 2.1 Ψ <∞ on all of (0,∞)2.

We approach the function g through its negative. Define the function

(2.75) g̃(x) = inf{y > 0 : Ψ(x, y) ≥ 1}, x > 0.

This function is finite because Ψ(x, y) ≥ p−1(x+ y) and nonincreasing by the coordinatewise mono-
tonicity of Ψ. By concavity of Ψ, Ψ(x1, y1) ≥ 1 and Ψ(x2, y2) ≥ 1 imply Ψ(sx1 + (1 − s)x2, sy1 +
(1− s)y2) ≥ 1, and thereby

g̃(sx1 + (1− s)x2) ≤ sy1 + (1− s)y2.

Letting yi ↘ g̃(xi) shows g̃ convex on (0,∞). Thereby g̃ is also continuous on (0,∞). If g̃(x) > 0
then Ψ(x, y) = 1 iff y = g̃(x) by the continuity and strict coordinatewise monotonicity of Ψ.

By the strong law of large numbers

N−1G(bNxc, 1) = N−1

bNxc∑
i=1

Yi,1 −→
N→∞

xEY1,1 = xp−1

and thereby Ψ(x, y) ≥ 1 for all x ≥ p and y > 0. This implies g̃(x) = 0 for x ≥ p. By symmetry
Ψ(x, y) ≥ 1 for all x > 0 and y ≥ p which implies g̃(x) ≤ p.

To show g̃(0+) ≥ p we use another large deviation estimate. Fix a small ε ∈ (0, 1) and let
x ∈ (0, pε/4) and y = p(1 − ε). Consider N large enough so that (bNxc, bNyc) ∈ N2. For an
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individual path π from (1, 1) to (bNxc, bNyc), by Lemma A.4,

P
{∑

x∈π
Yx ≥ N(1− ε/4)

}
≤ P

{∑
x∈π

(Yx −EYx) ≥ Nε/2
}
≤ e−(bNxc+bNyc−1)A(ε/2)

≤ e−C(ε)N

for a constant C(ε) > 0 and large enough N . The rearranged right-hand side inside the probability
came from ∑

x∈π
EYx = (bNxc+ bNyc − 1)p−1 ≤ N(x+ y)p−1 ≤ N(1− 3ε/4).

Next estimate the number of paths as a function of x and large N . Put temporarily k = bNxc−1
and ` = bNyc − 1. By Stirling’s formula, for large N ,

the number of paths from (1, 1) to (bNxc, bNyc) =
(
bNxc+ bNyc − 2
bNxc − 1

)

=
(
k + `

k

)
≤ C

(
k + `

k`

)1/2 (k + `)k+`

kk``
≤ C√

Nx
exp
[
k log(1 + `/k) + ` log(1 + k/`)

]
≤ C(Nx)−1/2eNx log(1+C1y/x)+Nx ≤ CeNδ(x)− 1

2 logNx

where δ(x) → 0 as x → 0. In the second last inequality we used `/k ≤ C1y/x for large N and
log(1 + k/`) ≤ k/`. The two estimates together give

P{G(bNxc, bNyc) ≥ N(1− ε/4)} ≤ exp
[
−N

(
C(ε)− δ(x) +

1
2N

logNx
)]
.

If x is fixed small enough relative to ε, the last bound above tends to 0 as N → ∞. This implies
Ψ(x, y) ≤ 1 − ε/4 which forces g̃(x) ≥ y = p(1 − ε). Since this is true for small enough x we have
g̃(0+) ≥ p(1− ε), and since ε > 0 can be taken arbitrarily small we have g̃(0+) ≥ p. Together with
the earlier bound g̃(x) ≤ p this gives g̃(0+) = p.

Take the previous result and turn it around by symmetry to say Ψ(x, y) ≤ 1−ε/4 for x = p(1−ε)
and y ∈ (0, pε/4). Then g̃(x) ≥ pε/4 > 0. Since ε > 0 can be taken arbitrarily small we conclude
that g̃(x) > 0 for all x ∈ (0, p).

To summarize, we have shown that the function

(2.76) g(x) =

{
−g̃(x), x > 0
−p, x = 0

has the properties claimed in the statement of the theorem. It remains to prove the limit (2.73).

Fix x, t > 0. Let Ω1 be the event on which

N−1τ(bNx′c, bNyc)→ Ψ(x′, y)

for all (x′, y) such that x′ is either x or rational and y = tg̃(x′/t)± ε for rational ε > 0. For y ≤ 0
the condition is irrelevant and can be ignored. Restrict consideration to the event Ω1 which has
probability 1 by (2.74).

First the upper bound for the limit (2.73). Suppose g(x/t) < 0. Otherwise there is nothing to
prove. Take x′ > x close enough to x and ε > 0 small enough so that tg̃(x′/t) ≥ tg̃(x/t) − ε and
y = tg̃(x′/t)− ε > 0. Then

Ψ(x′, y) = tΨ
(
x′/t, g̃(x′/t)− ε/t

)
≤ t− δ
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for some δ > 0. (More precisely, Ψ(x′, y+h)−Ψ(x′, y) ≥ h/p for h > 0 by the law of large numbers.)
Consequently for all large enough N , τ(bNx′c, bNyc) ≤ Nt−Nδ/2, which in turn implies again for
large enough N

wbNxc(bNtc) ≤ wbNx′c−1(bNtc) ≤ −bNyc ≤ −Ntg̃(x′/t) +Nε+ 1

≤ −Ntg̃(x/t) + 2Nε+ 1.

Since ε > 0 was arbitrary,

lim
N→∞

N−1wbNxc(bNtc) ≤ tg(x/t) on the event Ω1.

The lower bound comes by an analogous argument. Suppose y = tg̃(x/t) + ε. Then

Ψ(x, y) = tΨ(x/t, g̃(x/t) + ε/t) ≥ t+ δ

for some δ > 0. For large enough N , τ(bNxc, bNyc) ≥ Nt+Nδ/2, which implies

wbNxc(bNtc) ≥ wbNxc−1(bNtc) > −bNyc ≥ −Ntg̃(x/t)−Nε.

We have shown that the limit (2.73) holds on the event Ω1 for x > 0.
It remains to argue the limit N−1w0(bNtc)→ tg(0) = −tp for x = 0. This is the classical strong

law of large numbers because w0(t) advances by p-coin flips, without obstruction. This completes
the proof of the theorem. �

Stage 3: Limits for the particle system. Assume given the nondecreasing function U0. Let
the function g be the one given in Theorem 2.14, defined by the limit (2.73). Once we have a more
general limit we can prove that this function g actually agrees with (2.55). Let U(t, x) be defined
by (2.56) in terms of the given initial profile U0 and the function g defined by limit (2.73).

On the particle side assume given the initial queue length configurations ηN (0) that satisfy
assumption (2.54). Define initial server configurations zN (0) by (2.67), run the server processes
according to equation (2.66), and define the queue length processes ηN (·) by (2.65).

Assumption (2.54) gives

(2.77) lim
N→∞

P
{
|N−1zNbNxc(0)− U0(x)| ≥ ε

}
= 0 for x ∈ R and ε > 0.

The statement that needs to be proved is that, for (t, x) ∈ (0,∞)× R and ε > 0,

(2.78) lim
N→∞

P
{
|N−1zNbNxc(bNtc)− U(t, x)| ≥ ε

}
= 0.

Since
bNbc∑

i=bNac+1

ηNi (bNtc) = zNbNbc(bNtc)− z
N
bNac(bNtc)

and
bNtc∑
s=1

dNbNac(s) = zNbNac(0)− zNbNac(bNtc)

both limits (2.58) and (2.59) of Theorem 2.11 follow from (2.78).
Rewrite the variational identity (2.72) for each process zN (·) and replace the discrete variables

with integer parts of scaled, continuous variables.

(2.79) N−1zNbNxc(bNtc) = sup
y∈R : y≤x

{
N−1zNbNyc(0) + N−1w

N,bNyc
bNxc (bNtc)

}
, x ∈ R, t > 0.

Each process zN (·) has coin flips {κNi (t) : i ∈ Z, t ∈ N} for generating its dynamics, and the
processes {wN,m(·) : m ∈ Z} are coupled with zN through these coin flips.



2.4. HYDRODYNAMIC LIMIT FOR M/M/1 QUEUES IN SERIES 29

Distributionally the process {wN,bNycbNxc (bNtc) : t ≥ 0} is equal to the process {wbNxc−bNyc(bNtc) :
t ≥ 0} discussed in Theorem 2.14, and hence by that theorem,

(2.80) lim
N→∞

N−1w
N,bNyc
bNxc (bNtc) = tg

(x− y
t

)
in probability, for all t > 0 and y ≤ x in R.

To appeal to the limit (2.73) precisely in its stated form, the position argument bNxc − bNyc in
wbNxc−bNyc(bNtc) must be replaced by something of the form bNrc. To this end take x′ > x, use
bN(x′ − y)c ≥ bNxc − bNyc ≥ bN(x− y)c and the monotonicity of wi(t) in i, and after passing to
the limit use the continuity of g to take x′ ↘ x. Presently we cannot assert almost sure convergence
in (2.80) because the process itself changes with N .

Fix x ∈ R and t > 0. The path towards the limit (2.78) is pretty clear since naively taking
N → ∞ in (2.79) leads to a variational formula of the type (2.56). Due to the presence of the
supremum we argue separately upper and lower bounds, beginning with the easier lower bound.

Given ε > 0, pick y ∈ (−∞, x] such that

U0(y) + tg
(x− y

t

)
≥ U(t, x)− ε.

By the convergence in probability in (2.77) and (2.80), we can find N0 such that for N ≥ N0

PN
{
N−1zNbNyc(0) ≥ U0(y)− ε

}
≥ 1− ε/2

and
PN
{
N−1w

N,bNyc
bNxc (bNtc) ≥ tg

(x− y
t

)
− ε
}
≥ 1− ε/2.

These bounds combined with (2.79) give

PN
{
N−1zNbNxc(bNtc) ≥ U(t, x)− 3ε

}
≥ 1− ε for N ≥ N0.

This is one half of the desired limit (2.78).

To get the other half we must bound the supremum in (2.79) from above and for that we need
some truncation, discretization and estimation. The first step is to restrict the supremum in (2.79)
to a bounded interval of y-values. With (t, x) fixed, define for v < x

ζN (v) = sup
y∈[v,x]

{
zNbNyc(0) + w

N,bNyc
bNxc (bNtc)

}
.

Lemma 2.15. If v < x− tp then

lim
N→∞

PN
{
zNbNxc(bNtc) 6= ζN (v)

}
= 0.

Proof. Forget the scaling for a moment and work with the basic variational equality (2.72)
with fixed i. Suppose that in that formula w`i (t) = 0 for some index ` ≤ i. Then, by wmi (t) ≤ 0 and
by the monotonicity of the initial server locations {zm(0)}, for m < `

zm(0) + wmi (t) ≤ zm(0) ≤ z`(0) = z`(0) + w`i (t).

This implies that indices m < ` cannot contribute to the supremum, and so

zi(t) = max
`≤m≤i

{
zm(0) + wmi (t)

}
.

Pick y ∈ (v, x− tp). For the situation at hand the above argument implies

PN
{
zNbNxc(bNtc) 6= ζN (v)

}
≤ PN

{
w
N,bNyc
bNxc (bNtc) < 0

}
.



30 2. DETERMINISTIC LARGE SCALE LIMITS

Initially wN,bNyci (0) = 0 for i = bNyc, bNyc+ 1, bNyc+ 2, . . . Since the particles move with p-coin
flips and a jump is possible only after the previous particle has jumped out of the way, the first
jump time

τN = inf{s ∈ N : wN,bNycbNxc (s) < 0}

is a sum of bNxc − bNyc + 1 i.i.d. variables Yi with common distribution P [Yi = k] = pqk−1 for
k ∈ N. These variables have mean p−1. By the law of large numbers N−1τN → (x − y)p−1 > t in
probability, and consequently

PN
{
w
N,bNyc
bNxc (bNtc) < 0

}
→ 0. �

Fix v < x− tp. To complete the proof of (2.78) it is enough to show

(2.81) lim
N→∞

P
{
N−1ζN (v) ≥ U(t, x) + ε

}
= 0.

Utilizing the continuity of the function g of Theorem 2.14, pick a partition v = y0 < y1 < · · · <
ym = x such that ∣∣∣∣tg(x− yjt

)
− tg

(x− yj+1

t

)∣∣∣∣ ≤ ε

4
for j = 0, . . . ,m− 1.

By the monotonicity Lemma 2.13, if m1 < m2 then wm2
i (t) ≤ wm1

i (t) because this inequality holds
at time 0. We bound ζN (v) in terms of partition points as follows:

ζN (v) = max
0≤j<m

max
bNyjc≤m≤bNyj+1c

{
zNm(0) + wN,mbNxc(bNtc)

}
≤ max

0≤j<m

{
zNbNyj+1c(0) + w

N,bNyjc
bNxc (bNtc)

}
.

The last line multiplied by N−1 converges in probability to

max
0≤j<m

{
U0(yj+1) + tg

(x− yj
t

)}
≤ max

0≤j<m

{
U0(yj+1) + tg

(x− yj+1

t

)}
+
ε

4

≤ U(t, x) +
ε

4
.

This implies limit (2.81) and finishes the proof of (2.78). We have now proved Theorem 2.11 except
for the explicit characterization (2.55) of g.

Stage 4: Computation of the profile g. To complete the proof of the hydrodynamic limit
we apply the limit (2.78) proved thus far to a stationary system to compute the function g explicitly.
From Theorem 2.14 we already know the values g(0) = p and g(x) = 0 for x ≥ p.

Fix the parameter r ∈ (0, p). Let the initial queue lengths η(0) = (ηi(0))i∈Z have the product
distribution ν = α⊗Z with marginal α defined in (2.51). According to Lemma 2.9 ν is invariant
for the queue length process η(·) and in this situation the departure process −z0(t) is a Bernoulli r
process. Thus

U0(y) = lim
N→∞

N−1zbNyc(0) = yEη0(0) = y
r(1− r)
p− r

and
U(1, 0) = lim

N→∞
N−1z0(N) = −r.

Substituting these into (2.56) with (t, x) = (1, 0) gives

(2.82) −r = sup
y≤0

{
y
r(1− r)
p− r

+ g(−y)
}
.
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The above equation is valid for the range 0 < r < p. By inspection, it also works for r = 0.
Define the new variable

(2.83) ρ =
r(1− r)
p− r

= Eη0(0)

which is a strictly increasing convex function of r ∈ [0, p) onto [0,∞). Then r = f(ρ) is a strictly
increasing concave function of ρ ∈ [0,∞). Solving explicitly from (2.83) gives formula (2.60) for f .
Extend g to a concave upper semicontinuous function on all of R by setting g ≡ −∞ on (−∞, 0).
Replace y by −y, and then (2.82) can be written as

(2.84) f(ρ) = inf
y∈R

{
yρ− g(y)

}
.

For ρ < 0 the infimum on the right gives −∞ because g(y) stays bounded as y ↗∞. Thus we can
extend f(ρ) to a concave upper semicontinuous function by setting f(ρ) = −∞ on (−∞, 0). By
concave duality (Corollary C.2 in Appendix C.1)

(2.85) g(y) = inf
ρ≥0

{
ρy − f(ρ)

}
.

With some calculus one can solve explicitly for

(2.86) g(y) = −
(√

p(1− y)−√qy
)2 for 0 ≤ y < p.

This verifies (2.55) and completes the proof of Theorem 2.11. Along the way we verified the concave
duality (2.61) of the flux f and the special shape g.

Let us also point out that the last computation reproves the limit for the last-passage model
with geometric weights.

Corollary 2.16. Let the i.i.d. weights {Yi,j}(i,j)∈N2 have common geometric distribution P [Yi,j =
k] = pqk−1 for k ∈ N. Define the limit Ψ(x, y) of the last-passage times as in (2.2). Then

(2.87) Ψ(x, y) = p−1
(
x+ y + 2

√
qxy

)
for (x, y) ∈ (0,∞)2.

Proof. Combining the definition (2.75) of g̃ with g̃ = −g (2.76) and the explicit expression
(2.86) for g above gives this statement: for 0 < x < p, Ψ(x, g̃(x)) = 1 for g̃(x) = (

√
p(1− x)−√qx )2.

Formula (2.87) can be derived from this with the help of the homogeneity of Ψ. Given (x, y) ∈
(0,∞)2, let c−1 = Ψ(x, y). Then Ψ(cx, cy) = 1 from which cy = g̃(cx), and c can be found from the
last equation. �

2.5. Queues and the last-passage model revisited

In this section we establish a connection between the last-passage model with boundaries studied
in Section 2.2 and the M/M/1 queues. As before 0 < p < 1 is fixed. To each r ∈ (0, p) associate a
“dual” parameter

(2.88) r∗ =
p− r
1− r

∈ (0, p).
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Let {G0(m,n) : (m,n) ∈ Z2
+} be the last-passage times in the last-passage model on Z2

+ as defined
in (2.19), with these weight distributions for independent {Yi,j}: for k ∈ N,

P{Y0,0 = 0} = 1,(2.89)

P{Yi,0 = k} = r∗(1− r∗)k−1 for i ∈ N,(2.90)

P{Y0,j = k} = r(1− r)k−1 for j ∈ N,(2.91)

P{Yi,j = k} = pqk−1 for i, j ∈ N.(2.92)

These distributions are exactly those used in (2.15)–(2.18) in Section 2.2 except that the geometric
variables have been shifted by 1.

To create a queueing situation that matches this last-passage picture, we construct a system in
which the departure process from a fixed queue is a Bernoulli r process, and an individual customer
jumps from server to server as a Bernoulli r∗ process.

Consider an infinite sequence of M/M/1 servers labeled by i ∈ N as in Section 1.1. Customers
enter the system at server 1 and move from server i to i + 1 in order, under FIFO discipline. But
instead of having all customers queue up at server 1 at time t = 0, imagine that the system has been
in operation for a long time, fed by a mean r Bernoulli arrival process at server i = 1. Consequently
we can assume that the queue length process {ηi(t) : i ∈ N} for times t ≤ −1 is stationary with
product distribution α⊗N, as described in Lemma 2.9.

During period (−1, 0) a special customer labeled 0 shows up, outside the arrival process, and
enters the system at server 1. After customer 0 the Bernoulli r arrival process resumes as before,
from period (0, 1) onwards. (Perhaps customer 0 is you, cutting in line?) We need to be precise
about what customer 0 sees upon arrival, so let us stipulate that customer 0 arrives during (−1, 0)
after the service events of period (−1, 0) have taken place.

Let τ(0, j) denote the arrival time of customer j ∈ Z+ at server 1. Thus τ(0, 0) = 0, and then,
since the subsequent arrival process is a mean r Bernoulli process, processes {τ(0, j) : j ∈ Z+} and
{G0(0, j) : j ∈ Z+} are equal in distribution. For i ≥ 1, j ≥ 0 let τ(i, j) be the time when customer
j departs server i and joins the queue at server i + 1. More precisely, if τ(i, j) = t ∈ N then the
event in question happens during period (t− 1, t). The result is that the last-passage process with
boundaries captures this queueing process.

Theorem 2.17. The processes {G0(m,n) : (m,n) ∈ Z2
+} and {τ(m,n) : (m,n) ∈ Z2

+} are equal
in distribution.

Let us first be clear about what needs to be proved. We already know the equality {τ(0, j) :
j ∈ Z+}

d= {G0(0, j) : j ∈ Z+} on the j-axis. Suppose we know the similar equality in distribution
on the i-axis. Then induction takes over and proves Theorem 2.17. Namely, after time τ(i− 1, j) ∨
τ(i, j−1) the first successful p-coin flip at server i sends customer j away from server i and marks the
occurrence of time τ(i, j). In other words, the system {τ(i, j)} follows the last-passage recipe with
weight distributions (2.89)–(2.92). One can write a rigorous argument along the lines of Proposition
1.1 by showing that {τ(i, j)} and {G0(i, j)} determine the same cluster processes in the sense of
distributions.

Thus it suffices to prove the equality in distribution on the i-axis:

Proposition 2.18. {τ(i, 0) : i ∈ Z+}
d= {G0(i, 0) : i ∈ Z+}

The remainder of the section proves the proposition. As already mentioned above, we assume
that during period (−1, 0) all service completions are done “by time − 1

2” before customer 0 arrives
at server 1. Consequently the queues {ηi(− 1

2 ) : i ∈ N} that customer 0 sees upon arrival are the
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equilibrium queues {ηi(−1) : i ∈ N} from time t = −1 modified by the service completions of period
(−1, 0).

Lemma 2.19. The distribution seen by the arriving customer 0 is

(2.93) P{η1(− 1
2 ) = x1, η2(− 1

2 ) = x2, . . . , ηn(− 1
2 ) = xn} = (1− u)ux1 ·

n∏
i=2

α(xi)

for x1, . . . , xn ∈ Z+.

Proof. As indicated η(−1) has α⊗N distribution. From time −1 to −1/2 there is no arrival
from the outside, but a round of potential services happens, triggered by variables {κi(0)}. The
evolution is given by the equations

(2.94)
η1(− 1

2 ) = (η1(−1)− κ1(0))+

ηi(− 1
2 ) = (ηi(−1)− κi(0))+ + di−1(0), i ≥ 2.

Let us compute the distribution of (η1(− 1
2 ), d1(0)):

P{η1(− 1
2 ) = x, d1(0) = 1} = P{η1(−1) = x+ 1, κ1(0) = 1} =

p− r
pq

ux+1p

= (1− u)uxr.

Thus the queue η1(− 1
2 ) has distribution (1 − u)ux and is independent of the Bernoulli r arrival

a2(0) = d1(0) sent to server 2. The queues {ηi(−1) : i ≥ 2} are initially in the α⊗{2,3,4,... }

equilibrium and independent of (η1(− 1
2 ), d1(0)). It follows from Lemma 2.9 that after the service

step the resulting queues {ηi(− 1
2 ) : i ≥ 2} are again in the α⊗{2,3,4,... } equilibrium and independent

of η1(− 1
2 ). �

Starting from r∗ defined in (2.88) we define dual counterparts of the constant u and the measure
α from (2.50) and (2.51):

u∗ =
ur∗

p(1− r∗)
=
p− r
p

= α(0)

and
α∗(0) =

p− r∗
p

= u and α∗(x) =
p− r∗
pq

ux∗ for x ≥ 1.

Next, we record the situation seen by customer 0 upon arrival in a different way. The customers
he sees ahead of himself in the queues are the customers −1, −2, −3, . . . that arrived before him.
They have stayed in order, with customer −1 ahead of customer 0, customer −2 ahead of customer
−1, and so on. Let S` be the label of the server at which customer ` ∈ −N resides at time t = − 1

2
when customer 0 arrives. Let

ξ−k = S−k − S−k+1, k ∈ N.
Variable ξ−k counts the number of servers between customer −k + 1 and the next customer −k.
ξ−k = 0 if customers −k + 1 and −k are at the same server. ξ−k = y > 0 if customer −k + 1 is at
the front of his queue at server S−k+1, the next y − 1 queues ahead are empty of customers, and
the next customer −k is at server S−k+1 + y. From (2.93) we derive the distribution of {ξ−k}.

Lemma 2.20. Variables {ξ−k : k ∈ N} have the product distribution α⊗N
∗ .

Proof. Let N ∈ N, k1, . . . , kN ∈ Z+, y1, . . . , yN ∈ N and set Km =
∑m
i=1(1 + ki). Define the

event

A =
{
ξ−1 = · · · = ξ−k1 = 0 , ξ−k1−1 = y1 , ξ−k1−2 = · · · = ξ−k1−k2−1 = 0 , ξ−k1−k2−2 = y2 ,

. . . , ξ−KN−1−1 = · · · = ξ−KN+1 = 0, ξ−KN = yN
}
.
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To clarify, this event prescribes k1 + · · ·+ kN ξ-values zero, and N ξ-values equal to y1, . . . , yN > 0.
It suffices to show that

(2.95) P(A) = α∗(0)k1+···+kN ·
N∏
i=1

α∗(yi).

This is sufficiently general for the conclusion because an event with adjacent positive ξ-values can
be prescribed by setting some ki = 0, and the last value can be zero by summing over yN > 0 and
taking the complement.

