
NONVANISHING OF HECKE L–FUNCTIONS AND THE
BLOCH-KATO CONJECTURE

BYOUNG DU KIM, RIAD MASRI, AND TONG HAI YANG

Abstract. In this paper we study the central values of L–functions associated to a
large class of algebraic Hecke characters of imaginary quadratic fields. When these
central values are nonzero, the Bloch-Kato conjecture predicts an exact formula
for the algebraic parts of the central values in terms of periods and arithmetic
data, most notably the Selmer groups corresponding to the Hecke characters. We
investigate the nonvanishing of these central values, and prove the p-part of the
Bloch-Kato conjecture in these cases for primes p which split in K.

1. Introduction and statements of results

Let K be an imaginary quadratic field of discriminant −D with D > 3 and D ≡ 3
mod 4. Let OK be the ring of integers of K, and let

εD : (OK/
√
−D)∗ → {±1}

be the quadratic character of K induced by the Dirichlet character (−D/·). A canon-
ical Hecke character (in the sense of Rohrlich [R, R2]) is a Hecke character ψk of K
of weight k ∈ Z+, infinity type (2k − 1, 0), and conductor

√
−DOK which satisfies

the condition

ψk(αOK) = εD(α)α2k−1 for (αOK ,
√
−DOK) = 1.

Let CL(K) be the ideal class group of K, let h(−D) be the class number of K, and
let ξ : CL(K)→ C× be a class group character of K. Then there are exactly h(−D)
canonical Hecke characters, and they are given by

Ψk := {ψkξ : ξ ∈ CL(K)∧}.
The L–function of ψk is defined by

L(ψk, s) =
∑

06=a⊂OK

ψk(a)NK/Q(a)−s, Re(s) > k +
1

2

where the sum is over nonzero integral ideals a. It is known that L(ψk, s) has an
analytic continuation to C and satisfies a functional equation under s 7→ 2k − s with
central value L(ψk, k).

The canonical Hecke characters were first studied by Gross [Gr], who constructed
a “canonical” elliptic Q-curve A(D) associated to ψ1. In particular, he showed that
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the extended Hecke character χH := ψ1 ◦NH/K of the Hilbert class field H of K cor-
responds to a unique (up to H-isogeny) Q-curve A(D)/H whose L–function satisfies

L(A(D)/H, s) = L(χH , s)L(χH , s) =
∏

ξ∈CL(K)∧

L(ψ1ξ, s)L(ψ1ξ, s).

He made the remarkable conjecture that the rank of A(D)(H) is 0 or 2h(−D) depend-
ing on whether D is congruent to 7 or 3 mod 8, respectively. Because the conjecture
predicts an exact formula for the rank, the curves A(D)/H form an important test
case for the Birch and Swinnerton-Dyer conjecture.

Gross proved the rank 0 case of his conjecture for D = p a prime using descent
theory. Montgomery and Rohrlich [MR] (extending earlier work of Rohrlich [R, R2])
proved the rank 0 case for all discriminants by showing that L(ψ1ξ, 1) 6= 0 for D ≡ 7
(mod 8) and applying a theorem of Rubin [Ru1]. Miller and Yang [MiY] proved the
rank 2h(−D) case by showing that L′(ψ1ξ, 1) 6= 0 for D ≡ 3 (mod 8) and applying
a theorem of Kolyvagin and Logachev [KL]. The even discriminant cases were also
positively settled in [MR] and [MiY].

When k ≥ 1 the nonvanishing of the central values L(ψk, k) and their quadratic
twists has been studied using a wide-range of techniques (see e.g. [RV2, RVY, Y,
LX, Ma, Ma2]). In this paper we will study this problem from a somewhat different
perspective. We will establish an asymptotic formula for the first moment of the
central values L(ψk, k) which is of independent interest. Our proof of the asymptotic
formula relies on an “equidistribution theorem” for Heegner points. Such theorems
exist in the literature. Our calculation is complicated by the fact that the test func-
tions involved are not of rapid decay (see Theorem 5.1). We will then combine the
asymptotic formula with subconvexity bounds to prove a nonvanishing theorem for
certain subfamilies of canonical Hecke characters.

Given these nonvanishing theorems, it is natural to ask if they shed light on the
arithmetic of the Selmer groups corresponding to the canonical Hecke characters.
Recall that the Bloch-Kato conjecture [BK] predicts an exact formula for the algebraic
part of L(ψk, k) in terms of periods and arithmetic data, most notably the order
of the Selmer group corresponding to ψk. We will prove the p-part of the Bloch-
Kato conjecture in these cases for primes p which split in K, and combine this with
nonvanishing theorems to prove a finiteness theorem for the corresponding Selmer
groups.

