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0. Introduction.

Let S and T be two positive definite integral matrices of rank m and n re-
spectively. It is an ancient but still very challenging problem to determine how
many times S can represent T , i.e., the number of integral matrices X with
tXSX = T . However, Siegel proved in his celebrated paper ([Si1]) that certain
weighted averages of these numbers over the genus of S can be expressed as the
Euler product of pure local data—confluent hypergeometric functions for p = ∞
and local densities αp(T, S) for p < ∞ (see (1.1) for definition). Siegel himself
extended this result to indefinite forms ([Si2-3]) in early fifties. A. Weil rein-
terpreted Siegel’s results in terms of representation and extended his results to
other classical groups in 1965 ([We]). Roughly speaking, the Siegel-Weil formula
says that the theta integral associated to a vector space (quadratic or Hermit-
ian) is the special value of some Eisenstein series at certain point when both the
theta integral and Eisenstein series (at the point) are both absolutely conver-
gent. Recently, Kudla and Rallis pushed the results to non-convergent regions
([KR1-3]). From the point view of representation theory, the local density can
be viewed as the special value of a local Whittaker function, which is the local
factor of the Fourier coefficients of the Eisenstein series. For a lot of arithmetic
applications, it is very important to have an exact formula for the local densities.
For example, in his work on central derivative of Eisenstein series ([Ku1]), Kudla
needed to compare the local density of certain ternary form with intersection
number on some formal group. The explicit formula for local density was also
used in Gross and Keating’s work in the intersection section of modular corre-
spondence ([GK]). However, explicit formulas of local densities are known hard
to obtain and are complicated in general. Siegel himself obtained an explicit
formula for n = 1 or m = n assuming S is unimodular and p 6= 2. Under the
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same assumption, Kitaoka obtained an explicit local density formula for n = 2
and some reduction formula in general in early eighties ([Ki1]). In 1991, Meyer
generalized Kitaoka’s result to cover the case where pS−1 is is integral. On the

other hand, the case where S is hyperbolic, i.e., S = 1
2

(
0 Ir

Ir 0

)
, has been ex-

tensively studied as related to the classical Siegel Eisenstein series and is more
fruitful. Very recently, Katsurada gave a beautiful formula in this case with
both n and p arbitrary ([Ka]). We refer to [Ki2] and [Ka] and its bibliography
for further reference.

The purpose of this work is to give an explicit local density formula for arbi-
trary S and n ≤ 2, with one exception n = 2 = p. In other words, we will settle
the ‘ramified’ case. Our method is quite different from others in this subject.
Instead of using reduction and functional equation to reduce the problem to a
simpler one and then computing the simpler one, we relate the local density
to a (Whittaker) integral and then compute the integral directly. The results
will be used to complete Kudla’s work at ramified places. The local Whittaker
integrals we computed are local factors of the Fourier Coefficients of Siegel Eisen-
stein series on Sp(n) and are of importance in their own right. It should be
mentioned that the functional equation in the general case is very complicated
and is not relating S to itself. The reduction formula is also absent in general
and is only true after a certain stage (see Theorem 3.3). We should mention
that the confluent hyper-geometric functions, the local problem at p = ∞, have
been extensively studied by Shimura ([Sh]).

This paper is organized as follows. In section 1, we set up the notations and
sketch the main formula. In section 2, we record formulas for a couple of simple
Gauss type integrals which will be used in sections 3 and 7. In sections 3 (p 6= 2)
and 4 (p = 2), we obtain a local density formula when T is a nonzero number, and
derive some of its consequences, including reduction formula. In section 5, we
prove an integral transformation formula which will translate the local Whittaker
integral problem to a problem on Gauss integral over GL2(Zp). In section 6, we
give a complete solution to the Gauss integral over GL2(Zp). Results in both
sections 5 and 6 should have independent interests. It is also interesting to note
that the Gauss integral just mentioned is related to rational points of certain
elliptic curves over the finite field Fp in some case (Proposition 6.5). In section
7, we derive the main formula of the paper—an explicit local density formula
for arbitrary S and n = 2 6= p. In section 8, we apply the formulas obtained
in sections 3, 4, and 7 to some interesting examples involving quaternions and
obtain some interesting formulas. For example, we reproved a peculiar formula
relating the derivative of the local density polynomial associated to the division
quaternion algebra to the local density associated to the split quaternion algebra,
first discovered by Kudla and Meyer (Me], see theorem 8.10).

This work was inspired by Kudla’s paper ([Ku1]). The author thanks him for
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the inspiration and his continuing advice and encouragement. The author also
thanks G. Prasad and D. Zagier for their valuable help during the preparation of
this paper. Finally, the author would like to thank the Max-Planck Institut für
Mathematik at Bonn for its hospitality and for providing the excellent working
environment. The main part of this work was done during his stay at the MPI
in the summer of 1997. The author thanks Kitaoka and the referee for their
suggestions and comments.

1. General set-up and sketch of the main formula.

Let S and T be two integral nondegenerated symmetric matrices over Zp of
degree m and n respectively. We assume m > n ≥ 1. Then the local density of
representing T by S is defined by Siegel ([Si1]) as follows:

(1.1) αp(T, S) = lim
t−→∞

(pt)
n(n+1)

2 −mnAt(T, S),

where
At(T, S) = #{X ∈ Mm,n(Zp/pt) : S[X] ≡ T mod pt}.

To a nondegenerate symmetric matrix S of degree m, we associate a quadratic
space V = Qm

p of columns of length m with quadratic form q(x) = 1
2 (x, x) =

txSx. Let L = Zm
p be its standard lattice. Notice that L and S uniquely

determine each other up to Zp-equivalence. Let Symn(Qp) denote the group of
symmetric matrices of degree n over Qp. Define

(1.2) W (T, S) =
∫

Symn(Qp)

∫

Ln

ψ( trbq(x))ψ(− trTb) dx db.

Here the Haar measure dx and db are product measure of the ‘standard’ Haar
measure on Qp (i.e., meas(Zp) = 1), and ψ(x) = e−2πiλ(x) is the ‘canonical’
character of Qp, where λ : Qp −→ Qp/Zp ↪→ Q/Z. The starting point of this
work is the following well-known formula ([Ku1, Appendix]):

(1.3) αp(T, S) = W (T, S).

By (1.2) and (1.3), it is obvious that αp(T, S) is only dependent on the Zp-
equivalent classes of S and T . For an integer r ≥ 0, set

(1.4) Sr = S ⊥ 1
2

(
0 Ir

Ir 0

)
.

Then αp(T, Sr) is a polynomial of X = p−r and will be denoted in this paper by
α(X,T, S). In particular, α(1, T, S) = αp(T, S). The local density polynomial
α(X,T, S) is closely related to local Whittaker functionals (see for example [Ku1,
appendix]). We assume throughout this paper that S is half-integral but p−1S
is not, and set Sl = plS for 0 ≤ l ≤ 1. This assumption on S is not restrictive
since p2S and S correspond to the same quadratic space. The main formulas in
this paper can be summarized roughly as follows:



4 TONGHAI YANG

Theorem. Let notation and assumption be as above. Then there are explicitly
constructed polynomials Ri(X,T, S) such that the following are true.

(1) (Theorems 3.1, 4.1) When n = 1, and p is any prime number, one has

α(X, T l, Sl) = 1 + plX lR1(X, T, S) + (1− p−1)lplX l.

In particular,
α(X,T 1, S1)− pXα(X, T, S) = 1−X.

(2) (Theorem 7.1) When n = 2 and p 6= 2, one has

α(X, T l, Sl) = 1 + p2lX lR1(X, T, S) + p3lX2lR2(X,T, S) + lβl(X, T, S)

where

βl(X, T, S) = (1− p−2)p2lX l + (1− p−1)p3lX2l(1 + R1(X, T, S)).

In particular,

αp(X,T 1, S1)− p3X2α(X, T, S) = (1−X)(1 + p2X + p2XR1(X)).

It is interesting to notice from theorem that the reduction formula from
α(X,T l, Sl) to α(X, T, S) is much easier than that of α(X, T, S) (R2 is much
more complicated than R1 in general).

When p 6= 2, we may and will assume throughout this paper that S is Zp-
equivalent to

(1.5) diag(ε1pl1 , · · · , εmplm) with εi ∈ Z∗p and l1 ≤ l2 · · · ≤ lm.

The above assumption on S means l1 = 0. For each integer k ≥ 0, set

(1.6) L(k, 1) = {1 ≤ i ≤ m : li − k < 0 is odd }, l(k, 1) = #L(k, 1).

Furthermore, we define

d(k) = k +
1
2

∑

li<k

(li − k),(1.7)

v(k) = (
−1
p

)[
l(k,1)

2 ]
∏

i∈L(k,1)

(
εi

p
),(1.8)

Finally, We define

(1.9) δp =
{

1 if p ≡ 1 mod 4,√−1 if p ≡ −1 mod 4,

and

(1.10) γ(t) =
{ 1 if a is even,

δp(−α
p ) if a is odd.

for t = αpa with α ∈ Z∗p and a ∈ Z. Here (and throughout this paper) we write
(α

p ) for the Hilbert symbol (α, p)p.



LOCAL DENSITIES 5

2. Gauss integrals over GL1.

In this section, we assume p 6= 2 and compute the following four integrals
needed later.

I(t) =
∫

Zp

ψ(tx2)dx, t ∈ Q∗p,(2.1)

I∗(t) =
∫

Z∗p
ψ(tx2)dx, t ∈ Q∗p,(2.2)

J(βpb) =
∫

Zm
p

ψ(βpbq(x))dx, β ∈ Z∗p, b ∈ Z,(2.3)

I(t, χ) =
∫

Z∗p
χ(x)ψ(tx)dx, t ∈ Q∗p.(2.4)

Here q(x) the quadratic form associated to S as in section 1, and χ is a character
of Q∗p. Here the Haar measure on Q∗p is the restriction of the Haar measure on
Qp.

Lemma 2.1. Let t = αpa ∈ Q∗p with α ∈ Z∗p and a ∈ Z.

(1) Let γ(t) be as in (1.10). Then

I(t) =

{
1 if a ≥ 0,

p
a
2 γ(t) if a < 0.

(2)

I∗(t) = I(t)− p−1I(p2t) =





1− p−1 if a ≥ 0,

p−
1
2 δp(

−α

p
)− p−1 if a = −1,

0 if a ≤ −2.

In particular, I(t) = p−1I(p2t) when ordpt ≤ −2.

(3) For any β ∈ Z∗p , one has

∫

β+pZp

ψ(tx2)dx = p−1ψ(tβ2) char(p−1Zp)(t).