Let us abbreviate ηi(− 1
2 ) = ηi for this proof. Set Yn = y1 + · · ·+yn. Restate A in terms of {ηi}:

A =
{
η1 = k1 , η2 = · · · = ηy1 = 0 , ηy1+1 = k2 + 1 , ηy1+2 = · · · = ηy1+y2 = 0 ,

. . . , ηYN−1+1 = kN + 1 , ηYN−1+2 = · · · = ηyN = 0 , ηYN+1 > 0
}
.

In words, this event specifies that η1 = k1 (the special first queue in (2.93)), and after that there
are YN −N empty queues, N − 1 queues with lengths ki + 1 (2 ≤ i ≤ N), and finally a nonempty
queue. By (2.93)

P(A) = (1− u)uk1 · α(0)y1+···+yN−N ·
{ N∏
i=2

α(ki + 1)
}
· (1− α(0))

which simplifies to the right-hand side of (2.95). �

Now we wish to switch around the meaning of customers and servers. To make the text intelli-
gible we continue to use the terms customer and server as used up to now, for the customers j ∈ Z+

and servers i ∈ N introduced in the beginning of this section. We call the new entities *customers
and *servers. Think of the variables {ξ−k} as initial *queue lengths. *Queue −k receives a *cus-
tomer when S−k increases by 1 (customer −k jumps from one queue to the next) and sends off a
*customer when S−k+1 increases by 1 (customer −k+ 1 jumps from one queue to the next). Think
of the variables S−k as the positions of *servers that jump when a *customer completes service.

The variables {. . . , ξ−3, ξ−2, ξ−1} are initially in i.i.d. α∗ equilibrium. Lemma 2.9 implies that
the *departure process from *queue ξ−1 is a Bernoulli r∗ process. However, the *departure process
from *queue ξ−1 corresponds to the motion of S0, the position of customer 0 among the servers.
Precisely speaking, if i *customers have departed from *queue ξ−1 during time 1, . . . , t, then the
position of customer 0 among the servers satisfies S0(t) = i+ 1. S0(t) = i+ 1 rather than i because
S0(0) = 1 and not 0.

Consequently, the marginal distribution of the position process S0(·) of customer 0 is the same
as obtained by flipping an r∗ coin to determine when to jump to the next server. The time τ(i, 0)
when customer 0 departs server i (i ≥ 1) is then a sum of i i.i.d. geometric variables with common
distribution P[Y = s] = r∗(1 − r∗)s−1, s ∈ N. The distributional equality claimed in Proposition
2.18 holds. This completes the proof of Theorem 2.17.

Comments

Section 2.1. Moment assumptions on Yi,j under which the limit function Ψ of Theorem 2.1 is
finite were investigated by [Mar04].

Section 2.2. The proof of the explicit limit in Section 2.2 adapts some calculations from [BCS06].
The limit for the geometric case satisfies

Ψ(x, y) = m(x+ y) + 2
√
σ2xy
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where m = E(Y1,1) and σ2 = Var(Y1,1) are the mean and the variance of the weight distribution.
Additional evidence on behalf of this formula comes from asymptotics of Ψ(x, y) at the boundary
as y ↘ 0 (see [Mar04]), but presently it is not known if this is the correct general limit formula.

Section 2.3. A standard references for the theory of M/M/1 queues is the monograph [Kel79].
Section 2.4. In general, hydrodynamic limits are laws of large numbers that describe the behav-

ior of a particle system over large space and time scales. Introductions to the subject can be found
in [DMP91], [KL99] and [Spo91]. The zero range process was introduced by Spitzer [Spi70]. A
hydrodynamic limit for multidimensional zero range processes was proved by Rezakhanlou [Rez91].
The envelope approach to hydrodynamic limits used in Section 2.4 works for a special class of totally
asymmetric systems in one dimension. It was introduced through several examples in the papers
[Sep98], [Sep97] and [Sep00]. Assumption (2.54) was formulated in terms of convergence in prob-
ability, and consequently the results (2.58) and (2.59) are of the same type. If we assume almost
sure convergence in (2.54) and work harder to derive summable deviation estimates, we can get the
conclusions also with probability 1. See [Sep99].

Exercises

Exercise 2.1. Explain how the proof of Theorem 2.1 actually proves the stronger statement that
there exists an event of probability 1 on which limit (2.2) holds simultaneously for all (x, y) ∈ (0,∞)2.





CHAPTER 3

The last-passage Markov chain

Let us recall the setting of the last-passage model with geometric weights. The parameter
0 < p < 1 is fixed and q = 1− p. The geometric distribution supported by nonnegative integers is

γ(x) =

{
pqx, x ∈ Z+

0, x ∈ Z \ Z+.

For k ∈ Z+ let γk = γ∗k denote the kth convolution power of γ. Then γ0(x) = 1{x = 0}, γ1 = γ,
and in general for k ≥ 1 γk is the negative binomial distribution:

γk(x) = γ∗k(x) =
∑

(x1,...,xk)∈Zk:
x1+···+xk=x

γ(x1) · · · γ(xk) = pk
(
x+ k − 1

x

)
qx, x ∈ Z+.

The values at negative integers are all zero: γk(x) = 0 for all k ∈ Z+ and x < 0. Probabilistically
speaking, for k ≥ 1 γk is the probability distribution of a sum Sk = Y1 + · · · + Yk of k i.i.d.
γ-distributed terms Yi. If an experiment with success probability p is repeated, then γk is the
distribution of the number of failures that occur before the kth success. The identity γk ∗ γ` = γk+`

holds for all k, ` ∈ Z+.
Let {Yi,j : (i, j) ∈ N2} be i.i.d. γ-distributed weights or waiting times associated to the points

of the positive quadrant N2 of the planar integer lattice. For each point (m,n) ∈ N2 let Π(m,n) be
the set of up-right paths

(3.1) π = {(1, 1) = (i1, j1), (i2, j2), . . . , (im+n−1, jm+n−1) = (m,n)}
that connect (1, 1) to (m,n) and whose steps are restricted to satisfy (is+1, js+1)− (is, js) = (1, 0)
or (0, 1). Define the last-passage time G(m,n) of point (m,n) ∈ N2 by

(3.2) G(m,n) = max
π∈Π(m,n)

∑
(i,j)∈π

Yi,j .

An alternative way to express this is

(3.3) G(m,n) = max{G(m− 1, n), G(m,n− 1)}+ Ym,n, (m,n) ∈ N2,

with boundary conditions G(m, 0) = G(0, n) = 0 for m,n ∈ N.
In this section we look at the process {G(m,n)} as a Markov chain indexed by m. Fix the

vertical dimension n. Define the n-vector G(m) = (G(m, 1), G(m, 2), . . . , G(m,n)) for m ∈ Z+.
The initial value is G(0) = (0, 0, . . . , 0). For the state space of the Markov chain G(m) we take

Un = {z ∈ Zn : z1 ≤ z2 ≤ · · · ≤ zn}.
With the initial value G(0) = (0, 0, . . . , 0) the chain G(m) actually lives in the smaller space
U+
n = {z ∈ Zn+ : 0 ≤ z1 ≤ z2 ≤ · · · ≤ zn}. For compact expression of some formulas it is at times

convenient to add the coordinate y0 = −∞ to a vector y ∈ Un.
Define the discrete difference operator for functions on Z by

(3.4) Df(x) = f(x+ 1)− f(x).

37
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On the subspace of functions for which there exists a > −∞ such that f(y) = 0 for y ≤ a, define
also the operator

(3.5) D−1f(x) =
∑
y:y<x

f(y).

On this subspace of functions D(D−1f) = D−1(Df) = f . Powers of the operators are defined
in the usual way in terms of composition. By definition D0f = f , D1f = Df , and for j > 0
Dj+1f = D(Djf) while D−j−1f = D−1(D−jf). Then for all integers i, j ∈ Z, Di+jf = Di(Djf).

Note that in general the inverse of D is not unique, by analogy with indefinite integration. The
operator

Af(x) = −
∑
y:y≥x

f(y)

would also serve for functions that vanish at large integers. Definition (3.5) is the one that is useful
for this section because the applications are to probability distributions supported on Z+.

The goal of this section is to derive representations for probabilities of the geometric last-passage
model. The first theorem gives a determinantal formula for the transition probability.

Theorem 3.1. Fix n ∈ N. The transition probabilities of the Markov chain G(m) are given by

(3.6) P{G(m) = y |G(`) = x} = det
i,j∈[n]

[
Dj−iγm−`(yj − xi)

]
,

for x, y ∈ Un and 0 ≤ ` ≤ m.

As a corollary we derive a determinantal expression for the distribution function of G(m,n).

Theorem 3.2. For m,n ∈ N and t ∈ Z

P{G(m,n) ≤ t} = det
i,j∈[n]

[Dj−i−1γm(t+ 1)].

If t < 0 then the first column (j = 1) of the determinant above vanishes and the formula returns
0 as it should.

For the purpose of extracting asymptotics we turn this formula into one of the orthogonal polyno-
mial ensemble type. Our notation for the Vandermonde determinant is ∆n(x) =

∏
1≤i<j≤n(xj−xi).

Note that below the summations are not restricted to vectors x ∈ Un, although they could be
because the functions inside the sums are symmetric in the coordinates (x1, . . . , xn) and the Van-
dermonde vanishes unless the coordinates are distinct.

Theorem 3.3. For m ≥ n in N and t ∈ Z+

(3.7) P{G(m,n) ≤ t} =
1

Zm,n,p

∑
x∈Zn+:

∀i∈[n]:xi≤t+n−1

∆n(x)2
n∏
i=1

{(
xi +m− n

xi

)
qxi
}

where the normalization constant is given by

(3.8) Zm,n,p =
∑
x∈Zn+

∆n(x)2
n∏
i=1

{(
xi +m− n

xi

)
qxi
}
.
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3.1. Derivation of the determinantal transition probabilities

In this section we prove Theorems 3.1 and 3.2. First the transition probability of a single time
step. Recall the convention of the extra coordinate y0 = −∞ for vectors y = (y1, . . . , yn) ∈ Un.

Lemma 3.4. The Markov chain G(m) has this time-homogeneous one-step transition probability
for x, y ∈ Un:

(3.9) P{G(m+ 1) = y |G(m) = x} =
n∏
k=1

γ(yk −max(xk, yk−1)) = det
i,j∈[n]

[Dj−iγ(yj − xi)].

The first equality in (3.9) follows from (3.3) but the second needs a proof and we state it as a
separate lemma.

Lemma 3.5. For x, y ∈ Un, with the additional convention y0 = −∞,

(3.10) det
i,j∈[n]

[Dj−iγ(yj − xi)] =
n∏
k=1

γ(yk −max(xk, yk−1)).

Proof. Proof is by induction on n. The case n = 1 is clear. Assume (3.10) is true for n − 1.
Expand the determinant on the left-hand side of line (3.10) along the last row i = n:

det
i,j∈[n]

[Dj−iγ(yj − xi)] =
n−2∑
`=1

(−1)`+nD`−nγ(y` − xn) det
i∈[n−1], j∈[n]\{`}

[Dj−iγ(yj − xi)](3.11)

−D−1γ(yn−1 − xn) det
i∈[n−1], j∈[n]\{n−1}

[Dj−iγ(yj − xi)](3.12)

+ γ(yn − xn) det
i,j∈[n−1]

[Dj−iγ(yj − xi)].(3.13)

We show that each term in the sum on the right-hand side of line (3.11) vanishes. Fix an index
1 ≤ ` ≤ n− 2 for the moment.

Case 1: y` ≤ xn. Check by induction for j < 0 and j > 0 that

(3.14) ∀j ∈ Z: Djf(x) is a linear combination of {f(y) : y ≤ x+ j}.

Hence since γ(y) = 0 for y < 0, Djγ(x) = 0 for x < −j. It follows that D`−nγ(y` − xn) = 0.

Case 2: y` > xn. Let us write Dy when the difference operator acts on the variable y, so that
for k ∈ Z

(3.15) Dk+1f(x+ y) = Dkf(x+ y + 1)−Dkf(x+ y) = DyD
kf(x+ y).

This is a convenient notational trick. Set temporarily

ỹj =

{
yj , 1 ≤ j ≤ `− 1
yj+1, ` ≤ j ≤ n− 1.

In the first step below apply (3.15) in the columns j = ` + 1, . . . , n. Use the linearity of the
determinant in the columns to bring the operators Dyj outside. The effect is to reduce the powers
of D by 1 and thereby bring the index j to the interval [n− 1]:

det
i∈[n−1],j∈[n]\{`}

[Dj−iγ(yj − xi)] = Dy`+1 · · ·Dyn det
i,j∈[n−1]

[Dj−iγ(ỹj − xi)]
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by the induction assumption that (3.10) holds for n− 1

= Dy`+1 · · ·Dyn

{ n−1∏
k=1

γ(ỹk −max(xk, ỹk−1))
}

= Dy`+1 · · ·Dyn

{ `−1∏
k=1

γ(yk −max(xk, yk−1)) · γ(y`+1 −max(x`, y`−1))

×
n−1∏
k=`+1

γ(yk+1 −max(xk, yk))
}

utilizing the assumption yn ≥ · · · ≥ y` > xn

= Dy`+1 · · ·Dyn

{ `−1∏
k=1

γ(yk −max(xk, yk−1)) · pqy`+1−max(x`,y`−1)

×
n−1∏
k=`+1

pqyk+1−yk
}

=
`−1∏
k=1

γ(yk −max(xk, yk−1))pq−max(x`,y`−1)

×Dy`+1 · · ·Dyn

{
qy`+1 ·

n−1∏
k=`+1

pqyk+1−yk
}
.

The last factor equals

pn−`−1Dy`+1 · · ·Dynq
yn = 0

because the function qyn is constant in each yj such that `+ 1 ≤ j ≤ n−1, and this range of indices
is nonempty because we are presently in the case 1 ≤ ` ≤ n− 2.

We have now verified that each term 1 ≤ ` ≤ n − 2 in the sum on the right-hand side of line
(3.11) vanishes.

Next we show that lines (3.12) and (3.13) together make up the right-hand side of (3.10). This
will complete the proof of the lemma.

Case 1: yn−1 ≤ xn. By (3.14) D−1γ(yn−1 − xn) = 0. Only line (3.13) remains, which by
yn−1 ≤ xn and induction equals the left-hand side of (3.10).

Case 2: yn−1 > xn. Note first that for x ≥ 0,

Dγ(x) = pqx+1 − pqx = −pγ(x),

and by induction for all j ≥ 1 and x ≥ 0

Djγ(x) = −pjγ(x) = −pDj−1γ(x).

Consider the determinant deti∈[n−1],j∈[n]\{n−1}[Dj−iγ(yj − xi)] on line (3.12). Since yn ≥ yn−1 >
xn ≥ xi is assumed, we can write the last column with index j = n in this determinant as{

Dn−iγ(yn − xi)
}
i∈[n−1]

= −p
{
Dn−1−iγ(yn − xi)

}
i∈[n−1]

.
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Take the factor −p outside the determinant by linearity, and apply the induction assumption to
write the determinant as

− p
n−2∏
k=1

γ(yk −max(xk, yk−1)) · γ(yn −max(xn−1, yn−2))

=
n−1∏
k=1

γ(yk −max(xk, yk−1)) · (−p)qyn−yn−1 .(3.16)

Noting that D−1γ(x) = 1− qx for x > 0, we write line (3.12) together with its minus sign as

n−1∏
k=1

γ(yk −max(xk, yk−1)) · (1− qyn−1−xn)pqyn−yn−1 .

Apply induction on line (3.13) and add it together with the line above to get this expression for the
sum of lines (3.12) and (3.13):

n−1∏
k=1

γ(yk −max(xk, yk−1)) ·
(

(1− qyn−1−xn)pqyn−yn−1 + pqyn−xn
)

=
n−1∏
k=1

γ(yk −max(xk, yk−1)) · pqyn−yn−1 =
n∏
k=1

γ(yk −max(xk, yk−1)).

The last equality used yn−1 > xn. To summarize, in both cases lines (3.12) and (3.13) together
make up the right-hand side of (3.10). This completes the proof of the lemma. �

This finishes the proof of formula (3.9) for the single step transition. Next a convolution identity.

Proposition 3.6. Let f, g : Z→ C and a ∈ Z be such that f(x) = g(x) = 0 for x < a. Then the
following identity holds for n×n determinants with i, j ∈ [n] and for all integer vectors (x1, . . . , xn),
(z1, . . . , zn) ∈ Zn:

(3.17)
∑
y∈Un

det[Dj−if(yj − xi)] det[Dj−ig(zj − yi)] = det[Dj−i(f ∗ g)(zj − xi)].

The sum on the left in (3.17) is actually finite because large negative yj-values eliminate the
f -values while large positive yi-values eliminate the g-values. The proof of Proposition 3.6 depends
on the next lemma which sets the stage for an application of the Cauchy-Binet identity (B.7).

Lemma 3.7. With assumptions as in Proposition 3.6,∑
y∈Un

det[Dj−if(yj − xi)] det[Dj−ig(zj − yi)]

=
∑
y∈Un

det[D1−if(yj − xi)] det[Di−1g(zi − yj)].
(3.18)

Proof. Note that the second g-determinant in (3.18) was transposed. Identity (3.18) is proved
by repeatedly moving operators D from columns of the f -determinant to corresponding columns of
the g-determinant via (3.19).
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First check this summation by parts formula by induction on `− k: for any C-valued functions
φ and ψ on Z, any integers x, z and k < `,∑̀

y=k

Dφ(y − x)ψ(z − y) =
∑̀
y=k

φ(y − x)Dψ(z − y) + φ(`+ 1− x)ψ(z − `)

− φ(k − x)ψ(z + 1− k).

(3.19)

You do not see a minus sign in front of the sum on the right because the summation variable y
comes with a minus sign.

Beginning with the left-hand side of (3.18), transpose the g-determinant, express the determi-
nants in terms of columns, and write the summation index as y = (y′, yn) with y′ = (y1, . . . , yn−1)
∈ Un−1: ∑

y′∈Un−1

M∑
yn=yn−1

det
[
D1−if(y1 − xi), . . . , Dn−1−if(yn−1 − xi), Dn−if(yn − xi)

]
(3.20)

× det
[
Di−1g(zi − y1), . . . , Di−n+1g(zi − yn−1), Di−ng(zi − yn)

]
.(3.21)

Upper summation limit M above was chosen large enough so that zi−M < a for each i to guarantee
that each g(zi − yn) = 0 for yn > M .

Apply summation by parts (3.19) to the inner sum over yn. This takes one operator D from
the last column of the determinant on line (3.20), leaving Dn−1−if(yn−xi), and puts this D in the
last column of the determinant on line (3.21), turning this column into Di−n+1g(zi − yn). (More
precisely, first the D comes out of the f -determinant by linearity of determinant in columns, then
moves in front of the g-determinant by summation by parts, and then slips into the last column of
the g-determinant.) The boundary terms are (for fixed y′)

det
[
D1−if(y1 − xi), . . . , Dn−1−if(yn−1 − xi), Dn−1−if(M + 1− xi)

]
× det

[
Di−1g(zi − y1), . . . , Di−n+1g(zi − yn−1), Di−ng(zi −M)

](3.22)

− det
[
D1−if(y1 − xi), . . . , Dn−1−if(yn−1 − xi), Dn−1−if(yn−1 − xi)

]
× det

[
Di−1g(zi − y1), . . . , Di−n+1g(zi − yn−1), Di−ng(zi + 1− yn−1)

](3.23)

The boundary terms vanish, (3.22) because M was chosen large enough and (3.23) because the two
last columns of the f -determinant are identical. The result is that the sum on lines (3.20)–(3.21)
has become ∑

y∈Un

det
[
D1−if(y1 − xi), . . . , Dn−1−if(yn−1 − xi), Dn−1−if(yn − xi)

]
(3.24)

× det
[
Di−1g(zi − y1), . . . , Di−n+1g(zi − yn−1), Di−n+1g(zi − yn)

]
.(3.25)

Next we repeat the procedure for yn−1. With y′ = (y1, . . . , yn−2, yn) fixed the summation is∑yn
yn−1=yn−2

. One D operator moves from the next-to-last column of the f -determinant on line
(3.24) to the next-to-last column of the g-determinant on line (3.25). The boundary terms coming
from the summation by parts are

det
[
D1−if(y1 − xi), . . . , Dn−2−if(yn−2 − xi), Dn−2−if(yn + 1− xi), Dn−1−if(yn − xi)

]
× det

[
Di−1g(zi − y1), . . . , Di−n+1g(zi − yn), Di−n+1g(zi − yn)

]
− det

[
D1−if(y1 − xi), . . . , Dn−2−if(yn−2 − xi), Dn−2−if(yn−2 − xi), Dn−1−if(yn − xi)

]
× det

[
Di−1g(zi − y1), . . . , Di−n+1g(zi + 1− yn−2), Di−n+1g(zi − yn)

]
These vanish because determinants with repeated columns appear.
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When this step has been done once for each of yn, yn−1, . . . , y2 sum on lines (3.24)–(3.25) has
become ∑

y∈Un

det
[
D1−if(y1 − xi), D1−if(y2 − xi), D2−if(y3 − xi), . . . , Dn−1−if(yn − xi)

]
(3.26)

× det
[
Di−1g(zi − y1), Di−1g(zi − y2), Di−2g(zi − y3), . . . , Di−n+1g(zi − yn)

]
.(3.27)

In both determinants the first two columns are in agreement with the goal which is the right-hand
side of (3.18). This procedure is next repeated for yn, yn−1, . . . , y3 after which the first three
columns are done. And so on, until the sum has turned into the right-hand side of (3.18). �

Proof of Proposition 3.6. Start with the left-hand side of (3.17). Apply identity (3.18):∑
y∈Un

det[Dj−if(yj − xi)] det[Dj−ig(zj − yi)]

=
∑
y∈Un

det[D1−if(yj − xi)] det[Di−1g(zi − yj)]

by symmetry and vanishing of determinants with identical columns

=
1
n!

∑
y∈Zn

det[D1−if(yj − xi)] det[Di−1g(zi − yj)]

by the generalized Cauchy-Binet identity (B.7)

= det
[∑
y∈Z

D1−if(y − xi)Dj−1g(zj − y)
]
.(3.28)

Thus it remains to check that for i, j ≥ 1

(3.29)
∑
y∈Z

D1−if(y − x)Dj−1g(z − y) = Dj−i(f ∗ g)(z − x).

The sum actually ranges over a finite interval of integers. Let Dz act on the z-variable. Note that

(3.30) (f ∗ 1N)(x) =
∑
y∈Z

f(x− y)1N(y) =
∑
z:z<x

f(z) = D−1f(x).

Use linearity of operators and associativity of convolution:∑
y∈Z

D1−if(y − x)Dj−1g(z − y) =
∑
y∈Z

(1∗(i−1)
N ∗ f)(y − x)Dj−1

z g(z − y)

= Dj−1
z

(
(1∗(i−1)

N ∗ f) ∗ g
)
(z − x) = Dj−1

z

(
1∗(i−1)

N ∗ (f ∗ g)
)
(z − x)

= Dj−1
z D1−i(f ∗ g)(z − x) = Dj−i(f ∗ g)(z − x).

This completes the proof of Proposition 3.6 �

Proof of Theorem 3.1. The case m = `+ 1 is in (3.9).
The general case follows from an inductive argument. Suppose formula (3.6) has been proved

for time steps of size m1 and m2. Use the Markov property, the convolution formula (3.17), and the
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identity γj ∗ γk = γj+k. The determinants are still n× n. Let x, y ∈ Un.

P{G(m+m1 +m2) = y |G(m) = x}

=
∑
z∈Un

P{G(m+m1 +m2) = y |G(m+m1) = z}P{G(m+m1) = z |G(m) = x}

=
∑
z∈Un

det[Dj−iγm2(yj − zi)] det[Dj−iγm1(zj − xi)] = det[Dj−iγm1+m2(yj − xi)]. �

Proof of Theorem 3.2. We need to verify

(3.31) P{G(m,n) ≤ t} = det
i,j∈[n]

[Dj−i−1γm(t+ 1)].

Use formula (3.6) for the transition probabilities and then take sums inside to the relevant columns.