In order to state our results we fix the following notation. Let d ≡ 1 mod 4 be
a squarefree integer coprime to D. The quadratic twist of ψk is defined by ψd,k :=
(d/NK/Q(·))ψk. Clearly, there are exactly h(−D) such characters and they are given
by

Ψd,k := {ψd,kξ : ξ ∈ CL(K)∧}.

For an integer n ≥ 1, let CLn(K) be the kernel of the n-th power map on CL(K),
and let

CL(n)(K) := CL(K)/CLn(K) ∼= CL(K)n.
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Define the natural subfamily for a fixed ψd,k ∈ Ψd,k

Ψ
(2)
d,k := {ψd,kξ : ξ ∈ CL(2)(K)∧} ⊂ Ψd,k

of canonical Hecke characters which differ by ideal class group characters which are
trivial on the 2-torsion subgroup of the class group.

Define the theta function

θd,k(z) := (2y)−k/2
∑

(n,d)=1

(
d

n

)
Hk(n

√
2y)e(n2z), y = Im(z) > 0

where Hk is a suitably normalized Hermite polynomial of degree k (see Remark 3.3)
and e(z) := e2πiz. The function θd,k is a weight k + 1

2
modular form for Γ0(4d2) with

character (d/·).
Define the Peterson inner product

〈θd,k, θd,k〉Pet :=

∫
Y0(4d2)

|θd,k(z)|2 Im(z)k+ 1
2dµ(z)

where the Poincaré measure dµ(z) is normalized so that the the open modular curve
Y0(4d2) has volume 1.

We will establish the following asymptotic formula for the first moment of central
values associated to canonical Hecke characters. An outline of the proof is given in
section 2.

Theorem 1.1. Let D ≡ 7 mod 8 be a positive, squarefree integer, and let d ≡ 1
mod 4 be a squarefree integer coprime to D such that every prime divisor of 2d splits
in K. Let k ≥ 1 be an integer such that sign(d) = (−1)k−1. Then for all δ < 1/8 we
have

1

#CL(2)(K)

∑
ψd,k∈Ψ

(2)
d,k

L(ψd,k, k) = c(k)LD(1)〈θd,k−1, θd,k−1〉Pet +Od,k,δ(D
−δ) (1.1)

as D → ∞. Here c(k) := 2(8π)k−1/(k − 1)! and LD(s) is the L–function of the
Dirichlet character (−D/·). Moreover,

1

h(−D)

∑
ψd,k∈Ψd,k

L(ψd,k, k) = c(k)LD(1)〈θd,k−1, θd,k−1〉Pet +Od,k,δ(D
−δ) (1.2)

as D →∞. The implied constants in the error terms Od,k,δ are ineffective.

Remark 1.2. In [Ma], the second author proved a variant of the asymptotic formula
in Theorem 1.1 (1.2) for d = 1 and k odd. The restriction to d = 1 was necessary
to use a formula of Rodriguez-Villegas and Zagier [RV, RVZ] for the central value
L(ψk, k), and the crucial restriction to k odd was necessary to insure that the theta
function appearing in this formula was cuspidal. See the discussion in section 2.

Remark 1.3. In [T, Theorems 1 and 2], Templier uses a different method to ob-
tain asymptotic formulae for the first moment of central values of canonical Hecke
L–functions analogous to those in Theorem 1.1. Whereas we use period relations,
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equidistribution, and a spectral regularization in the proof of Theorem 1.1 (see sec-
tion 2), Templier uses the approximate functional equation and a subconvexity bound
due to Burgess.

We will combine Theorem 1.1 with subconvexity bounds of Duke, Friedlander, and

Iwaniec [DFI] to prove the following nonvanishing theorem for the subfamily Ψ
(2)
d,k.

Theorem 1.4. Let assumptions be as in Theorem 1.1. Then for all δ < 1/60,

#{ψd,k ∈ Ψ
(2)
d,k : L(ψd,k, k) 6= 0} �d,k,δ D

δ

as D →∞. The implied constant in �d,k,δ is ineffective.

We now turn to a discussion of our arithmetic results. Let ψ be an algebraic Hecke
character of K of conductor f and infinity type (2k−1, 0). Let K(f) be the ray class
field of K of conductor f , and let G(f) be the Galois group of K(f)/K. Let p be a
prime number not dividing f . By fixing an embedding ip : Q̄→ Cp one can associate
a p-adic Galois character of Gal(fp∞) to ψ. Let Selp(Aψ/K) be the Selmer group
associated to the Galois representation Aψ defined by (8.1).