Here and throughout this paper, char(X) stands for the characteristic function
of a set X.
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Proof. (1). It is obvious for a ≥ 0. Assume a < 0. Let k = [−a+1
2 ] be the

integral part of −a+1
2 . Then

I(t) =
∑

y∈Zp/pk

∫

y+pkZp

ψ(tx2)dx

=
∑

y∈Zp/pk

p−kψ(ty2)
∫

Zp

ψ(2αpa+kyx)dx

= p−k
∑

y∈Zp/pk

ψ(ty2) char(p−a−kZp)(y)

When a is even, a = −2k and −a − k = k. So the only nonzero term in last
integral is the one with y = 0. Therefore I(t) = p−k = pa/2. When a is odd,
a = −2k + 1 and −a− k = k − 1. So

I(t) = p−k
∑

y∈Zp/p

ψ(tp2k−2y2)

= p−k
∑

y∈Z/p

e
−2πiαy2

p

= p−k√pδp(
−α

p
)

as expected, the final step is a well-known Gauss sum formula. Claim (2) follows
from (1) easily. To prove (3), one first notices that

∫

β+pZp

ψ(tx2)dx = p−1ψ(tβ2)
∫

Zp

ψ(2βtpx)ψ(tp2x2)dx.

Write t = αpa with α ∈ Z∗p and a ∈ Z. When a ≥ −1,

∫

Zp

ψ(2βtpx)ψ(tp2x2)dx =
∫

Zp

dx = 1

as expected. When a < −1, we have to prove that the integral vanishes. Sub-
stitute x by x + p−a−2, one has

∫

Zp

ψ(2βtpx)ψ(tp2x2)dx = ψ(2αβp−1)
∫

Zp

ψ(2βtpx)ψ(tp2x2)dx.

Since ψ(2αβp−1) 6= 1, one sees that the integral has to be zero.

As for integral (2.3), we may assume that q(x) =
∑

εip
lix2

i by (1.5). So
Lemma 2.1 implies
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Lemma 2.2. With notation as above, one has

J(βp−k) = ((
−β

p
)δp)l(k,1)

∏

i∈L(k,1)

(
εi

p
)p

1
2

P
li<k li−k.

In particular, J(βp−k) = 1 when k ≤ 0.

Corollary 2.3. Notation as above.

(1) J(βp−k) = (β
p )l(k,1)J(p−k).

(2) If lm < k then

J(p−k) = δ3l(k,1)
p

∏

i∈L(k,1)

(
εi

p
)p

1
2

P
li<k li−k.

Here we have used the fact that δ2
p = (−1

p ). The following is just an integral
version of a well-known fact on Gauss sums.

Lemma 2.4. Let t = αpa with α ∈ Z∗p and a ∈ Z, and let χ be a character of
Q∗p of conductor n = n(χ). Then

I(t, χ) =





1− p−1 if a ≥ 0 = n,

paχ(−α)G(χ) if n = −a,

0 otherwise.

Here
G(χ) =

∑

x∈Z/pn

χ(x)ψ(x)

is the Gauss sum of χ with respect to ψ. In particular, one has

I(t, (
p
)) = p−

1
2 δp(

−α

p
) char(p−1Z∗p)(t).

3. The case n = 1 and p 6= 2.

In this section, we assume that n = 1 and p 6= 2. Let the notation be as in
section 1. For t = αpa with α ∈ Z∗ and a ∈ Z, set

(3.1) f1(t) =

{ − 1
p if l(a + 1, 1) is even,

(α
p ) 1√

p if l(a + 1, 1) is odd.

and

(3.2) R1(X, t, S) = (1− p−1)
∑

0<k≤a

l(k,1) is even

vkpd(k)Xk + va+1p
d(a+1)f1(t)Xa+1.
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Theorem 3.1. Let the notation be as above and assume a ≥ 0. Then (0 ≤ l ≤ 1)

α(X, plt, Sl) = 1 + plX lR1(X, t, S) + (1− p−1)lplX l.

Proof. First we assume l = r = 0. So α(1, t, S) = αp(t, S) (recall X = p−r). By
(1.3) and lemma 2.2, one has

αp(t, S) = W (t, S)

=
∫

Qp

J(b)ψ(−tb)db

= 1 +
∑

k>0

pk

∫

Z∗p
J(βp−k)ψ(−αβpa−k)dβ

= 1 +
∑

k>0
l(k,1) even

pd(k)δ3l(k,1)
p

∏

i∈L(k,1)

(
εi

p
)
∫

Z∗p
ψ(−αβpa−k)dβ

+
∑

k>0
l(k,1) odd

pd(k)δ3l(k,1)
p

∏

i∈L(k,1)

(
εi

p
)
∫

Z∗p
(
β

p
)ψ(−αβpa−k)dβ

Here δp is the number defined by (1.9). Notice that δ2
p = (−1

p ) and thus

vk =

{
δ
3l(k,1)
p

∏
i∈L(k,1)(

εi

p ) if l(k, 1) is even,

δ
3l(k,1)+1
p

∏
i∈L(k,1)(

εi

p ) if l(k, 1) is odd.

So one has by Lemma 2.4

αp(t, S) = 1 +
∑

k>0
l(k,1) even

vkpd(k)( char(pkZp)− 1
p

char(pk−1Zp))(t)

+
∑

k>0
l(k,1) odd

vkpd(k)(
α

p
)p−

1
2 char(pk−1Z∗p)(t)

= 1 + (1− 1
p
)

∑

0<k≤a
l(k,1) even

vkpd(k) + va+1f1(t)pd(a+1)

= 1 + R1(1, t, S).

This proves the case l = r = 0. Since αp(pt, pS) = pαp(t, S), the formula is also
true for l = 1 and r = 0. In general, denote Ll

r(k, 1) and so on for the data
corresponding to Sl

r instead of S. Then for any k ≥ 0, one has

llr(k + l, 1) ≡ l(k, 1) mod 2,

vl
r(k + l) = v(k),
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and
dl

r(k + l) = d(k)− rk + l − rl.

So the associated function f1 is independent of r or l. Now applying the formula
just proved to plt and Sl

r, one gets the desired formula in the general case.

When li = 0, i.e., S is unimodular, and l = r = 0, Theorem 3.1 recovers
the well-known formula of Siegel on local densities ([Si1]). We remark that the
formula is also true for t = 0, i.e., a = ∞.

Corollary 3.2. Let the notation and assumption be as in Theorem 3.1. Then

α(X, pt, pS)− pXα(X, t, S) = 1−X.

Theorem 3.3 (Induction formula). Let the notation be as in Theorem 3.1.
Then for ordpt ≥ lm + 2 + l, one has

α(X, p2t, Sl)− αp(X, t, Sl) = p2−m(αp(X, t, Sl)− αp(X, p−2t, Sl)).

Furthermore, if m is even, one has for ordpt ≥ lm + 1 + l

α(X, pt, Sl)− α(X, t, Sl) = νp1−m
2 (α(X, t, Sl)− α(X, p−1t, Sl)).

Here εS =
∏

εi and ν = ((−1)
m
2 εS , p)p.

Proof. It is enough to prove the special case l = r = 0. The general case follows
when one applies the special case to (plt, Sl

r). Let t = αpa with a ≥ lm. First
notice that d(k + 1) = d(k) + 1− m

2 for k > lm. One has by Theorem 3.1

αp(tp2, S)− αp(t, S)

= (1− 1
p
)

∑

a+1≤k≤a+2
l(k,1) even

vkpd(k) + va+3f1(tp2)pd(a+3) − va+1f1(t)pd(a+1)

= pd(a+1){(1− 1
p
)

∑

0≤k≤1
l(k+a+1,1) even

va+1+kpk(1−m
2 )

+ va+3f1(αpa+2)p2(1−m
2 ) − va+1f1(αpa)}.

Notice that vk, l(k, 1), and f1(αpk−1) depend only on the parity of k when
k > lm. So the expression in the brace does not change when we replace a by
a + 2. Therefore

αp(tp4, S)− αp(tp2, S) = p2−m(αp(tp2, S)− αp(t, S))
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when a = ordpt ≥ lm. This proves the first induction formula.

Now assume that m is even. Again write t = αpa with a ≥ lm. There are
two cases. If l(a + 1, 1) is even, so is l(a + 2, 1) = m − l(a + 1, 1) (thanks to
a + 1 > lm). So

αp(tp, S)− αp(t, S)

= (1− 1
p
)va+1p

d(a+1) − 1
p
va+2p

d(a+2) +
1
p
va+1p

d(a+1)

= va+1p
d(a+1)(1− νp−

m
2 ).

Here we have used the fact that when m is even

(3.3)
va+1

va+2
= va+1va+2 = ν.

Because of (3.3), it is now obvious that

αp(tp2, S)− αp(tp, S) = νp1−m
2 (αp(tp, S)− αp(t, S))

for a ≥ lm. The case where l(a + 1, 1) is odd is similar and left to the reader.

4. The case n = 1 and p = 2.

In this section, we consider the case n = 1 and p = 2. By [Ca, Lemma 8.4.1],
a nonsingular symmetric matrix S over Q2 is Z2 equivalent to
(4.1)

diag(ε12l1 , · · · , εL2lL)⊕
(
⊕M

i=1ε
′
i2

mi

(
0 1

2
1
2 0

))
⊕

(
⊕N

j=1ε
′′
j 2nj

(
1 1

2
1
2 1

))

where εh, ε′i, ε
′′
j ∈ Z∗2, lh, mi, and nj are all integers. The restriction on S

(section 1) means that the smallest integer among all lh, mi, and nj is zero.
Write Sl = 2lS as before for l = 0 or 1. Notice that L + 2M + 2N = m is the
degree of S. The corresponding lattice has a basis over which the corresponding
quadratic form is given by

(4.2) q =
L∑

h=1

εh2lhx2
h +

M∑

i=1

ε′i2
miyi1yi2 +

N∑

j=1

ε′′j 2nj (z2
j1 + zj1zj2 + z2

j2).
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For each integer k > 0 we denote

L(k, 1) = {lh : lh − k < 0 is odd }, l(k, 1) = #L(k, 1),

p(k) = (−1)
P

nj<k(nj−k)

ε(k) =
∏

h∈L(k−1,1)

εh

(4.3)

d(k) = k +
1
2

∑

lh<k−1

(lh − k + 1) +
∑

mi<k

(mi − k) +
∑

nj<k

(nj − k),

δ(k) =
{

0 if lh = k − 1 for some h,

1 otherwise .

