NONVANISHING OF HECKE L-FUNCTIONS AND THE
BLOCH-KATO CONJECTURE
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ABSTRACT. In this paper we study the central values of L—functions associated to a
large class of algebraic Hecke characters of imaginary quadratic fields. When these
central values are nonzero, the Bloch-Kato conjecture predicts an exact formula
for the algebraic parts of the central values in terms of periods and arithmetic
data, most notably the Selmer groups corresponding to the Hecke characters. We
investigate the nonvanishing of these central values, and prove the p-part of the
Bloch-Kato conjecture in these cases for primes p which split in K.

1. INTRODUCTION AND STATEMENTS OF RESULTS

Let K be an imaginary quadratic field of discriminant —D with D > 3 and D = 3
mod 4. Let Ok be the ring of integers of K, and let

ep : (Okx/V—D)" — {£1}
be the quadratic character of K induced by the Dirichlet character (—D/-). A canon-
ical Hecke character (in the sense of Rohrlich [R, R2]) is a Hecke character v of K

of weight k € Z*, infinity type (2k — 1,0), and conductor v/—DQOj which satisfies
the condition

Ui(aOk) = ep(a)a®*! for (aOk,V/—DOg) = 1.

Let CL(K) be the ideal class group of K, let h(—D) be the class number of K, and
let £ : CL(K) — C* be a class group character of K. Then there are exactly h(—D)
canonical Hecke characters, and they are given by

The L—function of v is defined by

L<¢k, 8) = Z wk(a)NK/Q(a)’s, RG(S) >k + %
0#£aCOxk
where the sum is over nonzero integral ideals a. It is known that L(vy,s) has an
analytic continuation to C and satisfies a functional equation under s — 2k — s with
central value L(vx, k).
The canonical Hecke characters were first studied by Gross [Gr], who constructed
a “canonical” elliptic Q-curve A(D) associated to 1;. In particular, he showed that
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the extended Hecke character x g := ¢ o Ny, of the Hilbert class field H of K cor-
responds to a unique (up to H-isogeny) Q-curve A(D)/H whose L-function satisfies

L(A(D)/H,s) = L(xu,s)L(Xm,s) = [ Ltn& s) L, s).
eeCL )~

He made the remarkable conjecture that the rank of A(D)(H) is 0 or 2h(—D) depend-
ing on whether D is congruent to 7 or 3 mod 8, respectively. Because the conjecture
predicts an ezact formula for the rank, the curves A(D)/H form an important test
case for the Birch and Swinnerton-Dyer conjecture.

Gross proved the rank 0 case of his conjecture for D = p a prime using descent
theory. Montgomery and Rohrlich [MR] (extending earlier work of Rohrlich [R, R2])
proved the rank 0 case for all discriminants by showing that L(y1&,1) # 0 for D =7
(mod 8) and applying a theorem of Rubin [Rul]. Miller and Yang [MiY] proved the
rank 2h(—D) case by showing that L'(11£,1) # 0 for D = 3 (mod 8) and applying
a theorem of Kolyvagin and Logachev [KL]. The even discriminant cases were also
positively settled in [MR] and [MiY].

When k£ > 1 the nonvanishing of the central values L(ty, k) and their quadratic
twists has been studied using a wide-range of techniques (see e.g. [RV2, RVY, Y,
LX, Ma, Ma2]). In this paper we will study this problem from a somewhat different
perspective. We will establish an asymptotic formula for the first moment of the
central values L(ty, k) which is of independent interest. Our proof of the asymptotic
formula relies on an “equidistribution theorem” for Heegner points. Such theorems
exist in the literature. Our calculation is complicated by the fact that the test func-
tions involved are not of rapid decay (see Theorem 5.1). We will then combine the
asymptotic formula with subconvexity bounds to prove a nonvanishing theorem for
certain subfamilies of canonical Hecke characters.

Given these nonvanishing theorems, it is natural to ask if they shed light on the
arithmetic of the Selmer groups corresponding to the canonical Hecke characters.
Recall that the Bloch-Kato conjecture [BK] predicts an exact formula for the algebraic
part of L(¢x,k) in terms of periods and arithmetic data, most notably the order
of the Selmer group corresponding to . We will prove the p-part of the Bloch-
Kato conjecture in these cases for primes p which split in K, and combine this with
nonvanishing theorems to prove a finiteness theorem for the corresponding Selmer
groups.

In order to state our results we fix the following notation. Let d = 1 mod 4 be
a squarefree integer coprime to D. The quadratic twist of v, is defined by ¥4 =
(d/Ngq(-))Yw. Clearly, there are exactly h(—D) such characters and they are given
by

Wap = {Yaré : € € CL(K)"}.

For an integer n > 1, let CL,,(K) be the kernel of the n-th power map on CL(K),
and let

CL™(K) := CL(K)/CL,(K) = CL(K)".
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Define the natural subfamily for a fixed ¥g € Wq
\1’512;1 = {gr€: €€ CLO(K)NY C Wy

of canonical Hecke characters which differ by ideal class group characters which are
trivial on the 2-torsion subgroup of the class group.
Define the theta function

045 (2) = (2y) "> Z (g) Hi(n\/2y)e(n?z), y=1Im(z) >0

(n,d)=1

where Hj, is a suitably normalized Hermite polynomial of degree k (see Remark 3.3)
and e(z) := e*™*. The function 04y is a weight k + 5 modular form for I'y(4d?) with
character (d/-).

Define the Peterson inner product

(Oa ks Oar)pet := / |9d,k(z)\2lm(z)k+%du(z)

Yo(4d2)

where the Poincaré measure dy(z) is normalized so that the the open modular curve
Yy (4d?) has volume 1.

We will establish the following asymptotic formula for the first moment of central
values associated to canonical Hecke characters. An outline of the proof is given in
section 2.

Theorem 1.1. Let D = 7 mod 8 be a positive, squarefree integer, and let d = 1
mod 4 be a squarefree integer coprime to D such that every prime divisor of 2d splits
in K. Let k > 1 be an integer such that sign(d) = (—=1)k=1. Then for all § < 1/8 we
have

1

#CLO(K) > L(ag, k) = c(k)Lp(1) (a1, 0an-1)pet + Oaps(D~%)  (1.1)

¢mk€@gi
as D — oo. Here c(k) := 2(8m)*1/(k — 1)! and Lp(s) is the L—function of the
Dirichlet character (—D/-). Moreover,

1
h(—D) Z L(Yan, k) = c(k)Lp(1)(Oar-1,0ar-1)pet + Oaps(D°) (1.2)
YVa k€YK

as D — oo. The implied constants in the error terms Ogy s are ineffective.

Remark 1.2. In [Ma], the second author proved a variant of the asymptotic formula
in Theorem 1.1 (1.2) for d = 1 and k odd. The restriction to d = 1 was necessary
to use a formula of Rodriguez-Villegas and Zagier [RV, RVZ] for the central value
L(tg, k), and the crucial restriction to k odd was necessary to insure that the theta
function appearing in this formula was cuspidal. See the discussion in section 2.

Remark 1.3. In [T, Theorems 1 and 2|, Templier uses a different method to ob-
tain asymptotic formulae for the first moment of central values of canonical Hecke

L—functions analogous to those in Theorem 1.1. Whereas we use period relations,
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equidistribution, and a spectral regularization in the proof of Theorem 1.1 (see sec-
tion 2), Templier uses the approximate functional equation and a subconvexity bound
due to Burgess.

We will combine Theorem 1.1 with subconvexity bounds of Duke, Friedlander, and

Iwaniec [DFI] to prove the following nonvanishing theorem for the subfamily ‘Q[l((f,)~C

Theorem 1.4. Let assumptions be as in Theorem 1.1. Then for all § < 1/60,

#{ar € ‘I’dk L(tay, k) # 0} 456 D°
as D — oo. The implied constant in >4 15 ineffective.

We now turn to a discussion of our arithmetic results. Let 1) be an algebraic Hecke
character of K of conductor f and infinity type (2k —1,0). Let K(f) be the ray class
field of K of conductor f, and let G(f) be the Galois group of K(f)/K. Let p be a
prime number not dividing f. By fixing an embedding i, : Q — C, one can associate
a p-adic Galois character of Gal(fp>) to 1. Let Sel,(Ay/K) be the Selmer group
associated to the Galois representation A, defined by (8.1).

In the following theorem we will equate the p-adic valuations of the two quantities
appearing in the Bloch-Kato conjecture for primes p which split in K.

Theorem 1.5. Assume that (p) = pp splits in K and is prime to [K(f) : K]. Then
L(v, k) # 0 if and only if Sel,(Ay/K) is finite. If these two equivalent conditions are
satisfied, then

vp(# Selp(Ay / K) H y
ol f
where a, 1is the Tamagawa number of the prime v, Lgp is the L-function with the
Euler factors for the primes dividing fp remowved, and €2 is the complex period of a
CM elliptic curve of conductor f.

) =, ((@)k+1(1 . ¢(p)>Lfﬁ(¢a k))

21 pk QZk—l

Remark 1.6. Results similar to Theorem 1.5 were proved by Guo [Gul] and Han
[Han] for imaginary quadratic fields of class number 1.

As almost an immediate consequence of the results stated above we will obtain the
following finiteness theorem for the Selmer groups Sel, (¢4 x/K).