In the following theorem we will equate the p-adic valuations of the two quantities
appearing in the Bloch-Kato conjecture for primes p which split in K.

Theorem 1.5. Assume that (p) = pp̄ splits in K and is prime to [K(f) : K]. Then
L(ψ̄, k) 6= 0 if and only if Selp(Aψ/K) is finite. If these two equivalent conditions are
satisfied, then

vp(# Selp(Aψ/K)
∏
v|f

av) = vp

(
(

√
−D
2π

)−k+1(1− ψ(p)

pk
)
Lf p̄(ψ̄, k)

Ω2k−1

)
where av is the Tamagawa number of the prime v, Lf p̄ is the L-function with the
Euler factors for the primes dividing f p̄ removed, and Ω is the complex period of a
CM elliptic curve of conductor f .

Remark 1.6. Results similar to Theorem 1.5 were proved by Guo [Gu1] and Han
[Han] for imaginary quadratic fields of class number 1.

As almost an immediate consequence of the results stated above we will obtain the
following finiteness theorem for the Selmer groups Selp(ψd,k/K).

Theorem 1.7. Let D ≡ 7 mod 8 be a positive, squarefree integer, and let d ≡ 1
mod 4 be a squarefree integer coprime to D. Let f = d

√
−DOK, and let p - f be a

prime number that splits in K and is prime to [K(f) : K]. Let k ≥ 1 be an integer
such that sign(d) = (−1)k−1.

(1) If (2k − 1, h(−D)) = 1 then for all |d| �k,ε D
1
12
−ε,

#{ψd,k ∈ Ψd,k : #Selp(ψd,k/K) <∞} = h(−D).

(2) If every prime divisor of 2d splits in K then for all δ < 1/60,

#{ψd,k ∈ Ψ
(2)
d,k : #Selp(ψd,k/K) <∞} �d,k,δ D

δ

as D →∞.
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The implied constants in �k,ε and �d,k,δ are ineffective.

Finally, in the following corollary we will show that Theorem 1.7 can be viewed as
a “higher weight” generalization of the rank 0 case of Gross’s conjecture.

Corollary 1.8. Let D and p be as in Theorem 1.7. Let p be the prime of K above p
fixed by the embedding ip, and let Selp(A(D)/H) be the associated p-Selmer group
of A(D)/H. Let X(A(D)/H) be the Shafarevich-Tate group of A(D)/H. Then
Selp(A(D)/H), A(D)(H), and X(A(D)/H)p are finite.

Organization. The paper is organized as follows. In section 2 we outline the proof
of Theorem 1.1. In sections 3-7 we prove Theorems 1.1 and 1.4. In section 8 we prove
Theorem 1.5. In section 9 we study the complex period appearing in Theorem 1.5.
Finally, in section 10 we prove Theorem 1.7 and Corollary 1.8.

Acknowledgments. We would like to thank Anton Deitmar, Gergely Harcos, and
Ken Ono for very helpful discussions regarding this work. In addition, we would like to
thank the referee for a very careful reading of the manuscript, and many suggestions
leading to simplifications of some arguments.

2. Outline of the proof of Theorem 1.1

In recent years the problem of obtaining asymptotics for moments of L–functions
has been studied using period relations of Waldspurger type to express the average
of the central values of a family of L–functions as an average of a fixed automorphic
function over special points on some variety. In many situations, an asymptotic
formula can then be obtained using the distribution properties of the special points.
See for example the work of Vatsal [V] on Mazur’s conjecture, and the work of Michel
and Venkatesh [MV, MV2] on nonvanishing of Rankin-Selberg L–functions. We will
take a similar approach to prove Theorem 1.1.

In Theorem 3.2 and Lemma 3.4 we will establish a formula for the central value
L(ψd,k, k) of the form

L(ψd,k, k) = κ#CL2(K)

∣∣∣∣∣∣
∑

C∈CL(K)2

θd,k−1(τC)

ψd,k(a)

∣∣∣∣∣∣
2

(2.1)

where κ is an explicit constant depending on d,D and k, [a] = C, and {τC : C ∈
CL(K)2} is a CL(K)2-orbit of Heegner points of discriminant −D on X0(4d2). This
constitutes a slight generalization of the central value formulas in [Y, RVY].

In Theorem 3.5 we will use (2.1) to establish exact formula for the average of the
central values of the form

1

#CL(2)(K)

∑
ψd,k∈Ψ

(2)
d,k

L(ψd,k, k) = c(k)LD(1)
1

#(CL(K)2)

∑
C∈CL(K)2

Fd,k(τC) (2.2)
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where Fd,k : H→ R≥0 is the C∞, Γ0(4d2)-invariant defined by

Fd,k(z) := Im(z)k−
1
2 |θd,k−1(z)|2 .