Furthermore, we define for t = α2a with α ∈ Z∗2 and a ∈ Z

R1(X, t, S) =
∑

l<k≤a+3

l(k−1,1) odd

δ(k)p(k)
(

2
µε(k)

)
2d(k)− 3

2 Xk

(4.4)

+
∑

l<k≤a+3
l(k−1,1) even

δ(k)p(k)
(

2
ε(k)

)
2d(k)−1ψ(

µ

8
) char(4Z2))(µ)Xk,

where

(4.5) (
2
x

) =
{

(2, x)2 if x ∈ Z∗2,
0 otherwise.

and µ = µk(t) is given by

(4.6) µk(t) = α2a−k+3 −
∑

lh<k−1

εh

Theorem 4.1. With notation as above, one has for a ≥ 0

α(X, 2lt, Sl) = 1 + 2lX lR1(X, t, S) + lX l.

In particular, one has

α(X, 2t, 2S)− 2Xα(X, t, S) = 1−X.

Again, theorem 4.1 is also true for t = 0. We remark that the terms in the
formula with k ≤ a are independent of a. From this it is not difficult to derive
a inductive formula for p = 2 similar to Theorem 3.3. However, even when m is
even, one does not have a reduction formula for α2(2t, S) − α2(t, S) similar to
that of Theorem 3.3 since there is not a good reduction formula for µk(t). In
other words, we only have
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Corollary 4.2. Let the notation be as in Theorem 4.1. Then for a ≥ 4 +
max(lh,mi, nj), one has

α2(4t, S)− α2(t, S) = 22−m

(
α2(t, S)− α2(

1
4
t, S)

)
.

The proof of Theorem 4.1 is similar to that of Theorem 3.1. First we need
two lemmas. The first one is similar to Lemmas 2.1 and 2.4 and the proof is left
to the reader.

Lemma 4.3. (1) For α ∈ Z∗2 and a ∈ Z, one has
∫

Z2

ψ(α2ax2)dx

=





1 if a ≥ 0
0 if a = −1

2
a+1
2 ψ(α

8 )( 2
α )a+1 if a < −1.

(2) Let χ be a character of Q∗2 with conductor n(χ). Then for α and a as
above, one has

∫

Z∗2
χ(x)ψ(α2ax)dx

=





1
2 if n(χ) = 0& a ≥ 0

− 1
2 if n(χ) = 0& a = −1

2aχ(−α)G(χ) if n(χ) = −a

0 otherwise.

In particular, one has
∫

Z∗2
(
2
x

)ψ(α2ax)dx =
1

2
√

2
(

2
−α

)δ−a,3.

Here δm,n is the usual Kronecker symbol.

Lemma 4.4. For t = α2a with α ∈ Z∗2 and a ∈ Z, one has

(4.6)
∫

Z2
2

ψ(ty1y2)dy1 dy2 = min(1, 2a)

and ∫

Z2
2

ψ(t(z2
1 + z1z2 + z2

2)dz1dz2(4.7)

=
{

1 if a ≥ 0
2a(−1)a if a < 0.
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Proof. Only (4.7) needs some verification for a < 0. Set k = [−a+1
2 ]. Then

∫

Z2

ψ(t(z1z2 + z2
2))dz2

=
∑

x∈Z/2k

2−kψ(t(z1x + x2))
∫

Z2

ψ(α2a+k(z1 + 2x)z2)dz2

= 2−k
∑

x∈Z/2k

ψ(t(z1x + x2)) char(−2x + 2−a−kZ2)(z1).

So
∫

Z2
2

ψ(t(z2
1 + z1z2 + z2

2))dz1dz2

= 2−k
∑

x∈Z/2k

∫

−2x+2−a−kZ2

ψ(t(z2
1 + z1x + x2))dz1

= 2a
∑

x∈Z/2k

ψ(3tx2)
∫

Z2

ψ(−3xα2−kz1)ψ(α2−2k−az2
1)dz1.

When a = −2k is even, the last integral is
∫

Z2

ψ(−3xα2−kz1)dz1 = char(2kZ2)(x).

This proves the even case.

When a = −2k + 1 is odd, the last integral is
∫

Z2

ψ(−3xα2−kz1)ψ(
α

2
z2
1)dz1

=
∫

2Z2

ψ(−3xα2−kz1)dz1 −
∫

1+2Z2

ψ(−xα2−kz1)dz1

=
1
2
(1− ψ(−3xα2−k)) char(2k−1Z2)(x)

= char(2k−1Z∗2)(x).

Therefore
∫

Z2
2

ψ(t(z2
1 + z1z2 + z2

2))dz1dz2

= 2aψ(3α2a22k−2)

= 2aψ(
3α

2
) = −2a.
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Proof of Theorem 4.1 Now the proof of Theorem 4.1 becomes a formality.
Just as in the proof of Theorem 3.1, we may assume that l = r = 0. Assume
a ≥ 0. By Lemma 1.3, one has for t = α2a

α2(t, S))

=
∫

Q2

∫

Zm
2

ψ(bq(x))dxψ(−tb)db

= 1 +
∞∑

k=1

2k

∫

Z∗2
J1(β2−k)J2(β2−k)J3(β2−k)ψ(−αβ2a−k)dβ

where

J1(b) =
L∏

h=1

∫

Z2

ψ(εh2lhbx2
h)dx

J2(b) =
M∏

i=1

∫

Z2
2

ψ(εi2mibyi1yi2)dyi1dyi2

J3(b) =
N∏

j=1

∫

Z2
2

ψ(εj2nj b(z2
j1 + zj1zj2 + z2

j2))dzj1dzj2.

By Lemma 4.3, one has

J1(β2−k) = δ(k)(
2

ε(k)
)2
P

lh<k−1
lh−k+1

2
∏

lh<k−1

ψ(
εhβ

8
)(

2
α

)l(k−1,1).

By Lemma 4.4, one has

J2(β2−k) = 2
P

mi<k mi−k

and
J3(β2−k) = p(k)2

P
nj<k nj−k

.

Therefore

α2(α2a, S)

= 1 +
∞∑

k=1

δ(k)p(k)(
2

ε(k)
)2d(k)

∫

Z∗2
(
2
α

)l(k−1,1)ψ(
−µk(t)

8
β)dβ.

The last integral is always zero for k > a + 3 since µk(t) /∈ Z2 in this case.

When l(k−1, 1) is odd, the last integral is equal to 2−
3
2 ( 2

µk(t) ) by Lemma 4.3
and our notation (4.5). When l(k − 1, 1) is even, the last integral is equal to∫

Z∗2
ψ(
−µk(t)

8
β)dβ =

1
2
ψ(−µk(t)

8
)
∫

Z2

ψ(
−µk(t)

4
β)dβ

=
1
2
ψ(

µk(t)
8

) char(4Z2)(µ).

Now Theorem 4.1 follows easily.
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5. A proposition.

The purpose of this section is to prove a transformation formula needed for the
main calculation in section 7. We fix an element u ∈ Z∗p such that (u

p ) = −1. Let
H = Sym2(Qp) ∩ GL2(Qp) be the set of nonsingular symmetric matrices over
Qp, and let GL2(Zp) acts onH via g.X = tgXg. By a well-known theorem ([Ca,
Theorem 8.3.1]), the following is a complete representative set of the GL2(Zp)-
orbits in H

(5.1) pb

(
1 0
0 1

)
, pb

(
1 0
0 u

)
, and

(
u1p

b1 0
0 u2p

b2

)

with b1 < b2 and b ∈ Z and ui = 1 or u. Recall also that every GL2(Zp)-orbit
is open in H since two quadratic forms over Qp sufficiently close p-adically are
GL2(Zp)-equivalent ([Ca, chapter 8]).

Proposition 5.1. Let f be a locally constant bounded function on Sym2(Qp)
such that f ∈ L1( Sym2(Qp)). Then

∫

Sym2(Qp)

f(x)dx

=
∑

b∈Z
p−3b

(
1

2(1− (−1
p )p−1)

∫

GL2(Zp)

f(pb txx)dx

+
1

2(1 + (−1
p )p−1)

∫

GL2(Zp)

f(pb tx diag(1, u)x)dx

)

+
1
4

∑

b1<b2,ui=1 or u

p−2b1−b2

∫

GL2(Zp)

f( tx diag(u1p
b1 , u2p

b2)x)dx

Proof. Since Sym2(Qp)−H is a closed subvariety of codimension 1, one has
∫

Sym2(Qp)

f(x)dx =
∫

H
f(x)dx

=
∑∫

O
f(x)dx.(5.2)

Here the sum runs over all GL2(Zp)-orbits O ofH. For each matrix diag(t1, t2),
let O(t1, t2) be the GL2(Zp)-orbit of diag(t1, t2), and let O(t1, t2) be the sta-
bilizer of diag(t1, t2) in GL2(Zp). Let dh be the Haar measure on O(t1, t2)
with total measure 1. Since the Haar measure on H is GL2(Zp) invariant, there
is a constant C = C(t1, t2) such that for every locally constant function φ in
GL2(Zp), one has

(5.3) C

∫

GL2(Zp)

f(x)dx =
∫

O(t1,t2)

∫

O(t1,t2)

f(hx)dhdx.
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Take φ = char(1 + pnM2(Zp)) for sufficiently large integer n. Then the left
hand side of (5.3) is Cp−4n, and the right hand side is equal to

meas(O(t1, t2) ∩ (1 + pnM2(Zp))) · meas(On(t1, t2)).

Here On(t1, t2) is the (1 + pnM2(Zp))-orbit of diag(t1, t2). Since

t(1 + pn

(
x1 x2

x3 x4

)
) diag(t1, t2)(1 + pn

(
x1 x2

x3 x4

)
)

=
(

t1 + 2t1p
nx1 t1p

nx2 + t2p
nx3

t1p
nx2 + t2p

nx3 t2 + 2t2p
nx4

)
p2n

( ∗ ∗
∗ ∗

)
,

one has
meas(On(t1, t2)) = p−3n−2b1−b2 .

On the other hand,

meas(O(t1, t2) ∩ (1 + pnM2(Zp))) =
1

[O(t1, t2) : O(t1, t2) ∩ (1 + pnM2(Zp))]
.

Applying the lemma below, one has then

(5.4) C(t1, t2) = p−2b1−b2µ(t1, t2)

where

(5.5) µ(t1, t2) =





1
4

if b1 < b2,

1
2(1− (−u1u2

p )p−1)
if b1 = b2.

(ti = uip
bi). Applying (5.3)− (5.5) to (5.2), one proves the proposition.

Lemma 5.2. One has

[O(t1, t2) : O(t1, t2) ∩ (1 + pnM2(Zp))] = µ(t1, t2)−1pn.