P{G(m,n) ≤ t} =
∑

x:x1≤···≤xn≤t

P{G(m) = x} =
∑

x:x1≤···≤xn≤t

det[Dj−iγm(xj)]

=
∑

x1≤···≤xn−1≤t

t∑
xn=xn−1

det[Dj−iγm(xj)]

=
∑

x1≤···≤xn−1≤t

det
[
D1−iγm(x1), . . . , Dn−1−iγm(xn−1),

t∑
xn=xn−1

Dn−iγm(xn)
]
.(3.32)

In the last column use one D to create a telescoping sum:

t∑
xn=xn−1

Dn−iγm(xn) =
t∑

xn=xn−1

(
Dn−1−iγm(xn + 1)−Dn−1−iγm(xn)

)
(3.33)

= Dn−1−iγm(t+ 1)−Dn−1−iγm(xn−1).

Substitute this back into (3.32) and notice that the last term above is identical with the second last
column in (3.32). Since a determinant with two identical columns vanishes, line (3.32) becomes∑

x1≤···≤xn−1≤t

det
[
D1−iγm(x1), . . . , Dn−1−iγm(xn−1), Dn−1−iγm(t+ 1)

]
.

Repeat this step for xn−1, . . . , x2, each time letting identical columns eliminate one of the resulting
terms, to turn the above into∑

−∞<x1≤t

det
[
D1−iγm(x1), D1−iγm(t+ 1), . . . , Dn−2−iγm(t+ 1), Dn−1−iγm(t+ 1)

]
.

Lastly, take the remaining sum into the first column as in (3.33) and use the definition of D−1:

t∑
x1=−∞

D1−iγm(x1) = D−1(D1−iγm)(t+ 1) = D−iγm(t+ 1).

Substituting the above for the first column completes the transformation of line (3.32) into the
right-hand side of (3.31). �
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3.2. From determinantal formula to orthogonal polynomial ensemble

To prove Theorem 3.3 we prove this proposition.

Proposition 3.8. There exists a finite constant Cm,n,p such that for integers m ≥ n ≥ 1 and
t ∈ Z,

(3.34) det
i,j∈[n]

[Dj−i−1γm(t+ 1)] = Cm,n,p
∑
x∈Zn+:

∀i∈[n]:xi≤t+n−1

∆n(x)2
n∏
i=1

(
xi +m− n

xi

)
qxi .

We can observe already that both sides of (3.34) vanish if t < 0. On the left, the values
D−iγm(t+ 1) in column j = 1 vanish by (3.14). On the right ∆n(x) vanishes if x has two identical
coordinates, hence if there are fewer than n distinct values available for the xi’s.

This section is devoted to the proof of the proposition and at the end we derive Theorem
3.3 from it. For a ∈ R denote the descending factorials by (a)[0] = 1 and for n ∈ N, (a)[n] =
a(a− 1)(a− 2) · · · (a− n+ 1). For n ∈ Z+, (n)[n] = n!.

Lemma 3.9. For x ∈ Z and n ∈ N the convolution powers of 1N satisfy

(3.35) 1∗nN (x) =
(x− 1)[n−1]

(n− 1)!
1{x ≥ n}.

Proof. First we fix n ∈ N and prove by induction on x ≥ n+ 1 that

(3.36)
x−n∑
y=1

(x− y − 1)[n−1] =
(x− 1)[n]

n
.

The case x = n+ 1 simplifies to the identity (n− 1)[n−1] = n−1(n)[n]. Assume (3.36) is true for x.
Then, by a change of summation index y = z + 1,

x+1−n∑
y=1

(x− y)[n−1] =
x−n∑
z=0

(x− z − 1)[n−1] = (x− 1)[n−1] +
(x− 1)[n]

n
=

(x)[n]

n
.

Turn to (3.35) with induction on n. The case n = 1 is clear. Assuming (3.35) is true for n,

1∗(n+1)
N (x) =

∑
y∈Z

1∗nN (x− y)1N(y) =
x−n∑
y=1

(x− y − 1)[n−1]

(n− 1)!
=

(x− 1)[n]

n!
1{x ≥ n+ 1}

with the last equality from (3.36). Note that the last sum above is zero if x ≤ n by the convention
on empty sums. �

Recall from (3.30) that D−kf = (1∗kN ) ∗ f for k ≥ 0. (The convention for convolution is that
g∗0 = 1{0} for any function g so that g∗0 ∗ f = f .)

Dj−i−1γm(t+ 1) = D−i(Dj−1γm)(t+ 1) =
∑
y∈Z

1∗iN (t+ 1− y)(Dj−1γm)(y)

=
∑
y∈Z

(t− y)[i−1]

(i− 1)!
1{y ≤ t+ 1− i}(Dj−1γm)(y)

=
t∑

y=−n+1

(t− y)[i−1]

(i− 1)!
(Dj−1γm)(y)
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The summation limits on the last line come as follows. The condition y ≤ t+ 1− i can be replaced
by y ≤ t due to the vanishing of the numerator (t − y)[i−1] for the added y-values. For 1 ≤ j ≤ n,
Dj−1γm(y) = 0 for y ≤ −n.

Now consider the determinant

det
i,j∈[n]

[Dj−i−1γm(t+ 1)] = det
i,j∈[n]

[ t∑
y=−n+1

(t− y)[i−1]

(i− 1)!
(Dj−1γm)(y)

]
.

The expression (t− y)[i−1]/(i− 1)! in row i is a polynomial in y of precise degree i− 1 with leading
term (−1)i−1yi−1/(i− 1)!. By adding suitable multiples of rows 1, . . . , i−1 to row i we can convert
this polynomial in row i into (−1)i−1(y + n− 1)i−1/(i− 1)! (same leading term). Row 1 is not
affected. These row operations preserve the determinant, and so

det
i,j∈[n]

[Dj−i−1γm(t+ 1)] = det
i,j∈[n]

[ t∑
y=−n+1

(y + n− 1)i−1

(i− 1)!
(−1)i−1(Dj−1γm)(y)

]

= det
i,j∈[n]

[ t+n−1∑
y=0

yi−1

(i− 1)!
(−1)i−1(Dj−1γm)(y − n+ 1)

]
by the simple observation det[(−1)iai,j ] = det[(−1)jai,j ]

= det
i,j∈[n]

[ t+n−1∑
y=0

yi−1

(i− 1)!
(−1)j−1(Dj−1γm)(y − n+ 1)

]
by the generalized Cauchy-Binet identity

=
1
n!

t+n−1∑
y1,...,yn=0

det
i,j∈[n]

[ yi−1
j

(i− 1)!

]
det
i,j∈[n]

[
(−1)i−1(Di−1γm)(yj − n+ 1)

]
and by identifying the n× n Vandermonde

=
( n∏
k=1

1
k!

) t+n−1∑
y1,...,yn=0

∆n(y) det
i,j∈[n]

[
(−1)i−1(Di−1γm)(yj − n+ 1)

]
.(3.37)

A couple more transformations are needed on this last determinant.

Lemma 3.10. Fix now m ≥ n ≥ 1. There exist polynomials gk of degree k such that for integers
x ≥ −m+ 1 and 0 ≤ k < n

(3.38) (−1)kDkγm(x) = qxgk(x)
m−1∏
`=k+1

(x+ `).

The fixed parameters p and m appear in gk. If k = m− 1 the empty product equals 1.

Proof. Induction on k. First k = 0. For x ∈ Z+

γm(x) = pm
(
x+m− 1
m− 1

)
qx = qx

pm

(m− 1)!

m−1∏
`=1

(x+ `).

For integers x ∈ {−m+ 1, . . . ,−1} both sides vanish.
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Assume (3.38) is valid for k − 1 ∈ {0, . . . , n− 2}.
(−1)kDkγm(x) = −(−1)k−1Dk−1γm(x+ 1) + (−1)k−1Dk−1γm(x)

= −qx+1gk−1(x+ 1)
m−1∏
`=k

(x+ 1 + `) + qxgk−1(x)
m−1∏
`=k

(x+ `)

= qx
{
−qgk−1(x+ 1) · (x+m) + gk−1(x) · (x+ k)

} m−1∏
`=k+1

(x+ `)

≡ qxgk(x)
m−1∏
`=k+1

(x+ `)

where the last line defines the polynomial gk of degree k. �

Continuing from (3.37) we can write

det
i,j∈[n]

[Dj−i−1γm(t+ 1)]

=
( n∏
k=1

1
k!

) t+n−1∑
y1,...,yn=0

∆n(y) det
i,j∈[n]

[
qyj−n+1gi−1(yj − n+ 1)

m−1∏
`=i

(yj − n+ 1 + `)
]

= Cn,p

t+n−1∑
y1,...,yn=0

∆n(y)
n∏
j=1

{
qyj

m∏
`=n+1

(yj − n+ `)
}

× det
i,j∈[n]

[
gi−1(yj − n+ 1)

n∏
`=i+1

(yj − n+ `)
]
.(3.39)

In the last equality we removed the q-factors and part of the product from each column in the
determinant. All factors independent of y are collected into the constant Cn,p, which, as the notation
suggests, is some function of n and q. We left some factors yj −n+ ` inside the determinant to take
advantage of the next lemma.

Lemma 3.11. Let pk be a polynomial of degree k for k = 0, . . . , n − 1 and let c2, . . . , cn be
complex constants. Then there exists a constant A such that this identity holds for all complex
vectors x = (x1, . . . , xn):

(3.40) det
i,j∈[n]

[
pi−1(xj)

n∏
`=i+1

(xj + c`)
]

= A∆n(x).

For i = n the value of the empty product
∏n
`=i+1 is 1. Constant A depends on n, the coefficients in

the pk’s and the constants c`.

Proof. The i, j entry in the determinant on the left-hand side of (3.40) is a polynomial of
degree n− 1 in the variable xj . If we write this entry in terms of coefficients as

pi−1(xj)
n∏

`=i+1

(xj + c`) =
n−1∑
k=0

ai,kx
k
j

then we have the matrix product(
pi−1(xj)

n∏
`=i+1

(xj + c`)
)
i,j∈[n]

=
(
ai,j−1

)
i,j∈[n]

(
xi−1
j

)
i,j∈[n]

.

Since determinants multiply, we have (3.40) with A = det(ai,j−1). �



48 3. THE LAST-PASSAGE MARKOV CHAIN

Apply (3.40) with xj = yj , pk(x) = gk(x−n+ 1) and c` = −n+ `. Then continuing from (3.39)
we have, with a new constant Cn,p,

det
i,j∈[n]

[Dj−i−1γm(t+ 1)]

= Cn,p

t+n−1∑
y1,...,yn=0

∆n(y)2
n∏
j=1

{
qyj

m∏
`=n+1

(yj − n+ `)
}

= Cn,p

t+n−1∑
y1,...,yn=0

∆n(y)2
n∏
j=1

qyj
(yj − n+m)!

yj !

= Cm,n,p

t+n−1∑
y1,...,yn=0

∆n(y)2
n∏
j=1

(
yj +m− n

yj

)
qyj .(3.41)

In the last equality the expression was multiplied by (m − n)!/(m − n)! and thereby the constant
acquired a dependence on m also. This completes the proof of Proposition 3.8.

To prove Theorem 3.3 it remains to show that

(3.42) 1 = Cm,n,p

∞∑
y1,...,yn=0

∆n(y)2
n∏
j=1

(
yj +m− n

yj

)
qyj .

By the display that ended in (3.41) this follows from showing that deti,j∈[n] [Dj−i−1γm(t+ 1)]→ 1
as t → ∞. Two observations imply this. (i) The diagonal elements in the determinant tend to 1:
for i = j,

Dj−i−1γm(t+ 1) = D−1γm(t+ 1) =
∑

y:y<t+1

γm(y)→ 1 as t→∞

since probabilities sum to 1. (ii) Elements above the diagonal (j > i) tend to 0 because Dkγm(x)→ 0
as x→∞ for k ≥ 0. For k = 0 it is simply D0γm(x) = γm(x)→ 0. Assuming it is true for k, then
for k + 1

Dk+1γm(x) = Dkγm(x+ 1)−Dkγm(x)→ 0 as x→∞.
Alternately, we can use the probabilistic connection from Theorem 3.2:

lim
t→∞

det
i,j∈[n]

[Dj−i−1γm(t+ 1)] = lim
t→∞

P{G(m,n) ≤ t} = 1.

In either case, we have verified formula (3.8) and completed the proof of Theorem 3.3.

Comments

This section follows Johansson’s paper [Joh07].



CHAPTER 4

Tracy-Widom distribution

4.1. Airy function and kernel

The Airy function of a complex argument z is defined by

(4.1) Ai(z) =
1

2πi

∫
C
e

1
3 ζ

3−zζ dζ

where the contour C begins at a point “at infinity” in the sector −π/2 + δ ≤ arg ζ ≤ −π/6− δ and
ends at a point at infinity in the conjugate sector π/6+δ ≤ arg ζ ≤ π/2−δ. For example, one could
take the ray from ∞e−π/3 to the origin together with the ray from the origin to ∞eπ/3.

We shall not verify that integral (4.1) is well-defined. This will be a consequence of the next
argument that converts (4.1) to an integral over a path Ps parallel to and to the right of the
imaginary axis. Absolute convergence of this second integral will be easy to see. Path Ps is given
as ζ(t) = s+ it, t ∈ (−∞,∞), where s > 0 is fixed. To show the equality

(4.2)
∫
C
e

1
3 ζ

3−zζ dζ =
∫
Ps
e

1
3 ζ

3−zζ dζ

of the integrals, we show that integrals over horizontal “bridges” that connect the paths at imaginary
levels it vanish as |t| → ∞. For c ≥ s|t|−1 let Lt be the horizontal line segment from s+it to c|t|+it.
We claim that

(4.3) sup
s|t|−1≤ c≤

√
3−|t|−1/2

∣∣∣∣∫
Lt
e

1
3 ζ

3−zζ dζ

∣∣∣∣→ 0 as |t| → ∞.

The upper bound of
√

3 minus a little for c comes from the angle π/6. Parametrize Lt by ζ(u) =
u + it, write z = x + iy, and consider |t| large enough so that |t|3/2/3 + x > 0. Then, since
u2 ≤ c2t2 ≤ t2(3− |t|−1/2),∣∣∣∣∫

Lt
e

1
3 ζ

3−zζ dζ

∣∣∣∣ ≤ ∫ c|t|

s

∣∣∣e 1
3 (u+it)3−z(u+it)

∣∣∣ du = eyt
∫ c|t|

s

eu
3/3−ut2−xu du

≤ eyt
∫ c|t|

s

e−u(|t|3/2/3+x) du ≤ eyt−s(|t|
3/2/3+x)

|t|3/2/3 + x
−→ 0 as |t| → ∞.

This justifies (4.2), and we have the following representation for the Airy function: for an arbitrary
fixed s > 0

(4.4)
Ai(z) =

1
2π

∫ ∞
−∞

e
1
3 (s+it)3−z(s+it) dt

=
1

2π

∫ ∞
−∞

es
3/3−st2−xs+yt+i(s2t−t3/3−xt−ys) dt.

The modulus of the integrand in (4.4) is es
3/3−st2−xs+yt. This is clearly integrable over t ∈

(−∞,∞) for any z and decays faster than any polynomial. Hence dominated convergence justifies
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differentiation inside the integral:

(4.5) Ai(n)(z) =
(−1)n

2π

∫ ∞
−∞

(s+ it)ne
1
3 (s+it)3−z(s+it) dt for n ∈ Z+

where s > 0 is still arbitrary but fixed.
Since e

1
3 (s+it)3−z(s+it) is the antiderivative of i((s + it)2 − z)e 1

3 (s+it)3−z(s+it) and vanishes as
t→ ±∞, we have

0 =
i

2π

∫ ∞
−∞

((s+ it)2 − z)e 1
3 (s+it)3−z(s+it) dt = i

(
Ai′′(z)− zAi(z)

)
from which follows the simple second-order differential equation for Ai:

(4.6) Ai′′(z) = zAi(z).

Rewrite (4.4) once more with z = x+ iy as

(4.7)
Ai(z) =

es
3/3−xs

2π

∫ ∞
−∞

e−st
2+yt

(
cos(s2t− t3/3− xt− ys)

+ i sin(s2t− t3/3− xt− ys)
)
dt.

If z = x is real so that y = 0, the integrand of the imaginary part becomes an odd function of t
and vanishes. We conclude that Ai(x) is real for real x, and thereby also the derivatives Ai(n)(x)
are real for real x.

We insert an easy tail bound.

Lemma 4.1. For each n ∈ Z+ there is a constant Cn <∞ such that for all x > 0,

(4.8) |Ai(n)(x)| ≤ Cn
(
x
n
2−

1
4 + x−

n+1
4
)
e−2x3/2/3.

Proof. Take s = x1/2 in (4.5). Then the exponent is
1
3 (s+ it)3 − x(s+ it) = − 2

3x
3/2 − x1/2t2 − 1

3 it
3.

Straightforward computation, after taking the modulus inside the integral:

|Ai(n)(x)| ≤ Cne−2x3/2/3

∫ ∞
−∞

(xn/2 + |t|n)e−x
1/2t2 dt

≤ Cne−2x3/2/3
(
xn/2

∫ ∞
−∞

e−x
1/2t2 dt +

∫ ∞
−∞
|t|ne−x

1/2t2 dt
)

≤ Cne−2x3/2/3
(
x(n/2)−1/4 + x−(n/4)−1/4

)
. �

The Airy kernel is defined on R× R by

(4.9) A(x, y) =


Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
, x 6= y

Ai′(x)Ai′(x)−Ai(x)Ai′′(x), x = y.

The definition shows A(x, y) real-valued, continuous and symmetric.

Lemma 4.2. The Airy kernel has the representation

(4.10) A(x, y) =
∫ ∞

0

Ai(x+ t)Ai(y + t) dt, for x, y ∈ R.

For any s ∈ R there is a finite constant C(s) such that

(4.11) |A(x, y)| ≤ C(s)e−x−y for x, y ≥ s.
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Proof. Bound (4.8) guarantees that the integral in (4.10) is well-defined. Let D1 and D2

denote partial differential operators with respect to the first and second argument. Utilizing (4.6)
one sees that

((D1 +D2)A)(x, y) = −Ai(x)Ai(y).

Also by basic differentiation rules

∂

∂t
A(x+ t, y + t) = ((D1 +D2)A)(x+ t, y + t) = −Ai(x+ t)Ai(y + t).

By estimate (4.8) A(x+ t, y + t)→ 0 as t→∞, hence∫ ∞
0

Ai(x+ t)Ai(y + t) dt = −
∫ ∞

0

∂

∂t
A(x+ t, y + t) dt = A(x, y).

Equation (4.10) is proved.
Next this upper bound: for each t ∈ R there is a finite constant C0(t) such that

(4.12) |Ai(x)| ≤ C0(t)e−x for x ∈ [t,∞).

For x ≥ 1 this bound follows from (4.8). If t < 1 then for x ∈ [t, 1] note that Ai(x) is bounded while
e−x ≥ e−1.

From (4.10) and (4.12) for x, y ≥ s,

|A(x, y)| ≤ C0(s)2

∫ ∞
0

e−x−y−2t dt = C(s)e−x−y. �

A consequence of (4.10) is that for any choice of real x1, . . . , xn the matrix {A(xi, xj)}i,j∈[n] is
nonnegative definite:

(4.13)

∑
i,j∈[n]

A(xi, xj)uiūj =
∫ ∞

0

∑
i,j∈[n]

Ai(xi + t)Ai(xj + t)uiūj dt

=
∫ ∞

0

∣∣∣ ∑
i∈[n]

Ai(xi + t)ui
∣∣∣2 dt ≥ 0

for any complex vector (u1, . . . , un) ∈ Cn.

4.2. Tracy-Widom distribution

We need to introduce the notion of a Fredholm determinant of an operator on a (possibly)
infinite-dimensional space. More specifically, we will consider Fredholm determinants of integral
operators.

To pave the way we restate equation (B.5) from a different point of view. Think of an N ×N
matrix A = {a(x, y)}x,y∈[N ] as an integral operator on the L2 space of the counting measure λ on
the space [N ] = {1, 2, . . . , N}. Thinking of a function f on [N ] as a column vector, we can write

Af(x) =
∑
y∈[N ]

a(x, y)f(y) =
∫
a(x, y)f(y)λ(dy).

Equation (B.5) can be written as

(4.14) det(I +A) = 1 +
∞∑
n=1

1
n!

∫
[N ]n

det
i,j∈[n]

{a(xi, xj)}λ⊗n(dx1,n).

If n > N then xi1 = xi2 for some distinct i1, i2 ∈ [N ] and so the rows {a(xi1 , xj)} and {a(xi2 , xj)}
agree. Thus all terms for n > N vanish in the sum.
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Now generally, suppose we have a measure space (X,B, λ) and a measurable function k(x, y) on
X ×X such that for f ∈ L2(λ)

Kf(x) =
∫
X

k(x, y)f(y)λ(dy)

defines a new function Kf ∈ L2(λ). Then K is a linear operator on L2(λ) and k(x, y) is the kernel
of the operator. The Fredholm determinant is defined by

(4.15) det(I +K) = 1 +
∞∑
n=1

1
n!

∫
Xn

det
i,j∈[n]

{k(xi, xj)}λ⊗n(dx1,n),

provided the series is well-defined. The theory of Fredholm determinants can be developed very gen-
erally starting from determinants of finite-rank operators (defined as in (4.14)) and approximating
more general operators in suitable norms. We refer to [GGK00].

The Tracy-Widom F2 distribution, or Tracy-Widom GUE distribution, is defined in terms of
the Fredholm determinant of the Airy kernel:

(4.16)

F2(t) = det
(
I −A|L2[t,∞)

)
= 1 +

∞∑
n=1

(−1)n

n!

∫
[t,∞)n

det
i,j∈[n]

{A(xi, xj)} dx1,n.

The first task is to show that the series is well-defined.
From (4.11) and Hadamard’s inequality (B.9) we obtain an estimate for the terms of the Fred-

holm determinant:∫
[t,∞)n

∣∣ det
i,j∈[n]

{A(xi, xj)}
∣∣ dx1,n ≤

∫
[t,∞)n

n∏
i=1

A(xi, xi) dx1,n

≤ C(t)n
∫

[t,∞)n
e−2

Pn
i=1 xi dx1,n = C1(t)n

for a new constant C1(t) that is a function of t. Consequently the series in (4.16) converges absolutely
for each fixed t ∈ R.

We shall take for granted the basic fact that F2 is indeed the cumulative distribution function
of a probability distribution on R.

F2 has also the following characterization:

(4.17) F2(t) = exp
{
−
∫ ∞
t

(x− t)u(x)2 dx
}

where u is the unique solution of the Painlevé II equation

(4.18) u′′(x) = xu(x) + 2u(x)3, u(x) ∼ Ai(x) as x→∞.

Formula (4.17) together with the boundary condition u(x) ∼ Ai(x) as x → ∞ and the tail bound
(4.8) are enough to conclude that F2 is a distribution function.

The distribution F2 first arose as the limit distribution of the largest eigenvalue of the Gaussian
Unitary Ensemble (GUE) [TW94]. We summarise this briefly.

A standard real-valued normal or Gaussian random variable ξ has probability distribution
(2π)−1/2e−x

2/2dx on R. A standard complex-valued normal random variable is of the form ζ =
(ξ + iη)/

√
2 for two independent standard real normal random variables ξ and η. Hence as its real

counterpart, the complex normal has Eζ = 0 and E|ζ|2 = 1.
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Let {ζi,i : i ∈ N} be standard real-valued normal random variables and {ζi,j : i < j in N}
standard complex-valued normal random variables. Construct N ×N random Hermitian matrices
XN = (XN

i,j)i,j∈[N ] by putting

(4.19) XN
i,j =


ζi,i i = j

ζi,j i < j

ζ̄j,i i > j.

The distribution of XN is the Gaussian unitary ensemble (GUE).
As a Hermitian matrix, XN has N real eigenvalues λN1 ≤ λN2 ≤ · · · ≤ λNN . The Tracy-Widom

F2 distribution arises in this scaling limit: for t ∈ R
(4.20) lim

N→∞
P
{
N2/3

(
N−1/2λNN − 2

)
≤ t
}

= F2(t).