Theorem 1.7. Let D = 7 mod 8 be a positive, squarefree integer, and let d = 1
mod 4 be a squarefree integer coprime to D. Let f = d\/—DOg, and let pt [ be a
prime number that splits in K and is prime to [K(f) : K|. Let k > 1 be an integer
such that sign(d) = (—1)*1.

(1) If (2k — 1,h(=D)) = 1 then for all |d| <y D12,
#{ar € Var : #Sely(Yar/K) < oo} = h(—=D).
(2) If every prime divisor of 2d splits in K then for all § < 1/60,
#{Var € ‘Ifdk #Sel, (Yap/K) < 00} >qps D°

as D — oo.



The implied constants in <y and >q55 are ineffective.

Finally, in the following corollary we will show that Theorem 1.7 can be viewed as
a “higher weight” generalization of the rank 0 case of Gross’s conjecture.

Corollary 1.8. Let D and p be as in Theorem 1.7. Let p be the prime of K above p
fized by the embedding i,, and let Sel,(A(D)/H) be the associated p-Selmer group
of A(D)/H. Let I(A(D)/H) be the Shafarevich-Tate group of A(D)/H. Then
Sel,(A(D)/H), A(D)(H), and 1(A(D)/H), are finite.

Organization. The paper is organized as follows. In section 2 we outline the proof
of Theorem 1.1. In sections 3-7 we prove Theorems 1.1 and 1.4. In section 8 we prove
Theorem 1.5. In section 9 we study the complex period appearing in Theorem 1.5.
Finally, in section 10 we prove Theorem 1.7 and Corollary 1.8.
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Ken Ono for very helpful discussions regarding this work. In addition, we would like to
thank the referee for a very careful reading of the manuscript, and many suggestions
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2. OUTLINE OF THE PROOF OF THEOREM 1.1

In recent years the problem of obtaining asymptotics for moments of L—functions
has been studied using period relations of Waldspurger type to express the average
of the central values of a family of L—functions as an average of a fixed automorphic
function over special points on some variety. In many situations, an asymptotic
formula can then be obtained using the distribution properties of the special points.
See for example the work of Vatsal [V] on Mazur’s conjecture, and the work of Michel
and Venkatesh [MV, MV2] on nonvanishing of Rankin-Selberg L—functions. We will
take a similar approach to prove Theorem 1.1.

In Theorem 3.2 and Lemma 3.4 we will establish a formula for the central value
L(tax, k) of the form

2

O —1(7C)
L(taw k) = s#CLy(K) | Y === (2.1)
ceCL(x)? Va(@)

where k is an explicit constant depending on d, D and k, [a] = C, and {rc : C €
CL(K)?} is a CL(K)?-orbit of Heegner points of discriminant —D on Xy (4d?). This
constitutes a slight generalization of the central value formulas in [Y, RVY].

In Theorem 3.5 we will use (2.1) to establish exact formula for the average of the
central values of the form

1 1
O LW k) =W lp() armn Y Fasle)  (22)
#CL®)(K) @) #(CL(K) ceCL(x)?

Ya, k€Y



where Fy . : H — Ry is the C°°, T'¢(4d?)-invariant defined by
Fur(2) = Im(2)"" 2 |8-1(2) ]

We want to combine (2.2) with a (deep) equidistribution theorem of Harcos and
Michel [HM] for Galois suborbits of Heegner points on modular curves to obtain the
asymptotic formula in Theorem 1.1. However, the “test function” Fjj is in general
not of rapid decay in the cusps of X((4d?) (see section 4, and in particular Proposition
4.4). We overcome this difficulty by using a careful spectral regularization to extend
the Harcos-Michel theorem to include test functions satisfying a moderate growth
condition in the cusps (see Theorem 5.1).

3. AN EXACT FORMULA FOR THE AVERAGE L—VALUE

In [RVY, Theorem 3.2], Rodriguez-Villegas and Yang gave an explicit formula for
the central value L( Zﬁ_l, k). If (2k—1,h(—D)) = 1, the two families \Ifflf"l_l and W,
coincide. Otherwise, they are different. Here we modify the proof of [RVY, Theorem
3.2] to give a formula for L(v4, k) in general.

Let x = ][] xp be the ‘canonical” additive character of Q\Qj4 such that x.(z) =
e(r) = e*™@. Here Fj is the adeles of a number field F' and F} is the ideles of
F. Let xx = x o trgg, and let 6(%,¢d,k,w, %XKW) be the local root number of the
local character ¢4y, at a prime w of K (with respect to the local additive character
% Xk, )- Here we identify a Hecke character 14 with its associated idele class character
Var = [ Vakw-

Lemma 3.1. Let assumptions be as in Theorem 1.1.
(1) There are exactly 2~"P)h(—D) Hecke characters 14y € Wqy of K such that
4

1 un 1 un
Hdéﬂ/’d,k,wa §XKUI) d,k,w(v -D)=1= 6p(5)7 (3.1)
wlp

for every prime p < co. Here t(D)+1 is the number of prime factors of D and
YU =1 /|| is the unitarization of 1b. We denote Hecke characters satisfying
(3.1) by ¥pax, which differ from each other by ideal class characters trivial
on CLy(K).

(2) For each ideal class character & of K, we can choose a positive squarefree

integer 5 = (&) such that

_ J&(V=D) ifp|D,
ep(B) = {1 if pt D. (3.2)

For this 3, we have
1 umn 1 un
H 5(57 D,d,k,wfwa §XKM> D,d,k,w£w<\/ —D) = ¢,(58)

wlp
for every prime p.



(3) For a Hecke character vy € Vay, there is a positive squarefree integer [ =
B(¢ar) such that

1 un 1 un
HG(Ea d.k,w> §XKw) d,k,w(\/ —D) = Ep(—5)~
wlp

4
D
Proof. (sketch) The proof is similar to [RVY, Lemma 3.1]. We give a sketch here for
the convenience of the reader. Let ¢y be a fixed element in W, ;. Then every element

in W4y has the form 9§ with £ € CL(K)”". Now [RVY, Lemma 2.1] implies that for
a prime p < 00

1 1 un 1 if p1 D,
a Wy o w wHS W _D - .
[ Govitnte ) WiEID) L@@wMW%MJlemw.

wlp

Here p = w is the prime of K above p. Set for each p|D

1 un (. /
Kp = 6(57 €p, Xp)wo,p( _D) = :tla

and
S =A{lep)pip : & = £1, Hcp =1}.

Notice that the same proof as that of [RVY, Lemma 2.1] gives the global root number

1

(5037 5xa0) = (~1)sign(d) = 1.

So [[kp, =1 and (k,) € S. The genus theory gives a bijection
F: (CL(K)/CLy(K))" = S, &= (&(V=D))pp = (£(p))sip-

So there are exactly 274P)h(—D) ideal class characters ¢ such that F(¢) = (,), and
these characters ¢ differ from each other by ideal class characters which are trivial on
CLy(K). For such an ideal class character &, ¢4, = o€ satisfies (3.1). This proves
(1). Claims (2) and (3) follow from (1) directly.

O

Notice that every prime factor of 3 is split in &' by Lemma 3.1, and § € Q* /N o K*
is uniquely determined by g, = ¥p ar€ (since the class of 3 is uniquely determined
by (3.2)) and depends only on the family {¢y¢ : € € CL®(K)"}. We let U) ,
denote this subfamily of Hecke characters. We mention that [RVY, Lemma 3.1] is
not correct as stated: not every (3 above can be represented by a factor D; of D in
its class.

By applying [RVY, Theorem 2.5] to (v3;,€,1,6 = V=D, a = %ﬁ,@/}) (see also
[MaY, Theorem 3.7]), we obtain the following theorem.
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Theorem 3.2. Let ¢y € Yy and let § = [(¢qr) be associated to gy as in Lemma

3.1. Then the central value
2

Libap b) = spCLy(K) | 3 B (o)

CeCLO(K) Vax(@)

Here
7I'k \/D 1
K= (
Bd?

V2D(k —1)! )

and 75,42 is a Heegner point on Xo(4d?) of discriminant —D given as follows. Fiz a
square root v of —D mod 168d?, and for a primitive integral ideal a € C~1, write

b++v—-D
azz[a2,+T], a,bEZ

with a = Na, and b satisfying
b* = —D mod 165d%a*>, b=r mod 83d°.

Then
b++v—-D
e

Remark 3.3. By [RVY], the polynomial Hy(z) occuring in the definition of 6, is

given by the equation
1 1 d\" _ - g
5 <x—%%> e = Hyp(x)e ™.
We now show that Hy(x) can be expressed as

1 K s,
Hy(z) = (Van)F Ogg/zm(—l) (VBrz)F.

First, Hy(z) is determined by the following recurrence formula

Hy(z) = xHy 1 () — %Hk_g(x), Hy(z) =1, Hi(z)=uz. (3.3)

On the other hand, the classical k-th Hermite polynomial

_ k! . .

Hy(z) = (= 1)/ (22)" % 3.4

<ji<k/2
is determined by the recurrence formula
Hy(x) = 2eHy 1 (x) — 2(k — 1)Hy,_o(x), Ho(x) =1, Hy(z) =2z
It is now easy to check that
Hk<\/ 271'.1’)
(v8m)*
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satisfies (3.3), and so

(3.5)

as claimed.

In the next lemma we show that the Heegner points appearing in Theorem 3.2
form a CL(K)?-suborbit of Heegner points on X(4d?). This will be crucial for our
application of Theorem 5.1.