Proof. Direct computation gives

O(t1, t2) = SO(t1, t2) ∝ {±1}
where

SO(t1, t2) = {
(

x1 x2

− t1
t2

x2 x1

)
: xi ∈ Zp,

t1
t2

x2 ∈ Zp, x
2
1 +

t1
t2

x2
2 = 1}

∼= {(x1, x2) ∈ Z2
p : x2 ∈ t2

t1
Zp, x

2
1 +

t1
t2

x2
2 = 1}
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and

O(t1, t2) ∩ (1 + pnM2(Zp))

∼= {(x1, x2) ∈ Z2
p : x1 ≡ 1 mod pn, x2 ≡ 0 mod pn+b2−b1 , x2

1 +
t1
t2

x2
2 = 1}.

When b1 < b2, the map (x1, x2) 7→ x2 is a two-to-one map from SO(t1, t2)
onto pb2−b1Zp and a one-to-one correspondence from O(t1, t2)∩ (1 + pnM2(Zp))
onto pn+b2−b1Zp. This proves the case b1 < b2.

When b1 = b2, t1
t2

= u1
u2
∈ Z∗p. Let α =

√
−u1

u2
. If α ∈ Z∗p, i.e., (−u1u2

p ) = 1,

then (x1, x2) 7→ x1 + αx2 is an isomorphism between SO(t1, t2) to Z∗p and maps
O(t1, t2) ∩ (1 + pnM2(Zp)) onto 1 + pnZp. This implies

[SO(t1, t2) : O(t1, t2) ∩ (1 + pnM2(Zp))] = [Z∗p : 1 + pnZp] = pn(1− p−1).

If α /∈ Z∗p, i.e., (−u1u2
p ) = −1, then K = Qp(α) is a quadratic extension. Let K1

be the norm-1 subgroup of K and let

K1(n) = {z ∈ K1 : z ≡ 1 mod pn}.
Then the map (x1, x2) 7→ x1 + αx2 gives an isomorphism from SO(t1, t2) onto
K1 and from O(t1, t2) ∩ (1 + pnM2(Zp)) onto K1(n). So in this case, one has

[SO(t1, t2) : O(t1, t2) ∩ (1 + pnM2(Zp))] = [K1 : K1(n)] = pn(1 + p−1).

6. Gauss integrals over GL2.

For any matrix M =
(

t1 t2
t3 t4

)
∈ M2(Qp), we compute the following Gauss

integral in this section.

(6.1) I∗(t1, t2, t3, t4) = I(M) =
∫

GL2(Zp)

ψ(
∑

tix
2
i )dx1dx2dx3dx4.

Here dxi is the Haar measure on Qp so that meas(Zp) = 1. The integral is a
generalization of the integral (2.2) to GL2, and will be needed in next section.
We will use either of the two notations whenever convenient. The following
lemma is obvious from the definition.

Lemma 6.1. (1) The value of the integral I∗(t1, t2, t3, t4) does not change
under any of the following operations: switching t1 with t4, switching t2 with t3,
or switching the pair (t1, t4) with the pair (t2, t3).

(2) For any α ∈ Z∗p, one has

I(α2t1, α
2t2, t3, t4) = I(t1, t2, t3, t4).

In other words, multiplying a column or a row of M by a square does not change
the value of I(M).
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Lemma 6.2. (1)

I∗(t1, t2, t3, t4)

= I∗(t1)I∗(t4)I∗(t2)I(t3) + I∗(t1)I(t4)I∗(t2)I∗(t3) + p−1I∗(t1)I∗(t4)I(p2t2)I(t3)

+ p−1I(p2t1)I(t4)I∗(t2)I∗(t3)− I∗(t1)I∗(t4)I∗(t2)I∗(t3)

− p−4 char((p−1Zp)4)(t1, t2, t3, t4)
∑

xi∈F∗p,x1x4=x2x3

ψ(
∑

t1x
2
i ).

Here Fp is the finite field of p elements, I(t) and I∗(t) are integrals given by
(2.1) and (2.2).

(2) For αi ∈ Zp, one has

I∗(α1p
−1, α2p

−1, α3p
−1, α4p

−1) = p−4
∑

X∈ GL2(Fp)

ep(−
4∑

i=1

(αix
2
i )).

Here ep(x) = e
2πix

p , and X =
(

x1 x2

x3 x4

)
.

Proof. By the definition of ψ, one has ψ(xp−1) = ep(−x) for x ∈ Zp. Now (2)
is obvious. To prove (1), first notice that GL2(Zp) ⊂ Z4

p is the disjoint union of
the subsets (coordinates are in the order (x1, x4, x2, x3))

pZp × Zp × Z∗p × Z∗p, Z∗p × pZp × Z∗p × Z∗p, Z∗p × Z∗p × pZp × Zp,

and
{(x1, x4, x2, x3) ∈ Z∗3p × Zp : x3 6≡ x−1

2 x1x4 mod p}.
So

I∗(t1, t2, t3, t4)

= p−1I(p2t1)I(t4)I∗(t2)I∗(t3) + p−1I∗(t1)I(p2t4)I∗(t2)I∗(t3)

+ p−1I∗(t1)I∗(t4)I(p2t2)I(t3) + I∗(t1)I∗(t4)I∗(t2)I(t3)

−
∫

Z∗3p

ψ(t1x2
1 + t2x

2
2 + t4x

2
4)dx1dx2d4

∫

x3≡x−1
2 x1x4 mod p

ψ(t3x2
3)dx3.

Since p−1I(p2t4) = I(t4)− I∗(t4), it suffices to show that
∫

Z∗3p

ψ(t1x2
1 + t2x

2
2 + t4x

2
4)dx1dx2d4

∫

x3≡x−1
2 x1x4 mod p

ψ(t3x2
3)dx3

= p−4 char((p−1Zp)4)(t1, t2, t3, t4)
∑

xi∈F∗p,x1x4=x2x3

ψ(
∑

t1x
2
i ).

(6.2)
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By Lemma 2.1, the left hand side of (6.2) is

p−1 char(p−1Zp)(t3)
∫

Z∗3p

ψ(t1x2
1)ψ(t2x2

2)ψ(t4x2
4)ψ(t3x−2

2 x2
1x

2
4)dx1dx2dx4.

This is zero unless t1, t4 ∈ p−1Zp since it contains a factor I∗(t1 + t3x
−1
2 x2

2) resp.
I∗(t4 + t3x

−2
2 x2

1). The same proof as in Lemma 2.1(3) would make the integral
zero unless t2 ∈ p−1Zp (under the condition t3 ∈ p−1Zp). On the other hand, if
t1, ..., t4 ∈ p−1Zp, then the integral equals

p−1
∑

x1,x2,x4∈F∗p
ψ(t1x2

1)ψ(t2x2
2)ψ(t4x2

4)ψ(t3x−2
2 x2

1x
2
4)

∫

(1+pZp)3
dy

= p−4
∑

xi∈F∗p,x1x4=x2x3

ψ(
∑

tix
2
i ).

This finishes the proof of Lemma 6.2.

To obtain a more precise formula for I∗(t1, t2, t3, t4), write ti = αip
ai with

αi ∈ Z∗p and ai ∈ Z. We may and will assume that a1 ≤ a2, a4, and a2 ≤ a3

without loss of generality in the rest of this section (see Lemma 6.1).

Corollary 6.3. With notation and assumption as above, one has

I∗(t1, t2, t3, t4) =

{
(1− p−1)2(1 + p−1) if a1 ≥ 0,

I(t1)I(t4)I∗(t2)I∗(t3) if a1 ≤ −2.

In particular, if a1, a2 ≤ −2, then I∗(t1, t2, t3, t4) = 0.

Proof. The case a1 ≥ 0 is trivial. If a1 ≤ −2 then I∗(t1) = 0 by Lemma 2.1. So
Lemma 6.2 implies

I∗(t1, t2, t3, t4) = p−1I(p2t1)I(t4)I∗(t2)I∗(t3) = I(t1)I(t4)I∗(t2)I∗(t3).

The case a1 = −1 is a little bit more complicated and more interesting. We
first assume at least one of ai, say a4 is nonnegative. Then (assuming a4 ≥ 0)

∑

xi∈F∗p,x1x4=x2x3

ψ(
∑

tix
2
i )

= (
∑

x1∈F∗p
ψ(t1x2

1))(
∑

x2∈F∗p
ψ(t2x2

2))(
∑

x3∈F∗p
ψ(t3x2

3))

= p3I∗(t1)I∗(t2)I∗(t3)

Also notice that I(t4) = 1 and I∗(t4) = 1 − p−1 in this case. So Lemmas 6.2
and 2.1 imply



20 TONGHAI YANG

Lemma 6.4. Let the notation be as above. Assume that a1 = −1 and a4 ≥ 0.
Then

I∗(t1, t2, t3, t4) = (1− p−1)I∗(t1)I(t2)I(t3) + p−1I∗(t2)I∗(t3).

More precisely, one has

I∗(t1, t2, t3, t4)

=





(1− p−1)
(

δp√
p (−α1

p )− 1
p2

)
if a2, a3 ≥ 0,

p−1(1− p−1)
(
(−α1α2

p )− 1
p

)
if a2 = −1, a3 ≥ 0,

p−3(1 + (−α2α3
p )) + δp

p
√

p (α1α2α3
p )

− δp

p2√p

(
(α1α2α3

p ) + (−α2
p ) + (−α3

p )
)

if a2 = a3 = −1.

Finally, it comes to the case where a1 = a2 = a3 = a4 = −1. By Lemma 6.2,
it reduces to compute the following Gauss sum

(6.3) S(M) = S(α1, α2, α3, α4) =
∑

X∈ GL2(Fp)

ep(
∑

αix
2
i )

where M =
(

α1 α2

α3 α4

)
∈ M2(Fp), X =

(
x1 x2

x3 x4

)
, and ep(x) = e

2πix
p . One

has

(6.4) I∗(α1p
−1, α2p

−1, α3p
−1, α4p

−1) = p−4S(−α1,−α2,−α3,−α4)

for αi ∈ Zp. Here we also use αi for its image in Fp. When some of αi = 0, the
sum (or the integral) is given by Lemma 6.4. The following lemma was proved
with the help of Don Zagier. I thank him for his help and for allowing me to
publish it here.

Lemma 6.5. Let M =
(

α1 α2

α3 α4

)
with αi ∈ F∗p.

(1) When detM = 0, i.e, M =
(

α1 α2

βα1 βα2

)
with some β ∈ F∗p, one has

S(M) = −p2((
−β

p
) + (

−α1α2

p
))(1− (

−α1α2

p
)p−1).

(2) When detM 6= 0, let λ = α2α3
α1α4

, and let

Eλ : y2 = x(x− 1)(x− λ)
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be the corresponding elliptic curve over Fp. Let

ap(λ) = ap(Eλ) = #Eλ(Fp)− p− 1.

be the trace of the Frobenious on Eλ. Then

S(M) = (
∏

αi

p
)p2 − (

α1α4

p
)pap(λ) + p

− p
√

pδp(
detM

p
)
(

(
α1

p
) + (

−α2

p
) + (

−α3

p
) + (

α4

p
)
)

.