Comments

The classic text by Olver [Olv97] is a source of information about the Airy function. The proof
of (4.10) is from [TW94].





CHAPTER 5

Distributional limit for the last-passage time

This chapter proves a distributional limit for fluctuations from the law of large numbers of the
last passage time with geometric weights. As before the weights {Yi,j}(i,j)∈N2 are i.i.d. geometric
with common distribution P{Yi,j = k} = pqk for k ∈ Z+. Parameter 0 < p < 1 is fixed and
q = 1− p. As discovered in Theorem 2.2 the limit

Ψ(w, 1) = lim
N→∞

N−1G(bNwc, N) a.s.

is explicitly given by

(5.1) Ψ(w, 1) = p−1
(
qw + q + 2

√
qw
)
.

Set

(5.2) σ = p−1q1/6w−1/6(
√
w +
√
q)2/3(

√
wq + 1)2/3.

The Tracy-Widom GUE distribution was defined by a Fredholm determinant of the Airy kernel:

(5.3) F2(t) = 1 +
∞∑
n=1

(−1)n

n!

∫
[t,∞)n

det
i,j∈[n]

{A(xi, xj)} dx1,n.

Theorem 5.1. For w ≥ 1 and t ∈ R

(5.4) lim
N→∞

P
{G(bNwc, N)−NΨ(w, 1)

σN1/3
≤ t
}

= F2(t).

Proof of Theorem 5.1 takes off from the orthogonal polynomial ensemble representation for the
distribution function of G(M,N) obtained in Theorem 3.3 in Chapter 3: for M ≥ N ≥ 1

(5.5) P{G(M,N) ≤ s} =
1

ZM,N

∑
x∈ZN+ :

∀i∈[N ]:xi≤s+N−1

∆N (x)2
N∏
i=1

{(
xi +M −N

xi

)
qxi
}

with normalization

(5.6) ZM,N =
∑
x∈ZN+

∆N (x)2
N∏
i=1

{(
xi +M −N

xi

)
qxi
}
.

In the next section another formula for this probability is developed, in terms of the Fredholm
determinant of the Meixner kernel. In the limiting regime described in Theorem 5.1 this kernel
converges to the Airy kernel. With some additional bounds the Fredholm determinants converge
also.
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56 5. DISTRIBUTIONAL LIMIT FOR THE LAST-PASSAGE TIME

5.1. From orthogonal polynomial ensemble to Meixner kernel

In this section we turn (5.5) into a Fredholm determinant of the Meixner kernel. We have
restricted the parameters so that M ≥ N ≥ 1. Throughout this chapter we abbreviate

K = M −N + 1.

Define the measure µK on Z+ by

(5.7) µK(x) =
(
x+K − 1

x

)
qx, x ∈ Z+.

Rewrite (5.5) as

(5.8) P{G(M,N) ≤ s} =
1

ZM,N

∑
x∈ZN+ :

∀i∈[N ]:xi≤s+N−1

∆n(x)2
N∏
i=1

µK(xi)

where the normalization is given by

(5.9) ZM,N =
∑
x∈ZN+

∆N (x)2
N∏
i=1

µK(xi).

After bringing in some orthogonal polynomials we can give ZM,N an explicit formula (5.32) below.
Define the probability measure QM,N on ZN+ by

(5.10) QM,N (A) =
1

ZM,N

∑
x∈ZN+ :x∈A

∆n(x)2
N∏
j=1

µK(xj)

Then

P{G(M,N) ≤ s} =
∫ N∏

j=1

1[0,s+N−1](xj)QM,N (dx1,N )

=
∫ N∏

j=1

(
1− 1[s+N,∞)(xj)

)
QM,N (dx1,N ).

(5.11)

The probability measure QM,N is exactly of the type (D.14) defined in Appendix D, with the
measure µ given by the weights {µK(x) : x ∈ Z+}. To take advantage of equation (D.20), let
{MK

j (x) : j ∈ Z+} denote the polynomials that are orthonormal under the weights µK(x):

(5.12)
∑
x∈Z+

MK
i (x)MK

j (x)µK(x) = δi,j , i, j ∈ Z+

and have positive leading coefficient κj > 0: MK
j (x) = κjx

j + · · · These are the so-called Meixner
polynomials. As in (D.19) define on Z+ × Z+ the kernel

(5.13) KN (x, y) =
N−1∑
j=0

MK
j (x)MK

j (y)µK(x)1/2µK(y)1/2.

Proposition D.5, applied to the expectation (5.11) in the form (D.20) gives

(5.14) P{G(M,N) ≤ s} = 1 +
N∑
k=1

(−1)k

k!

∑
x∈Zk+:∀i∈[k]: xi≥N+s

det
i,j∈[k]

[
KN (xi, xj)

]
.
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The result we want is for M = bNwc for a fixed w ≥ 1. Introduce also the constant

(5.15) β = 1 + Ψ(w, 1) = 1 + p−1
(
qw + q + 2

√
qw
)

= p−1(
√
wq + 1)2.

With s = bNβ −N + σtN1/3c in (5.14) above,

P
{G(bNwc, N)−NΨ(w, 1)

σN1/3
≤ t
}

= 1 +
N∑
k=1

(−1)k

k!

∑
x∈Zk+

det
i,j∈[k]

[
KN (bNβ + σtN1/3c+ xi , bNβ + σtN1/3c+ xj)

]
.

(5.16)

The above formula is the starting point for deriving asymptotics.

5.2. Meixner polynomials

We take up some preliminary work on the kernel KN (x, y) to prepare for convergence. In
the literature the Meixner polynomials are normalized somewhat differently from the orthonormal
{MK

j (x)}. We denote these “standard” Meixner polynomials by {mK
j (x) : j ∈ Z+}. One way to

determine the polynomials mK
j (x) is by the normalization

(5.17)
∑
x∈Z+

mK
i (x)mK

j (x)µK(x) = δi,jd
2
j , i, j ∈ Z+

with

(5.18) d2
j =

j!(j +K − 1)!
pKqj(K − 1)!

and by fixing the sign of the leading coefficient of mK
j to be (−1)j . Polynomials {mK

j (x)} are
uniquely determined, for it follows from Theorem D.1 that a sequence of polynomials {fk(x) : k ∈
Z+} is uniquely determined by specifying that fk have precisely degree k with a given nonzero
leading coefficient, and by requiring orthogonality

∫
fkf` dµ = 0 for k 6= `. The two types of

Meixner polynomials are connected by

(5.19) MK
j (x) =

(−1)j

dj
mK
j (x).

We derive some explicit formulas. In (5.22) below we use noninteger powers of complex numbers.
By definition, za = ea log z and throughout this text we take the principal branch for the logarithm:
log z is the holomorphic function on the complement of the nonpositive real axis for which log z =
log|z|+ i arg z with arg z ∈ (−π, π). Thus also za is holomorphic for z ∈ C \R− for any fixed a ∈ C.

Proposition 5.2. For x ∈ R and n ∈ Z+ we have the formula

(5.20) mK
n (x) = (−1)n n!

n∑
k=0

(
x

k

)(
−x−K
n− k

)
q−k

and the leading term is given by

(5.21) mK
n (x) =

(
− p

q

)n
xn + [terms of degree less than n in x].

The generating function is

(5.22)
∞∑
n=0

zn

n!
mK
n (x) =

(
1− z

q

)x(1− z)−x−K

for x ∈ R and complex z such that |z| < q.
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Proof. Let us begin by taking (5.20) as the definition of mK
n (x). Then mK

n (x) is a polynomial
of degree n with leading coefficient given by (5.21). We derive a bound on |mK

n (x)| to justify
convergence of the series in (5.22). In formula (5.20) apply bound (C.10) to estimate the binomial
coefficients:

|mK
n (x)| ≤ n!(ne)|x+K| + n!

n−1∑
k=1

q−k(ke)|x|((n− k)e)|x+K| + n!q−n(ne)|x|

≤ (n+ 1)!q−n(ne)2|x|+K .

(5.23)

Thus for each fixed x ∈ R, |z| < q is within the radius of convergence of the series in (5.22).
Having justified the convergence we compute the generating function.

∞∑
n=0

zn

n!
mK
n (x) =

∞∑
n=0

zn
n∑
k=0

(
x

k

)
(−q)−k

(
−x−K
n− k

)
(−1)n−k

=
∞∑
k=0

(
x

k

)
(−z/q)k ·

∞∑
j=0

(
−x−K

j

)
(−z)j

= (1− (z/q))x(1− z)−x−K .(5.24)

Since both z/q and z lie in the open unit disk, the two series on the second-last line are holomorphic
functions and equal the functions on the last line. (See the discussion following equation (C.9) in
Appendix C.2.)

Thus the proposition is true, provided the polynomials mK
n (x) defined by (5.20) are the right

ones. Since we already verified the sign of the leading coefficient in (5.21), it only remains to verify
the orthogonality relation (5.17).

We shall check the orthogonality with the help of the series identity

(5.25)
∑

k≥0, n≥0

ukvn

k!n!

∑
x∈Z+

(
x+K − 1

x

)
qxmK

k (x)mK
n (x) =

∑
k≥0, n≥0

ukvn

k!n!
δk,nd

2
n.

We first check absolute convergence of the series. There is no convergence issue on the right-
hand side of (5.25). To check absolute convergence on the left-hand side, use formula (5.20) for the
polynomials and note that for integers x,K ≥ 0 and n ≥ j:∣∣∣(−x−K

n− j

)∣∣∣ =
∣∣∣ (−x−K)(−x−K − 1) · · · (−x−K − n+ j + 1)

(n− j)!

∣∣∣
=
(
x+K + n− j − 1

n− j

)
.

Then the series of absolute values of the terms on the left-hand side of (5.25) is bounded by this
series: ∑

k,n,x≥0

|u|k|v|n
(
x+K − 1

x

)
qx

k∑
i=0

(
x

i

)(
x+K + k − i− 1

k − i

)
q−i

×
n∑
j=0

(
x

j

)(
x+K + n− j − 1

n− j

)
q−j

=
∑

i,j,x≥0

(
x+K − 1

x

)
qx−i−j

(
x

i

)(
x

j

) ∞∑
k=i

(
x+K + k − i− 1

k − i

)
|u|k
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×
∞∑
n=j

(
x+K + n− j − 1

n− j

)
|v|n(5.26)

To sum up the last two series over k and n use this formula: for a ∈ R and complex ζ in the open
unit disk

∑
n≥0

(
a+ n

n

)
ζn =

∑
n≥0

(a+ n)(a− 1 + n) · · · (a+ 1)
n!

ζn

=
∑
n≥0

(−a− 1)(−a− 2) · · · (−a− n)
n!

(−ζ)n

=
∑
n≥0

(
−a− 1
n

)
(−ζ)n = (1− ζ)−a−1.

(5.27)

Continuing then from line (5.26):

=
∑

i,j,x≥0

(
x+K − 1

x

)
qx
(
x

i

)(
x

j

)
(|u|/q)i(|v|/q)j(1− |u|)−x−K(1− |v|)−x−K

which after summing over i and j

= (1− |u|)−K(1− |v|)−K
∑
x≥0

(
x+K − 1

x

)(q(1 + |u|/q)(1 + |v|/q)
(1− |u|)(1− |v|)

)x
.

We can guarantee absolute convergence of the last series by picking s > 0 so that q ∈ (0, 1) satisfies

q <
1

(1 + s)2 + 2s

and by then requiring that the complex u, v lie in the open disk of radius sq around the origin. We
can now work with the series in (5.25).

The right-hand side of (5.25) develops into

∑
n≥0

unvn

(n!)2

n!(n+K − 1)!
pKqn(K − 1)!

=
1
pK

∑
n≥0

(
n+K − 1

n

)(uv
q

)n
= p−K

(
1− uv

q

)−K
.(5.28)

The last equality is another instance of (5.27).
To transform the left-hand side of (5.25), change order of summation, use the generating function

(5.22), then set

ζ =
q(1− u/q)(1− v/q)

(1− u)(1− v)
with 1− ζ =

p(q − uv)
q(1− u)(1− v)
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and get ∑
x∈Z+

(
x+K − 1

x

)
qx
{∑
k≥0

uk

k!
mK
k (x)

}{∑
n≥0

vn

n!
mK
n (x)

}

=
∑
x∈Z+

(
x+K − 1

x

)
qx(1− (u/q))x(1− u)−x−K(1− (v/q))x(1− v)−x−K

= (1− u)−K(1− v)−K
∑
x∈Z+

(
x+K − 1

x

)
ζx

= (1− u)−K(1− v)−K(1− ζ)−K

=
qK

pK(q − uv)K
.(5.29)

Lines (5.28) and (5.29) agree and thereby (5.25) has been verified.
The power series in (5.25) can be differentiated term by term with respect to u and v. Operating

with (∂k/∂uk) and (∂n/∂vn) and setting u = v = 0 gives

(5.30)
∑
x∈Z+

(
x+K − 1

x

)
qxmK

k (x)mK
n (x) = δk,nd

2
n.

This is the desired orthogonality relation (5.17). To summarize, by verifying that the polynomials
defined by (5.20) satisfy the this orthogonality we have concluded the proof of the proposition. �

Since κj was by definition the leading coefficient of the polynomial MK
j (x), comparison of (5.19)

and (5.21) gives

(5.31) κj =
1
dj

(p
q

)j
.

Now we are in a position to compute explicitly the normalization constant ZM,N in (5.9). Although,
it will turn out that this is not needed for the limit.

Lemma 5.3. For M ≥ N ≥ 1 the constant ZM,N defined in (5.9) is given by

(5.32) ZM,N = q
N(N−1)

2 p−MN N !
((M −N)!)N

N−1∏
j=0

j!(M −N + j)!.

Proof. By equation (D.18) in the Appendix

ZM,N = N !
N−1∏
j=0

κ−2
j .

Now substitute in (5.31) and simplify. �

Our ultimate goal is to find asymptotics for the kernel KN . By the Christoffel-Darboux formula
(Theorem D.4 in Appendix D), for x 6= y in Z+

KN (x, y) =
κN−1

κN

MK
N (x)MK

N−1(y)−MK
N (y)MK

N−1(x)
x− y

µK(x)1/2µK(y)1/2(5.33)

=
−q

pd2
N−1

mK
N (x)mK

N−1(y)−mK
N (y)mK

N−1(x)
x− y

µK(x)1/2µK(y)1/2.(5.34)
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On the diagonal

(5.35) KN (x, x) =
−q

pd2
N−1

[
(mK

N )′(x)mK
N−1(x)−mK

N (x)(mK
N−1)′(x)

]
µK(x).

As the last item of this section we derive integral representations for the polynomials mK
n (x) to

be used in the analysis of asymptotics in formulas (5.34) and (5.35). Recall that w ≥ 1 was fixed
by the statement (5.4) that we are out to prove. In the generating function (5.22) replace z by
−z
√
q/w so that this formula is valid for |z| < √wq:

(5.36)
∞∑
n=0

(−1)nzn

n!

( q
w

)n/2
mK
n (x) =

wK/2

qx/2
·

(
√
wq + z)x

(
√
w + z

√
q)x+K

Multiply through above by (2πi)−1z−N−1 and integrate z over a circle Γr of radius r <
√
wq. Note

that the denominator on the right does not vanish for z on this circle.

(−1)N

N !

( q
w

)N/2
mK
N (x) =

wK/2

qx/2
· 1

2πi

∫
Γr

(
√
wq + z)x

(
√
w + z

√
q)x+K

dz

zN+1

from which we get the formula

(5.37) mK
N (x) =

w
N+K

2

q
N+x

2

· (−1)NN !
2πi

∫
Γr

(
√
wq + z)x

(
√
w + z

√
q )x+K

dz

zN+1
.

The integral representation (5.37) is valid for circles Γr with radius r <
√
wq. Eventually for

the asymptotics we wish to let r approach 1 which is problematic if
√
wq < 1. However, we actually

only need the kernel KN (x, y) for integer values x, y ∈ Z+. For x ∈ Z+ the integrand on the right
in (5.37) is holomorphic on the open annulus {z : 0 < |z| <

√
w/q}. Thus by Cauchy’s theorem

[Rud87, Theorem 10.35] identity (5.37) is in fact valid for all radii 0 < r <
√
w/q and so letting

r ↗ 1 is not problematic. Consequently we will use (5.37) for x ∈ Z+ and radii r up to 1.
But we need to work more on the integral representation because KN (x, x) of (5.35) requires

us to differentiate (5.37) and for this we need real x and not only integral x. When x is real we rely
on

(
√
wq + z)x = ex log(

√
wq+z)

which defines a holomorphic function only for z ∈ C \ (−∞,−√wq ]. Thus in the case
√
wq < 1, for

x ∈ R+ we cannot extend the validity of (5.37) to all radii r < 1 for free. An application of Lemma
C.3 from Appendix C.2 to formula (5.37) yields the following more complicated formula, now valid
for all real x > −1 and all radii 0 < r < 1:

mK
N (x) =

w
N+K

2

q
N+x

2

· (−1)NN !
{

1
2πi

∫
Γr

(
√
wq + z)x

(
√
w + z

√
q )x+K

dz

zN+1
(5.38)

+ 1{r > √wq} · (−1)N+1 · sinπx
π

∫ r

√
wq

|√wq − s|x

(
√
w − s√q )x+K

ds

sN+1

}
.(5.39)

We also assume that r 6= √wq so that log(
√
wq+z) is defined and bounded for all z ∈ Γr \{−r}.

If
√
wq ≥ 1 this is not problematic since in any case we only consider r < 1. If

√
wq < 1 we assume√

wq < r < 1. Since q < 1 ≤ w the denominators of the integrands cannot vanish. With the
abbreviations

(5.40) a(z) =
√
wq + z
√
wq + 1

·
√
w +
√
q

√
w + z

√
q

and b(z) =
√
w +
√
q

√
w + z

√
q
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the formula becomes

mK
N (x) =

(
√
wq + 1)x

(
√
w +
√
q)x+K

· w
N+K

2

q
N+x

2

· (−1)NN !
{

1
2πi

∫
Γr

a(z)x b(z)K
dz

zN+1
(5.41)

+ 1{r > √wq} · (−1)N+1 · sinπx
π

∫ r

√
wq

|a(−s)|x b(−s)K ds

sN+1

}
.(5.42)

Recalling

(5.43) β = p−1(
√
wq + 1)2

and defining

(5.44) α = β + w − 1 = p−1(
√
w +
√
q )2

we rewrite the formula once more as

mK
N (x) =

w
N+K

2 β
x
2 (−1)NN !

q
N+x

2 α
x+K

2 p
K
2

·
{

1
2πi

∫
Γr

a(z)x b(z)K
dz

zN+1
(5.45)

+ 1{r > √wq} · (−1)N+1 · sinπx
π

∫ r

√
wq

|a(−s)|x b(−s)K ds

sN+1

}
.(5.46)

Note that when x is an integer the part on line (5.46) vanishes due to sinπx = 0. With the temporary
abbreviation

(5.47) BN (x) =
w
N+K

2 β
x
2 (−1)NN !

q
N+x

2 α
x+K

2 p
K
2

the formula becomes

mK
N (x) = BN (x)

{
1

2πi

∫
Γr

a(z)x b(z)K
dz

zN+1
(5.48)

+ 1{r > √wq} · (−1)N+1 · sinπx
π

∫ r

√
wq

|a(−s)|x b(−s)K ds

sN+1

}
.(5.49)

We differentiate the above equation with respect to x. We need the answer only for integral x
which simplifies the resulting formula. We also need it only for large x, so we restrict to x ∈ N to
avoid considering negative x.

Proposition 5.4. For all x ∈ N,

(mK
N )′(x) = BN (x) · 1

2 log
( β
qα

) 1
2πi

∫
Γr

a(z)x b(z)K
dz

zN+1

+BN (x)
{

1
2πi

∫
Γr

(
log a(z)

)
a(z)x b(z)K

dz

zN+1

+ 1{r > √wq} · (−1)x+N+1

∫ r

√
wq

|a(−s)|x b(−s)K ds

sN+1

}
.

(5.50)

Proof. Formally (5.50) follows from the product rule in a straightforward manner. But we
need to justify and explain some steps.

Let us first address the well-definedness and boundedness of log a(z). We can write

a(z) =
c

|
√
w + z

√
q|2
(
w
√
q + z

√
w + z̄q

√
w + |z|2√q

)
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for a positive constant c. First note that an inadmissible value a(z) ∈ R− can happen on Γr only if
z = −r (and q must be small enough relative to w). A single exceptional point {−r} has no bearing
on the well-definedness of integrals over Γr. The numerator above vanishes only at z = −√qw and
z = −

√
w/q and the denominator only at z = −

√
w/q. Since we assume 0 < r < 1 and r 6= √wq,

|a(z)| stays bounded and bounded away from zero on Γr. Consequently the function log a(z) is
defined and bounded on Γr \ {−r}.

It follows from these considerations that, with the definition a(z)x = ex log a(z), the integral on
line (5.48) can be differentiated in x to yield the integral on the second line of (5.50). More precisely,
the operation d/dx can be taken inside the integral on line (5.48) because

a(z)x+h − a(z)x

h
= a(z)x · e

h log a(z) − 1
h

= a(z)x
{

log a(z) +
∞∑
k=2

hk−1(log a(z))k

k!

}(5.51)

converges boundedly as h→ 0, for a fixed x ∈ R and while z varies over Γr \ {−r}.
We turn to justify

(5.52)
d

dx

{
sinπx
π

∫ r

√
wq

|a(−s)|x b(−s)K ds

sN+1

}
= (−1)x

∫ r

√
wq

|a(−s)|x b(−s)K ds

sN+1
.

The identity is claimed only for points x ∈ N.
The function |a(−s)|x is jointly continuous as a function of (x, s) ∈ [1/2,∞) × [

√
wq, r], hence

the integral is a continuous function of x ≥ 1/2. (Here x < 0 would make |a(−s)|x unbounded and
(x, s) = (0,

√
wq) is a discontinuity, so restricting to x > 0 is convenient.) Still we cannot blithely

repeat argument (5.51) because log|a(−s)| blows up at s =
√
wq. However, we can avoid looking at

the details with this simple lemma:

Lemma 5.5. Let G(x) = f(x)g(x) on some interval of the real line. Suppose u is a point such
that f(u) = 0, f is differentiable at u and g is continuous at u. Then G′(u) = f ′(u)g(u).

Proof. By the hypotheses,

G(u+ h)−G(u)
h

=
f(u+ h)

h
g(u+ h)→ f ′(u)g(u) as h→ 0. �

Identity (5.52) is verified by applying the lemma to

f(x) = (sinπx)/π and g(x) =
∫ r

√
wq

|a(−s)|x b(−s)K ds

sN+1
.

(d/dx)(sinπx)/π = cosπx which equals (−1)x for x ∈ Z+. This completes the proof of the differ-
entiation formula (5.50). �

We are ready to start deriving the asymptotics to which the next section is devoted. The entire
development is based on the Christoffel-Darboux formulas (5.34) and (5.35) for KN (x, y), and on
the integral formulas (5.37) for mK

N (x) and (5.50) for (mK
N )′(x) for x ∈ Z+.

5.3. Airy asymptotics for the Meixner kernel

The estimates that imply the Airy limit are summarized in the next theorem. From definition
(5.13) it is immediate that the kernel KN is symmetric: KN (x, y) = KN (y, x). Since it is real-valued,
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it follows that KN is Hermitian: KN (x, y) = KN (y, x). Furthermore, KN is nonnegative definite:
for any finitely supported function f : Z+ → C, abbreviating temporarily ν(x) = mK

k (x)µK(x)1/2,

∑
x,y∈Z+

f(x)KN (x, y)f(y) =
N−1∑
k=0

(∑
x

f(x)νk(x)
)(∑

y

f(y)νk(y)
)

=
N−1∑
k=0

(∑
x

f(x)νk(x)
)(∑

y

f(y)νk(y)
)

=
N−1∑
k=0

∣∣∣∣∑
x

f(x)νk(x)
∣∣∣∣2 ≥ 0.

(5.53)

In particular, since KN (x, x) ≥ 0 absolute values are not needed in the assumptions below.

Theorem 5.6. Let β > 0 be a constant. Assume given a scaling λN → ∞ as N → ∞ along
positive integers and assume λN = o(N). Let KN : Z2

+ → R be a sequence of Hermitian nonnegative
definite kernels defined for all large enough N ∈ Z+. Assume that the following properties (i)–(iv)
hold.