Lemma 3.4. Let r?> = —D mod 163d*. Then
= {Tga . |a] € 18 a -orbit of Heegner points on
1) Hy) = {7, CL®(K)} is a CL(K)*-orbit of H '
Xo(4d?).
= Us_ 18 a -orbit of Heegner points on Xg .
2) " = U, Hop is a CL(K)-orbit of H ' Xo(4d?
en the square roots r of —D mo change modulo 8d?, gives a
3) When th D mod 16d2 ch dulo 842, H\) gives all
Heegner points on Xo(4d?) of discriminant —D.

Proof. Let N be a positive integer. Heegner points on X(V) of discriminant —D
exist if and only if every prime factor of N is split or ramified in K = Q(v/—D),
and they are given as follows. Fix a square root r mod 2N of —D mod 4N. For a
primitive ideal a, write

b+ VD
a=la, Y=

5 |, a=aa>0,beZ
with
b=r mod?2N, b*=-D mod4Na.

Notice that the congruence > = —D mod 4Na is automatically satisfied when

(4N, a) = 1. Then
b++—-D
2Na
is a Heegner point on Xy(/N). In terms of quadratic forms, this Heegner point is
associated to Nax? — bxy + cy?. It is known that 7, depends only on the ideal class

of a and r mod 2N. So we can denote it by 7 or T[(;i), depending on whether 7 is
important in the context. The ideal class group CL(K) acts on Heegner points via

Ta = T(gr) =

(r) _ (r)
[b].T[a] = Tia]-

In our case, every prime factor of 48d? is split or ramified in K, and so 754 = T[(;)]

is a Heegner point on X(43d?). Projecting to X(4d?), it becomes a Heegner point
T8 a2 = T[(QQ} depending only on 7 mod 8d2. Here 3O = bb for some integral ideal
b. So Hgi) is a CL(K)?-orbit of Heegner points on X(4d?). This proves (1).

Suppose Hgﬂ pN Hg; p is not empty. Then there are ideals a; and ay such that
Toa = T3 0 Xo(4d), i,

)
Tora2] = T[boa2)”



Then [ba?] = [byad], i.e., bja? = zbya for some z € K*. Taking the norm, we have

Brai = N(z)pa;

and thus €,(51) = €,(52) for every prime p < co. This implies by Lemma 3.1 that (;
and [, are associated to the same class of 14 . Here two Hecke character 11,1, € Wy

are in the same class if they differ by a character of CL®(K). Now a simple counting
gives (2). Claim (3) follows directly from (2). O

In the following theorem we give an exact formula for the average of the central
values L(¢g, k).

Theorem 3.5. Let assumptions be as in Theorem 1.1. Let \Ilg,)gﬁ be a subfamily of
V. as defined above. Then

1
— L(Yax, k) = c(k)Lp(1) Fir(t80)  (3.6)
H#OLP(K) ke%:;;ﬁ #CL( CECXL:

where c(k) = 2(8m)*1/(k — 1)! and {r3c : C € CL(K)?} is a CL(K)?-orbit of
Heegner points on Xo(4d?) associated to (3. Moreover,

1 1
1, 2, e iy T

where {1 : C € CL( )} is a CL(K)-orbit of Heegner points on Xo(4d?).

Proof. By the proof of Lemma 3.4, 75, as a Heegner point on X(4d?) depends only
on the ideal class [a] (and 3). So we can write 73, = 73q. In particular, the Heegner
point 75 in Theorem 3.5 can be written as 75, = 75,q with [a] = C7L.

Observe that 1y (a) = 1ax(a) and
VYar(@)ar(a) = N(a)* ! = a1

Let ¥4 be a fixed Hecke character in the subfamily \1122]1 5- Then by averaging the
central value formula in Theorem 3.2 we obtain

D LWk = ) L(Yast k)

VeV o eCL® ()

O k—1(75,02) 0001 (75,2)
= k#CLy(K) o
2 EEC% YA 1,04 6%( 2) wd’k€<a1)wd,k£(ﬂ2)

9dk-1(7'5a2)9dk—1(7'g 2) 1

= w#CLy(K) Y I e G O =
a a aa

1.2 CLP Va,(a1)Ya(a2) L e (araz)

2
_ Kh(-D) Z |9d,k*1(7—ﬁ,a )| :

2h—1
ceCL® (x)
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where we used

h(—D)

Z f(al _ #CL—Q([Q’ if Oy = Cy,
£€CL®@) (K)A 10) 0, if Cy # Cs.
Since
Im(75,42) = ﬂ
o 83d%a?’
we have
Yo L@Wapb k) =h(=D)&' Y Furlrse)
¢eCL® (x)r ceCL® (k)
with
, (Sﬁdz)k; 7 2(8m)kt T
K =kr|— = = c(k).
vD vD (k=1)! /D

Using the Dirichlet class number formula Lp(1) = 7wh(—D)/v/D (recall that #0} = 2
since D > 4), we obtain

1
IO L, k) = (k) Lp(1) =77 Far(7s,62)-
4CLO(K) wepzm ey 2 ful

d,k,B ceCL (K)

As remarked at the beginning of the proof, we have 75,2 = 750-2 for a € C™.

Because [a] — [a?] gives an isomorphism between CL®(K) and CL(K)2, the proof is
complete. 0

4. THETA FUNCTIONS OF HALF-INTEGRAL WEIGHT

In this section we use the Maass level-raising operators and the Serre-Stark basis
theorem to study properties of the theta function 6, and compute the asymptotic
expansion of Fjj in the cusps of X,(4d?).

For a half-integer r € % + Z, define

i0
2

22 = |z|7e?  if 2= |z]e®, —w<@<m,

and 2" = (22)?". Define the multiplier system o : Ty(4) — C by

V(A) =¢5 (%) for A= (3 g) € T'o(4)

where
1 ifd=1 mod4,
Ed = .
—1 ifd=—-1 mod4

and (%) is the (extended) Jacobi symbol 1(1see I, (2.73)-(2.76)]).



Let r € & + Zso. Define M := M;(T'o(4d?), (¢)) to be the space of real-analytic
modular forms of weight r, level 4d?, and character (d/-). These are the real-analytic
functions f : H — C satisfying

fl-A= (g) J(A)f for Ae F0(4d2)
where

fl:A(z) = (v2 +0) 7" f(Az2)

is the usual slash operator.

Note that
d 2 *
Bio(z) = (zd):l (E) e(n°z) € M%

and
0 _ d 2 M*
= 3 (D) netas) e
(n,d)=1

and that 0,0 and 64, are holomorphic.
Define the Maass level-raising operator by

r 1 d
O =D—— D:i=——
Ay’ 2wt dz
and define its [-th iterate by
O = 019120049140 00,1200, € ZLsg.

A straightforward calculation shows that the operator 9, commutes with the slash
operator |.A,
Or(flrA) = (0:f)lr2A, A € SLy(R). (4.1)
It follows that
oL MF— M7, (4.2)
Note that while the operator & preserves modularity (with an increase in weight), it
destroys holomorphicity.

Proposition 4.1. Let d =1 mod 4 be squarefree such that sign(d) = (—1)*.
(1) When k =2l is even, 04 = 0 04y.
(2) When k =20+ 1 is odd, 045 — 3,04.
(3) 6an € M7, :

Proof. Let r € 5 + Z>o. By induction, one can show that
I - ! ;
— \Jj/T(j+r) \4ry ) e AN ]!

J= Jj=
12




In particular, if f € M} is holomorphic with Fourier expansion at x = oo of the form

= Z a(n)e(nz

then

n) Ly~ (4mny)e(nz) (4.3)

r o z

where

! )i
= \l-j) J

is the [-th generalized Laguerre polynomial.
(1) After a substitution j — [ — j, one can check that

(2) = (~1/4) Hu(V/2) /1! (4.4)

where Hj, is the k-the Hermite polynomial defined in (3.4). So using (3.5) we have

P 0u0(2) = o S (5 Ha(v/Amg)e(n’2)

L

N|=

= @) Y () Han/Fg)eln’)

as claimed.
(2) Similarly, one has

L (2) = (=1/4) B (V) 2V,
and arguing as in (1) we obtain
8%0(1’1(,2) = Oq2+1(2).
(3) This follows from parts (1) and (2) and the map (4.2). O

Define S C M to be the subset of modular forms with exponential decay in each
cusp for T'y(4d?). We call these cusp forms.

Proposition 4.2. Let d =1 mod 4 be squarefree with sign(d) = (—1)%.
(1) When k is odd (d <0), 041 is a cusp form.

(2) When k is even, 41 is a cusp form if and only if there exists a prime factor
of d congruent to 3 mod 4.
13



Proof. (1) It is well-known that 64 is a holomorphic cusp form. Thus 6,;; has expo-
nential decay in each cusp z for ['y(4d?) which is singular with respect to the multiplier
system ¥ (in the sense of the definition on p. 44 of [I}). Because ;) = 9} /2951,1 with

[ = (k —1)/2 (Proposition 4.1, part (1)), is suffices to show that 8é/2 preserves the

property of having exponential decay in the singular cusps for I'g(4d?). This can be
verified by a direct calculation applying 0, /o tO the Fourier expansions of 6, in the
singular cusps (see Proposition 4.4, part (2)).