Here δp is the number defined by (1.9), i.e., it is 1 or i depending on whether
p ≡ 1 mod 4 or p ≡ −1 mod 4.

Proof. By the classical Gauss sum formula, one has

S(M) =
∑

X∈M2(Fp)

ep(
∑

αix
2
i )−

∑

det X=0

ep(
∑

αix
2
i )

= (
∏

αi

p
)p2 −

∑

det X=0

ep(
∑

αix
2
i )

Since det X = 0 means that either X =
(

a b
µa µb

)
with a, b, µ ∈ Fp or X =

(
0 0
c d

)
with X = 0 being counted p + 1 times, one has

∑

det X=0

ep(
∑

αix
2
i ) =

∑
µ

∑
a

ep((α1 + α3µ
2)a2)

∑

b

ep((α2 + α4µ
2)b2)

+
∑

c,d

ep(α3c
2 + α4d

2)− p.

Applying the classical Gauss sum formula to the second term, one obtains

S(M) = (
∏

αi

p
)p2 + p− p(

−α3α4

p
)

−
∑

µ

∑
a

ep((α1 + α3µ
2)a2)

∑

b

ep((α2 + α4µ
2)b2)(6.5)

Notice that
(6.6)

∑
a

ep((α1 + α3µ
2)a2) =





p if (−α1α3
p ) = 1&µ = ±

√
−α1

α3
,

√
pδp(α1+α3µ2

p ) otherwise.
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Case 1 When det M = 0, −α1
α3

= −α2
α4

. In this case, the roots µ = ±
√
−α1
α3

and µ = ±
√
−α2
α4

are the same if they exist in Fp. Let β = α3
α1

, then one has by
(6.6)

∑
µ

∑
a

ep((α1 + α3µ
2)a2)

∑

b

ep((α2 + α4µ
2)b2)

=
∑

µ

p(
−1
p

)(
α1 + α3µ

2

p
)(

α2 + α4µ
2

p
) + (1 + (

−β

p
))p2

= (
−α1α2

p
)p

∑
µ

(
1 + βµ2

p
)2 + (1 + (

−β

p
))p2

= (
−α1α2

p
)p(p− 1− (

−β

p
)) + (1 + (

−β

p
))p2

= (1 + (
−β

p
) + (

−α1α2

p
))p2 − (

−α1α2

p
)(1 + (

−β

p
))p.

Plugging this into (6.5), one proves (1).

Case 2 When det M 6= 0, the roots µ = ±
√
−α1
α3

and µ = ±
√
−α2
α4

are
different if they exist in Fp. So

∑
µ

∑
a

ep((α1 + α3µ
2)a2)

∑

b

ep((α2 + α4µ
2)b2)

=
∑

µ

p(
−1
p

)(
α1 + α3µ

2

p
)(

α2 + α4µ
2

p
)

+ (1 + (
−α1α3

p
))p

∑

b

ep((α2 − α1α4

α3
)b2)

+ (1 + (
−α2α4

p
))p

∑
a

ep((α1 − α2α3

α4
)a2)

= (
−α3α4

p
)p

∑

x∈Fp

(
x + α1α

−1
3

p
)(

x + α2α
−1
4

p
)(1 + (

x

p
))

+ ((
α1

p
) + (

−α3

p
))(

detM

p
)p
√

pδp + ((
−α2

p
) + (

α4

p
))(

detM

p
)p
√

pδp.
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So
∑

µ

∑
a

ep((α1 + α3µ
2)a2)

∑

b

ep((α2 + α4µ
2)b2)

= (
−α3α4

p
)p

∑
x

(
(x + α1α

−1
3 )(x + α2α

−1
4 )

p
)

+ (
−α3α4

p
)p

∑
x

(
x(x + α1α

−1
3 )(x + α2α

−1
4 )

p
)

+ p
√

pδp(
detM

p
)((

α1

p
) + (

−α2

p
) + (

−α3

p
) + (

α4

p
)).

Given a polynomial f(x) ∈ Fp[x], let Ca
f be the affine curve defined by y2 =

f(x). Since, for a fixed x ∈ Fp, the equation y2 = f(x) has 1 + ( f(x)
p ) solutions

in Fp, one has

(6.7)
∑

x∈Fp

(
f(x)

p
) = #Ca

f (Fp)− p.

It is easy to see from this that

(6.8)
∑

x∈Fp

(
x2 + ax + b

p
) =

{
p− 1 if a2 − 4b = 0,

−1 if a2 − 4b 6= 0.

In particular, one has (det M 6= 0)

∑
x

(
(x + α1α

−1
3 )(x + α2α

−1
4 )

p
) = −1.

Next, let EM be the elliptic curve defined by

EM : y2 = x(x + α1α
−1
3 )(x + α2α

−1
4 ).

Notice that EM has one extra point (infinity) to its affine points. So (6.7) gives

∑
x

(
x(x + α1α

−1
3 )(x + α2α

−1
4 )

p
) = ap(EM ).

So
∑

µ

∑
a

ep((α1 + α3µ
2)a2)

∑

b

ep((α2 + α4µ
2)b2)

= −(
−α3α4

p
)p + (

−α3α4

p
)pap(EM )

+ p
√

pδp(
detM

p
)((

α1

p
) + (

−α2

p
) + (

−α3

p
) + (

α4

p
)).
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Plugging this into (6.5) and comparing the result with the desired formula in
(2) leads us to verify

(6.9) ap(EM ) = (
−α1α3

p
)ap(λ).

Notice that the map x 7→ −α1α
−1
3 x and y 7→ (−α1α

−1
3 )2y gives a bijection

between E′(Fp) and EM (Fp), where

E′ : −α1α
−1
3 y2 = x(x− 1)(x− λ)

is the quadratic twist of Eλ by −α1α
−1
3 and λ = α2α3

α1α4
. So (6.9) follows from the

general fact that

(6.10) ap(Ed) = (
d

p
)ap(E)

for any elliptic curve E over Fp and any quadratic twist Ed with d ∈ F∗p.

Corollary 6.6. (1) For αi, β ∈ Z∗p, one has

I∗(α1p
−1, α2p

−1, α1βp−1, α2βp−1)

= −p−2((
−β

p
) + (

−α1α2

p
))(1− (

−α1α2

p
)p−1).

(2) For αi ∈ Z∗p with α1α4 6= α2α3, one has

I∗(α1p
−1, α2p

−1, α3p
−1, α4p

−1)

= (
∏

αi

p
)p−2 + p−3 − (

α1α4

p
)p−3ap(λ)

− p−3√pδp(
α1α4 − α2α3

p
)
(

(
−α1

p
) + (

α2

p
) + (

α3

p
) + (

−α4

p
)
)

.

7. The case n = 2 6= p.

Let the notation be as in section 1 and assume p 6= 2. We further set

(7.1) δ±(k) =
1± (−1)l(k,1)

2
,

(7.2) f1(αpa) =

{ − 1
p if l(a + 1, 1) is even,

(α
p ) 1√

p if l(a + 1, 1) is odd,
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and

(7.3) f2(αpa) =

{ − 1
p if l(a + 1, 1) is odd,

(−α
p ) 1√

p if l(a + 1, 1) is even.

Finally, set

(7.4) g(k) =
{

δ+(k) if a− k is even,
(α1

p )δ−(k) if a− k is odd.

We remark that all those terms are independent of l or r. To make the compli-
cated formula manageable and to give it some structure, we group the terms of
the formula into 2 groups (R1 and R2) and 12 polynomials Ii,j . The definitions
depend on whether a = b or not. The case a = b is much easier and can be
served as a check when one gets tired of the long calculation.

When a = b, we define Ii,j = Ii,j(X,T, S) as follows :

I1,1 = (1− p−2)
∑

0<k≤a

v(k)δ+(k)pk+d(k)Xk,

I1,2 = δ+(1 + a)v(1 + a)((
−α1α2

p
)− p−1)pa+d(a+1)Xa+1,

I1,3 = I1,4 = 0,

and

I2,1 = (1− p−2)
∑

0<k2<k1≤a

v(k1)v(k2)δ+(k1)δ+(k2)pk1+d(k1)+d(k2)Xk1+k2

=
∑

0<k<2a

CkXk,

I2,2 = v(a + 1)δ+(a + 1)((
−α1α2

p
)− p−1)

∑

0<k≤a

δ+(k)v(k)pa+d(a+1)+d(k)Xa+1+k,

I2,6 = −((
−α1α2

p
)δ+(1 + a) + δ−(1 + a))pa−1+2d(1+a)X2a+2

I2,8 =
∑

0<k≤a

(δ+(k) + p−1δ−(k))pk+2d(k)X2k,

I2,3 = I2,4 = I2,5 = I2,7 = 0.

Here

(7.5) Ck = (1− p−2)
∑

0<k2<k1≤a
k1+k2=k

l(ki,1) even

v(k1)v(k2)pk1+d(k1)+d(k2).
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When a < b, we define

I1,1 = (1− p−2)
∑

0<k≤a

v(k)δ+(k)pk+d(k)Xk,

I1,2 = v(a + 1)
(

(
α1

p
)

1√
p
δ−(a + 1)− p−2δ+(a + 1)

)
pa+1+d(a+1)Xa+1,

I1,3 = (1− p−1)
∑

a+1<k<b+1

v(k)g(k)p
a+k

2 +d(k)Xk,

I1,4 = v(b + 1)p
a+b+1

2 +d(b+1)Xb+1 ·
{

f1(α2p
b) if a 6≡ b mod 2,

(α1
p )f2(α2p

b) if a ≡ b mod 2,

and

I2,1 = (1− p−2)
∑

0<k2<k1≤a

v(k1)v(k2)δ+(k1)δ+(k2)pk1+d(k1)+d(k2)Xk1+k2

=
∑

0<k<2a

CkXk,

I2,2 =
(

(
α1

p
)

1√
p
δ−(a + 1)− p−2δ+(a + 1)

)

·
∑

0<k≤a

v(a + 1)v(k)δ+(k)pa+1+d(a+1)+d(k)Xa+1+k,

I2,3 = (1− p−1)
∑

0<k2<a+1<k1≤b

v(k1)v(k2)δ+(k2)g(k1)p
a+k1

2 +d(k1)+d(k2)Xk1+k2 .