(i) For each τ ∈ R there exist constants C(τ), N0(τ) <∞ such that

(5.54) sup
N≥N0(τ)

∞∑
m=0

KN (bNβ + λNτc+m, bNβ + λNτc+m) ≤ C(τ).

(ii) For every ε > 0 there exist finite L = L(ε), N0(ε) <∞ such that

(5.55) sup
N≥N0(ε)

∞∑
m=0

KN (bNβ + λNLc+m, bNβ + λNLc+m) ≤ ε.

(iii) For each M <∞ there exists N0(M) <∞ such that

(5.56) sup
−M≤ξ≤M

sup
N≥N0(M)

λNKN (bNβ + λNξc, bNβ + λNξc) <∞.

(iv) Scaled kernels converge pointwise to the Airy kernel defined in (4.9). Let ξ, η ∈ R. Suppose
`ξ = `ξ(N) and `η = `η(N) are quantities such that x = Nβ + `ξ and y = Nβ + `η are nonnegative
integers for each N , and for some constant C,

(5.57) |`ξ − λNξ|+ |`η − λNη| ≤ C

for all large enough N . Then if ξ 6= η

(5.58) lim
N→∞

λNKN (Nβ + `ξ, Nβ + `η) = A(ξ, η)

and also on the diagonal

(5.59) lim
N→∞

λNKN (Nβ + `ξ, Nβ + `ξ) = A(ξ, ξ).

From these assumptions it follows that the Fredholm determinants converge: for each t ∈ R,

1 + lim
N→∞

N∑
k=1

(−1)k

k!

∑
h∈Zk+

det
i,j∈[k]

{
KN (bNβ + λN tc+ hi, bNβ + λN tc+ hj)

}
(5.60)

= 1 +
∞∑
k=1

(−1)k

k!

∫
[t,∞)k

det
i,j∈[k]

{A(xi, xj)} dx1,k.(5.61)
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Proof. Fix t ∈ R. The strategy of the proof is to show the convergence (5.60)–(5.61) for k
and h restricted to bounded sets, and then to show that the terms left out on both sides add up to
very little. Consider 0 < `,L <∞ fixed for the moment. Let 1̄ = (1, 1, . . . , 1).

1 +
∑̀
k=1

(−1)k

k!

∑
h∈{0,...,bλNLc−1}k

det
i,j∈[k]

{
KN (bNβ + λN tc+ hi, bNβ + λN tc+ hj)

}
(5.62)

= 1 +
∑̀
k=1

(−1)k

k!

∫
[0,L)k

∑
h∈{0,...,bλNLc−1}k

1[λ−1
N h, λ−1

N (h+1̄))(x1,k)

× det
i,j∈[k]

{
λNKN (bNβ + λN tc+ bλNxic, bNβ + λN tc+ bλNxjc)

}
dx1,k.

By assumption (iv) for each fixed k ≥ 1 and x1,k ∈ [0, L)k the integrand converges to deti,j∈[k][A(t+
xi, t+ xj)]. Hadamard’s inequality (B.9) (Appendix B) and assumption (iii) give

sup
x∈[0,L)k

∣∣ det
i,j∈[k]

{
λNKN (bNβ + λN tc+ bλNxic, bNβ + λN tc+ bλNxjc)

∣∣
≤ sup
x∈[0,L)k

k∏
i=1

{
λNKN (bNβ + λN tc+ bλNxic, bNβ + λN tc+ bλNxic)

}
≤ Ck

for a constant C = C(L, t) that is independent of k. This bound is good enough for dominated
convergence, and we can conclude that for all fixed 0 < `,L < ∞ the sum on line (5.62) converges
as N →∞ to

(5.63) 1 +
∑̀
k=1

(−1)k

k!

∫
[t,t+L)k

det
i,j∈[k]

[A(xi, xj)] dx1,k.

The remainder of the proof consists in showing that the parts missing from (5.62) and (5.63)
in comparison with their counterparts on lines (5.60) and (5.61) can be made arbitrarily small by
choosing ` and L large enough.

Consider first the difference between (5.60) and (5.62) with N > `. Let us abbreviate

xN = bNβ + λN tc.

This difference comes as a sum of two parts:

∑̀
k=1

(−1)k

k!

∑
h∈Zk+: ∃i∈[k]:hi≥bλNLc

det
i,j∈[k]

{
KN (xN + hi, xN + hj)

}
(5.64)

+
N∑

k=`+1

(−1)k

k!

∑
h∈Zk+

det
i,j∈[k]

{
KN (xN + hi, xN + hj)

}
(5.65)
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Applying Hadamard’s inequality again, we bound the absolute value of the sum on line (5.64) by

∑̀
k=1

1
k!

k∑
i=1

∑
h∈Zk+:hi≥bλNLc

k∏
i=1

KN (xN + hi, xN + hi)

=
∑̀
k=1

1
(k − 1)!

( ∞∑
m=0

KN (xN +m,xN +m)
)k−1( ∞∑

m=bλNLc

KN (xN +m,xN +m)
)

≤
∑̀
k=1

1
(k − 1)!

C(t)k−1ε ≤ eC(t)ε.(5.66)

Above we used assumptions (i) and (ii), choosing L large enough to get bound ε in (ii).
Next we bound the absolute value of the sum on line (5.65), again starting off with an application

of Hadamard’s inequality:

N∑
k=`+1

1
k!

∑
h∈Zk+

k∏
i=1

KN (xN + hi, xN + hi) ≤
N∑

k=`+1

1
k!

( ∞∑
m=0

KN (xN +m,xN +m)
)k

≤
N∑

k=`+1

1
k!
C(t)k ≤ ε(5.67)

if ` is chosen large enough. Since t is fixed, we have shown that the absolute value of the sum of
lines (5.64) and (5.65) can be made arbitrarily small uniformly over N by choosing ` and L large
enough.

Last we derive the analogous bounds for the Airy kernel, namely that by choosing ` and L large
enough,

∣∣∣∣ ∑̀
k=1

(−1)k

k!

∫
[t,∞)k\[t,t+L)k

det
i,j∈[k]

[A(xi, xj)] dx1,k

∣∣∣∣(5.68)

+
∣∣∣∣ ∞∑
k=`+1

(−1)k

k!

∫
[t,∞)k

det
i,j∈[k]

[A(xi, xj)] dx1,k

∣∣∣∣ ≤ ε.(5.69)

Both sums are controlled by Hadamard’s inequality and estimate (4.11). By (4.10) A(x, x) ≥ 0
and hence absolute values are not needed below. The sum on line (5.68) is bounded by

∑̀
k=1

1
k!

∫
[t,∞)k\[t,t+L]k

k∏
i=1

A(xi, xi) dx1,k

≤
∑̀
k=1

1
(k − 1)!

(∫ ∞
t

A(s, s) ds
)k−1(∫ ∞

t+L

A(s, s) ds
)

≤
∑̀
k=1

1
(k − 1)!

C(t)k−1ε ≤ eC(t)ε.(5.70)
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Above C(t) =
∫∞
t
A(s, s) ds < ∞ and L is chosen so that

∫∞
t+L

A(s, s) ds < ε, both by (4.11).
Finally, utilizing the same C(t),

line (5.69) ≤
∞∑

k=`+1

1
k!

∫
[t,∞)k

k∏
i=1

A(xi, xi) dx1,k ≤
∞∑

k=`+1

1
k!
C(t)k ≤ ε

(5.71)

by choosing ` large enough.
To summarize, the convergence of line (5.60) to line (5.61) has been proved for a fixed t ∈ R, by

showing the convergence of (5.62) to (5.63) and by showing that for large L and ` the sum (5.62) is
close to the sum (5.60) uniformly in N , and sum (5.63) is close to (5.61). �

Theorem 5.1 is now proved by applying Theorem 5.6 to the determinantal representation (5.16)
of the scaled distribution function. The remainder of this section checks hypotheses (i)–(iv) of
Theorem 5.6, with scaling λN = σN1/3. We begin with hypothesis (iv), the Airy limits (5.58)–
(5.59) for the point values of the scaled kernel. This needs the most work. At the end of the chapter
(Proposition 5.17) the estimates derived for the proof of (iv) will be used to verify (i)–(iii).

The following definitions serve to organize some calculations. For x ∈ Z+ define the positive
constants

(5.72) AN (x) =
βx

αx+K
· (x+K − 1)!N !
x!(N +K − 2)!

· w
N+K

p
·
√
q
√
w
.

For x ∈ Z+ and a function g that is bounded and measurable on the sets where the integrations
take place define

(5.73) DN (x, g) =
1

2πi

∫
Γr

g(z)a(z)xb(z)Kz−N−1 dz.

and

(5.74) FN (x, g) = 1{r > √wq} · (−1)x+N+1

∫ r

√
wq

g(−s) |a(−s)|x b(−s)K ds

sN+1
.

In our derivation of the asymptotics, the following four functions will appear as g:

(5.75)
g1(z) = 1 g3(z) = a(z) log a(z)

g2(z) = z − 1 g4(z) = g2(z)g3(z) = (z − 1)a(z) log a(z).

As always, we take the principal branch of log z.
The asymptotics of the kernel KN is based on the following representations.

Lemma 5.7. For integers x 6= y in N

(5.76) KN (x, y) = AN (x)1/2AN (y)1/2DN (x, g1)DN (y, g2)−DN (x, g2)DN (y, g1)
x− y

and on the diagonal

KN (x, x) = AN (x)
[
DN (x− 1, g3)DN (x, g2)−DN (x, g1)DN (x− 1, g4)

+ FN (x, g1)DN (x, g2)− FN (x, g2)DN (x, g1)
]
.

(5.77)
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Proof. Let us temporarily use the shorthand
∫
· · · dz for (2πi)−1

∫
· · · dz, and simplify notation

in other obvious ways. Begin with

DN (x, g1)DN (y, g2)−DN (x, g2)DN (y, g1)

=
∫
axbKz−N−1 dz

∫
(z − 1)aybKz−N−1 dz −

∫
(z − 1)axbKz−N−1 dz

∫
aybKz−N−1 dz

=
∫
axbKz−N−1 dz

∫
z aybKz−N−1 dz −

∫
z axbKz−N−1 dz

∫
aybKz−N−1 dz

=
∫
axbKz−N−1 dz

∫
aybKz−N dz −

∫
axbKz−N dz

∫
aybKz−N−1 dz

= − qN−
1
2 + x+y

2 αK+ x+y
2 pK

wN+K− 1
2 β

x+y
2 (N − 1)!N !

(
mK
N (x)mK

N−1(y)−mK
N−1(x)mK

N (y)
)
.(5.78)

The last equality above came from (5.45). (For x ∈ Z the second line (5.46) vanishes.) Next, the
constant in front of line (5.78) multiplied by AN (x)1/2AN (y)1/2 from (5.72) equals

− qN+ x+y
2 pK−1

(N − 1)!(N +K − 2)!

{ (x+K − 1)!
x!

}1/2{ (y +K − 1)!
y!

}1/2

= − q

p
· pKqN−1(K − 1)!

(N − 1)!(N +K − 2)!
·
(
x+K − 1

x

)1/2

qx/2
(
x+K − 1

y

)1/2

qy/2

= − q

p
· d−2
N−1 · µ

K(x)1/2µK(y)1/2.(5.79)

In summary, we have shown that

AN (x)1/2AN (y)1/2
[
DN (x, g1)DN (y, g2)−DN (x, g2)DN (y, g1)

]
= − q

pd2
N−1

µK(x)1/2µK(y)1/2
[
mK
N (x)mK

N−1(y)−mK
N−1(x)mK

N (y)
]
.

Comparison with (5.34) shows that this is exactly (5.76) without the denominator x− y.
To prove (5.77) use definitions (5.7) of µK and (5.18) of dN , and formulas (5.48) and (5.50) for

mN and m′N . Abbreviate temporarily χ = 1{r > √wq}.

q µK(x)
pd2
N−1

[
m′N (x)mN−1(x)−mN (x)m′N−1(x)

]
= −q

p
· pKqN−1(K − 1)!

(N − 1)!(N +K − 2)!
·
(
x+K − 1

x

)
qx · w

N+K− 1
2 βx(N − 1)!N !

qN−
1
2 +xαx+KpK

×
({∫ (

1
2 log(β/qα) + log a

)
axbK

dz

zN+1
+ FN (x, g1)

}∫
axbK

dz

zN

−
∫
axbK

dz

zN+1

{∫ (
1
2 log(β/qα) + log a

)
axbK

dz

zN
+ FN−1(x, g1)

})

=
βx

αx+K
· (x+K − 1)!N !

(N +K − 2)!x!
· w

N+K

p
·
√
q
√
w

×
(∫ (

log a
)
axbK

dz

zN+1

∫
z axbK

dz

zN+1
−
∫
axbK

dz

zN+1

∫
z
(
log a

)
axbK

dz

zN+1
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+ χ · (−1)x+N+1

∫ r

√
wq

|a(−s)|xb(−s)K ds

sN+1
·
∫
z axbK

dz

zN+1

−
∫
axbK

dz

zN+1
· χ · (−1)x+N

∫ r

√
wq

s|a(−s)|xb(−s)K ds

sN+1

)

= AN (x)
(∫

(a log a)ax−1bK
dz

zN+1

∫
(z − 1) axbK

dz

zN+1

−
∫
axbK

dz

zN+1

∫
(z − 1)(a log a)ax−1bK

dz

zN+1

+ χ · (−1)x+N+1

∫ r

√
wq

|a(−s)|xb(−s)K ds

sN+1
·
∫

(z − 1) axbK
dz

zN+1

−
∫
axbK

dz

zN+1
· χ · (−1)x+N+1

∫ r

√
wq

(−s− 1)|a(−s)|xb(−s)K ds

sN+1

)
= AN (x)

[
DN (x− 1, g3)DN (x, g2)−DN (x, g1)DN (x− 1, g4)

+ FN (x, g1)DN (x, g2)− FN (x, g2)DN (x, g1)
]
.

This proves (5.77). �

Continuing to set up preliminaries, a frequently appearing constant is

(5.80) ρ =
w
√
q

(
√
wq + 1)(

√
w +
√
q )

=
w
√
q

p
√
αβ

.

In terms of ρ,

(5.81) σ =
√
wq

pρ2/3
.

At various times it will be convenient to treat some discrete variables as continuous. Introduce the
correction ω′′N ∈ (0, 1] such that

(5.82) K = M −N + 1 = bNwc −N + 1 = Nw −N + ω′′N = N(α− β) + ω′′N .

Also write

(5.83) x = Nβ + `x

where x is a positive integer. We need to allow negative `x, so we always consider large enough N
so that x > 0.

The task is to deduce asymptotics for the kernel KN (x, y) from formulas (5.76) and (5.77). We
begin with analysis of AN (x) and then turn to the more involved analysis of DN (x, g).

Lemma 5.8. For each −∞ < h0 <∞ there exist finite constants C = C(h0) and N0 = N0(h0)
such that

(5.84) 0 < AN (Nβ + `x) ≤ CNeCN
−1|`x| for N ≥ N0 and `x ≥ N1/3h0.

Furthermore, for any h1 <∞, we have the uniform limit

(5.85) lim
N→∞

sup
−h1≤ξ≤h1

∣∣N−1AN (bNβ +N1/3σξc)− ρ
∣∣ = 0.

In both statements we consider N large enough so that the argument of AN is positive.
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Proof. Write x = Nβ + `x as in (5.83) above. Start by rearranging and then apply Stirling’s
formula:

AN (x) =
βxwN+K

αx+K
· (x+K)!N !
x!(N +K)!

· (N +K − 1)(N +K)
(x+K)

·
√
q

p
√
w

=
{
βxwN+K

αx+K
· (x+K)x+KNN

xx(N +K)N+K

}{
(N +K − 1)(N +K)1/2N1/2

(x+K)1/2x1/2
·
√
q eε(x,N)

p
√
w

}
≡ A(1)

N (x) ·A(2)
N (x).

Above we named the first expression in large brackets A(1)
N (x), the second A

(2)
N (x), and ε(x,N) is

the error from Stirling’s formula that tends to 0 as both x,N →∞. The parameter ranges in (5.84)
and (5.85) are such that x→∞ follows from N →∞.

From (5.82) and (5.83)

A
(2)
N (x) =

(Nw − 1 + ω′′N )(Nw + ω′′N )1/2N1/2

(N(β + w − 1) + `x + ω′′N )1/2(Nβ + `x)1/2
·
√
q eε(x,N)

p
√
w

= N ·

(
w − 1−ω′′N

N

)(
w + ω′′N

N

)1/2

(
β + w − 1 + `x+ω′′N

N

)1/2(
β + `x

N

)1/2
·
√
q eε(x,N)

p
√
w

.

This shows two things: for large enough N ,

(5.86) A
(2)
N (x) ≤ CN for `x ≥ N1/3h0 as required for (5.84),

and

(5.87) N−1A
(2)
N (x)→ w3/2

(β + w − 1)1/2β1/2
·
√
q

p
√
w

=
w
√
q

p
√
αβ

= ρ

uniformly over bounded N−1/3`x (as required in (5.85)).
Turning to A(1)

N (x), rewrite it as

A
(1)
N (x) =

(Nβ
x

)x(x+K

Nα

)x+K

·
( Nw

N +K

)N+K

=
(Nβ
x

)x(Nα+ `x
Nα

)x+K( x+K

Nα+ `x

)x+K

·
( Nw

N +K

)N+K

=
(Nβ
x

)x(Nα+ `x
Nα

)Nα+`x(Nα+ `x
Nα

)ω′′N
·
( x+K

Nα+ `x

)x+K

·
( Nw

N +K

)N+K

(5.88)

For the last two factors factor on line (5.88), utilizing the expansion log(1 + y) = y +O(y2) for
small real y:( x+K

Nα+ `x

)x+K( Nw

N +K

)N+K

=
(Nα+ `x + ω′′N

Nα+ `x

)Nα+`x+ω′′N
( Nw

Nw + ω′′N

)Nw+ω′′N

=
(

1 +
ω′′N

Nα+ `x

)Nα+`x+ω′′N
(

1− ω′′N
Nw + ω′′N

)Nw+ω′′N

= eω
′′
N+O(N−1) · e−ω

′′
N+O(N−1) = eO(N−1).

Thus this quantity is irrelevant for the statements (5.84) and (5.85) we are in the process of proving.
For the third last factor on line (5.88):(Nα+ `x

Nα

)ω′′N
= eω

′′
N log(1+(Na)−1`x) ≤ e(Na)−1|`x|.(5.89)
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The last expression shows that this factor is bounded by eCN
−1|`x| in the parameter range of (5.84).

The middle expression above shows that this factor converges to 1 uniformly in the parameter range
of (5.85).

It remains to treat the first two factors on line (5.88). Introduce the variable ζ = `x/N and
write (Nβ

x

)x(Nα+ `x
Nα

)Nα+`x
=
( β

β + ζ

)N(β+ζ)(α+ ζ

α

)N(α+ζ)

= eNf(ζ)(5.90)

with

f(ζ) = (β + ζ) log
β

β + ζ
+ (α+ ζ) log

α+ ζ

α
.

The admissible values are ζ > −β which corresponds to x > 0.
First check that, due to α ≥ β, f ′(ζ) ≤ 0 iff ζ ≥ 0. Thus f(0) = 0 is a global maximum and

consequently the factors in (5.90) are irrelevant for the bound claimed in (5.84). Statement (5.84)
is thereby proved, its right-hand side coming from (5.86) and (5.89).

As ζ → 0, f(0) = f ′(0) = 0 implies that f(ζ) ≥ −Cζ2 for a constant C. Thus in the parameter
range of (5.85),

1 ≥ eNf(ζ) ≥ e−CNζ
2
≥ e−CN

−1`2x ≥ e−CN
−1/3

.

This together with the previous estimates shows that A(1)
N (x) → 1 uniformly in the range required

by (5.85). In combination with (5.87) this proves (5.85). �

We turn to work on DN (x, g). Define

(5.91) u(z) = β log(
√
wq + z)− α log(

√
w + z

√
q )− log z

where the logarithms take their principal value. This function is holomorphic for z ∈ C \ R− (the
complex plane minus the nonpositive real axis). For a fixed r ∈ (0, 1) such that r 6= √wq, the
arguments of the logarithms are bounded and bounded away from zero for z on Γr. Thus u(z) is
well-defined and bounded on the set Γr \ {−r}. Write

(5.92)
DN (x, g) =

1
2πi

∫
Γr

g(z)a(z)Nβ+`xb(z)N(α−β)+ω′′N
dz

zN+1

=
1

2πi

∫
Γr

g(z)eN(u(z)−u(1))+`x log a(z)+ω′′N log b(z)z−1 dz.

For the part of integral (5.92) close to z = r we develop an expansion for the function u of
(5.91). The precise value of the radius 1/4 around z = 1 taken in the next lemma is immaterial,
any fixed small radius would do.

Lemma 5.9. For z such that |z − 1| ≤ 1/4,

(5.93) u(z)− u(1) = 1
3ρ(1− z)3 + ρ(1− z)4v(z)

for a function v that satisfies |v(z)| ≤ Bu with a fixed constant Bu. The constant Bu can even be
taken independent of w and q.
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Proof. Differentiation and algebraic manipulation lead to

u′(z) =
β

√
wq + z

−
α
√
q

√
w + z

√
q
− 1
z

=
−w√q(1− z)2

z(
√
wq + z)(

√
w + z

√
q)

= −ρ(1− z)2 + (1− z)2
(
ρ−

w
√
q

z(
√
wq + z)(

√
w + z

√
q)

)
= −ρ(1− z)2 − ρ(1− z)3 ·

z2√q + (
√
w + q

√
w +
√
q)z + (

√
wq + 1)(

√
w +
√
q )

z(
√
wq + z)(

√
w + z

√
q)

≡ −ρ(1− z)2 − ρ(1− z)3f(z).

The last equality defines the function f(z). It is evident that the denominator of f is bounded away
from 0 for example under any restriction of the type Re z ≥ h for any h > 0, while its numerator is
bounded on any bounded set. There is a bound on f that is independent of w ≥ 1 and q ∈ (0, 1)
since for large w the dominant term in both numerator and denominator is w.

Given z such that 0 < |1−z| ≤ 1/4, integrate along the line segment L from 1 to z, parametrized
by ζ(s) = 1 + seiλ, 0 ≤ s ≤ |1− z|, for the appropriate argument λ:

u(z)− u(1) =
∫
L
u′(ζ) dζ = 1

3ρ(1− z)3 + ρei4λ
∫ |1−z|

0

s3f(ζ(s)) ds.

Let Bu = 1
4 sup|f(z)| over the radius 1/4 disk centered at 1. Then the function

G(z) = ei4λ
∫ |1−z|

0

s3f(ζ(s)) ds

satisfies ∣∣∣∣ G(z)
(1− z)4

∣∣∣∣ ≤ 4Bu
|1− z|4

∫ |1−z|
0

s3 ds = Bu.

We can satisfy (5.93) by taking v(z) = (1− z)−4G(z).
Regularity of v is not of consequence to us. But (5.93) does show that v is holomorphic in

a punctured neighborhood around 1, and by boundedness of v the point z = 1 is a removable
singularity [Rud87, Theorem 10.21]. Thus v can be assumed holomorphic in the open disk of
radius 1/4 around 1. �

As we take the limit N ↗∞, we also take the radius r ↗ 1. So we set r = 1−δ where δ ↘ 0 as
N ↗∞. The main contribution to the integral (5.92) will come from a small neighborhod around
the point z = 1. To this end we split it in two parts

(5.94) DN (x, g) = I1 + I2

where

(5.95) I1 =
1

2π

∫ ε

−ε
g(reiθ)eN(u(reiθ)−u(1))+`x log a(reiθ)+ω′′N log b(reiθ) dθ

and

(5.96) I2 =
1

2π

∫
(−π,π)\(−ε,ε)

g(reiθ)a(reiθ)xb(reiθ)Kr−Ne−iNθ dθ.