(2) By a theorem of Serre and Stark [SS], the cuspidality of 6,0 is determined
by the local decomposition of (d/-). Indeed, let x = (d/:) = [[,j4xp be the local
decomposition of y where

(=) ifp=3 mod4,
Xp (2) ifp=1 mod 4.
Then y is totally even (in the sense of Serre and Stark) if and only if every prime
factor p of d satisfies p = 1 mod 4. Therefore, by [SS, Theorem B| 6, is a cusp
form if and only if x is not totally even if and only if there is a prime factor p of d
congruent to 3 mod 4. Now, because 0, = 85/296170 with [ = k/2 (Proposition 4.1,
part (2)), for k£ > 0 (even) the argument in (1) implies that 64 is a cusp form if 6, is
a cusp form. On the other hand, if 6, is not a cusp form, (the proof of) Proposition
4.4 implies that 64, is not a cusp form. In fact, Proposition 4.4 gives a concrete proof
that the cuspidality of 04 is the same as that of 0,9 or 04, depending on whether k&
is even or odd. OJ

Proposition 4.3. Assume that (—1)k=1 = sign(d). Then the theta function 045 1
is a real analytic modular form of weight k — & for To(4d*) with character (d/-).
Moreover,
(1) 640 and 041 are holomorphic.
(2) O4x—1 is a cusp form if and only if either d > 0 and there exists a prime factor
of d congruent to 3 mod 4, or d < 0.

Proof. This follows from Propositions 4.1 and 4.2. O

We are now in a position to compute the asymptotic expansion of Fyj in the cusps
of X() (4d2>

Proposition 4.4. (1) Suppose that k > 1 is odd. Then in each cusp x for Ty(4d?)
which is singular with respect to the multiplier system ¥ we have

(k — 1)1
(16m)F1 (1)

for some ¢ > 0. Here o, € SLy(R) is a scaling matriz such that o,(c0) = x, and
a,(0) is the zeroth Fourier coefficient in the Fourier expansion of 040 at x.
Moreover, Fyy, has exponential decay in each cusp x for To(4d*) which is nonsin-

gular with respect to the multiplier system 1.
14
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(2) Suppose that k > 1 is even. Then Fyy, has exponential decay in each cusp x for
Lo(4d?).

Proof. (1) Suppose that £ > 1 is odd. By definition of F;; we have

Fur(0s2) = Im(0,2)F 2|01 (022) .
Note that if o, = (24), then
k-1 Im(z)"~2
ez 4 d2k2)
By Proposition 4.1 and (4.1),

k—1
Hd,k,l(axz) = (CZ + d)kiéed,k,ﬂkf%O'x(Z) = (CZ + d)k’%812 Qd,0|%ax(z).
2
Suppose that x is singular with respect to the multiplier system ¢. Let

Oa0l1/204(2) = Z az(n)e(nz)
n=0
be the Fourier expansion of the holomorphic modular form 6, at the singular cusp
x. By (4.3) and (4.4), we have

k-1 (1) = (B
81/22 (0d70|1/2‘74r)(2> = g 12

(4my) 2 n=0
_ W i aul) 12 FAG)e(n2).
Putting things together, we have
2
- yl/2w ; ax(n)f]k_l(Z\/w_w)e(nz) 2

1/2—ﬁ%;)(£)1 az(0)]* + Oy(e”)

as y — oo for some explicit ¢ > 0. Finally, using the definition of the Hermite
polynomial Hy_;(z) and that £ > 1 is odd, we compute

~ (k —1)1?
Hy,-1(0)* = (e
>)!
so that
n (kD)

Fd,k’(gxz) = yl |ax(0)|2 + Oﬂ&(e_cy)

(16m)k=1 (55112

15



as y — 00.
Suppose that x is nonsingular with respect to the multiplier system 1. For such a
cusp one has the Fourier expansion (see [I, (2.63)-(2.64)])

0a0]1/202(2) = e(kz2) Z a.(n)e(nz)

n=0

with 0 < k, < 1 such that ¥(o,) = e(k,). Then an argument similar to the one just
given shows that [, has exponential decay at .

(2) Suppose that k£ > 1 is even. The proof in this case is similar except that the
zeroth Fourier coefficient in the Fourier expansion of the holomorphic cusp form 6,
at every singular cusp is zero. 0

5. GALOIS SUBORBITS OF HEEGNER POINTS

Let N be a positive integer such that every prime factor of N is split or ramified
in K = Q(v—D). Let Ap(N) be the set of Heegner points of discriminant —D on
Xo(N). The set Ap(N) is divided into 2!™Y) simple, transitive Gal(H/K)-orbits of
size h(—D) where t(N) is the number of prime divisors of N. By Siegel’s theorem,
one knows that #Ap(N) — oo as D — oo. Therefore, given a subgroup G C
Gg = Gal(H/K) and 7 € Ap(N), it is natural to ask how the Galois (sub)orbit
G-1={77: o € G} is distributed on Xo(N) as D — oc.

In [D], Duke proved that the full Galois orbit Gy - 7 is equidistributed on Xg(1)
as D — oo. More recently, Harcos and Michel [HM, Theorem 6] proved that if the
index |Gy : G| is bounded by a sufficiently small positive power of D, the Galois
suborbit G - 7 is equidistributed on Xy(/V) as D — oo. This theorem rests on a deep
subconvexity bound for Rankin-Selberg L—functions proved by Harcos and Michel in
[HM], and period relations of Waldspurger [Wal] and Zhang [Zh, Zh2] for hyperbolic
Weyl sums associated to Maass cusp forms.

The are many situations in number theory where one would like to use the equidis-
tribution of Heegner points to obtain information about the growth of a certain quan-
tity, but the “test functions” involved are not compactly supported, and in fact, grow
in the cusps of X((N) as y — oo. One example is the function Fjj appearing in
the average formula (2.2). Other examples occur in the work of Duke [D2] on traces
of singular moduli, and the work of Folsom and the second author on the limiting
distribution of traces of Maass-Poincaré series [FM], and the asymptotic distribution
of the partition function [FM2].

In this section we prove an “equidistribution theorem” for test functions satisfying
a moderate growth condition in the cusps of X((V). The growth condition is defined
as follows: Let F': H — C be a C*, I'g(N)-invariant function. We say that F' has
cuspidal growth of power « for some « € R if for every cusp z of Xy(N) there exists
a constant ¢, € C (possibly equal to 0) such that for each integer a € Z>y,

AYF(0,2) —cy*) =0 ) as y=Im(z) > o0
16



for some ¢ = ¢;(a) > 0. Here A = —y*(9% + 02) is the hyperbolic Laplacian where
A” means we apply the Laplacian a-times, and o, € SLy(R) is a scaling matrix such
that 0,(c0) = .

Theorem 5.1. Suppose that ' : H — C is a C*, I'y(N)-invariant function with
cuspidal growth of power o < 1. Then for all ¢ > 0 and any fized Heegner point T of
discriminant — D,

g6 P = [ FCn) (5.)

_(l—a)

+O(|Gy : GID™52) + O(|Gy : G| D@y + O(D "2 )
as D — oo where

e if
5.(a) = {1889 1 .

Tlgg—a(a—i)—e, if

1
=y
1 1 1 1 1
§<a<1+5\/1+4(—1889—6).

Moreover, assuming GRH the estimate (5.1) holds with 6.(a) replaced by

L if a<i
Ml =N e —e i lea<iel/Trad—g

Remark 5.2. In the special case G = CL(K)? the constants 1/2827 and 1/1889
in Theorem 5.1 can be replaced by any constant less than 1/8. This is because
for a square suborbit, the class group characters appearing in the hyperbolic Weyl
sums in [HM, section 6.4] are genus characters, which allows one to factor the L-
functions which arise in the period relations for these hyperbolic Weyl sums and
apply a subconvexity bound of Blomer and Harcos [BH, Theorem 2] for degree 2 L-
functions. This accounts for the presence of the exponent § < 1/8 in the error terms
in Theorem 1.1.

Proof of Theorem 5.1. We begin by constructing a C*°, I'g(N)-invariant function
with growth coinciding precisely with that of F' in the cusps = of Xy(/N), and which
vanishes on the Heegner points Ap(N).

Lemma 5.3. Let T > 1, a > 0, and ¢, € C for cusps x of Xo(N). Then there exists
a C*, T'o(N)-invariant function ny : HH — C such that

07 1< Y <T
nr(o.z) = § ey®x(y/T), T<y<2T
Ca:yaa Yy > 2T

where x : RT — [0,1] is a C* function such that

X(t):{(), t<1

1, t>2.
17



Proof. Define nr by (see [12, (3.10)])
nr(z) == Z Co Z Yr(Im(o, 'y2))
z Y€l \T'o(N)

where 1 € C°(R™) is defined by

t
Wr(t) == to‘x(f).
Then [12, (3.17)] with m = 0 combined with the fact
: * % 1
minge>0: | ) €0y Lo(N)og, ¢ > 1 (5.2)
for all cusps 1,z of Xo(N) (see [12, (2.28)-(2.31)]) shows that 7 has the properties
stated in the lemma. O

Lemma 5.4. For T > /D, the function nr vanishes on the Heegner points Ap(N).
Proof. Recall that a Heegner point 7 € Ap(N) has the form

b++v—D
2Na

where 2 is a primitive ideal and a = Ng/g(2).
For v € T'y(V) write

T= T =

Then

_ Im(7) 1 VD
Im(o, 'y7) = < .
() ler +d* ~ |er +d 2N
Assume that ¢ = 0. Then d =1 (see [12, (2.15)-(2.17)]), and we have

VD

I —1 < -,
m(o, 77)_2N

(5.3)

Next, assume that ¢ # 0. Write

bc [ V/De
cT+d= <_2Na+d) +l<2Na)’

2 2
D ’D
|c7'+d|2:( be +d> + <\/_C> > ¢

2Na 2Na ~ 4N2q2’

so that

By Minkowski’s theorem, every class [2(] contains an ideal 2 of norm

2
18



Then
2D 2D 72 A

SRS Y ———
4AN2q2 = 4N24D  16N?’
so that

1 D 16N*+/D N
Im(o, 'y7) < vD 6N? VD < sV

< D 5.4
- |c7'+d|2 2N c2r?2 2N — 72 (5:4)

where for the last inequality we used (5.2).
Since ¢¥7(y) = 0 for y < T, we see from the inequalities (5.3) and (5.4) that for
T > VD,

Yr(Im(o,'y7)) =0
for all v € T,\I'o(N). It follows from the definition of 5y that nr(r) = 0. O

Define the “regularized” function
Fr(z) == F(z) —nr(2).