We also define

I2,4 =
∑

0<k≤a

v(b + 1)v(k)δ+(k)p
a+b+1

2 +d(b+1)+d(k)Xb+1+k

·
{

f1(α2p
b) if a 6≡ b mod 2,

(α1
p )f2(α2p

b) if a ≡ b mod 2,

I2,5 = v(a + 1)f1(α1p
a)

∑

a+1<k<b+1

v(k)g(k)p
a+k1

2 +d(a+1)+d(k)Xa+1+k,

I2,6 = v(a + 1)v(b + 1)f1(α1p
a)p

a+b+1
2 +d(a+1)+d(b+1)Xa+b+2

·
{

f1(α2p
b) if a 6≡ b mod 2,

(α1
p )f2(α2p

b) if a ≡ b mod 2,

and

I2,7 = δ−(a + 1)pa+2d(a+1)X2a+2,

I2,8 =
∑

0<k≤a

(δ+(k) + p−1δ−(k))pk+2d(k)X2k.

Now we are ready to state the main formula.
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Theorem 7.1. Set X = p−r. Then

(7.6) α(X,T l, Sl) = R0(X) + p2lX lR1(X) + p3lX2lR2(X) + lβl(X),

where Ri(X) = Ri(X, T, S) are given by

R0 = 1, R1 =
4∑

i=1

I1,i, R2 = (1− p−1)
8∑

i=1

I2,i + p−1I2,6,

and
βl(X) = (1− p−2)p2lX l + (1− p−1)p3lX2l(1 + R1(X)).

Corollary 7.2. Let the notation be as in Theorem 7.1. Then

αp(X,T 1, S1)− p3X2α(X, T, S) = (1−X)(1 + p2X + p2XR1(X)).

Moreover, if α(1, T, S) = αp(T, S0) = 0, then

α′(1, T 1, S1) = p3α′(1, T, S)− (1 + p2 + p2R1(1)).

Here α′ is the derivative of α(X, T l, Sl) with respect to X.

Remark 7.3. When S is unimodular, one can verify (by tedious calculation) that
our formula for X = 1 and l = 0 coincide with those of Kitaoka’s ([Ki, Theorem
2]).

The rest of this section is devoted to the proof of Theorem 7.1. It is quite
technical and can be skipped. We first do an easy reduction.

Lemma 7.4. If Theorem 7.1 is true for l = r = 0 (all S and T ), then it is true
in general.

Proof. (sketch) Assume that Theorem 7.1 is true for l = r = 0. Since αp(T 1, S1)
= p3αp(T, S), it is also true for l = 1 and r = 0. In general, denote Ll

r(k, 1) and
so on for the data corresponding to Sl

r instead of S. Then for any k ≥ 0, one
has

llr(k + l, 1) ≡ l(k, 1) mod 2,

δl,±
r (k + l) = δ±(k),

vl
r(k + l) = v(k),

and
dl

r(k + l) = d(k)− rk + l − rl.
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So the associated functions fi and g (to T l and Sl
r) are independent of l or r.

Now applying the formula just proved to T = T l and S = Sl
r, one finds

αp(T l, Sl
r) = 1 + p2lX l

4∑

i=1

I l
1,i + (1− p−1)p3lX2l

8∑

i=1

I l
2,i + p−1p3lX2lI2,6,

where I l
i,j are almost the same as Ii,j except for that the summation is over

l < k + l ≤ a + l, for example, instead of 0 < k ≤ a. Notice that d(0) = 0,
v(0) = 1, and 0 ≤ l ≤ 1. So

I l
1 = (1− p−2)

∑

0<k+l≤a+l
l(k,1) even

v(k)pk+d(k)Xk

= (1− p−2)
∑

−l<k≤a
l(k,1) even

v(k)pk+d(k)Xk

= l(1− p−2) + I1.

For the same reason, one has I l
1,i = I1,i for i 6= 1, and

I l
2,j =





lI1,j + I2,j if 1 ≤ j ≤ 4,

I2,j if 5 ≤ j ≤ 7,

l + I2,j if j = 8.

Combining the formulae, one finds that theorem 7.1 is true in general.

Lemma 7.5. Let J(p−k) be defined by (2.3). Then

(7.7) αp(T, S) =
∑

k∈Z
p3kJ(p−k)2R(k) +

∑

k1>k2

p2k1+k2J(p−k1)J(p−k2)R(k1, k2).

Here

R(k) =
1

2(1− (−1
p )p−1)

I∗(−α1p
a−k,−α1p

a−k,−α2p
b−k,−α2p

b−k)

+
(−1)l(k,1)

2(1 + (−1
p )p−1)

I∗(−α1p
a−k,−α1upa−k,−α2p

b−k,−α2upb−k),

and

R(k1, k2) =
1
4

∑

β1,β2=1 or u

(
β1

p
)l(k1,1)(

β2

p
)l(k2,1)

· I∗(−α1β1p
a−k1 ,−α1β2p

a−k2 ,−α2β1p
b−k1 ,−α2β2p

b−k2).
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Proof. By 1.3 and Proposition 5.1, one has

αp(T, S) =
∑

k∈Z
p3k

(
1

2(1− (−1
p )p−1)

K(p−k, p−k) +
1

2(1 + (−1
p )p−1)

K(p−k, up−k)

)

+
1
4

∑

k2<k1
βi=1 or u

p2k1+k2K(β1p
−k1 , β2p

−k2),

Where

K(t1, t2) =
∫

GL2(Zp)

J(t1, t2)ψ(− trT tg diag(t1, t2)g)dg

and

J(t1, t2) =
∫

(Zm
p )2

ψ(
1
2

tr tg

(
t1 0
0 t2

)
g

(
(x, x) (x, y)
(x, y) (y, y)

)
) dxdy.

A substitution of
(

x
y

)
by g

(
x
y

)
gives

J(t1, t2) =
∫

(Zm
p )2

ψ(
1
2

tr
(

t1 0
0 t2

)(
(x, x) (x, y)
(x, y) (y, y)

)
)dx dy

=
∫

(Zm
p )2

ψ(t1q(x))ψ(t2q(y)) dx dy

= J(t1)J(t2).

In particular, J(t1, t2) does not depend on g. Direct calculation gives

∫

GL2(Zp)

ψ(− trT tg diag(t1, t2)g)dg

= I∗(−α1p
at1,−α1p

at2,−α2p
bt1,−α2p

bt2).

Finally, J(βp−k) = (−1
p )l(k,1)J(p−k) by Corollary 2.3. Now putting pieces to-

gether, one proves the lemma.

Lemma 7.6. Let the notation be as above.

(1) One has

J(p−k)2 = p
P

li<k(li−k)(
−1
p

)l(k,1).
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(2) One has

(
−1
p

)l(k,1)R(k)

=





(1− p−1)(δ+(k) + p−1δ−(k)) if k ≤ a,

p−1(1− p−1)δ−(k) if k = 1 + a&a < b,

−p−2((−α1α2
p )δ+(k) + δ−(k)) if k = 1 + a&a = b,

0 if k > 1 + a.

Proof. Claim (1) follows from Lemma 2.2 directly. When k ≤ a, one has by
Corollary 6.3

I∗(−α1p
a−k,−βα1p

a−k,−α2p
b−k,−α2βpb−k) = (1− p−1)2(1 + p−1).

So

R(k) = (1− p−1)2(1 + p−1){ 1
2(1− (−1

p )p−1)
+

(−1)l(k,1)

2(1 + (−1
p )p−1)

}

= (1− p−1)(δ+(k) + (
−1
p

)p−1δ−(k)).

Notice that

(7.8) (
−1
p

)l(k,1)(xδ+(k) + y(
−1
p

)δ−(k)) = xδ+(k) + yδ−(k)

for any numbers x and y. So

(
−1
p

)l(k,1)R(k) = (1− p−1)(δ+(k) + p−1δ−(k)).

When k = 1 + a and a < b, one has b − k ≥ 0. In this case, Corollary 6.4
implies

I∗(−α1p
a−k,−βα1p

a−k,−α2p
b−k,−βα2p

b−k)

= p−1(1− p−1)(
−β

p
){1− (

−β

p
)p−1}.

Now simple calculation (using (7.8)) gives the desired formula for this case. The
case where k = 1 + a and a = b follows similarly from Corollary 6.6 and Lemma
6.1

Finally, when k > 1 + a, one has a − k ≤ −2. So Corollary 6.3 implies
R(k) = 0.
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Next come to the second sum in (7.7). First we renormalize the factors
involved. Set for an integer k

θ(k) =
{

1 if l(k, 1) is even,
δp if l(k, 1) is odd.

Here δp is defined by (1.9). The following trivial observation will be frequently
used in the computations below.

(7.9) θ(k)−1(xδ+(k) + yδpδ
−(k)) = xδ+(k) + yδ−(k),

where x and y are any complex numbers and k is any integer. Denote

(7.10) R∗(k1, k2) = (θ(k1)θ(k2))−1R(k1, k2)

and
J∗(k1, k2) = θ(k1)θ(k2)J(p−k1)J(p−k2).

Then

(7.11) J∗(k1, k2) = vk1vk2p
1
2 [
P

li<k1
(li−k1)+

P
li<k2

(li−k2)]

where vk is defined by (1.8), and

(7.12) J∗(k1, k2)R∗(k1, k2) = J(p−k1)J(p−k2)R(k1, k2).

The following lemma follows directly from Corollary 6.3.

Lemma 7.7. (1) If k2 < k1 ≤ a, then

R∗(k1, k2) = (1− p−1)2(1 + p−1)δ+(k1)δ+(k2).

(2) If k1 > 1 + b or k2 > 1 + a, then R∗(k1, k2) = 0.

Lemma 7.8. (1) When k1 = 1 + a > k2 and a < b, one has

R∗(k1, k2) = (1− p−1)δ+(k2)
(

(
α1

p
)

1√
p
δ−(k1)− 1

p2
δ+(k1)

)
.

(1′) When k1 = 1 + a > k2 and a = b, one has

R∗(k1, k2) = p−1(1− p−1)
(

(
−α1α2

p
)− 1

p

)
δ+(k1)δ+(k2).
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(2) When 1 + b > k1 > 1 + a > k2, one has

R∗(k1, k2) = (1− p−1)2p
a−k1

2 δ+(k2)g(k)

(3) When 1 + b > k1 > 1 + a = k2, one has

R∗(k1, k2) = (1− p−1)p
a−k1

2 f1(α1p
a)g(k)

(4) When k1 = 1 + b > 1 + a > k2, one has

R∗(k1, k2) = (1− p−1)p
a−b−1

2 δ+(k2)

·
{

f1(α2p
b) if a− b is odd,

(α1
p )f2(α2p

b) if a− b is even.

(5) When k1 = 1 + b > 1 + a = k2, one has

R∗(k1, k2) = (1− p−1)p
a−b−1

2 f1(α1p
a)

·
{

f1(α2p
b) if a− b is odd,

(α1
p )f2(α2p

b) if a− b is even.