We want to combine (2.2) with a (deep) equidistribution theorem of Harcos and
Michel [HM] for Galois suborbits of Heegner points on modular curves to obtain the
asymptotic formula in Theorem 1.1. However, the “test function” Fd,k is in general
not of rapid decay in the cusps of X0(4d2) (see section 4, and in particular Proposition
4.4). We overcome this difficulty by using a careful spectral regularization to extend
the Harcos-Michel theorem to include test functions satisfying a moderate growth
condition in the cusps (see Theorem 5.1).

3. An exact formula for the average L–value

In [RVY, Theorem 3.2], Rodriguez-Villegas and Yang gave an explicit formula for
the central value L(ψ2k−1

d,1 , k). If (2k−1, h(−D)) = 1, the two families Ψ2k−1
d,1 and Ψd,k

coincide. Otherwise, they are different. Here we modify the proof of [RVY, Theorem
3.2] to give a formula for L(ψd,k, k) in general.

Let χ =
∏
χp be the ‘canonical’ additive character of Q\QA such that χ∞(x) =

e(x) = e2πix. Here FA is the adeles of a number field F and F ∗A is the ideles of
F . Let χK = χ ◦ trK/Q, and let ε(1

2
, ψd,k,w,

1
2
χKw) be the local root number of the

local character ψd,k,w at a prime w of K (with respect to the local additive character
1
2
χKw). Here we identify a Hecke character ψd,k with its associated idele class character
ψd,k =

∏
w ψd,k,w.

Lemma 3.1. Let assumptions be as in Theorem 1.1.

(1) There are exactly 2−t(D)h(−D) Hecke characters ψd,k ∈ Ψd,k of K such that∏
w|p

ε(
1

2
, ψund,k,w,

1

2
χKw)ψund,k,w(

√
−D) = 1 = εp(

4

D
), (3.1)

for every prime p ≤ ∞. Here t(D)+1 is the number of prime factors of D and
ψun = ψ/|ψ| is the unitarization of ψ. We denote Hecke characters satisfying
(3.1) by ψD,d,k, which differ from each other by ideal class characters trivial
on CL2(K).

(2) For each ideal class character ξ of K, we can choose a positive squarefree
integer β = β(ξ) such that

εp(β) =

{
ξw(
√
−D) if p|D,

1 if p - D.
(3.2)

For this β, we have∏
w|p

ε(
1

2
, ψunD,d,k,wξw,

1

2
χKw)ψunD,d,k,wξw(

√
−D) = εp(

4

D
β)

for every prime p.
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(3) For a Hecke character ψd,k ∈ Ψd,k, there is a positive squarefree integer β =
β(ψd,k) such that∏

w|p

ε(
1

2
, ψund,k,w,

1

2
χKw)ψund,k,w(

√
−D) = εp(

4

D
β).

Proof. (sketch) The proof is similar to [RVY, Lemma 3.1]. We give a sketch here for
the convenience of the reader. Let ψ0 be a fixed element in Ψd,k. Then every element
in Ψd,k has the form ψ0ξ with ξ ∈ CL(K)∧. Now [RVY, Lemma 2.1] implies that for
a prime p ≤ ∞

∏
w|p

ε(
1

2
, ψun0,wξw,

1

2
χKw)(ψun0,wξw)(

√
−D) =

{
1 if p - D,
ε(1

2
, εp, χp)(ψ

un
0,pξp)(

√
−D) if p|D.

Here p = w is the prime of K above p. Set for each p|D

κp = ε(
1

2
, εp, χp)ψ

un
0,p(
√
−D) = ±1,

and

S = {(cp)p|D : cp = ±1,
∏

cp = 1}.

Notice that the same proof as that of [RVY, Lemma 2.1] gives the global root number

ε(
1

2
, ψun0 ξ,

1

2
χK) = (−1)k−1sign(d) = 1.

So
∏
κp = 1 and (κp) ∈ S. The genus theory gives a bijection

F : (CL(K)/CL2(K))∧ → S, ξ 7→ (ξp(
√
−D))p|D = (ξ(p))p|D.

So there are exactly 2−t(D)h(−D) ideal class characters ξ such that F (ξ) = (κp), and
these characters ξ differ from each other by ideal class characters which are trivial on
CL2(K). For such an ideal class character ξ, ψd,k = ψ0ξ satisfies (3.1). This proves
(1). Claims (2) and (3) follow from (1) directly.