In light of the preceding lemma, we see that to prove Theorem 5.1 it suffices to prove
the following proposition.

Proposition 5.5. Let the notation be as in Theorem 5.1. We have

1
— Fr(7°) = F(z)du(z
5 2 Fr() /YO(N) (2)du(2)
(1-a)

+O(|Gy : GID™52) + O(|Gy : G| D™y + O(D~2")

as T > VD and D — oo. Here 0y (a) equals 6.(t) in general, and 6, () if we
assume GRH.

Proof. Let T' > Ty > 1 where Tj is a fixed cutoff parameter which is independent of
D. We introduce T in order to decompose Fr into a sum of two functions so that
we can isolate the contribution of 1y to the spectral decomposition.

Consider the decomposition

Fr(z) = Fr,(2) + 77 (2)
where
fir(2) =5, (2) — nr(2).

By the properties of 7, given in Lemma 5.3 and our assumption that F' has cuspidal
growth of power a < 1, we have

AFr(o,2) =0(e™¥) as y— o0

for each integer a € Zso. Therefore the proof of [HM, Theorem 6], combined with

subconvexity bounds of Blomer, Harcos, and Michel [BHM] and Blomer and Harcos
19



[BH, Corollary 1], implies that

F :/ Fr,(2)du(z) + O(|G . G| D™=
#G(; (T . p(2)du(2) + O(|Gr - G )
as D — oo.
To complete the proof it suffices to show that
(e (1-a)
_ZUT :/ nmy(2)dp(2) + O(|Grr - G| D) + O(D™=")
ce@ Yo(N)

as T > v/D and D — oo.
By combining the explicit construction of 77 in Lemma 5.3 with [12, (7.12)], [12,
Theorem 11.3] and [12, (7.13)], one has

ir(z) = (e, 12 + % Zcm/]R (z[m)(% +it) — z/?T(% + z't)> E,(z, % +it)dt  (5.5)
where (see [12, (3.13)])
/ w s+1

and E,(z,s) is the real-analytic Eisenstein series associated to the cusp =.
Averaging (5.5) over the suborbit G - 7 yields

r(79) = T, (2)dp(2) — r(2)dp(z
.. LY intr /yom” (2)du(2) /Yo(mn()u()
+ % Zcz/R (1&7’0(% +it) — zﬂT(% + it)) W (t)dt

where

x:#ZE +zt

oceG
Using Fourier analysis one obtains the decomposition

Wa(t

+ it).

SEGH ceGy
§lo=1

The argument in [HM, pp. 648-649] can be generalized to modular curves of non-
squarefree level, and the estimate of W, (t) can be reduced to an analogous estimate

for
> Lo = + it)

ceGyg

where F(z,s) is the full level Eisenstein series for SLo(Z) and {77} is the set of
Heegner points of discriminant —D on the modular curve Xy(1).! By a classical

!'We thank Philippe Michel for explaining this fact to us.
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formula of Dirichlet one has an identity of the form (see [GZ, p. 248])

7 |

2

2
> &(o) 1+zt ==

oeG

()5, + Zt)

where O is the theta function associated to the class group character {. By Blomer,
Harcos, and Michel [BHM] one has the following deep subconvexity bound,

(@g, +it) < (14 [t))*1 D~
for some A; > 0. By comblmng the preceding facts with Siegel’s theorem
h(—D) >. D3¢

we obtain the estimate

(; . (; 1 1 1
W (t) < (1+ myﬁﬁpmm < (1+[t)* |Gy : G| D w0t (5.6)

for some Ay > 0
By Lemma 5.6, for all B > 0 we have the estimate

1
/1/)To(§+it) 1/JT( +it)| (1 4 |t))Pdt < C(a, T) (5.7)
R
where
<1
Cla,T) —{k’g@’ @<
T 2, o > 5

If  <1/2, take vV D < T < D and combine (5.6) and (5.7) to obtain
1 ~ 1 log(D
— cz/ (z/zTo(—ﬂ't)—wT(—ﬂt)) W, (t)dt = (|GH G| Og( )).
T R 2 2

1889 €

Similarly, if & > 1/2 take vD < T < D with o < 1 + g\/§+4(@ —€) to
obtain

Z /(% +it) — (5 +zt)) L(t)dt = (|GH G|D1889i(a ;>e)’

We conclude that

1 ~ o —de(a
Sa )= [ (@) - [ ardu() + 0 (Ga 6 D)
#G =, Yo(N) Yo(N)
where
5.(a) = 18189 & a < %
18189 a(a—%)—e, %<0‘ +%\/i+4 550 — €)



Assuming GRH, we can replace 1/1889 with 1/2 in the Blomer-Harcos-Michel sub-
convexity bound, and we get the same estimate with d.(«) replaced by
1
— €, a<;

01(ar) :=
1e(@) { Cala—Y)—e lea<iilfTrad—q.

Finally, if T > /D a straightforward estimate yields

/Y () = 0"

N[ N

(A—o)

2).

It remains to prove Lemma 5.6.

Lemma 5.6. For all B > 0,

J

Iy +0) = ey +0)| (14 1)t < Cla, )

where

Q

L

3

I
—
N N

Proof. Because x(y/Ty) — x(y/T) is supported in (T, 2T") we have the identity
~o 1 . v 1 . T it+a—2
frt) =i (5 —it) = ¥r(g —it) = | (x(y/To) = x(y/T)) y"" 2 dy.
To

Then integrating by parts k-times and using that the k-th derivative x*)(y) of x(y)
is supported in (1,2) yields

k-1

1 it (a— . 2 .
1>k H (it + 5 + (a . 1) —i—j) fT(t) _ <T0t+2+( n th+§+(a71)> / X(k)(y)yltJraf%Jrkdy‘
J=0 1
Suppose that |[t| > 1. Then we have the estimate

<H( (1-a) +j+1)|t|k.

‘ kHzt+ + (a—1)+7)

Furthermore, we have the estimate

‘th+ + a—1) Tit-i—%‘f‘(a_l) S Ol(a,T)
where
= a<j
Cl(avT) = T02
2Ta*§’ o > %



Then by combining the preceding facts we obtain

(k) kta-1
max;<y<2 | X" (y) |2F+ems
|fT(t)| < Cl(aaT) k—1 /1 - ‘ | L

Because B > 0 is fixed and k > 1 is arbitrary, it follows that

[ o1+ < )

—k
7
3|

Next suppose that |t| < 1. For a < 1/2 we have the estimate

2T

|fr(t)] < 2 sup |x(y) ydy < log(T),

|
yERF To
and for a > 1/2 we have the estimate
o 1
|fr(t)] <2 sup |x(y)| Y 2dy < T3,
yeR+ Ty

Then because (1 + [t|)? < 1 for |t] < 1, it follows that

/t| 1 |fr(t)] (1 + [t)Pdt < C(a, T).

6. PROOF OF THEOREM 1.1

The average formula (3.6) yields

1 1
TP, L(an, k) = c(k)Lp(1) s Fax(rc)
#OLE(E) «m,kezwf,i #OL(K)® CGCZL(K)2

where {7¢ : C' € CL(K)?} is a CL(K)?-orbit of Heegner points on X (4d?).

By Proposition 4.4 (and its proof) we know that F};; has cuspidal growth of power
a=1/2. Let Gy = CL(K), G = CL(K)?, F = F;; and @ = 1/2 in Theorem 5.1.
Since

LD(]-> < De?
and
|CL(K) : CL(K)*| <. D
by genus theory, we obtain the asymptotic formula

1
L1 @ (K Z L(Wag, k) = c(k)Lp(1)(Bap—1,0ap1)pet + Oap(D75)
#CL (K) @)
Y€1

as D — o0o. The appearance of the exponent 1/8 is justified in Remark 5.2. This

proves (1.1). A similar argument can be used to prove (1.2).
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7. PROOF OF THEOREM 1.4

Theorem 1.1 implies that

1 L<wdk7k)
O T — (k) B, s )pes + (1
#CL(Q)(K)w Z\W) Lp(1) (k) (a1, 0a-1)pet + 0(1)
ERISE B

as D — oco. Using CL®(K) = CL(K)/CLy(K), the Dirichlet class number formula,
Siegel’s theorem and genus theory, we obtain for every e > 0,

—D)?
Z L(Wax. k) = C(k)ﬂm ((Oar—1,0ak-1)pet + 0(1))
wd,ke‘lf,fl)c 2
> ke Dz ¢ (7.1)

By Duke, Friedlander, and Iwaniec [DFI] one has the subconvexity bound
L(¢, k) <q, D7 w07 (7.2)

for every ¢ € Wy, (here 1) corresponds to a CM cuspidal eigenform for T'g(d®>D?) of
weight 2k with trivial nebentypus). It follows from (7.1) and (7.2) that

#{bar € U 0 L(thap, k) # 0} >4 DF .