Proof. The proof is case by case verification using results in section 6. To save
space, we write

I(β1, β2) = I∗(−α1β1p
a−k1 ,−α1α2p

a−k2 ,−α2β1p
b−k1 ,−α2β2p

b−k2).

When k1 = 1+a > k2 and a < b, one has a−k1 = −1, a−k2 ≥ 0, b−k1 ≥ 0,
and b− k2 ≥ 0. So Lemma 2.1 and Corollary 6.4 imply

I(β1, β2) = (1− p−1)(δp(
α1β1

p
)

1√
p
− 1

p2
).

Since (u
p ) = −1, one has then

R(k1, k2) =
1
4

∑

βi=1 or u

(
β1

p
)l(k1,1)(

β2

p
)l(k2,1)I(β1, β2)

= (1− p−1)δ+(k2)
(

(
α1

p
)

1√
p
δpδ

−(k1)− 1
p2

δ+(k1)
)

.

Applying (7.9), one proves (1).
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When k1 = 1 + a > k2 and a = b, one has b − k1 = a − k1 = −1, and
a− k2 = b− k2 ≥ 0. So Lemma 2.1 and Corollary 6.4 imply

I(β1, β2) = (1− p−1)I∗(−α1β1p
−1)I(−α2β1p

−1) + p−1(1− p−1)I∗(−α2β1p
−1)

= p−1(1− p−1)((
−α1α2

p
)− p−1)

Here we have used δ2 = (−1
p ). Plugging this into R∗(k1, k2) and applying (7.9),

one obtains (1′).

When 1 + b > k1 > 1 + a > k2, one has a− k1 ≤ −2, a− k2 ≥ 0, b− k1 ≥ 0,
and b− k2 ≥ 0. So Lemma 2.1 and Corollary 6.3 imply

I(β1, β2) = (1− p−1)2I(−α1β1p
a−k1)

= (1− p−1)2p
a−k1

2

{ 1 if a− k1 is even,

δp(α1β1
p ) if a− k1 is odd.

Plugging this into R∗(k1, k2) and applying (7.9), one obtains (2).

When 1 + b > k1 > 1 + a = k2, one has a− k1 ≤ −2, a− k2 = −1, b− k1 ≥ 0,
and b− k2 ≥ 0. So Lemma 2.1 and Corollary 6.3 imply

I(β1, β2) = (1− p−1)I(−α1β1p
a−k1)I∗(−α1β2p

−1)

= (1− p−1)p
a−k1

2 (δp(
α1β2

p
)

1√
p
− 1

p
)

·
{ 1 if a− k1 is even,

δp(α1β1
p ) if a− k1 is odd.

Plugging this into R∗(k1, k2) and applying (7.9), one obtains (3).

When 1 + b = k1 > 1 + a > k2, one has a− k1 ≤ −2, b− k1 = −1, a− k2 ≥ 0,
and b− k2 ≥ 0. So Lemma 2.1 and Corollary 6.3 imply

I(β1, β2) = (1− p−1)I(−α1β1p
a−k1)I∗(−α2β1p

−1)

= (1− p−1)p
a−b−1

2 (δp(
α2β1

p
)

1√
p
− 1

p
)

·
{ 1 if a− k1 is even

δp(α1β1
p ) if a− k1 is odd

= (1− p−1)p
a−b−1

2

{
δp(α2β1

p ) 1√
p − 1

p if a + b is odd,

(α1
p ){(−α2

p ) 1√
p − δp(β1

p ) 1
p} if a− b is even.

Here we have used δ2
p = (−1

p ). Plugging this into R∗(k1, k2) and applying (7.9),
one obtains (4).
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Finally, when 1 + b = k1 > 1 + a = k2, one has a − k1 ≤ −2, b − k1 = −1,
a− k2 = −1, and b− k2 ≥ 0. So Lemma 2.1 and Corollary 6.3 imply

I(β1, β2) = I(−α1β1p
a−k1)I∗(−α2β1p

−1)I∗(−α1β2p
−1)

= p
a−b−1

2 (δp(
α1β2

p
)

1√
p
− 1

p
)

·
{

δp(α2β1
p ) 1√

p − 1
p if a + b is odd

(α1
p ){(−α2

p ) 1√
p − δp(β1

p ) 1
p} if a− b is even.

Plugging this into R∗(k1, k2) and applying (7.9), one obtains (5).

Proof of Theorem 7.1 Now the proof of Theorem 7.1 becomes tedious
but easy calculation. We may assume l = r = 0 by Lemma 7.4. We verify the
case a = b and omit the more complicated case a 6= b for the benefit of the
reader. By Lemma 7.6, one has

∑

k∈Z
p3kJ(p−k)2R(k)

= (1− p−1)
∑

k≤0

p3k + (1− p−1)
∑

0<k≤a

pk+2d(k)(δ+(k) + p−1δ−(k))

− p−1+a+2d(1+a)((
−α1α2

p
)δ+(1 + a) + δ−(1 + a))

= (1− p−1)(1− p−3)−1 + (1− p−1)I2,8 + I2,6

By Lemma 7.2 and (7.11)− (7.12), one has
∑

k1>k2

p2k1+k2J(p−k1)J(p−k2)R(k1, k2)

=
∑

k2<k1≤0

+
∑

k2≤0<k1≤a

+
∑

k2≤0, k1=a+1

+
∑

0<k2<k1≤a

+
∑

0<k2≤a<k1=a+1

where every sum is on vk1vk2p
k1+d(k1)+d(k2)R∗(k1, k2). By Lemma 7.7, one has

∑

k2<k1≤0

vk1vk1vk2p
k1+d(k1)+d(k2)R∗(k1, k2)

= (1− p−1)2(1 + p−1)
∑

k2<k1≤0

p2k1+k2

= p−1(1− p−1)(1 + p−1)(1− p−3)−1.

Notice that

p−1(1− p−1)(1 + p−1)(1− p−3)−1 + (1− p−1)(1− p−3)−1 = 1.
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By Lemmas 7.7, one has

∑

k2≤0<k1≤a

vk2p
k1+d(k1)+d(k2)R∗(k1, k2)

=
∑

0<k1≤a

vk1p
k1+d(k1)δ+(k1)(1− p−1)2(1 + p−1)

∑

k2≤0

pk2

= I1,1

Similar calculation using Lemmas 7.8(1′) and 7.7 gives

∑

k2≤0, k1=a+1

vk1vk2p
k1+d(k1)+d(k2)R∗(k1, k2) = I1,2

∑

0<k2<k1≤a

vk1vk2p
k1+d(k1)+d(k2)R∗(k1, k2) = (1− p−1)I2,1

and ∑

0<k2≤a<k1=a+1

vk1vk2p
k1+d(k1)+d(k2)R∗(k1, k2) = (1− p−1)I2,2

Putting everything together and applying Lemma 7.5, one obtains

αp(T, S) = 1 + I1,1 + I1,2 + (1− p−1)(I2,1 + I2,2 + I2,6 + I2,8) + p−1I2,6.

This verifies (7.6) in the special case (l = r = 0, a = b).

8. Examples.

In this section, we compute some interesting examples involving quaternion
algebras. It turns out that the local densities related to split and ramified
quaternion algebras are closely related to each other. Some results of this section
will be used by Kudla and Rapoport to prove the main local identity in [Ku1]
for p|D(B) ([Ku1, Theorem 14.10]). Let B be a quaternion algebra over Qp.
Fix a κ ∈ Z∗p, and let V = {x ∈ B : trx = 0} with the quadratic form
q(x) = −κN(x), where N is the reduced norm. We will use upper script ‘s’
or ‘ra’ indicates whether it is split or ramified. Let OB be a maximal order of
B. When B = Bra, let Lra = V ra ∩ OB . When B = Bs, we identify B with
M2(Qp) in such a way that OB = M2(Zp). Let β be a fixed unit in Zp such that
(β

p ) = −1. We define

Ls
0 = V s ∩M2(Zp) = {

(
a b
c −a

)
∈ M2(Zp)},

Ls
1 = {

(
a b
pc −a

)
: a, b, c,∈ Zp},(8.1)
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and

(8.2) Ls
2 = {

(
pa b

βb + pc −pa

)
: a, b, c,∈ Zp}.

The lattice Ls
2 consists of matrices in Ls

0 whose reduction modulo p are in the
image of Fp2 = Fp(β) in M2(Fp). Both Ls

1 and Ls
2 come naturally as the en-

domorphism rings of special Cartier OBra modules over the algebraically closed
field F̄p ([Ke, Section 2]). when p 6= 2, the corresponding matrices are

Ss
0 = κ diag(1, 1,−1),

Ss
1 = κ diag(1, p,−p),(8.3)

Ss
2 = κ diag(β, p2,−βp2),

Sra = κ diag(β, p,−βp).

When p = 2, the corresponding integral quadratic forms (see section 4) are

qs
0 = κ(x2

1 + y1y2),

qs
1 = κ(x2

1 + 2y1y2),(8.4)

qs
2 = κ(3x2

1 − 3x2
2 + 4x2

3),

qra = κ(3x2
1 + 2(z2

1 + z1z2 + z2
2).

We are interested in computing the polynomial α(X,T l, Sl) for 0 ≤ l ≤ 1 and
S being of the four matrices given by (8.3) and in their relations. We assume
n = dim T ≤ 2 and p 6= 2 when n = 2. By Corollaries 3.2 and 7.2 and Theorem
4.1, one only needs to study the case l = 0.

Theorem 8.1. (1) One has

Ri(X, T, Ss
1) = piRi(X,T, Ss

0),

and
Ri(X, T, Sra) = (−p)iRi(X, T, Ss

0),

for 1 ≤ i ≤ 2.

(2) When a ≥ 1, one has

R1(X, T, Ss
2) = p2iR1(X,T, Ss

0),

and
R2(X,T, Ss

2) = p4R2(X, T, Ss
0) + (p− p3)X2.
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Proof. We assume p 6= 2 and leave the case p = 2 to the reader. A trivial but
crucial observation is that l(k, 1, S) is even if and only if k is even, independent
of the choice among the four examples. Here we write l(k, 1, S) for l(k, 1) (see
(1.6) for definition) to indicate its dependence on S, We will do the same for
other notations. So the functions δ±(k), fi(k), and g(k) is the same for all the
four examples. Direct calculation also gives

(8.5) v(k, S) =





1 if k is even and S = Ss
i ,

−1 if k is even and S = Sra,

(κ
p ) if k is odd and S = Ss

i ,

−(κ
p ) if k is odd and S = Sra,

with one exception: v(1, Ss
2) = −(κ

p ). Finally, one has by calculation

(8.6) d(k, S) =





− 1
2k if S = Ss

0 ,

− 1
2k + 1 if S = Ss

1 or Sra,
1
2 if S = Ss

2 and k = 1,

− 1
2k + 2 if S = Ss

2 and k > 1.