We introduce scaled variables (η, ν) such that

(5.97) δ =
η

(ρN)1/3
and θ =

ν

(ρN)1/3
.
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Here η > 0 is a constant. The integration limit above is

(5.98) ε = (ρN)−7/24

and so the new integration variable ν has range −(ρN)1/24 ≤ ν ≤ (ρN)1/24.
We expand the parts that appear in the exponent of the integrand of I1. We use repeatedly

these expansions, valid for small real or complex z:

(5.99) log(1 + z) = z +O(|z|2)

(5.100) cos z = 1− 1
2z

2 +O(|z|4) and sin z = z +O(|z|3)

In the estimates that follow the O-terms are uniform over the range 0 ≤ η, |ν| ≤ (ρN)1/24. First
we utilize the scaling to find the main part and order of magnitude of the complex value 1− z that
appears in expansion (5.93). The first O(N−7/12) term below comes from θ2 ≤ ε2.

(5.101)

1− reiθ = 1− (1− δ)(cos θ + i sin θ)

= 1−
(

1− η

(ρN)1/3

)(
1 +O(N−7/12) + i

ν

(ρN)1/3

)
=

η − iν
(ρN)1/3

+O(N−7/12) = O(N−7/24).

Then we approximate (5.93):

(5.102)
N(u(reiθ)− u(1)) = 1

3Nρ(1− reiθ)3 +Nρ(1− reiθ)4v(reiθ)

= 1
3 (η − iν)3 +O(N−1/6).

Next the log a(reiθ) function in the exponent in the integral (5.95). The principal branch of the
logarithm does satisfy log z1z2 = log z1 + log z2 when z1 and z2 lie in the right half plane because
then arg z1 + arg z2 stays in (−π, π). This situation we have on the first line below as soon as N is
large enough to make |θ| small enough.

log a(reiθ) = log
√
wq + reiθ
√
wq + 1

− log
√
w + reiθ

√
q

√
w +
√
q

= log
(

1− 1− reiθ
√
wq + 1

)
− log

(
1−
√
q − reiθ√q
√
w +
√
q

)
= −(1− reiθ)

( 1
√
wq + 1

−
√
q

√
w +
√
q

)
+O

(
|1− reiθ|2

)
=
−η + iν

(ρN)1/3
· pρ
√
wq

+O(N−7/12)

= N−1/3σ−1(−η + iν) +O(N−7/12).(5.103)

The last equality used (5.81). For the b-function we only record an error:

(5.104)
log b(reiθ) = − log

√
w + reiθ

√
q

√
w +
√
q

= − log
(

1−
√
q − reiθ√q
√
w +
√
q

)
= O

(
|1− reiθ|

)
= O(N−7/24).

For a function g in (5.95) that is holomorphic in a neighborhood of z = 1, let k = k(g) be the
order of the zero at z = 1, so that for z in some open disk around 1

g(z) = (k!)−1g(k)(1)(z − 1)k +O((z − 1)k+1) with g(k)(1) 6= 0.
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Order k = 0 means that g(1) 6= 0. Consequently the g-factor inside the integral (5.95) satisfies

(5.105)
g(reiθ) = g

(
1− η − iν

(ρN)1/3
+O(N−7/12)

)
= (ρN)−k/3

1
k!
g(k)(1)(−η + iν)k +O(N−7(k+1)/24).

To see the order of the error term above, consider separately the cases k = 0, k = 1 and k ≥ 2.
The functions gi in (5.75) are holomorphic in a neighborhood around z = 1, and we have the

following values for the orders k(i) = k(gi) and the derivatives:

(5.106)
k(1) = 0, g1(1) = 1 k(3) = 1, g′3(1) = ρp/

√
wq

k(2) = 1, g′2(1) = 1 k(4) = 2, g′′4 (1) = 2ρp/
√
wq.

Now we transform the integral I1. We begin with the definition (5.95), perform the change of
variables θ = ν(ρN)−1/3, and then substitute in (5.102), (5.103), (5.104) and (5.105):

I1(g) =
1

2π

∫ ε

−ε
g(reiθ)eN(u(reiθ)−u(1))+`x log a(reiθ)+ω′′N log b(reiθ) dθ

= (ρN)−
1
3 · 1

2π

∫ (ρN)1/24

−(ρN)1/24

{
(ρN)−

k
3 · g

(k)(1)
k!

(−η + iν)k +O
(
N−

7(k+1)
24
)}

× exp
{

1
3 (η − iν)3 +O(N−1/6) + `x

( −η + iν

N1/3σ
+O(N−

7
12 )
)

+O(N−
7
24 )
}
dν(5.107)

= (ρN)−
k+1
3 · g

(k)(1)
k!

· I11(k) +O
(
N−

7k+15
24
)
· I11(0)(5.108)

where the integral I11(k), k ∈ Z+, is defined by

(5.109)
I11(k) =

1
2π

∫ (ρN)1/24

−(ρN)1/24
(−η + iν)k

× exp
{

1
3 (η − iν)3 + `x

( −η + iν

N1/3σ
+O(N−

7
12 )
)

+O(N−1/6)
}
dν

We are ready to see the Airy functions arise as limits. We remind ourselves of the key definitions.
One way to write the Airy function Ai(ξ) is

(5.110) Ai(ξ) =
1

2π

∫ ∞
−∞

e
1
3 (η−iν)3+ξ(−η+iν) dν

where η > 0 is fixed but arbitrary. (Except for the change of variable ν 7→ −ν, this is (4.4).) For a
real ξ, the modulus of the integrand is

(5.111) eRe{ 1
3 (η−iν)3+ξ(−η+iν)} = eη

3/3−ην2−ξη

which shows that the integral converges, and also shows that, by dominated convergence, differen-
tiation can be taken inside the integral to compute all the derivatives:

(5.112) Ai(k)(ξ) =
1

2π

∫ ∞
−∞

(−η + iν)ke
1
3 (η−iν)3+ξ(−η+iν) dν.

The Airy kernel limit (5.54) for the kernelKN requires us to scale the variables as x = bNβ +N1/3σξc,
where ξ ∈ R is the new variable. Since (5.83) we have represented the positive integer variable x as
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x = Nβ+`x. To have some room to maneuver with integer parts we make the following assumption
that connects the variables x and ξ:

(5.113)
`x depends on N and ξ so that for a fixed constant C and all large enough N ,

|`x −N1/3σξ| ≤ C.

Lemma 5.10. Fix ξ ∈ R and η > 0. Assume (5.113). Then for k ∈ Z+

(5.114) lim
N→∞

I11(k) = Ai(k)(ξ).

Proof. With `x = N1/3σξ +O(1) the integral I11(k) becomes

I11(k) =
1

2π

∫ ∞
−∞

1(−(ρN)1/24,(ρN)1/24)(ν) · (−η + iν)ke
1
3 (η−iν)3+ξ(−η+iν)+O(N−1/6) dν

Equation (5.111) shows that dominated convergence gives the limit. �

Returning to line (5.108) we can state the following limit.

Corollary 5.11. Let g be holomorphic in a neighborhood around 1 with a zero of order k at
z = 1, with 0 ≤ k < 7. Fix ξ ∈ R and η > 0 and assume `x satisfies (5.113). Then

(5.115)
lim
N→∞

N
k+1
3 I1(g) = lim

N→∞

{
ρ−

k+1
3
g(k)(1)
k!

· I11(k) +O
(
N

k−7
24
)
· I11(0)

}
= ρ−

k+1
3

1
k!
g(k)(1) ·Ai(k)(ξ).

The values of k we need are 0 ≤ k ≤ 2 from (5.106). The reader may wonder why the order k
works against us in the limit (5.115). The reason is that in the expansion (5.105) we bounded the
error uniformly by the maximal modulus of −η + iν. For a better bound we could have included
the powers of |−η + iν| in the second integral on line (5.108).

The next step is to extend the limit to the full integral DN (x, g) by showing that the part I2 in
(5.96) vanishes in the limit. To control the integral I2 we show that the magnitude of the integrand
is dominated by the value taken closest to z = r. This next lemma contains a technical step in that
direction.

Lemma 5.12. Let 0 < r ≤ 1, w ≥ 1, 0 < κ ≤ λ such that

(5.116)
√
wq + r

√
w + r

√
q
≤
√
κ/λ ≤ 1,

and define the function

(5.117) f(θ) = κ log
∣∣√wq + reiθ

∣∣− λ log
∣∣√w + reiθ

√
q
∣∣ for θ ∈ [−π, π].

Then for any θ0 ∈ [0, π], f(θ0) = f(−θ0) ≥ f(θ) for θ0 ≤ |θ| ≤ π.

Proof. Rewrite the function as

f(θ) =
κ

2
log
(
(
√
wq + r cos θ)2 + r2 sin2 θ

)
− λ

2
log
(
(
√
w + r

√
q cos θ)2 + r2q sin2 θ

)
=
κ

2
log
(
wq + 2rt

√
wq + r2

)
− λ

2
log
(
w + 2rt

√
wq + r2q

)
≡ h(t)
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where we set t = cos θ and renamed the function as h(t). The symmetry f(θ) = f(−θ) comes
from the symmetry of the cosine. The inequality claimed in the lemma follows from showing that
h′(t) ≥ 0 for −1 ≤ t ≤ 1.

h′(t) =
κr
√
wq

wq + 2rt
√
wq + r2

−
λr
√
wq

w + 2rt
√
wq + r2q

and so

h′(t) ≥ 0 ⇐⇒ k(t) ≡ κ(w + 2rt
√
wq + r2q)− λ(wq + 2rt

√
wq + r2) ≥ 0.

Now k′(t) = 2r
√
wq(κ − λ) ≤ 0 by the assumption κ ≤ λ. Hence it is enough to check k(1) ≥ 0

which is equivalent to the left-hand inequality of the assumption (5.116). �

Now the estimate on I2.

Lemma 5.13. Assume that `x ≥ −C0N
1/3 for some constant 0 < C0 < ∞. Then for large

enough N

(5.118) |I2(g)| ≤ Ce−c1N
1/12−c2,3`xN−1/3

for constants 0 < C, c1 < ∞ and where c2,3 takes two distinct positive values: one if `x > 0, the
other if `x < 0.

Proof. From the definition (5.96), bounding g by a constant,

(5.119) |I2(g)| ≤ C
∫

(−π,π)\(−ε,ε)
|a(reiθ)|x|b(reiθ)|Kr−N dθ.

With x = Nβ + `x and K = N(α− β) + ω′′N the integrand is

|a(reiθ)|x|b(reiθ)|Kr−N =
|√wq + reiθ|Nβ+`x

|
√
w + reiθ

√
q|Nα+`x

·
|
√
w +
√
q|Nα+`x

|√wq + 1|Nβ+`x
· |b(reiθ)|ω

′′
N r−N .

We wish to apply Lemma 5.12 to the first quotient above to claim that, over the range θ ∈ (−π,−ε)∪
(ε, π), it is maximized at θ = ε. Now κ = Nβ + `x ≤ Nα+ `x = λ so condition (5.116) is

β +N−1`x
α+N−1`x

≥
(
√
wq + r)2

(
√
w + r

√
q)2

.

Rearranging this and using r = 1− δ leads to

`x
N
≥ −δ ·

w(1 + r)(1 + q) + 2
√
wq(w + r)

(w − r2)
.

Since δ = η(ρN)−1/3, this implies the existence of a constant 0 < c <∞ such that (5.116) is satisfied
if `x ≥ −cN2/3. Thus for large enough N Lemma 5.12 applies to give

|a(reiθ)|x|b(reiθ)|K r−N ≤ |a(reiε)|Nβ+`x |b(reiε)|N(α−β) · |b(reiθ)|ω
′′
N r−N .

Bound the function |b(reiθ)|ω′′N by a constant, drop the integration in (5.119) altogether, and recall
definition (5.91) of u(z) to get

|I2(g)| ≤ C |a(reiε)Nβ+`xb(reiε)N(α−β)| r−N

= C |a(reiε)Nβb(reiε)N(α−β)(reiε)−N · a(reiε)`x |

= C |eN(u(reiε)−u(1))+`x log a(reiε)|

= C eN Re(u(reiε)−u(1))+`x Re log a(reiε).(5.120)
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For small ε the logarithms of a(reiε) and b(reiε) are well-defined, and hence so are their powers
above.

From (5.102)

N Re(u(reiθ)− u(1)) = 1
3 Re{(η − iν)3}+O(N−1/6)

= 1
3η

3 − ην2 +O(N−1/6).

Take θ = ε = (ρN)−7/24 so that ν = θ(ρN)−1/3 = (ρN)1/24. Recall that η is a fixed positive
constant. Consequently for large enough N and a constant 0 < c1 <∞
(5.121) N Re(u(reiε)− u(1)) ≤ −c1N1/12.

Similarly from (5.103)

Re log a(reiε) =
−η

σN1/3
+O(N−7/12)

and thereby

(5.122) −c2N−1/3 ≤ Re log a(reiε) ≤ −c3N−1/3

for constants 0 < c2, c3 <∞.
Substituting these back into (5.120) gives

|I2(g)| ≤ Ce−c1N
1/12−c2,3`xN−1/3

where c2,3 takes two distinct positive values: one if `x > 0, the other if `x < 0. �

We can obtain the Airy convergence of the full integrals DN (x, g) defined in (5.92) and earlier
in (5.73).

Lemma 5.14. Let g be holomorphic in a neighborhood around 1 with a zero of order k at z = 1,
with 0 ≤ k < 7. Fix ξ ∈ R and η > 0. Let x = Nβ + `x with `x satisfying (5.113). Then

(5.123) lim
N→∞

N
k+1
3 DN (x, g) = ρ−

k+1
3

1
k!
g(k)(1) ·Ai(k)(ξ).

Proof. We only need to combine the decomposition DN (x, g) = I1 + I2 from (5.94) with limit
(5.115) and bound (5.118). �

The next item is to show that the second part of formula (5.77) for KN (x, x) that includes the
FN (x, g)-terms is irrelevant for the asymptotics. The argument is basically the same as for (5.118).

Lemma 5.15. Suppose `x ≥ −C1N
1/3 for some constant 0 < C1 <∞. Then for x = Nβ+ `x ∈

N, if N is large enough,

(5.124) |FN (x, g)| ≤ Ce−c1N
1/12−c2,3`xN−1/3

for constants 0 < C, c1 < ∞ and where c2,3 takes two distinct positive values: one if `x > 0, the
other if `x < 0.

Proof. Assume
√
wq < 1 and δ = 1− r = η(ρN)−1/3 small enough so that

√
wq < r < 1, for

otherwise FN (x, g) vanishes. From the definition (5.74), with a bounded function g in the integral,
begin with

(5.125) |FN (x, g)| ≤ C
∫ r

√
wq

|a(−s)|x b(−s)Ks−N ds.

Set temporarily ζ = `x/N and

u1(s) = (β + ζ) log(s−√wq)− (α+ ζ) log(
√
w − s√q)− log s , s ∈ (

√
wq , 1]
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and rewrite the integrand as

|a(−s)|x b(−s)Ks−N = |a(−s)|N(β+ζ) b(−s)N(α−β)s−N · b(−s)ω
′′
N

=
(s−√wq)N(β+ζ)

(
√
w − s√q)N(α+ζ)sN

·
(
√
w +
√
q)N(α+ζ)

(
√
wq + 1)N(β+ζ)

· b(−s)ω
′′
N

= eNu1(s) ·
(
√
w +
√
q)N(α+ζ)

(
√
wq + 1)N(β+ζ)

· b(−s)ω
′′
N .(5.126)

Looking at the factors on the last line, b(−s) is bounded by a constant. One computes

u′1(s) =
w
√
q(s+ 1)2 + ζps

√
w

s(s−√wq)(
√
w − s√q)

.

Thus there is some constant 0 < c <∞ such that if ζ > −c then u′1(s) > 0 for all s ∈ (
√
wq , 1]. The

condition ζ > −c is the same as `x > −cN which is satisfied under the hypothesis `x ≥ −C1N
1/3 if

N is large enough. Hence u1(s) ≤ u1(r) for the range of s in the integral (5.125).
Combine (5.125), (5.126) and the uniform bound u1(s) ≤ u1(r):

|FN (x, g)| ≤ CeNu1(r) ·
(
√
w +
√
q)N(α+ζ)

(
√
wq + 1)N(β+ζ)

= C
|√wq − r|Nβ+`x

|
√
w − r√q|Nα+`x

·
(
√
w +
√
q)Nα+`x

(
√
wq + 1)Nβ+`x

· r−N .

Think of −r as re−iπ. Apply Lemma 5.12 with κ = Nβ + `x ≤ Nα + `x = λ to the first quotient
on the line above, to show that this quotient can only increase if −r is replaced by reiε. Hypothesis
(5.116) of Lemma 5.12 follows from

√
wq + r

√
w + r

√
q
≤
√
wq + 1
√
w +
√
q

=

√
β

α
≤
√
Nβ + `x
Nα+ `x

≤ 1.

After this step we have

|FN (x, g)| ≤ C
|√wq + reiε|Nβ+`x

|
√
w + reiε

√
q|Nα+`x

·
(
√
w +
√
q)Nα+`x

(
√
wq + 1)Nβ+`x

· r−N

= C |a(reiε)|Nβ+`x |b(reiε)|N(α−β)|reiε|−N

by the definition (5.91) of the function u

= C |eN(u(reiε)−u(1))+`x log a(reiε)|

= C eN Re(u(reiε)−u(1))+`x Re log a(reiε)

≤ C e−c1N
1/12−c2,3`xN−1/3

.

In the last step we used(5.121) and (5.122). �

We can prove the main point, namely the convergence of the properly scaled kernel KN (x, y)
to the Airy kernel. Recall that the Airy kernel is defined for (x, y) ∈ R2 by

(5.127) A(x, y) =


Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
, x 6= y

Ai′(x)Ai′(x)−Ai(x)Ai′′(x), x = y.
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Proposition 5.16. Let ξ, η ∈ R. Let `ξ = `ξ(N) and `η = `η(N) be quantities such that
x = Nβ + `ξ and y = Nβ + `η are positive integers for each N , and for some constant C,

(5.128) |`ξ −N1/3σξ|+ |`η −N1/3ση| ≤ C

for all large enough N . Then if ξ 6= η

(5.129) lim
N→∞

σN1/3KN (x, y) = A(ξ, η),

while on the diagonal

(5.130) lim
N→∞

σN1/3KN (x, x) = A(ξ, ξ).

Proof. Suppose first ξ 6= η. Then

x− y = `ξ − `η = N1/3σ(ξ − η) +O(1)

and in particular x 6= y for large enough N . Start with formula (5.76), use limits (5.85) and (5.123)
as N →∞, and note that the denominator x− y takes up one factor of N1/3:

σN1/3KN (x, y) = σN1/3AN (x)1/2AN (y)1/2DN (x, g1)DN (y, g2)−DN (x, g2)DN (y, g1)
x− y

=
(AN (x)

N

)1/2(AN (y)
N

)1/2N1/3DN (x, g1)N2/3DN (y, g2)−N2/3DN (x, g2)N1/3DN (y, g1)
ξ − η +O(N−1/3)

−→ ρ1/2 · ρ1/2 · ρ
−1/3Ai(ξ)ρ−2/3Ai′(η)− ρ−2/3Ai′(ξ)ρ−1/3Ai(η)

ξ − η
= A(ξ, η).

The orders k(i) and values g1(1) = g′2(1) = 1 came from (5.106).
Same argument for the diagonal. Note that x can be replaced by x− 1 without any change in

the limit (5.123). Apply bound (5.124) to show that the terms in KN (x, x) that involve FN vanish
in the limit.

σN1/3KN (x, x) = σN1/3AN (x)
[
DN (x− 1, g3)DN (x, g2)−DN (x, g1)DN (x− 1, g4)

+ FN (x, g1)DN (x, g2)− FN (x, g2)DN (x, g1)
]

= σ · AN (x)
N

·
[
N2/3DN (x− 1, g3) ·N2/3DN (x, g2)−N1/3DN (x, g1) ·NDN (x− 1, g4)

+N2/3FN (x, g1) ·N2/3DN (x, g2) − NFN (x, g2) ·N1/3DN (x, g1)
]

−→ σρ
[ρ1/3p
√
wq

Ai′(ξ) · ρ−2/3Ai′(ξ) − ρ−1/3Ai(ξ) · 1
2 ·

2p
√
wq

Ai′′(ξ)
]

= A(ξ, ξ).

Recall (5.81) to cancel away the unnecessary constants for the last equality. �

As the last item in the proof of the distributional limit Theorem 5.1 we turn to the auxiliary
bounds needed for the convergence of the Fredholm determinant as summarized in Theorem 5.6. In
(5.118) and (5.124) we have good bounds for the integrals I2(g) and FN (x, g). To derive a bound
for I1(g) we revisit the steps that led to (5.108). Let k be again the order of the zero of g at z = 1,
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so that g(z) = (z − 1)kh(z) for a function h holomorphic in a neighborhood of 1. Then utilize
expansion (5.101) and recall that η is fixed:

(5.131)
|g(reiθ)| ≤ C|reiθ − 1|k ≤ C

∣∣∣ η − iν
(ρN)1/3

+O(N−7/12)
∣∣∣k

≤ CN−k/3(1 + |ν|k).

In the next calculation take the development for the exponent from line (5.107) but retain only its
real part, and subsume everything bounded into a constant C that depends on all the parameters,
including k:

|I1(g)| ≤ 1
2π

∫ ε

−ε
|g(reiθ)| · eRe

{
N(u(reiθ)−u(1))+`x log a(reiθ)+ω′′N log b(reiθ)

}
dθ

≤ CN−
k+1
3

∫ (ρN)1/24

−(ρN)1/24
(1 + |ν|k)e−ην

2−c2,3N−1/3`x dν

≤ CN−
k+1
3 e−c2,3N

−1/3`x .(5.132)

Above c2,3 is a positive constant that takes one of two values depending on whether `x is positive or
negative. This little complication arises from the (totally irrelevant) term O(N−7/12) that multiplies
`x on line (5.107).

For our purposes the order k of the zero is bounded, and so we can combine (5.118) and (5.132)
to get the bound

(5.133) |D(x, g)| ≤ CN−
k+1
3 e−c2,3N

−1/3`x

for x = Nβ+ `x ∈ Z+, as long as `x ≥ −C0N
1/3 for some constant C0. We can collect the estimates

we need for the kernel.

Proposition 5.17. The following bounds hold.
(i) For each τ ∈ R there exist constants C(τ), N0(τ) <∞ such that

sup
N≥N0(τ)

∞∑
m=0

KN (bNβ +N1/3στc+m, bNβ +N1/3στc+m) ≤ C(τ).

(ii) For every ε > 0 there exist finite L = L(ε), N0(ε) <∞ such that

sup
N≥N0(ε)

∞∑
m=0

KN (bNβ +N1/3σLc+m, bNβ +N1/3σLc+m) ≤ ε.

(iii) For each M <∞ there exists N0(M) <∞,

sup
−M≤ξ≤M

sup
N
N1/3KN (bNβ +N1/3σξc, bNβ +N1/3σξc) <∞.



COMMENTS 81

Proof. Combine bounds (5.84), (5.124) and (5.133) with formula (5.77) for KN on the diagonal
and the values k(i) from (5.106). Then for x = Nβ + `x with `x ≥ −C0N

1/3,

KN (x, x) ≤ AN (x)
[
|DN (x− 1, g3)| · |DN (x, g2)| + |DN (x, g1)| · |DN (x− 1, g4)|

+ |FN (x, g1)| · |DN (x, g2)| + |FN (x, g2)| · |DN (x, g1)|
]

≤ CNeCN
−1|`x|

[
(N−2/3 ·N−2/3 +N−1/3 ·N−1)e−c2,3N

−1/3`x

+ (e−c1N
1/12

N−2/3 + e−c1N
1/12

N−1/3)e−c2,3N
−1/3`x

]
≤ CN−1/3e−c2,3N

−1/3`x .(5.134)

Above we took N large enough so that e−c1N
1/12 ≤ N−1 and CN−2/3 < c2,3/2 (conditions indepen-

dent of `x) and then redefined the constant c2,3.
The bound claimed in (iii) is now immediate.
For the bound claimed in (i), let x = bNβ +N1/3στc+m. Then for some constant 0 < c4 <∞,

−`x = −bNβ +N1/3στc+Nβ −m ≤ c4N1/3 −m.
Substitute this back into line (5.134), and then

∞∑
m=0

KN (bNβ +N1/3στc+m, bNβ +N1/3στc+m)

≤ CN−1/3
∞∑
m=0

e−c2,3N
−1/3m ≤ CN−1/3

1− e−c2,3N−1/3 ≤ C.