�

Notice that every prime factor of β is split in K by Lemma 3.1, and β ∈ Q∗/NK/QK
∗

is uniquely determined by ψd,k = ψD,d,kξ (since the class of β is uniquely determined

by (3.2)) and depends only on the family {ψd,kξ : ξ ∈ CL(2)(K)∧}. We let Ψ
(2)
d,k,β

denote this subfamily of Hecke characters. We mention that [RVY, Lemma 3.1] is
not correct as stated: not every β above can be represented by a factor D1 of D in
its class.

By applying [RVY, Theorem 2.5] to (ψunD,d,kξ, 1, δ =
√
−D,α = 4

D
β, ψ) (see also

[MaY, Theorem 3.7]), we obtain the following theorem.
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Theorem 3.2. Let ψd,k ∈ Ψd,k and let β = β(ψd,k) be associated to ψd,k as in Lemma
3.1. Then the central value

L(ψd,k, k) = κ#CL2(K)

∣∣∣∣∣∣
∑

C∈CL(2)(K)

θd,k−1(τβ,a2)

ψd,k(ā)

∣∣∣∣∣∣
2

.

Here

κ :=
πk√

2D(k − 1)!
(

√
D

βd2
)k−

1
2

and τβ,a2 is a Heegner point on X0(4d2) of discriminant −D given as follows. Fix a
square root r of −D mod 16βd2, and for a primitive integral ideal a ∈ C−1, write

a2 = [a2,
b+
√
−D

2
], a, b ∈ Z

with a = Na, and b satisfying

b2 ≡ −D mod 16βd2a2, b ≡ r mod 8βd2.

Then

τβ,a2 =
b+
√
−D

8βd2a2
.

Remark 3.3. By [RVY], the polynomial Hk(x) occuring in the definition of θd,k is
given by the equation

1

2k

(
x− 1

2π

d

dx

)k
e−πx

2

= Hk(x)e−πx
2

.

We now show that Hk(x) can be expressed as

Hk(z) =
1

(
√

8π)k

∑
0≤j≤k/2

k!

j!(k − 2j)!
(−1)j(

√
8πz)k−2j.

First, Hk(x) is determined by the following recurrence formula

Hk(x) = xHk−1(x)− k − 1

4π
Hk−2(x), H0(x) = 1, H1(x) = x. (3.3)

On the other hand, the classical k-th Hermite polynomial

H̃k(x) =
∑

0≤j≤k/2

k!

j!(k − 2j)!
(−1)j(2x)k−2j (3.4)

is determined by the recurrence formula

H̃k(x) = 2xH̃k−1(x)− 2(k − 1)H̃k−2(x), H̃0(x) = 1, H̃1(x) = 2x.

It is now easy to check that

H̃k(
√

2πx)

(
√

8π)k
8



satisfies (3.3), and so

Hk(x) =
H̃k(
√

2πx)

(
√

8π)k
(3.5)

as claimed.

In the next lemma we show that the Heegner points appearing in Theorem 3.2
form a CL(K)2-suborbit of Heegner points on X0(4d2). This will be crucial for our
application of Theorem 5.1.

Lemma 3.4. Let r2 ≡ −D mod 16βd2. Then

(1) H(r)
β,D = {τβ,a2 : [a] ∈ CL(2)(K)} is a CL(K)2-orbit of Heegner points on

X0(4d2).

(2) H(r)
D =

⋃
β=β(ψd,k)H

(r)
β,D is a CL(K)-orbit of Heegner points on X0(4d2).

(3) When the square roots r of −D mod 16d2 change modulo 8d2, H(r)
D gives all

Heegner points on X0(4d2) of discriminant −D.

Proof. Let N be a positive integer. Heegner points on X0(N) of discriminant −D
exist if and only if every prime factor of N is split or ramified in K = Q(

√
−D),

and they are given as follows. Fix a square root r mod 2N of −D mod 4N . For a
primitive ideal a, write

a = [a,
b+
√
−D

2
], a = aā > 0, b ∈ Z

with
b ≡ r mod 2N, b2 ≡ −D mod 4Na.

Notice that the congruence b2 ≡ −D mod 4Na is automatically satisfied when
(4N, a) = 1. Then

τa = τ (r)
a =

b+
√
−D

2Na
is a Heegner point on X0(N). In terms of quadratic forms, this Heegner point is
associated to Nax2 − bxy + cy2. It is known that τa depends only on the ideal class

of a and r mod 2N . So we can denote it by τ[a] or τ
(r)
[a] , depending on whether r is

important in the context. The ideal class group CL(K) acts on Heegner points via

[b].τ
(r)
[a] = τ

(r)
[ab].