8. PROOF OF THEOREM 1.5

We will prove Theorem 1.5 using the main conjecture of Iwasawa theory for imagi-
nary quadratic fields due to Rubin [Ru2]. To deduce Theorem 1.5 from the main con-
jecture, we must use Iwasawa theoretic techniques a number of times. In particular,
we make use of the crucial fact that a certain ideal class group over some Z,-extension
has no non-trivial finite submodule. This type of result is used frequently in Iwasawa
theory (see for example [Gre]).

The hypothesis on p in the statement arises in the following way. Assume p splits
in K. If p is any prime of K above p, then the local condition (defined by Bloch and
Kato) at p is essentially the relazed local condition and the local condition at p is
the strict local condition. In turn, this enables us to use the Selmer groups over the
Z,-extensions more freely.

It is possible that one might obtain a result similar to Theorem 1.5 when p is inert
in K. For example, Han [Han] obtained a result similar to Theorem 1.5 for both
primes which are split and primes which are inert for imaginary quadratic fields K
of class number 1 by using p-adic Hodge theory instead of the formal group theory
of elliptic curves. In the future, it might be worthwhile to prove our result for inert
primes by adapting Han’s techniques.

First we define a Selmer group for a p-adic representation following Bloch and Kato
([BK]).
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Definition 8.1 (Bloch-Kato Selmer group). Let F' be a finite extension of Q, and O
be its ring of integers. Let T be a free O-module of finite rank with Gal(Q/K)-action
and 'V be T @ F and A be V/T. For any prime v not above p we let

HNEK,,V) = ker (H'(K,,V) — H (K, V))

and for any prime v above p we let

Hi(K,,V)=ker (H'(K,,V) = H(K,,V @F Beris))

for Fontaine’s ring Be.s. (The definition of Be.s is quite lengthy and we refer the
reader to [F].) We define the local condition

Hi(K,, A) =im (H{(K,,V) — H'(K,, A))
for every prime v and define the Bloch-Kato p-Selmer group for A by

Sel,(A/K) := ker (Hl(K, A) — H H'(K,, A)/H}(K,, A)) :

Also, the following relazed Selmer group will be useful in our argument.

Definition 8.2. Let L be any extension of K. We define

S(A/L) :=ker | H'(L,A) — [ H"(Li", A)
vip

Now we define a representation attached to a Hecke character. Let v be a Hecke
character of K with conductor f. Although our argument does not depend much on
the infinity type, we let its infinity type be (2k — 1,0).

Throughout this section we let K (g) denote the ray class field of conductor g, and
let Gx = Gal(Q/K).

Let p be a prime number. By [We] it is well-known that the field extension K ()
of K obtained by adjoining the values of v is a finite extension, and if we fix an
embedding i, : Q — C,, 1 extends continuously to a Galois character which factors
through Gal(K (fp>)/K). From now on, this Galois character will be denoted by the
same letter 1.

We fix a prime p that splits completely over K/Q. Assume p is prime to f and
[K(f) : K]. We let p be the prime above p induced by the embedding .

Let d = [K(fp) : K]. From now on, we let F' be any extension of Q, containing all
the d-th roots of unity and the values of 1) under the embedding i, : Q — C,, and let
O be Op. We let F (1) be the one-dimensional F-representation on which G acts
through ¢ (in other words, for v € F(¢) and 0 € Gk, 0 -z = ¢Y(0|k(sp=))T), and
define Vj; to be its (—k + 1)—th Tate twist

Vo = F)(=k+1) = F)(xae),
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and similarly define

Ty = OW)(—k+1), Ay = Vy/Ty = F/OW)(~k + ). (8.1)
Let ¢ be the Hecke character of K defined by

¢(a) = ¢(a)/Nijoa ™
for every ideal a prime to f. Its conductor is f and its infinity type is (k, =k + 1).
Since ¢(a)y(a) = N ga®*~, we have

Vo =F(¢), L(¢7,0) = L(¢,k).

Now, we will apply Iwasawa theory to relate the order of the Selmer group of Ay
and the value of L(¢, k). Every assumption we made is still in force. Let K, be the
maximal Zg—extension of K inside K(fp>). Because [K(fp™) : K] is prime to p, it
is not hard to see that by the Hochschild-Serre spectral sequence we have

S(Ay/Koo) = S(Ay /K (fp)) i EUr=I/Ee),
Let M be the maximal abelian extension of K(fp>) unramified outside p. Let
X = Gal(M/K(fp>)). Since Gk (ppe) acts trivially on Ay, we have

S(Ay/K(fp™)) = Hom(X, Ay).
Thus
S(Ay/K) = Hom(X (¢71)%, F/O)
for A = Gal(K(fp™)/Kw).

Proposition 8.3. Let wy be the group of the roots of unity of K congruent to 1
modulo f. If wp = {1}, ¢|a is not trivial. (Note that for a square-free D > 4, the
only roots of unity in K = Q(v/—D) are £1.)

Proof. First we note that if wy = {1}, there is an elliptic curve E over K(f) with
complex multiplication by Ok such that its Hecke character ¢ g/ k(s of K(f) satisfies

Vr/K () = 08 ° NK(p)/K
for a Hecke character ¢g of K of infinity type (1,0) and conductor f (see [deS, p.
41]). Then we can write

¢ = ¢reE

for a finite character n : I(f)/Py — C*. Through I(f)/P; = Gal(K(f)/K), n induces
a Galois character which we denote by the same letter. We also use the same letters
vp and @g to denote the Galois characters of Gal(K (fp>)/K) induced from them.

Since p splits completely over K/Q, ¢ factors through Gal(K(fp>)/K) and ¢g
through Gal(K(fp>)/K), and @i = Xy on the decomposition group D, of p and
PE = Xeye O DIJ-

Since k or k — 1 is not divisible by p — 1, it follows that ¢ on Gal(K(fp)/K(f)) is

not trivial. O
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From now on, we assume w; = 1. We fix the elliptic curve £/ mentioned in the
proof of Proposition 8.3. If we fix the Weierstrass model

y? =42’ — gx — g3, ga,93 € F
of E, we can find a lattice L of C with

g2=60- > wt gg=140- > w "
weL—{0} welL—{0}
Since all Galois conjugates of E are isogenous, by taking a Galois conjugate of E' if
necessary, we can assume L = Qf for some Q € C*.

Let U(fp™) be the group of local units of K(fp") ®k K, congruent to 1 modulo
the primes above p and U,, be liLnU(fp"). Let C(fp™) be the closure of the group
of elliptic units in U(fp™) and C,, be lim ¢ (fp"). For the definition of elliptic units,
see [deS, chapter 2, section 2].

Remark 8.4. We should note that when f is a power of a prime, the elements defined
in [deS] are not units. However, we can easily fix this. See [Ru2, section 1].

For an algebra R, a finitely generated R-module is called pseudo-null if it is anni-
hilated by an ideal of height 2. A pseudo-isomorphism of R-modules is a map with
pseudo-null kernel and cokernel.

Let A be the Iwasawa algebra O[[Gal(K«/K)]]. It follows from the well-known
classification theorem of A-modules that for every finitely generated torsion A-module
Y we can find elements f; of A and pseudo-isomorphisms

The characteristic ideal charp(Y) := ([] fi)A is independent of the choice of the
pseudo-isomorphism.

Theorem 8.5 (Rubin [Ru2], Theorem 4.1 (i)). One has
chary (X?12) = chary ((Us/Cso)?12).

The following is a generalization of [Ya]. Recall that €2 is the complex period of the
elliptic curve E given by the Weierstrass model, and this number does not depend
on anything but the conductor f and the Weierstrass model of F. In a sense, it does
not depend much on the conductor either because we can use the same elliptic curve
E for any Hecke character with conductor divisible by f.

Theorem 8.6 ([deS], chapter 2, Theorem 4.14). Let R be the ring of integers in C,
(i.e. p-adic numbers of non-negative p-adic valuation). There is a measure jif on
Gal(K(fp>)/K) and a p-adic period Q, € R* such that for any Hecke character x
of conductor dividing fp> and of type (k,j) with 0 < —j < k we have

o | V(o )dus () = D01 - X 01,0
Gal(K (fp)/K) 2w p
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which is in Q.

Here, Ls5(x 1, 0) is the sum over all ideals prime to fp, and G(x) is a certain Gauss
sum which is 1 if the conductor of y is prime to p.

For any integer n, a map

fin + Gal(K (fp")/K) — O
given by
pin(0) = py(o - Gal(K(fp>)/K(fp")))

can be canonically identified with an element of the group ring O[Gal(K (fp")/K)]
by > pn(0)o. By taking the inverse limit, py can be identified with an element g of

O[[Gal(K(fp™)/K)]].
Let g4 be its image under
Ola : O[[Gal(K(fp>)/K)]] — A.