Bound (ii) follows by a similar summation. �

Propositions 5.16 and 5.17 verify the hypotheses of Theorem 5.6 and thereby establish the Airy
kernel limit for the Meixner kernel. Theorem 5.6 applied to the representation (5.16) proves the
Tracy-Widom limit of Theorem 5.1.

Comments

This chapter follows closely Johansson’s paper [Joh00].





APPENDIX A

Probability theory

This appendix collects some ideas and results from probability theory for easy reference.

Convergence in probability. The following situation occurs in the text. There is a sequence
of probability spaces (ΩN ,FN ,PN ) and on each ΩN a random variable XN . Let c be a constant.
Then we say that XN → c in probability if PN{ |Xn − c| ≥ ε } → 0 as N →∞, for each ε > 0.

In textbook formulations of convergence in probability XN
P→ X the random variables XN and

the limit variable X are on the same probability space. Since the limit we have is a constant, we
can achieve this by defining the product space

(Ω̃, F̃ , P̃ ) =
(∏

N

ΩN ,
⊗
N

FN ,
⊗
N

PN

)
with generic sample point ω̃ = (ωN ), and the random variables X̃N (ω̃) = XN (ωN ) and c(ω̃) = c.

Equality in distribution. Let S be a measurable space, X an S-valued random variable
defined on a probability space (Ω,F , P ), and Y another S-valued random variable defined on a
possibly different probability space (Ω̃, F̃ , P̃ ). Equality in distribution X

d= Y means that the
probability distributions agree: P{X ∈ B} = P̃{Y ∈ B} for all measurable subsets B of S.

Lemma A.1. Suppose Xn → γ ∈ [−∞,∞] a.s. and the limit γ is a deterministic constant.
Let {Yn} be random variables all defined on the same probability space, and such that for each n

Yn
d= Xn. Then there exists a subsequence nj such that Ynj → γ ∈ [−∞,∞] a.s.

Proof. If γ > −∞ pick real cj < γ so that cj ↗ γ. By the convergence of Xn we can pick an
increasing subsequence n1 < n2 < n3 < · · · so that for each j ∈ N,

P{Ynj ≤ cj} = P{Xnj ≤ cj} ≤ 2−j .

Then by the Borel-Cantelli lemma limYnj ≥ γ. If γ = ∞ this is enough for the conclusion. If
γ <∞, repeat the argument from above γ. �

Subadditive ergodic theory. Here is a version of the subadditive ergodic theorem, originally
due to Kingman. This improved version was proved by Liggett. Proofs can be found in textbooks,
for example [Dur04] and [Kal02].

Let {Xm,n : m,n ∈ Z+, 0 ≤ m < n} be a real-valued process that satisfies these assumptions.

(i) X0,n ≤ X0,m +Xm,n for 0 ≤ m < n.

(ii) For each k ∈ N, the process {Xnk,(n+1)k : n ∈ Z+} is stationary.

(iii) The probability distribution of the process {Xm,m+j : j ∈ N} is the same for all m ∈ Z+.

(iv) E(X+
0,1) <∞ and for some γ0 > −∞, E(X0,n) ≥ γ0n for all n ∈ N.

83
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Theorem A.2. There is a limit

X = lim
n→∞

X0,n

n
almost surely and in L1.

The expectation of X exists and satisfies

E(X) = lim
n→∞

E(X0,n)
n

= inf
n→∞

E(X0,n)
n

.

If all the stationary processes in assumption (ii) above are ergodic, then X is constant: P{X =
EX} = 1.

At times it is convenient to know that for nonnegative superadditive processes moment as-
sumptions are not needed for almost sure convergence. Let {Zm,n : m,n ∈ Z+, 0 ≤ m < n} be a
process that satisfies 0 ≤ Zm,n ≤ ∞, assumptions (ii) and (iii) from above, and superadditivity:
Z0,n ≥ Z0,m + Zm,n for 0 ≤ m < n. Assume also that the processes {Znk,(n+1)k : n ∈ Z+} are
ergodic in addition to stationary.

Corollary A.3. There exists a constant γ ∈ [0,∞] such that n−1Z0,n → γ almost surely.

Proof. For K ∈ N, the process Z(K)
m,n = Zm,n ∧ K(m − n) is superadditive, and Xm,n =

−Z(K)
m,n satisfies all the assumptions of Theorem A.2, including the ergodicity of the processes in

assumption (ii). Thus there are constants γ(K) such that n−1Z
(K)
0,n → γ(K) almost surely. Since we

are considering countably many K ∈ N, there is a probability one event Ω0 on which this convergence
holds for all K ∈ N. Let γ = supK γ(K). We claim that n−1Z0,n → γ on Ω0.

Since Z0,n ≥ Z(K)
0,n for all K, by letting n→∞ along a suitable subsequence and then K ↗∞

gives limn→∞ n−1Z0,n ≥ γ
If γ =∞ this already gives the limit. Suppose γ <∞. If limn→∞ n−1Z0,n > γ then pick ε > 0

and a subsequence nj such that n−1
j Z0,nj > γ + ε for all j. Pick K > γ + ε. Then on the one hand

n−1
j Z

(K)
0,nj

= (n−1
j Z0,nj ) ∧K > γ + ε for all j

but on the other hand n−1
j Z

(K)
0,nj
→ γ(K) ≤ γ. This contradiction implies that limn→∞ n−1Z0,n ≤

γ. �

Large deviations. Let Sn = X1 + . . . + Xn be a sum of i.i.d. mean zero (EXi = 0) random
variables. Assume the existence of some exponential moment, that is, the existence of θ0 > 0 such
that

(A.1) φ(t) = E(etX) <∞ for t ∈ [−θ0, θ0].

Here X has the same distribution as the Xi. Estimate φ(t) for |t| ≤ θ0 by expanding the exponential:∣∣φ(t)− 1− 1
2 t

2E(X2)
∣∣ =

∣∣∣∣ t2 ∞∑
k=3

tk−2E(Xk)
k!

∣∣∣∣
≤ t2 · θ−2

0

∞∑
k=3

θk0E(|X|k)
k!

≤ t2θ−2
0 E(eθ0|X|)

≤ t2θ−2
0

(
E(eθ0X) + E(e−θ0X)

)
≤ Ct2.

Here is a useful estimate.

Lemma A.4. For 0 < x <∞ there exists a function A(x) > 0 such that A(x)→∞ as x→∞
and for all n ≥ 1 and α ∈ (0, 1/2],

(A.2) P{ |Sn| ≥ xn1/2+α} ≤ 2e−A(x)n2α
.
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Proof. We derive first an upper tail bound for Sn. Let 0 < t ≤ θ0, apply an exponential
Chebyshev inequality and then φ(t) ≤ 1 + Ct2:

P{Sn ≥ xn1/2+α} ≤ exp[−txn1/2+α + n log φ(t)] ≤ exp[−txn1/2+α + Cnt2].

Let t∗ = xnα−1/2/(2C). If t∗ ≤ θ0, then take t = t∗ above to get

P{Sn ≥ xn1/2+α} ≤ exp[−x2n2α/(4C)].

If t∗ > θ0, then take t = θ0 to get

P{Sn ≥ xn1/2+α} ≤ exp[−θ0xn
1/2+α + Cnθ2

0] ≤ exp[−θ0xn
1/2+α + Cnθ0 · xnα−1/2/(2C)]

= exp[−θ0xn
1/2+α/2] ≤ exp[−θ0xn

2α/2].

The same argument can be applied to −Xi to get the complementary lower tail bound. �





APPENDIX B

Linear algebra and determinants

Bijections of the set [N ] = {1, 2, . . . , N} are called permutations and they form the symmetric
group S(N). A permutation τ is a transposition if it interchanges 2 elements of [N ] and fixes the
rest: for some k 6= ` in [N ], τ(k) = `, τ(`) = k and τ(i) = i for i ∈ [N ] \ {k, `}.

Every permutation can be expressed as a composition of transpositions. The signum (sign,
parity) of a permutation is sgn(σ) = (−1)m where m is any integer such that σ can be expressed
as a composition of m transpositions. The number m is not unique but its parity (even or odd) is.
Here is an alternative way to express this same definition: the value sgn(σ) ∈ {±1} is determined
uniquely by the following identity, valid for arbitrary variables x1, . . . , xN :

(B.1)
∏

1≤i<j≤N

(xσ(j) − xσ(i)) = sgn(σ)
∏

1≤i<j≤N

(xj − xi).

The determinant above is the Vandermonde determinant

(B.2) det
i,j∈[n]

(xi−1
j ) =

∏
1≤i<j≤n

(xj − xi).

This identity is proved by induction on n. Subtract x1 times row n− 1 from row n, then x1 times
row n− 2 from row n− 1, and so on, until the determinant has turned into∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 · · · 1
0 x2 − x1 · · · xj − x1 · · · xn − x1

0 x2
2 − x1x2 · · · x2

j − x1xj · · · x2
n − x1xn

...
...

...
...

0 xn−1
2 − x1x

n−2
2 · · · xn−1

j − x1x
n−2
j · · · xn−1

n − x1x
n−2
n

∣∣∣∣∣∣∣∣∣∣∣
Expand along the first column and note that the remaining determinant equals

∏n
j=2(xj−x1) times

a Vandermonde of smaller order. For a vector x = (x1, . . . , xn) we use the shorthand

(B.3) ∆n(x) =
∏

1≤i<j≤n

(xj − xi).

In the sequel all matrices have complex entries unless otherwise indicated.
Let A = [ai,j ]i,j∈[N ] be an N ×N matrix. For subsets α, β ⊆ [N ] the submatrix A(α, β) of A is

obtained by deleting from A row k and column ` for all k /∈ α and ` /∈ β. The notation is

A(α, β) = [ai,j ]i∈α, j∈β .

If α = β then A(β, β) is called a principal submatrix of A. The principal minors are the determinants
det[A(β, β)] of principal submatrices.
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Lemma B.1. For an N ×N matrix A and an identity matrix I of the same dimensions,

det(I +A) = 1 +
∑

∅6=β⊆[N ]

detA(β, β)(B.4)

= 1 +
N∑
m=1

1
m!

∑
(i1,...,im)∈[N ]m

det
k,`∈[m]

[aik,i` ].(B.5)

Proof. Let A = [a1, a2, . . . , aN ] express A decomposed into columns. By the multilinearity of
the determinant as a function of the columns,

(B.6) det(I +A) = det[e1 + a1, e2 + a2, . . . , eN + aN ] =
∑
β⊆[N ]

detBβ

where Bβ = [b1, b2, . . . , bN ] has columns

bj =

{
aj , j ∈ β
ej , j /∈ β.

Since the ej columns are zero except at the diagonal,

detBβ =
∑

σ∈S(N)

sgn(σ)
N∏
j=1

bσ(j),j =
∑

σ|βc=id

sgn(σ)
∏
j∈β

aσ(j),j .

Permutations of the set β are in one-to-one correspondence with permutations σ ∈ S(N) that fix
the set βc, and parity is preserved by this identification since the same transpositions appear in the
compositions. Consequently detBβ = detA(β, β) for β 6= ∅, while detB∅ = 1. The right-hand sides
of (B.4) and (B.6) coincide.

To go from (B.4) to (B.5), write each set β of cardinality m in each of its m! permutations, and
note that detk,`∈[m][aik,i` ] = 0 if the vector (i1, . . . , im) has any repetitions. �

Here is a generalized form of the Cauchy-Binet identity.

Theorem B.2. Let (X,F , µ) be a σ-finite measure space, N ∈ N, and f1, . . . , fN , g1, . . . , gN
measurable functions on X such that figj ∈ L1(µ) for all pairs i, j. Then

(B.7) det
i,j∈[N ]

[∫
X

fi(x)gj(x)µ(dx)
]

=
1
N !

∫
XN

det
i,j∈[N ]

[fi(xj)] det
i,j∈[N ]

[gi(xj)]µ⊗N (dx1,N ).

The integral on the right is over the N -fold product measure µ⊗N , and the integrand is integrable.

Proof. The absolute value of the integrand on the right-hand side of (B.7) is bounded by a
sum of terms of the type

N∏
i=1

| fσ(j)(xj) gτ(j)(xj) |

where σ, τ ∈ S(N) are permutations. These products are integrable under µ⊗N by the assumption
figj ∈ L1(µ).

To prove (B.7), start by expanding the right-hand side via the definition of the determinant.
Note that sgn(τ) = sgn(τ−1) for a permutation τ . Use the product structure of the multidimensional
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integral, and rename suitably multiplication and summation indices.

1
N !

∑
σ,τ∈S(N)

sgn(σ) sgn(τ)
∫
XN

N∏
i=1

fσ(i)(xi) ·
N∏
i=1

gτ−1(i)(xi)µ⊗N (dx1,N )

=
1
N !

∑
σ,τ∈S(N)

sgn(σ) sgn(τ)
N∏
i=1

∫
X

fσ(i)(x) gτ−1(i)(x)µ(dx)

=
1
N !

∑
σ∈S(N)

∑
τ∈S(N)

sgn(σ ◦ τ)
N∏
j=1

∫
X

fσ◦τ(j)(x) gj(x)µ(dx)

=
1
N !

∑
σ∈S(N)

∑
ρ∈S(N)

sgn(ρ)
N∏
j=1

∫
X

fρ(j)(x) gj(x)µ(dx)

= det
i,j∈[N ]

[∫
X

fi(x)gj(x)µ(dx)
]
.

On the third-last line, for each fixed σ the composite ρ = σ ◦ τ ranges over the symmetric group
S(N). Dependence on σ disappears from the terms and so the averaging over σ can be dropped. �

Let us also state the Cauchy-Binet identity for matrices. Let A be an M×K matrix, B a K×N
matrix, and C = AB the M ×N product.

Corollary B.3. Let r ≤M ∧N , and α ⊆ [M ] and β ⊆ [N ] subsets of size r. Then

(B.8) detC(α, β) =
∑

γ⊆[K]: |γ|=r

detA(α, γ) detB(γ, β).

The equality is true also if |K| < r in which case the sum on the right is empty and returns the
value zero.

Proof. Enumerate the sets as α = {k1 < · · · < kr} and β = {`1 < . . . < `r}. Then

detC(α, β) = det
i,j∈[r]

[c(ki, `j)] = det
i,j∈[r]

[ K∑
x=1

a(ki, x)b(x, `j)
]
.

Apply (B.7) with X = [K] and µ counting measure to get

detC(α, β) =
1
r!

∑
x1,...,xr∈[K]

det
i,j∈[r]

[a(ki, xj)] det
i,j∈[r]

[b(xi, `j)].

Any repetition among the x1, . . . , xr leads to repeated rows and columns and thereby to zero deter-
minants on the right-hand side. Thus γ = {x1, . . . , xr} is a set of cardinality r, and each such set
appears in the sum in all its permutations, r! times. Permuting the xj ’s to order them leaves the
term on the right-hand side unchanged because the same permutation operates on both determinants
and thus multiplies by the square of the signum. We can rewrite the above as

detC(α, β) =
∑

γ={x1<···<xr}⊆[K]

det
i,j∈[r]

[a(ki, xj)] det
i,j∈[r]

[b(xi, `j)]

which equals the right-hand side of (B.8). �

Next Hadamard’s inequality. An n × n Hermitian matrix (A = A∗) is positive definite if
x∗Ax > 0 for all nonzero vectors x ∈ Cn, and positive semidefinite (or nonnegative definite) if
x∗Ax ≥ 0 for all x ∈ Cn. Equivalently, a Hermitian matrix is positive definite if all its eigenvalues



90 B. LINEAR ALGEBRA AND DETERMINANTS

are strictly positive, and positive semidefinite if all its eigenvalues are nonnegative. In particular, a
positive semidefinite matrix is positive definite iff it is nonsingular.

Theorem B.4. (a) For a Hermitian, positive semidefinite n× n matrix A,

(B.9) detA ≤
n∏
i=1

ai,i.

(b) For any n× n matrix B,

(B.10) |detB| ≤
n∏
i=1

( n∑
j=1

|bi,j |2
)1/2

.

Proof. (a) If A is singular then detA = 0 and (B.9) holds because ai,i = e∗iAei ≥ 0.
Suppose A is nonsingular. Then A is positive definite, and each diagonal element is strictly

positive: ai,i = e∗iAei > 0.
We reduce the proof to the case where all diagonal elements are equal to 1. Let D be the diagonal

matrix with entries di,i = 1/√ai,i. Then DAD has diagonal elements all 1, and detA ≤
∏
ai,i iff

detDAD ≤ 1.
Lastly the case a1,1 = a2,2 = · · · = an,n = 1. Let λ1, . . . , λn denote the eigenvalues which are

positive now. By Jensen’s inequality (in the guise of the arithmetic-geometric mean inequality)

detA =
∏

λi ≤
( 1
n

∑
λi

)n
=
( 1
n

trA
)n

=
( 1
n

∑
ai,i

)n
= 1.

(b) Part (a) applied to the positive semidefinite matrix A = BB∗ gives

|detB|2 = det(BB∗) ≤
∏
i

(BB∗)i,i =
∏
i

∑
j

bi,j b̄i,j =
∏
i

∑
j

|bi,j |2. �

The Fredholm determinant of a finite-rank operator on `2(S) for some countable set S. Let am
and bm, m ∈ [M ], be functions on S and the kernel given by

(B.11) K(x, y) =
M∑
m=1

am(x)bm(y).

If am, bm ∈ `2 then K is an operator on `2. Assume at least

(B.12)
∑
x∈S
|a`(x)bm(x)| <∞ ∀`,m ∈ [M ].

Proposition B.5. Let the operator K on `2(S) be given by (B.11) and assume (B.12). Then
the Fredholm determinant satisfies

(B.13) det(I −K)`2(S) = det
`,m∈[M ]

[
δ`,m −

∑
x∈S

a`(x)bm(x)
]
.

Proof. By the expansion of the Fredholm determinant,

det(I −K) = 1 +
∞∑
n=1

(−1)n

n!

∑
x1,...,xn∈S

det
i,j∈[n]

[
K(xi, xj)

]
.(B.14)

In the determinant

det
i,j∈[n]

[
K(xi, xj)

]
= det
i,j∈[n]

[ M∑
m=1

am(xi)bm(xj)
]
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column j is a linear combination of M vectors:

M∑
m=1

bm(xj)


am(x1)
am(x2)

...
am(xn)

 .
Thus the rank is at most M , and in the sum on line (B.14) all terms for n > M vanish. Apply
Cauchy-Binet (B.7) with X = [M ] to rewrite (B.14) as

det(I −K) = 1 +
M∑
n=1

(−1)n

n!

∑
x1,...,xn∈S

1
n!

∑
m1,...,mn∈[M ]

det
i,j∈[n]

[amj (xi)] det
i,j∈[n]

[bmj (xi)].

Take the sum over (x1, . . . , xn) inside and apply Cauchy-Binet (B.7) again, this time with X = S
and counting measure:

det(I −K) = 1 +
M∑
n=1

(−1)n

n!

∑
m1,...,mn∈[M ]

1
n!

∑
x1,...,xn∈S

det
i,j∈[n]

[amj (xi)] det
i,j∈[n]

[bmj (xi)]

= 1 +
M∑
n=1

(−1)n

n!

∑
m1,...,mn∈[M ]

det
i,j∈[n]

[∑
x∈S

ami(x)bmj (x)
]
.

The last determinant vanishes unless the m1, . . . ,mn are distinct. The factor n! in the denominator
takes care of the repeated permutations of a given ordered set {m1 < · · · < mn}. Thus the last line
rewrites as

det(I −K) = 1 +
∑

∅6=α⊆[M ]

det
`,m∈α

[
−
∑
x∈S

a`(x)bm(x)
]

= det
`,m∈[M ]

[
δ`,m −

∑
x∈S

a`(x)bm(x)
]
.

The last equality is by (B.4). �





APPENDIX C

Analysis

C.1. Convex functions

This section discusses the duality of convex functions in one dimension. A function f : R →
(−∞,∞] is convex if

(C.1) f(sx+ (1− s)w) ≤ sf(x) + (1− s)f(w) for x,w ∈ R and 0 < s < 1.

Here are some basic facts. For any convex f , the set {f <∞} is an interval. If f is convex and finite
on an open interval I then f is continuous on I, and at each x ∈ I the left and right derivatives
exist:

f ′(x−) = lim
h↘0

f(x− h)− f(x)
−h

and f ′(x+) = lim
h↘0

f(x+ h)− f(x)
h

.

The derivatives are nondecreasing: f ′(x−) ≤ f ′(x+) ≤ f ′(w−) for x < w in I. The graph of f lies
at or above the tangent lines: if c ∈ [f ′(x−), f ′(x+)] then

(C.2) f(w) ≥ f(x) + c(w − x) for all w ∈ R.

A form of regularity that arises naturally in the theory of convex functions is lower semicontinu-
ity: a function f from a metric space S into [−∞,∞] is lower semicontinuous if the sets {f > t} are
open subsets of S for all t ∈ R, or, equivalently, if limw→x f(w) ≥ f(x) for each x ∈ S. A supremum
of a collection of continuous functions is lower semicontinuous.

The convex dual of a function f : R→ [−∞,∞] is

(C.3) f∗(y) = sup
x∈R
{xy − f(x)}, y ∈ R.

Repeating the step gives the convex double dual of f :

(C.4) f∗∗(x) = sup
y∈R
{xy − f∗(y)}, x ∈ R.

Theorem C.1. Let f : R→ (−∞,∞] be a lower semicontinuous convex function. Then f∗∗ =
f .

Proof. Let us first dispose of the case f ≡ ∞. In this case f∗ ≡ −∞ and then f∗∗ ≡ ∞. For
the remainder assume that {f < ∞} is nonempty, and hence a nonempty interval but possibly a
singleton.

For all x,
f∗∗(x) = sup

y∈R
{xy − f∗(y)} ≤ sup

y∈R
{xy − (xy − f(x))} = f(x).

We argue the converse f∗∗(x) ≥ f(x) by cases.

Case 1: x is an isolated point of {f < ∞}. Since {f < ∞} is an interval, the singleton {x}
must be all of {f <∞}. Then f∗(y) = xy − f(x), and for all w ∈ R,

f∗∗(w) = sup
y
{(w − x)y + f(x)} = f(x) · 1{w = x}+∞ · 1{w 6= x} = f(w).

For the remainder of the proof we can assume {f <∞} has nonempty interior.

93



94 C. ANALYSIS

Case 2: x is an interior point of {f <∞}. Pick any c ∈ [f ′(x−), f ′(x+)]. Then (C.2) implies
that f∗(c) = cx− f(x) and from this

f∗∗(x) ≥ xc− f∗(c) = f(x).

Case 3: x is a boundary point of {f < ∞} and {f < ∞} has nonempty interior. Pick a
sequence {xj} of interior points of {f <∞} such that xj → x monotonically. We claim that

f∗∗(x) ≥ lim
j→∞

f∗∗(xj) ≥ lim
j→∞

f(xj) ≥ f(x).

The middle inequality follows from Case 2. By lower semicontinuity, f(x) ≤ lim f(xj). Pick a
subsequence {xjk} so that f∗∗(xjk)→ lim f∗∗(xj). Fix an index `. By the assumption of monotone
convergence xjk → x, for each k > ` there exists sk ∈ [0, 1) such that xjk = (1 − sk)xj` + skx and
sk ↗ 1. Then by convexity

f∗∗(xjk) ≤ (1− sk)f∗∗(xj`) + skf
∗∗(x)

and by letting k →∞, lim f∗∗(xj) ≤ f∗∗(x).

Case 4: x is an interior point of {f = ∞}. Suppose x is to the right of {f < ∞}. (An
analogous argument works for x to the left of {f <∞}.) Pick a point x1 between x and {f <∞},
so that x1 < x and f(x1) = ∞. Also, pick x0 in the interior of {f < ∞} and a slope c so that
f(w) ≥ f(x0) + c(w − x0) ≡ b+ cw for all w ∈ R. Now observe that for any λ > 0,

f(w) ≥ λ(w − x1) + b+ cw.