In our case, every prime factor of 4βd2 is split or ramified in K, and so τβ,a2 = τ
(r)

[a2]

is a Heegner point on X0(4βd2). Projecting to X0(4d2), it becomes a Heegner point

τβ,a2 = τ
(r)

[ba2] depending only on r mod 8d2. Here βOK = bb for some integral ideal

b. So H(r)
β,D is a CL(K)2-orbit of Heegner points on X0(4d2). This proves (1).

Suppose H(r)
β1,D
∩ H(r)

β2,D
is not empty. Then there are ideals a1 and a2 such that

τβ1,a2
1

= τβ2,a2
2

in X0(4d2), i.e.,

τ
(r)

[b1a2
1]

= τ
(r)

[b2a2
2]
.
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Then [b1a
2
1] = [b2a

2
2], i.e., b1a

2
1 = zb2a

2
2 for some z ∈ K∗. Taking the norm, we have

β1a
2
1 = N(z)β2a

2
2

and thus εp(β1) = εp(β2) for every prime p ≤ ∞. This implies by Lemma 3.1 that β1

and β2 are associated to the same class of ψd,k. Here two Hecke character ψ1, ψ2 ∈ Ψd,k

are in the same class if they differ by a character of CL(2)(K). Now a simple counting
gives (2). Claim (3) follows directly from (2). �

In the following theorem we give an exact formula for the average of the central
values L(ψd,k, k).

Theorem 3.5. Let assumptions be as in Theorem 1.1. Let Ψ
(2)
d,k,β be a subfamily of

Ψd,k as defined above. Then

1

#CL(2)(K)

∑
ψd,k∈Ψ

(2)
d,k,β

L(ψd,k, k) = c(k)LD(1)
1

#CL(K)2

∑
C∈CL(K)2

Fd,k(τβ,C) (3.6)

where c(k) := 2(8π)k−1/(k − 1)! and {τβ,C : C ∈ CL(K)2} is a CL(K)2-orbit of
Heegner points on X0(4d2) associated to β. Moreover,

1

h(−D)

∑
ψd,k∈Ψd,k

L(ψd,k, k) = c(k)LD(1)
1

h(−D)

∑
C∈CL(K)

Fd,k(τC)

where {τC : C ∈ CL(K)} is a CL(K)-orbit of Heegner points on X0(4d2).

Proof. By the proof of Lemma 3.4, τβ,a as a Heegner point on X0(4d2) depends only
on the ideal class [a] (and β). So we can write τβ,a = τβ,[a]. In particular, the Heegner
point τβ,C in Theorem 3.5 can be written as τβ,C = τβ,[a] with [a] = C−1.

Observe that ψd,k(a) = ψd,k(ā) and

ψd,k(ā)ψd,k(a) = N(a)2k−1 = a2k−1.

Let ψd,k be a fixed Hecke character in the subfamily Ψ
(2)
d,k,β. Then by averaging the

central value formula in Theorem 3.2 we obtain∑
ψ∈Ψ

(2)
d,k,β

L(ψ, k) =
∑

ξ∈CL(2)
(K)∧

L(ψd,kξ, k)

= κ#CL2(K)
∑

ξ∈CL(2)
(K)∧

∑
C1,C2∈CL(2)

(K)

θd,k−1(τβ,a2
1
)θd,k−1(τβ,a2

2
)

ψd,kξ(ā1)ψd,kξ(a2)

= κ#CL2(K)
∑

C1,C2∈CL(2)
(K)

θd,k−1(τβ,a2
1
)θd,k−1(τβ,a2

2
)

ψd,k(ā1)ψd,k(a2)

∑
ξ∈CL(2)

(K)∧

1

ξ(ā1a2)

= κh(−D)
∑

C∈CL(2)
(K)

|θd,k−1(τβ,a2)|2

a2k−1
,

10



where we used

∑
ξ∈CL(2)(K)∧

1

ξ(ā1a2)
=


h(−D)

#CL2(K)
, if C1 = C2,

0, if C1 6= C2.

Since

Im(τβ,a2) =

√
D

8βd2a2
,

we have ∑
ξ∈CL(2)

(K)∧

L(ψd,kξ, k) = h(−D)κ′
∑

C∈CL(2)
(K)

Fd,k(τβ,a2)

with

κ′ := κ

(
8βd2

√
D

)k− 1
2

=
π√
D

2(8π)k−1

(k − 1)!
=

π√
D
c(k).