We choose topological generators v, of

Gal(K(fp>)/K(fp))
and 7, of

Gal(K(fp>)/K(fp))-
Consider v, and -, as topological generators of Gal(K (fp>)/K(fp)) and identify A
with the power series ring O[[S, T|] by identifying 71 = S+ 1 and 75 =T + 1. We let
9s(S, T') be the power series corresponding to g, under the identification A = O[[S, T1].

Proposition 8.7. We have
chary ((U/C)?2) = (g,).
Proof. Since ¢|a is not trivial (Proposition 8.3), this follows from [deS, p. 105]. O
Thus by Theorem 8.5 we have the following.
Proposition 8.8. We have

chara (X (¢71)%) = (gs(@(1)(S +1) = L, d(1)(T +1) - 1)).

Let K be the maximal Z,-subextension of K (fp>). We can easily see that we can
consider 7; as a topological generator of I'y := Gal(K. /K). When I'; is the closed
subgroup of Gal(K/K) generated by 7; for i = 1,2, we let A; denote O[[I';]].

Proposition 8.9. We have
chary, (X (¢71)%/ (92 = 1)X (7)) = (9s(6(11)(S + 1) = L, ¢(72) — 1)).

Proof. Let Y be a finitely generated torsion A-module with no non-trivial pseudo-null
submodule. Let f(S,7T) denote a generator of chary Y.
By [Ru2, Lemma 6.2 (i)], the following are equivalent:
(1) Y/(y2 — 1)Y is A;s-torsion,
(2) f(S,0) is not 0 in A4
(3) Y2 is a pseudo-null A-module.
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If any of them is true, by [Ru2, Lemma 6.2 (ii)] we have

chary, (Y/(72 — 1)Y) = £(S,0) chary, (Y2).

However, Y2 is pseudo-null and by our assumption Y has no non-trivial pseudo-null
submodule, thus Y12 = 0.

By [Ru2, Theorem 5.3] (see also [P, chapter II]) X is O[[Gal(K (fp>)/K)]]-torsion
and has no non-trivial pseudo-null submodule. Of course the same holds when we
twist X by ¢~1. Thus our claim follows. ([l

Let MY denote the Pontryagin dual Homo (M, F/O).

Proposition 8.10. If k — 1 is not divisible by p — 1, then S(Ay,/KL)" has no non-
trivial finite Ai-submodule and

chary, S(Ay/KL)" = (9s((m)(S +1) = 1,¢(72) — 1)).

Proof. First we consider the following commutative diagram.

0— S(Ay/KL) — HNKLA) — [[H'(KZ. Ay
w'tp
| | |
0— S(Ay/K)? — HY (K. A= — [[H'(KY,. A
wip

As we have seen, by the Hochschild-Serre spectral sequence the middle vertical arrow
is an isomorphism. Since any prime of K not above p is unramified over K, /K and
finitely decomposed over K/ /K, the right vertical arrow is injective for primes not
above p.

For a prime of K, above p (which we also denote by p since there is only one),
since we assume k£ — 1 is not divisible by p — 1 and ¢ is equal to goEgoEan, GKun
does not act trivially on any non-trivial subgroup of A,. Thus by the Hochschild-
Serre spectral sequence the right vertical arrow is injective for p. Hence by the Snake
Lemma the left vertical arrow is an isomorphism.

Thus

S(Ay/KL)" = X (673 (2 = DX (671"
and we know its characteristic ideal from Proposition 8.9.

The proof of [Ru2, Lemma 11.15] shows that X (¢~1)/(72 — 1) X (¢~!) has no non-
trivial finite Aj-submodule if X /(72 — 1)X has no non-trivial finite A;-submodule.
We have X /(2 — 1) X = Gal(M (fp>p)/K(fp>p)) where M (fp>p) is the maximal
abelian extension of K (fp>p) unramified outside p. By [Ru2, Theorem 5.3 (v)]| our
claim follows. O

Remark 8.11. We can obtain the characteristic ideal of S(A,/K. )" without the
assumption k£ — 1 is not divisible by p — 1, thus without this assumption we can
prove that L(¢~1,0) # 0 if and only if S(A,/K) is finite (which is equivalent to

Sel,(Ay/K) being finite, as we will see later).
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We need to examine the Bloch-Kato local conditions more closely. For a prime
v{p it is clear that H;(K,, Ay) = 0.
Recall that we can write ¢ = qb’};(z_bgk“n where ¢p = Xcye on D, and Op = Xeye O
D;. (See the proof of Proposition 8.3.) By [BK, section 3] we have
dimp H(K,,V) = dimp(V ® Bpg)“< /(V @ B )<

for v|p, thus we can see dimp H}(K,,V,) = 1 and dimp H} (K5, Vy) = 0.
On the other hand, by the local Fuler characteristic formula and Tate local duality
we have

dimp H'(K,,V) = [K, : Q) dimp V + dimp HY(K,, V) + dimp H°(K,,V*)

where V* denotes Hom(V, F'(1)). It is clear that VwGK" =0 and (VJ)GKP = 0, thus we
have dimp H'(K,, V) = 1.
Thus we can conclude that H(Kp, Ay) = 0 and Hj(K,, Ay) is the image of

HY(Ky, Vi) — H'(Kp, Ay).
By the long exact sequence of cohomology groups induced from T\, — V,, — Ay, we
find that the cokernel of the map above is H*(K,, Ty )iors. We have

| H?(Ky, Ty)| = |H"(Ky, Homo (T, F/O(1)))| = |F/O(¢5" o0~ ") (1) |
by local Tate duality, and if we assume p — 1 1 k — 1, this last group is trivial, thus
we can see H (K, Ay) = H (Ky, Ay) if p—11k—1.
Also, we need to examine the local conditions of S(A,/K.).
Every prime v # p of K is unramified and finitely decomposed over K/ /K, thus

G run
for any wl|v, Hl(K;jﬁv/Kc’)oyw, AwK‘”’“’) = 0.
Our discussion so far helps find the kernel and cokernel of

Sel,(Ay/K) — S(Ay/KL,) S5,

however for a precise result, we need more techniques. First, we need a generalized

version of the Cassels-Tate theorem. Let 3 be a set of places of K including oo and

the prime divisors of pf. We let Ky denote the maximal extension of K unramified

outside X. We define T = Homo(Aw,'F/O(l)), V=T ®Q,, and A, = Vi /Ty
We note that for any prime v there is the non-degenerate local Tate pairing

HY(K,, Ay) x H(K,,T}}) — F/O.
We define H;(K,,T};) as the exact annihilator of H}(K,, Ay) with respect to this

pairing. One consequence is that H}(Kv, T;;) contains H(K,, T, ;;)tors. Another con-
sequence is the following: Define

S(T}/K) = ker(H'(Ks/K,T}) — [ [ H' (K., T;)/H} (K., T})).
veEY
Note that Vi = F(¢™")(xk,.) = F(¥)(=k +1). Tt is not hard to see S(A,/K) is
finite if and only if S(7};/K) is finite.
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Proposition 8.12. If S(T};/K) is finite,
H' (K /K, Ay) — [[ H' (K., Ay) /H}(K,, Ay)

vEX

1S surjective.
Proof. Similar to [Gre, Proposition 4.13] and [K, Proposition 13]. O
Gt
For the following proposition, recall that Hl(K;fﬁv/Kéo’w,AwK”w) = 0 for any
prime w not above p.

Proposition 8.13. If k — 1 is not divisible by p — 1, we have
#Sely(Au/K) [ #HO(K,, Ay) = #8(Ay/ KL,
vEX vip

Proof. Recall our discussion about the local conditions. Consider the following com-
mutative diagram.

0— Sel,(Ay/K) — H'Ky/K,Ay) — ][] H'(K, A

VEX VEP
! ! !
0= S(Ay /K" — H'(Kg/KL A" — [ H'(KL,. A).
w|Z,wip

Since A%K% =0, by Hochschild-Serre, the middle vertical map is an isomorphism.
As for the right vertical map, first we note Gal(K[_,,/K,) = Z, for every w. Let

!
0o, w

a
Yw be its topological generator. For H = AwK we have a short exact sequence

0— H%v — H"™5'H — H/(7, — 1)H — 0.
Since H is a finite group, #H/ (v, — 1)H = #H%<. By [Ru3, Lemma B.2.8],
H' (KL, /Ko, H) = H/ (7, — 1)H.

Note that by Proposition 8.12 the last map in the top of the commutative diagram
above is surjective. Thus by the Snake Lemma, our claim follows. 0

For a prime v of K, let a, denote #H°(K,, A,) which plays the role of the local
Tamagawa number.

We let v, denote the normalized p-adic valuation. Recall the definition of the
complex period €2, which depends only on the conductor f. Also, recall that v is a

Hecke character of infinity type (2k — 1,0) and conductor f, and recall the definition
of Aw.

Theorem 8.14. Recall we assume wy = {1} (see Proposition 8.3). Let p be a prime
that splits completely over K/Q and is prime to f.

(1) Sel,(Ay/K) is finite if and only ij;)f)f,g(w,k) # 0.



(2) Additionally, assume k — 1 and k are not divisible by p — 1. If Lz(1, k) # 0,
then

((@)k+1(1 . ¢(P))Lfﬁ(¢ak)> .

p(# Sel,(Ay/K) H ay) = [0 : Zy] - vy o o Q21

VEXD

Proof. The first claim follows from Proposition 8.10 (also see Remark 3).