Now the case T is a number is obvious by theorem 3.1. When n = 2, , one can
now see easily by inspection that

Ii,j(X, T, Ss
1) = piIi,j(X,T, Ss

0),

and
Ii,j(X, T, Sra) = (−p)iIi,j(X, T, Ss

0),

for all i and j. This proves the first claim.

One has to be a little bit careful about Ii,j(X,Ss
2) since v(k, Ss

2) and d(k, Ss
2)

behave abnormally at k = 1. However, when a ≥ 1, all the terms involving
k = 1 is zero except in I2,8. So the formulae Iij(X, T, Ss

2) = p2iIij(X, T, Ss
0) are

true for all (i, j) except (2, 8). On the other hand,

I2,8(X, Ss
2) = p−1p2X2 +

∑

1<k≤a

(δ+(k) + p−1δ−(k))p4X2k

= pX2 − p3X2 + p4
∑

0<k≤a

(δ+(k) + p−1δ−(k))X2k

= pX2 − p3X2 + p4I2,8(X,Ss
0).

This proves the second claim.
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Corollary 8.2. For t ∈ Zp, one has

α(X, t, Sra) + α(X, t, Ss
1) = 2,

α(X, t, Sra) = −pα(X, t, Ss
0) + 1 + p,

and
α(X, t, Ss

i ) = psα(X, t, Ss
0) + 1− pi

for 0 ≤ i ≤ 2.

Direct calculation using theorems 3.1 and 4.1 gives

Proposition 8.3. Let t = αpa with α ∈ Z∗p and a ∈ Z≥0.

(1) When a is odd, one has

α(X, t, Ss
0) = 1 + (1− p−1)

a−1
2∑

k=1

2−kX2k − p−
a+1
2 −1Xa+1.

(2) When p 6= 2 and a is even, one has

α(X, t, Ss
0) = 1 + (1− p−1)

a
2∑

k=1

2−kX2k + (
ακ

p
)p−

a
2−1Xa+1.

(3) When p = 2 and a is even, one has

α(X, t, Ss
0) = 1+(1−p−1)

a−1
2∑

k=1

2−kX2k+(
−1
ακ

)2−
a
2−2Xa+2+δ8(α−κ)2−

a
2−2Xa+3,

where (−1
ακ ) = ±1 according to ακ ≡ ±1 mod 4.

δ8(x) =





1 if x ≡ 0 mod 8,

−1 if x ≡ 4 mod 8,

0 otherwise .

From now on, we assume p 6= 2 and n = 2, i.e., T is a two-by-two nonsingular
symmetric matrix over Zp. We may assume T = diag(α1p

a, α2p
b) with a ≤ b.
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Corollary 8.4. One has

α(X,T, Sra) = p2α(X,T, Ss
0) + 1− p2 − (p + p2)R1(X, Ss

0),

α(X, T, Ss
1) = α(X,T, Sra) + 2pR1(X, Ss

0),

and

α(X,T, Ss
2) = p2α(X, T, Sra) + (1 + p)

(
(1− p)(1 + pX2) + p2R1(X,Ss

0)
)
.

So the four functions α(X,T, S) for S = Ss
i or Sra are all closely related,

which is a somehow surprising outcome of this calculation. Thus it is sufficient
to compute Ri(X, Ss

0).

Theorem 8.5. For T = diag(α1p
a, α2p

b), let v0 = (κα1/p), and

v1 =

{
(κα2

p ) if b ≡ 0 mod 2,

(−α1α2
p ) if b ≡ 1 mod 2.

(1) If a ≡ 0 mod 2, then

R1(X,Ss
0) = (1− p−2)

∑

0<k≤ a
2

pkX2k + p
a
2 (1− p−1v0X)

∑

a<k≤b

(v0X)k,

and

R2(X, Ss
0)

= (1− p−1)p−2
∑

0<k≤ a
2

pkX2k + (1− p−2X2)
∑

0≤k< a
2

pk(v0X)a+b−2k

+ p
a
2−1X2

∑

a≤k<b

(v0X)k − p
a
2−2X2

∑

a≤k≤b

(v0X)k.

(2) If a ≡ 1 mod 2, then

R1(X,Ss
0) = −1 + (1− p−1X2)

∑

0≤k≤ a−1
2

pkX2k + v1p
a−1
2 Xb+1,

and

R2(X,Ss
0) = (1− p−1)p−1X2

∑

0≤k≤ a−1
2

pkX2k − v1p
a−1
2 Xb+1

+ (1− p−2X2)
∑

0≤k≤ a−1
2

v1p
kXa+b−2k.
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Proof. It follows from Theorem 7.1 by elementary but tedious calculation and
is left to the reader. Another way to check it is to first compute R1(X, Ss

0) by
definition, which is easy. Then applying the result and Kitaoka’s formula as
reformulated by Kudla (see Proposition 8.6 below) to Theorem 7.1, one can get
a formula for R2(X, Ss

0).

The following two propositions follow from theorems 7.1 and 8.5 easily.

Proposition 8.6. (Kitaoka, see [Ku1, Prop. 8.1]) (1) When a ≡ 0 mod 2,
one has

α(X, T, Ss
0)

(1− p−2X2)
=

∑

0≤k< a
2

pk(X2k + (v0X)a+b−2k) + p
a
2

∑

a≤k≤b

(v0X)k.

(2) When a ≡ 1 mod 2, one has

α(X, T, Ss
0)

(1− p−2X2)
=

∑

0≤k≤ a−1
2

pk(X2k + v1X
a+b−2k).

Proposition 8.7. (1) When a ≡ 0 mod 2, one has

α(X, T, Sra) =
∑

0≤k≤ a
2

pk(X2k − (v0X)a+b+2−2k)

−
∑

0<k< a
2

pk+1(X2k − (v0X)a+b+2−2k)

+ (X2 − 1)p
a
2 +1

∑

a≤k≤b

(v0X)k.

(2) When a ≡ 1 mod 2, one has

α(X, T, Sra) =
∑

0≤k≤ a+1
2

pk(X2k − v1X
a+b+2−2k)

−
∑

0<k< a+1
2

pk+1(X2k − v1X
a+b+2−2k).

For T = diag(α1p
a, α2p

b), we also denote α(X, α1p
a, α2p

b, S) for α(X, T, S).
Then we have the following two induction formulas which follow from Proposi-
tions 8.6 and 8.7 directly.



LOCAL DENSITIES 41

Proposition 8.8. (Induction formula I) Set ν = νa = ((−1)aκα1/p).

(1) If B = Bs is split, then

α(X, α1p
a, α2p

b+1, Ss
0)− vXα(X, α1p

a, α2p
b, Ss

0)

=





(1− vX)(1− p−2X2)
(∑

0≤k< a
2

pkX2k
)

+ p
a
2 Xa if a ≡ 0 mod 2,

(1− vX)(1− p−2X2)
∑

0≤k< a
2

pkX2k if a ≡ 1 mod 2.

(2) If B = Bra is ramified over Qp, then

α(X, α1p
a, α2p

b+1, Sra)− vXα(X, α1p
a, α2p

b, Sra)

=





(1− vX)
(∑

0≤k≤ a
2

pkX2k −∑
0<k< a

2
pk+1X2k

)

+(X2 − 1)p
a
2 +1Xa if a ≡ 0 mod 2,

(1− vX)
(∑

0≤k≤ a+1
2

pkX2k −∑
0<k< a+1

2
pk+1X2k

)
if a ≡ 1 mod 2.

(3) The difference α(X,α1p
a, α2p

b+1, S) − vXα(X, α1p
a, α2p

b, S) is inde-
pendent of b in all the four examples.

Proposition 8.9. (Induction formula II)

(1) When B = Bs is split, one has

α(X,α1p
a, α2p

b+2, Ss
0)−X2α(X,α1p

a, α2p
b, Ss

0)
(1− p−2X2)

=

{
(1−X2)

∑
0≤k< a

2
pkX2k + p

a
2 Xa(1 + v0X) if a ≡ 0 mod 2,

(1−X2)
∑

0≤k< a
2

pkX2k if a ≡ 1 mod 2.

(2) When B = Bra is ramified, one has

α(X, α1p
a, α2p

b+2, Sra)−X2α(X, α1p
a, α2p

b, Sra)
(1−X2)

=

{ ∑ a
2
0 pkX2k −∑ a

2
0 pk+1X2k − p

a
2 +1Xa(1 + v0X) if a ≡ 0 mod 2,

∑ a+1
2

0 pkX2k −∑ a+1
2

0 pk+1X2k if a ≡ 1 mod 2.

For T = diag(α1p
a, α2p

b). we define following Kudla ([Ku1, section 8])

(8.7) µp(T ) =
{

vb
0 if a ≡ 0 mod 2,

v1 if a ≡ 1 mod 2,
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where v0 and v1 are given in Theorem 8.5. Kudla has shown that µp(T ) = −1
if and only if α(1, T, Ss

0) = 0, while µp(T ) = 1 if and only if α(1, T, Sra
0 ) = 0.

It is natural and interesting to study the derivatives α′(1, T, Ss
0) when µp(T ) =

−1, and α′(1, T, Sra) when µp(T ) = 1([Ka, section 8], and [Me, IV.3]). By
Propositions 8.8 and 8.9, they also have interesting induction relations. The
following peculiar relation was first observed by Kudla and Meyer ([Me, p. 57]).
Since there is a minor mistake in the original statement, we restate it here with
a simple proof. We don’t know if there is a conceptional explanation.

Theorem 8.10. (Kudla and Meyer) Let T = diag(α1p
a, α2p

b). When µp(T ) =
1, one has

α′(1, T, Sra) = −(p + 1)(a + b + 2) +
2p3

p2 − 1
α(1, T, Ss

0).

Proof. Taking derivative at X = 1 on both sides of the formulas in Proposition
8.7, one has when µp(T ) = 1

α′(1, T, Sra) + (p + 1)(a + b + 2)

=





4
∑ a+1

2
1 pk if a ≡ 1 mod 2& v1 = 1,

4
∑ a

2
1 pk + 2p

a
2 +1 if a ≡ b ≡ 0 mod 2 & v0 = −1,

4
∑ a

2
1 pk + 2p

a
2 +1(b− a + 1) if a ≡ 0 mod 2& v0 = 1.

Comparing this with [Ku1, Corollary 8.4] (see also Proposition 8.6), one obtains
the theorem.
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