Using the Dirichlet class number formula LD(1) = πh(−D)/
√
D (recall that #O×K = 2

since D > 4), we obtain

1

#CL(2)(K)

∑
ψ∈Ψ

(2)
d,k,β

L(ψ, k) = c(k)LD(1)
1

#CL(2)(K)

∑
C∈CL(2)

(K)

Fd,k(τβ,a2).

As remarked at the beginning of the proof, we have τβ,a2 = τβ,C−2 for a ∈ C−1.

Because [a] 7→ [a2] gives an isomorphism between CL(2)(K) and CL(K)2, the proof is
complete. �

4. Theta functions of half-integral weight

In this section we use the Maass level-raising operators and the Serre-Stark basis
theorem to study properties of the theta function θd,k and compute the asymptotic
expansion of Fd,k in the cusps of X0(4d2).

For a half-integer r ∈ 1
2

+ Z, define

z
1
2 = |z|

1
2 e

iθ
2 if z = |z|eiθ, −π < θ ≤ π,

and zr = (z
1
2 )2r. Define the multiplier system ϑ : Γ0(4)→ C by

ϑ(A) = εδ

(γ
δ

)
for A =

(
α β
γ δ

)
∈ Γ0(4)

where

εd =

{
1 if d ≡ 1 mod 4,

−i if d ≡ −1 mod 4

and
(
γ
δ

)
is the (extended) Jacobi symbol (see [I, (2.73)-(2.76)]).

11



Let r ∈ 1
2

+ Z≥0. Define M∗
r := M∗

r (Γ0(4d2),
(
d
·

)
) to be the space of real-analytic

modular forms of weight r, level 4d2, and character (d/·). These are the real-analytic
functions f : H→ C satisfying

f |rA =

(
d

δ

)
ϑ(A)f for A ∈ Γ0(4d2)

where

f |rA(z) = (γz + δ)−rf(Az)

is the usual slash operator.
Note that

θd,0(z) =
∑

(n,d)=1

(
d

n

)
e(n2z) ∈M∗

1
2

and

θd,1(z) =
∑

(n,d)=1

(
d

n

)
ne(n2z) ∈M∗

3
2
,

and that θd,0 and θd,1 are holomorphic.
Define the Maass level-raising operator by

∂r := D − r

4πy
, D :=

1

2πi

d

dz

and define its l-th iterate by

∂lr := ∂r+2l−2 ◦ ∂r+2l−4 ◦ · · · ◦ ∂r+2 ◦ ∂r, l ∈ Z>0.

A straightforward calculation shows that the operator ∂r commutes with the slash
operator |rA,

∂r(f |rA) = (∂rf)|r+2A, A ∈ SL2(R). (4.1)

It follows that

∂lr : M∗
r →M∗

r+2l. (4.2)

Note that while the operator ∂lr preserves modularity (with an increase in weight), it
destroys holomorphicity.

Proposition 4.1. Let d ≡ 1 mod 4 be squarefree such that sign(d) = (−1)k.

(1) When k = 2l is even, θd,k = ∂l1
2

θd,0.

(2) When k = 2l + 1 is odd, θd,k = ∂l3
2

θd,1.

(3) θd,k ∈M∗
k+ 1

2

.

Proof. Let r ∈ 1
2

+ Z≥0. By induction, one can show that

∂lr =
l∑

j=0

(
l

j

)
Γ(l + r)

Γ(j + r)

(
−1

4πy

)l−j
Dj =

(−1)ll!

(4πy)l

l∑
j=0

(
l + r − 1

l − j

)
(−4πy)j

j!
Dj.

12



In particular, if f ∈M∗
r is holomorphic with Fourier expansion at x =∞ of the form

f(z) =
∞∑
n=0

a(n)e(nz),

then

∂lr(f) =
(−1)ll!

(4πy)l

∞∑
n=0

a(n)Lr−1
l (4πny)e(nz) (4.3)

where

Lαl (z) =
l∑

j=0

(
l + α

l − j

)
(−z)j

j!
, α ∈ C,

is the l-th generalized Laguerre polynomial.
(1) After a substitution j 7→ l − j, one can check that

L
− 1

2
l (z) = (−1/4)lH̃2l(

√
z)/l! (4.4)

where H̃k is the k-the Hermite polynomial defined in (3.4). So using (3.5) we have

∂l1
2
θd,0(z) =

1

(16πy)l

∑
(d,n)=1

(
d

n
)H̃2l(

√
4πn2y)e(n2z)

= (2y)−l
∑

(d,n)=1

(
d

n
)H2l(n

√
2y)e(n2z)

= θd,2l(z),

as claimed.
(2) Similarly, one has

L
1
2
l (z) = (−1/4)lH̃2l+1(

√
z)/2
√
zl!,

and arguing as in (1) we obtain

∂l3
2
θd,1(z) = θd,2l+1(z).