Let B be a Aj-torsion module with no non-trivial finite A;-submodule and let
f(S) € Ay = O[[S]] be a generator of the characteristic ideal of B. It is an exercise
in Iwasawa theory to show v,(#B/(71 — 1)B) = v,(f(0)). Note that since k — 1 and
k are not divisible by p — 1, HY(K,, Ay) = 0 for v = p,p. The rest follows from
Theorem 8.6 and Propositions 8.10 and 8.13. 0

Remark 8.15. i) The presence of [O : Z,] on the right side in (2) is due to the fact
that the groups we deal with are actually O-modules.

ii) It is likely that (2) should be true for almost all p, but one needs additional
techniques for other primes.

9. COMPLEX PERIODS

To discuss the issue of periods, first we need to explain the Tamagawa number
defined by Bloch and Kato [BK] because in their paper a complex period is simply
the Tamagawa number for infinite places. And, to that end, we need to state their
conjecture in its original form (rather than a more common version like Theorem 8.14).
For the readers not familiar with the Bloch-Kato conjecture, one can consider it as
an analogue of the Birch and Swinnerton-Dyer conjecture for motives.

First, we need to state the conjecture precisely.

Let (V,D) be a motivic pair of Q-vector spaces (see [BK, Definition 5.5]). For
p < 00, let V,, denote V ® Q, and D,, denote D ® Q,. Let A = A(Q). Here D has a
filtration structure which induces the (Hodge) filtration of DR(V ® Q,) for p < oo.
To state the Bloch-Kato conjecture we need to choose a lattice M of V such that
M ® 7 is Gal(Q/K)-stable in V @ A; (see [BK, p. 372]). We define the rational
points by

A(K,) = H}(Kv, M ®Z) for a finite place v,

A(C) := (D ®2 C) /(DS ®& C) + M))*
where D, = D ® R and the inclusion M — D, ®g C is given by the identification
D, @r C =V, ® C. (For the definition of H}, see [BK].)
Note that for any p < oo the exponential map

exp: D,/D) ® K, — A(K,) (v|p)
is a local isomorphism.
Fix an isomorphism w : det(D/D%) & Q. This isomorphism induces a Haar measure
on D,,/D), thus by the aforementioned exp it induces a Haar measure j,, on A(K,)

for every (finite or infinite) place v. Let S be a sufficiently large set of a finite
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number of places of K including oo and the ramified primes. Let [ be a fixed prime

number such that no prime in S is lying above it, and for any prime v of K let
P,(V;, X) = det(1—Frob," X|V;") and let Ls(V, s) = [T,zs Po(Vi, Nu=*)~1. Then by
[BK, Theorem 4.1] we have

LS(V7 O)_l = H [/Jv,w(A(Kv))' (91)
pgS
if Lg(V, s) is convergent at s = 0.
We will not discuss the (somewhat conjectural) group of global rational points
A(K) in detail, but we only mention that A(K ), = H'(K, M @ Q/Z).
We define

Tam(M) = (] A(KL) /A(K)). (9.2)
The following is the Bloch-Kato conjecture, which should be distinguished from the
other Bloch-Kato conjecture in K-theory.
Conjecture 9.1. (1) rank A(K) = ords—o L(V, s).
#(H° (K, M* @ Q/Z(1)))
2) Tam(M) =
(2) Tam(A0) F(M/E)

But perhaps most readers are more familiar with the following:

Conjecture 9.2. Let p be any prime number. Define
coranky, A = ranky, Hom(A,Q,/Z,)

for any abelian group A. Then
(1) corankg, Sel,(M/K) = ords—o L(V, s).

)
#Sel, (M K)
L0 = i o uamy <+ AOAU) 1] el A1)

Here (2) is induced by (9.1). Note that the right side does not depend on the choice
of w.
For a finite place v of K let a, denote #H(K,,M ® Q/Z). By [BK, Lemma

5.10] and its discussion on p. 373, g, (A(K,)) is the product of some [-power and
H(Ky, M & [, Qn/Zy) where v lies above . Thus for any prime p # I, we have

tow(A(Ky)) = #HO(Kva M ® Q,/Zy,) (9.3)

up to a p-adic unit.

Now we will construct the motivic pair attached to our Hecke character . This is
constructed by Schappacher [Sc| following a much more general result of Jannsen [J]
(see also Scholl [S]), but we need a more specific construction.

Now we define a motivic pair (V, D) and a lattice M C V attached to 1. We let
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Vp = Qp(¢p) ® @p(¢ﬁ)
if (p) =pp in K, and
Vp = Kp(¢p)

if p is inert over K/Q. (This is a little misleading because the values of ¢, and so on
are not necessarily in Q, or K, but it seems better to keep the notation simple.)

We define Vpr and Vg as follows. Recall the elliptic curve E/F we chose earlier.
Also recall that by the Weierstrass model we can identify E with C/L where L = Qf
for some (2 € C* and some ideal f C Og. Let F' € f be some non-zero number prime
to p. Let (Mp(E), Mpr(E), M,) be the motive of E. Then Mp(FE) is given by

Mp(E) = Hg'(E) = QX, ® QX;
where X and X, are the cycles obtained by the directed line segments from 0 to QF

and from 0 to v—DQF on C/L.
The de Rham realization Mpr(FE) is given by

Mpgr(E) = Qwy @ Qw,

where @, corresponds to dz and @y corresponds to dz such that

Fil'Mpr =0, i>0,
Fil’Mppr = Qus,
Fil'Mpr = Mpg, otherwise.

Similarly, let (Mp(G..), Mpr(Gn), M,(Gy,) be the motive of the multiplicative
group G,,. First, identify exp(C) with C/2miZ, then Mp(G,,) is

Mg(Gn) = QX

where X is the directed path from 0 to 27w on C/2miZ. The de Rham realization
Mpr(Gr,) is given by Q€ where € is the dual basis of the differential € = dz/z.
Now similar to [Gu2, section 2], for any subset 7 of {1,2,...,n} we define

w(i)=1 ifiemn,
w(1)=2 ifigm.
As in [Gu2] we define the Betti realization

Vi = (Qe; @ Qez) ® QXx'*

where e; and ey are defined by

1 1
Z D#W/ZXWQ) ® -+ ® Xp(ak-1) = €1+ €2.

_)2k-1 )
( D) nC{l,...,.2k—1} —-D

And, define the de Rham realization
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VDR — (Qd}i@Qkfl D Q@?Zk*l) ® @é@*lﬂrl'

Now we define a strongly divisible (see [BK, p. 362] for its definition) lattice M
inside V' by

Mp = (Ze, + Zey) @ ZX®F+1
such that Mp ®y Z, is mapped onto the lattice M, of V,,

Z(¢p) © Zp(Pp)
if p splits and
OK,p(‘bp)

otherwise.
On the other hand, define a vector space with a filtration D by D = Qz1 ® Q-
such that

Fil'(D) =0, i>k—1,
Fil'(D) = Quy, —k<i<k—1,

Fil(D) =D, i< —k.

Similar to [Gu2, Lemma 3.1] we obtain

Hoow(A(C)JA(K)) = aly/dic /2 FD (N g FOQ)™ !

for some o € Q*. (In [Gu2|, pieow is normalized. This process seems equivalent to
multiplying fie ., by some a € Q*. This makes sense because pioo,(A(C)/A(K))
plays the role of a complex period, and a complex period is in general defined up
to some algebraic number.) Assume p is prime to oF". If Ly(V,0) is nonvanishing,
Conjecture 9.2 can be rewritten as follows.

Conjecture 9.3. (1) Sel,(M, ® Q/Z/K) is finite.
Sel, (M, 7K _
(2) Lyp(V,0) = #7;_;0(6 fﬁ( Mig%ﬁ /Z/p(i))(\/dK/QW)2(_k+1)(QQ)2k_1Hav up to

a p-adic unait.

By the functional equation we have L(¢~',0) = L(1, k), and we also note that
Ls(V,0) = L(¢~1,0) - L(¢~%,0). Similarly, we note that Sel,(M/K) = Sel,(A;) &

Sel,(Aj). Since L(¢*,0) = L(¢~*,0) and Sel,(Ay) = Sel,(A;), we see that Conjec-
ture 9.3 follows from Theorem 8.14 under the assumed conditions.
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10. PROOFS OF THEOREM 1.7 AND COROLLARY 1.8

Proof of Theorem 1.7. Liu and Xu [LX] (extending earlier work of Miller and
Yang [MiY]) proved that if (2k — 1, h(=D)) = 1 and |d| <4, D12, then

#{Var € Var : L(Yag, k) #0} = h(=D). (10.1)
Part (1) follows by combining Theorem 1.5 with (10.1). Similarly, part (2) follows by
combining Theorem 1.5 with Theorem 1.4. U

Proof of Corollary 1.8. Recall the p>-descent sequence
0 — A(D)(H) ® Q,/Z, — Sely(A(D)/H) — W(A(D)/H), — 0.
One can show that Sel,(A(D)/H) = Sel,(xu/H), and by Shapiro’s lemma

Sel,(xu/H) ~  [[ Sel(vi&/K)= T[] Sel(¢1/K)

geCL(K)A P1€¥1 1

where ~ means there is a homomorphism with finite kernel and cokernel. Thus
Theorem 1.7 (1) implies that Sel,(A(D)/H) is finite, which implies that A(D)(H)
and HI(A(D)/H), are finite. O
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