The reason is that f(w) <∞ implies w − x1 < 0. From the above inequality

f∗(c+ λ) ≤ −b+ λx1

and then
f∗∗(x) ≥ (c+ λ)x− f∗(c+ λ) ≥ cx+ λ(x− x1) + b.

Letting λ↗∞ shows f∗∗(x) =∞.

We have covered all the cases and the proof is complete. �

This theorem is equivalent to the statement that a lower semicontinuous convex f : R →
(−∞,∞] is equal to the supremum of its affine minorants:

(C.5) f(x) = sup{ax+ b : a, b ∈ R; ∀z ∈ R, az + b ≤ f(z)}.

In Section 2.2 we apply duality to concave functions, so we state a corollary for concave functions.
A function g : R → [−∞,∞) is concave if −g is convex. A function g from a metric space S into
[−∞,∞] is upper semicontinuous if −g is lower semicontinuous. The concave dual and concave
double dual of a function g : R→ [−∞,∞] are

(C.6) g∗(y) = inf
x∈R
{xy − g(x)}, y ∈ R,

and

(C.7) g∗∗(x) = inf
y∈R
{xy − g∗(y)}, x ∈ R.

Corollary C.2. Let g : R → [−∞,∞) be an upper semicontinuous concave function and g∗∗

its concave double dual defined by (C.7). Then g∗∗ = g.

Analogues of these facts hold in higher dimensions, including infinite dimensions. The reader is
referred to the monographs of Rockafellar [Roc70] and Ekeland and Temam [ET99].
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C.2. Complex variables

The principal branch of the logarithm is the holomorphic function

log z = log|z|+ i arg z for z ∈ C \ R− and with −π < arg z < π.

We can write

log|z|+ i arg z =
∫ |z|

1

dt

t
+
∫ arg z

0

i|z|eis

|z|eis
ds =

∫ z

1

dζ

ζ

where we integrate first along the line segment from 1 to |z| and then along the circular arc from
|z| to |z|ei arg z. That the function f(z) =

∫ z
1
ζ−1dζ is holomorphic can be seen from the definition

of the integral:

f(z)− f(w)
z − w

=
1

z − w

∫ z

w

dζ

ζ
=
∫ 1

0

dt

w + t(z − w)
−→
z→w

∫ 1

0

dt

w
=

1
w
.

Any holomorphic branch of the logarithm, that is, a holomorphic f in a domain G such that
ef(z) = z, satisfies f ′(z) = 1/z. Note that 0 /∈ G because ew 6= 0 for all w ∈ C.

Let γ be the circle of radius r > 0 around the origin and f a continuous function on γ∗. We
follow the convention of [Rud87] that γ∗ ⊆ C denotes the image set of a path γ : [a, b]→ C. Then
for any n ∈ Z it is legitimate to use the principal branch to write

(C.8)
∫
γ

f(z)zn dz =
∫
γ

f(z)en log z dz

simply because with the principal branch en log z = rneint for z = reit with −π < t < π. The fact
that the integrand is not well-defined at the single point z = −1 of γ∗ is immaterial for the integral.

For any real α the function (1 + z)α = eα log(1+z) is holomorphic in the open unit disk {|z| < 1}.
The logarithm is the principal branch. On the open unit disk this function has the series

(C.9) (1 + z)α =
∞∑
n=0

(
α

n

)
zn.

The binomial coefficient above is defined by(
α

0

)
= 1 and

(
α

n

)
=
α(α− 1) · · · (α− n+ 1)

n!
for n ∈ N.

We record some simple bounds on these coefficents. For α ∈ R and n ≥ 1,∣∣∣(α
n

)∣∣∣ =
n∏
j=1

∣∣∣α
j
− j − 1

j

∣∣∣ ≤ n∏
j=1

(
1 +
|α|
j

)
= e

Pn
j=1 log(1+|α|/j) ≤ e|α|

Pn
j=1 1/j

≤ e|α|(1+logn) = (ne)|α|.

(C.10)

Alternatively, one can reverse the product in the numerator and follow similar steps to get this
bound:

(C.11)
∣∣∣(α
n

)∣∣∣ =
n∏
j=1

∣∣∣α− n
j

+ 1
∣∣∣ ≤ n∏

j=1

(
1 +
|α− n|
j

)
≤ (ne)|α−n|.

To verify (C.9) let f(z) denote the series on the right. Bound (C.10) shows that the radius of
convergence is at least 1. Inside the radius of convergence the series can be differentiated term by
term, resulting in the equation (1+z)f ′(z) = αf(x). Multiply through this equation by e−α log(1+z),
where log is the principal branch, to derive

d

dz

(
f(z)e−α log(1+z)

)
= 0
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from which follows f(z) = ceα log(1+z) for some constant. The value f(0) = 1 chooses c = 1.

In the next lemma we write explicitly the correction term to an integral that comes from
integrating across a branch cut of the logarithm. Let Γr denote the counterclockwise circle of radius
r around the origin. For a real ξ let zξ = eξ log z denote the principal value defined for z ∈ C \ R−.

Lemma C.3. Let 0 < r1 < α < r2. Let f be holomorphic in an annulus {z : s1 < |z| < s2} that
contains the circles of radii r1 and r2. Let ξ > −1 be a real number. Then

(C.12)
∫

Γr1

f(z)(α+ z)ξ dz =
∫

Γr2

f(z)(α+ z)ξ dz + 2i sin(πξ)
∫ r2

α

f(−s)|α− s|ξ ds.

Note that (α + z)ξ is holomorphic for z ∈ C \ (−∞,−α], so in particular in an open region
that contains the path Γr1 of the integral on the left. In the Γr2-integral on the right (α + z)ξ =
eξ log|α+z|+iξ arg(α+z) is well-defined and bounded on Γr2 \ {−r2}, hence the existence and finiteness
of the integral is not in doubt. The last integral on the right is an ordinary Lebesgue or Riemann
integral over the interval [α, r2].

Proof of Lemma C.3. Let ε > 0 be small and let ε̃ ∈ (0, π/2) be the small number such that
r2 sin ε̃ = ε. Let r̃2 = r2 cos ε̃. By Cauchy’s theorem∫

Γr1

f(z)(α+ z)ξ dz =
( ∫

Γεr2

+
∫
γ1

+
∫
C

+
∫
γ2

)
f(z)(α+ z)ξ dz

where
(i) Γεr2 is the circular path r2e

iθ for −π + ε̃ < θ < π − ε̃,
(ii) γ1 is the line segment from −r̃2 + iε to −α+ iε,
(iii) C is the small circular arc −α+ εei(π/2−θ) for 0 ≤ θ ≤ π,
(iv) γ2 is the line segment from −α− iε to −r̃2 − iε.
The boundedness of the integrands implies that as ε→ 0, the integral over Γεr2 converges to the

integral over Γr2 . The integral over C tends to zero because the length of the path is πε and the
integrand is bounded by Cε−ξ

− ≤ Cε−1+δ for some δ > 0.
The inverse of path γ1 is s 7→ −s+ iε for α ≤ s ≤ r̃2, and so∫

γ1

f(z)(α+ z)ξ dz =
∫ r̃2

α

f(−s+ iε)|α− s+ iε|ξ exp{iξ arg(α− s+ iε)} ds.

Let ε → 0 and apply dominated convergence. If ξ ≥ 0 the integrand is bounded. If −1 < ξ < 0
then for some δ > 0, |α− s+ iε|ξ ≤ |α− s|−1+δ which is integrable for s ∈ (α, r2). In the limit

lim
ε→0

∫
γ1

f(z)(α+ z)ξ dz =
∫ r2

α

f(−s)|α− s|ξeiξπ ds.

Similarly with γ2(s) = −s− iε for α ≤ s ≤ r̃2,

lim
ε→0

∫
γ2

f(z)(α+ z)ξ dz

= − lim
ε→0

∫ r̃2

α

f(−s− iε)|α− s− iε|ξ exp{iξ arg(α− s− iε)} ds

= −
∫ r2

α

f(−s)|α− s|ξe−iξπ ds.
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Add up the limits:∫ r2

α

f(−s)|α− s|ξ
(
eiξπ − e−iξπ

)
ds = 2i sin(ξπ)

∫ r2

α

f(−s)|α− s|ξ ds. �





APPENDIX D

Orthogonal Polynomials

Let µ be a finite positive Borel measure on R, not supported on finitely many points. Assume
that

(D.1)
∫

R
|x|n µ(dx) <∞ for all n ≥ 0.

Let L2(µ) be the space of real-valued square-integrable Borel functions:

f ∈ L2(µ) ⇐⇒
∫

R
f2 dµ <∞.

L2(µ) is a Hilbert space with inner product

〈f, g〉 =
∫

R
fg dµ.

Next we orthogonalize the monomials 1, x, x2, . . . and then normalize to generate a countable
orthonormal basis of polynomials for L2(µ).

Theorem D.1. (i) There exists a unique sequence {pn(x)}n∈Z+ of real polynomials on R with
these properties: each pn(x) is precisely of degree n, its leading coefficient is positive, and the
condition of orthonormality under µ is satisfied:

(D.2)
∫

R
pm(x)pn(x)µ(dx) = δm,n for m,n ∈ Z+.

(ii) Any polynomial of degree n is a linear combination of p0, . . . , pn. For any polynomial f of
degree strictly less than n,

∫
f(x)pn(x)µ(dx) = 0.

Proof. (i) We start by showing that for each n there is a uniquely determined sequence
{φ0, . . . , φn} of polynomials such that each φk(x) is precisely of degree k, its leading coefficient
is 1, and orthogonality is satisfied:

(D.3)
∫
φkφ` dµ = 0 for k 6= `.

Denote the moments of the measure µ by

(D.4) cn =
∫
xn µ(dx), n ∈ Z+.

It is clear that if {φ0, φ1} is to satisfy the requirements, then these must be φ0(x) = 1 and φ1(x) =
x− c1/c0. Assume that polynomials {φ0(x), . . . , φn−1(x)} uniquely meet the requirements. Let

(D.5) φn(x) = xn + bn,n−1φn−1(x) + bn,n−2φn−2(x) + · · ·+ bn,0φ0(x)

with coefficients

(D.6) bn,k = −
∫
xnφk(x)µ(dx) ·

{ ∫
φk(x)2 µ(dx)

}−1

, 0 ≤ k ≤ n− 1.

99
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The integral
∫
φ2
k dµ cannot vanish because if it did µ would have to be supported on the set of at

most k zeroes of φk, a situation we ruled out at the very outset. The definition shows that φn is
strictly of order n, has leading coefficient 1, and the assumed orthogonality of φ0(x), . . . , φn−1(x)
gives for 0 ≤ k ≤ n− 1∫

φnφk dµ =
∫
xnφk(x)µ(dx) + bn,k

∫
φk(x)2 µ(dx) = 0.

Since each φk is precisely of degree k, any polynomial of degree n − 1 can be expressed as a
linear combination of φ0, . . . , φn−1. (This can be checked by induction too.) Hence φn must be
given by a formula of the type (D.5), and then the orthogonality requirement forces (D.6). Thus φn
is also uniquely determined.

For n ≥ 0 let

κn =
{ ∫

φn(x)2 µ(dx)
}−1/2

∈ (0,∞)

so that we get orthonormal polynomials with positive leading coefficients by setting

(D.7) pn(x) = κnφn(x) = κnx
n + · · · .

Via (D.7) polynomials {pn} and {φn} determine each other with the required properties, hence the
uniqueness of {φn} implies the uniqueness of {pn}.

(ii) The argument for spanning degree n polynomials is the same as already given above. If
g is a polynomial of degree n, find the coefficient λn so that g − λnpn is of degree n − 1, and use
induction. Since a polynomial f of degree at most n− 1 can be written as a linear combination of
p0, . . . , pn−1, orthogonality of f and pn follows from the orthogonality (D.2). �

When p−1 is needed for some formulas, set p−1(x) = 0. The notation κn for the leading coefficient
of pn in (D.7) will be used in the sequel.

Example D.2. The three classical orthogonal polynomials are the following. In each case the
measure has a density w with respect to Lebesgue measure; that is,

∫
f(x)µ(dx) =

∫
f(x)w(x) dx.

The exact normalizations in the literature vary somewhat.
(i) Hermite polynomials go together with the Gaussian measure with density w(x) = e−x

2
. In

the classic treatise [Sze75] these polynomials {Hn} are defined by requiring that leading coefficients
be positive and ∫

R
Hm(x)Hn(x)e−x

2
dx = 2nn!

√
πδm,n.

(ii) If w(x) = (1− x)α(1 + x)β supported on the interval [−1, 1] with constants α, β > −1, the
orthogonal polynomials are known as Jacobi polynomials. The special case α = β = of uniform
measure is the Legendre polynomials.

(iii) Laguerre polynomials come from weight w(x) = xαe−x on [0,∞), with α > −1.

If the measure µ is supported on a bounded set then the orthogonal polynomials {pn} form a
countable orthonormal basis in L2(µ). This is also true for the Hermite and Laguerre polynomials.

We continue with another basic fact about orthogonal polynomials.

Proposition D.3. Let {pn} be the orthonormal polynomials constructed in Theorem D.1. Then
this three term recursion holds for n ≥ 1:

(D.8) pn(x) = (Anx+Bn)pn−1(x)− Cnpn−2(x)

with

(D.9) An =
κn
κn−1

for n ≥ 1 and Cn =
κnκn−2

κ2
n−1

for n ≥ 2.

For C1 we can take any value.
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Proof. The above choice for An makes pn(x)−Anxpn−1(x) a polynomial of degree n− 1, and
hence there are coefficients cn,k such that

(D.10) pn(x)−Anxpn−1(x) = cn,n−1pn−1(x) + cn,n−2pn−2(x) + · · ·+ cn,0p0(x).

The case n = 1 follows already and the value of C1 is immaterial since p−1 = 0. Let n ≥ 2 in the
sequel.

Multiply through (D.10) by pk(x) for 0 ≤ k ≤ n− 3 and integrate.

0 =
∫
pk(x)pn(x)µ(dx)−An

∫
xpk(x)pn−1(x)µ(dx) = cn,k

∫
pk(x)2 µ(dx) =⇒ cn,k = 0,

utilizing all the orthogonality properties, in particular that, as a polynomial of degree at most n−2,
xpk(x) is orthogonal with respect to pn−1(x). Now we know that the recursion (D.8) holds with
some Bn and Cn.

Multiply through (D.8) by pn−2(x), integrate, and use orthogonality and orthonormality:

0 =
∫
pn(x)pn−2 µ(dx) = An

∫
pn−1(x)xpn−2 µ(dx)− Cn.

Next, since a polynomial of degree n− 2 is a linear combination of p0, . . . , pn−2,

xpn−2(x) = κn−2x
n−1 + · · · = κn−2

κn−1
pn−1(x) +

n−2∑
k=0

λkpk(x)

for some coefficients λ0, . . . , λn−2. Substitute this into the previous display and use orthonormality
again:

0 = An
κn−2

κn−1
− Cn

from which we can solve for Cn. �

Define kernels Kn on R× R associated to the orthogonal polynomials {pn} by

(D.11) Kn(x, y) =
n−1∑
k=0

pk(x)pk(y).

If we define the Fourier coefficients of a function f ∈ L2(µ) with respect to the polynomials {pn} by

fn =
∫
f(x)pn(x)µ(dx)

and the partial sums of the Fourier expansion by

sn(x) = f0p0(x) + f1p1(x) + . . .+ fn−1pn−1(x),

then
sn(x) = Knf(x) =

∫
Kn(x, y)f(y)µ(dy).

In particular, if f is a polynomial of degree n− 1 then Knf = f .
The next representation for the kernel is known as the Christoffel-Darboux formula.

Theorem D.4. For n ≥ 1 and x 6= y on R

(D.12) Kn(x, y) =
κn−1

κn
· pn(x)pn−1(y)− pn−1(x)pn(y)

x− y
and on the diagonal

(D.13) Kn(x, x) =
κn−1

κn

(
p′n(x)pn−1(x)− p′n−1(x)pn(x)

)
.
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Proof. (D.13) follows from (D.12) by letting x→ y. To prove (D.12), use (D.8) for k ≥ 1:

pk(x)pk−1(y)− pk−1(x)pk(y) = [(Akx+Bk)pk−1(x)− Ckpk−2(x)]pk−1(y)

− pk−1(x)[(Aky +Bk)pk−1(y)− Ckpk−2(y)]

= Ak(x− y)pk−1(x)pk−1(y) + Ck[pk−1(x)pk−2(y)− pk−2(x)pk−1(y)].

Now use the constants Ak and Ck from (D.9). For k = 1 the last expression in brackets vanishes
and the identity reads

κ0

κ1
· p1(x)p0(y)− p0(x)p1(y)

x− y
= p0(x)p0(y).

For k ≥ 2

κk−1

κk
· pk(x)pk−1(y)− pk−1(x)pk(y)

x− y
= pk−1(x)pk−1(y)

+
κk−2

κk−1
· pk−1(x)pk−2(y)− pk−2(x)pk−1(y)

x− y
.

Adding these identities for k = 1, . . . , n gives (D.12). �

We derive an integral formula. Introduce a probability measure ν on Rn by weighting a product
of µ-measures with the square of the Vandermonde and then normalizing so that ν(Rn) = 1:

(D.14)
∫

Rn
f(x1,n) ν(dx1,n) =

∫
Rn
f(x1,n)∆n(x1,n)2 µ⊗n(dx1,n)∫
Rn

∆n(x1,n)2 µ⊗n(dx1,n)

The test function f above is a bounded Borel function on Rn.

Proposition D.5. For any measurable functions f and g on R for which the integrals below
are well-defined,

(D.15)
∫

Rn

n∏
j=1

f(xj) ν(dx1,n) = det
i,j∈[n]

[ ∫
R
pi−1(x)pj−1(x)f(x)µ(dx)

]
and ∫

Rn

n∏
j=1

(
1 + g(xj)

)
ν(dx1,n)

= 1 +
n∑

m=1

1
m!

∫
Rm

( m∏
`=1

g(x`)
)

det
k,`∈[m]

[
Kn(xk, x`)

]
µ⊗m(dx1,m).

(D.16)

Proof. First transform the Vandermondes into determinants of orthogonal polynomials pn.
Unless otherwise indicated, indices i, j in all the determinants below range over [n].

∆n(x1,n) = det[xi−1
j ] =

n−1∏
`=0

κ−1
` · det[κi−1x

i−1
j ] =

n−1∏
`=0

κ−1
` · det[pi−1(xj)]

where the last equality comes by adding suitable multiples of rows 1, . . . , i − 1 to row i, for each
i = 2, . . . , n.
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First work on the unnormalized integral.∫
Rn

( n∏
j=1

f(xj)
)

∆n(x1,n)2 µ⊗n(dx1,n)

=
( n−1∏
`=0

κ−2
`

)∫
Rn

( n∏
j=1

f(xj)
)

det[pi−1(xj)]2 µ⊗n(dx1,n)

=
( n−1∏
`=0

κ−2
`

)∫
Rn

det
[
pi−1(xj)f(xj)

]
det
[
pi−1(xj)

]
µ⊗n(dx1,n)

by the generalized Cauchy-Binet identity (B.7)

= n!
( n−1∏
`=0

κ−2
`

)
det
i,j∈[n]

[ ∫
R
pi−1(x)pj−1(x)f(x)µ(dx)

]
.(D.17)

Taking f = 1 gives, by the orthonormality of the polynomials {pk}

(D.18)
∫

Rn
∆n(x1,n)2 µ⊗n(dx1,n) = n!

( n−1∏
`=0

κ−2
`

)
.

Dividing line (D.17) by (D.18) gives (D.15).
Take f = 1 + g and continue from (D.15) and apply (B.5):∫

Rn

n∏
j=1

(
1 + g(xj)

)
ν(dx1,n) = det

[
δi,j +

∫
R
pi−1(x)pj−1(x)g(x)µ(dx)

]
= 1 +

n∑
m=1

1
m!

∑
(i1,...,im)∈[n]m

det
k,`∈[m]

[ ∫
R
pik−1(x)pi`−1(x)g(x)µ(dx)

]
by the generalized Cauchy-Binet identity (B.7)

= 1 +
n∑

m=1

1
m!

∑
(i1,...,im)∈[n]m

1
m!

∫
Rm

det
k,`∈[m]

[
pik−1(x`)

]
det

k,`∈[m]

[
pik−1(x`)g(x`)

]
µ⊗m(dx1,m)

by removing the g-factors from the determinant and rearranging

= 1 +
n∑

m=1

1
m!

∫
Rm

( m∏
`=1

g(x`)
) 1
m!

∑
(i1,...,im)∈[n]m

det
k,`∈[m]

[
pik−1(x`)

]2
µ⊗m(dx1,m)

by (B.7) again, this time with summation over 1 ≤ i ≤ n playing the role of integration and x`
indexing the “functions” pi−1(x`) of i

= 1 +
n∑

m=1

1
m!

∫
Rm

( m∏
`=1

g(x`)
)

det
k,`∈[m]

[ n−1∑
i=0

pi(xk)pi(x`)
]
µ⊗m(dx1,m).

This is the right-hand side of (D.16). �
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Remark D.6. As in the examples above, often the measure µ appears in the form µ(dx) =
w(x)λ(dx), that is, µ is given by a nonnegative weight function, or Radon-Nikodym derivative,
0 ≤ w(x) <∞ relative to a nonnegative, σ-finite background measure λ:∫

f(x)µ(dx) =
∫
f(x)w(x)λ(dx) for all bounded Borel functions f .

Natural choices for λ are Lebesgue measure on the real line and counting measure on the integers.
In this same vein we can define an alternative form of the kernel by including extra factors

coming from the weight:

(D.19) K(w)
n (x, y) = Kn(x, y)

√
w(x)w(y) =

n−1∑
k=0

pk(x)pk(y)w(x)1/2w(y)1/2.

Kernel K(w)
n (x, y) is not necessarily defined for all x, y but only for those points at which the

weights are defined. (For example, the integers if λ is counting measure.) By including the factor
w(x)1/2w(y)1/2 on the right-hand sides of (D.12) and (D.13) we can write the Christoffel-Darboux
formula for K(w)(x, y). Also, since

µ⊗m(dx1,m) =
( m∏
k=1

w(xk)1/2
)( m∏

`=1

w(x`)1/2
)
λ⊗m(dx1,m),

equation (D.16) can be rewritten by multiplying each row and column of the determinant by a
w1/2(xk)-factor:∫

Rn

n∏
j=1

(
1 + g(xj)

)
ν(dx1,n)

= 1 +
n∑

m=1

1
m!

∫
Rm

( m∏
`=1

g(x`)
)

det
k,`∈[m]

[
K(w)
n (xk, x`)

]
λ⊗m(dx1,m).

(D.20)
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[BCS06] M. Balázs, E. Cator, and T. Seppäläinen, Cube root fluctuations for the corner growth model associated to

the exclusion process, Electron. J. Probab. 11 (2006), no. 42, 1094–1132 (electronic). MR MR2268539
[CEL84] M. G. Crandall, L. C. Evans, and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi

equations, Trans. Amer. Math. Soc. 282 (1984), no. 2, 487–502. MR 86a:35031

[CL83] Michael G. Crandall and Pierre-Louis Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer.
Math. Soc. 277 (1983), no. 1, 1–42. MR 85g:35029

[DMP91] Anna De Masi and Errico Presutti, Mathematical methods for hydrodynamic limits, Lecture Notes in

Mathematics, vol. 1501, Springer-Verlag, Berlin, 1991. MR 93k:60234
[Dur04] Richard Durrett, Probability: theory and examples, third ed., Duxbury Advanced Series, Brooks/Cole–

Thomson, Belmont, CA, 2004.
[ET99] Ivar Ekeland and Roger Témam, Convex analysis and variational problems, english ed., Classics in Applied

Mathematics, vol. 28, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999,

Translated from the French. MR MR1727362 (2000j:49001)
[Eva98] Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American

Mathematical Society, Providence, RI, 1998. MR 99e:35001

[GGK00] Israel Gohberg, Seymour Goldberg, and Nahum Krupnik, Traces and determinants of linear operators,
Operator Theory: Advances and Applications, vol. 116, Birkhäuser Verlag, Basel, 2000. MR MR1744872
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