(3) This follows from parts (1) and (2) and the map (4.2). �

Define S∗r ⊂M∗
r to be the subset of modular forms with exponential decay in each

cusp for Γ0(4d2). We call these cusp forms.

Proposition 4.2. Let d ≡ 1 mod 4 be squarefree with sign(d) = (−1)k.

(1) When k is odd (d < 0), θd,k is a cusp form.
(2) When k is even, θd,k is a cusp form if and only if there exists a prime factor

of d congruent to 3 mod 4.
13



Proof. (1) It is well-known that θd,1 is a holomorphic cusp form. Thus θd,1 has expo-
nential decay in each cusp x for Γ0(4d2) which is singular with respect to the multiplier
system ϑ (in the sense of the definition on p. 44 of [I]). Because θd,k = ∂l3/2θd,1 with

l = (k − 1)/2 (Proposition 4.1, part (1)), is suffices to show that ∂l3/2 preserves the

property of having exponential decay in the singular cusps for Γ0(4d2). This can be
verified by a direct calculation applying ∂l3/2 to the Fourier expansions of θd,1 in the

singular cusps (see Proposition 4.4, part (2)).
(2) By a theorem of Serre and Stark [SS], the cuspidality of θd,0 is determined

by the local decomposition of (d/·). Indeed, let χ = (d/·) =
∏

p|d χp be the local
decomposition of χ where

χp =

(
−p
·

) if p ≡ 3 mod 4,

(
p

·
) if p ≡ 1 mod 4.

Then χ is totally even (in the sense of Serre and Stark) if and only if every prime
factor p of d satisfies p ≡ 1 mod 4. Therefore, by [SS, Theorem B] θd,0 is a cusp
form if and only if χ is not totally even if and only if there is a prime factor p of d
congruent to 3 mod 4. Now, because θd,k = ∂l1/2θd,0 with l = k/2 (Proposition 4.1,

part (2)), for k > 0 (even) the argument in (1) implies that θd,k is a cusp form if θd,0 is
a cusp form. On the other hand, if θd,0 is not a cusp form, (the proof of) Proposition
4.4 implies that θd,k is not a cusp form. In fact, Proposition 4.4 gives a concrete proof
that the cuspidality of θd,k is the same as that of θd,0 or θd,1 depending on whether k
is even or odd. �

Proposition 4.3. Assume that (−1)k−1 = sign(d). Then the theta function θd,k−1

is a real analytic modular form of weight k − 1
2

for Γ0(4d2) with character (d/·).
Moreover,

(1) θd,0 and θd,1 are holomorphic.
(2) θd,k−1 is a cusp form if and only if either d > 0 and there exists a prime factor

of d congruent to 3 mod 4, or d < 0.

Proof. This follows from Propositions 4.1 and 4.2. �

We are now in a position to compute the asymptotic expansion of Fd,k in the cusps
of X0(4d2).

Proposition 4.4. (1) Suppose that k ≥ 1 is odd. Then in each cusp x for Γ0(4d2)
which is singular with respect to the multiplier system ϑ we have

Fd,k(σxz) = y
1
2

(k − 1)!2

(16π)k−1(k−1
2

)!2
|ax(0)|2 +O(e−cy) as y →∞

for some c > 0. Here σx ∈ SL2(R) is a scaling matrix such that σx(∞) = x, and
ax(0) is the zeroth Fourier coefficient in the Fourier expansion of θd,0 at x.

Moreover, Fd,k has exponential decay in each cusp x for Γ0(4d2) which is nonsin-
gular with respect to the multiplier system ϑ.
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(2) Suppose that k ≥ 1 is even. Then Fd,k has exponential decay in each cusp x for
Γ0(4d2).

Proof. (1) Suppose that k ≥ 1 is odd. By definition of Fd,k we have

Fd,k(σxz) = Im(σxz)k−
1
2 |θd,k−1(σxz)|2.

Note that if σx = ( a bc d ), then

Im(σxz)k−
1
2 =

Im(z)k−
1
2

|cz + d|2(k− 1
2

)
.

By Proposition 4.1 and (4.1),

θd,k−1(σxz) = (cz + d)k−
1
2 θd,k−1|k− 1

2
σx(z) = (cz + d)k−

1
2∂

k−1
2

1
2

θd,0| 1
2
σx(z).

Suppose that x is singular with respect to the multiplier system ϑ. Let

θd,0|1/2σx(z) =
∞∑
n=0

ax(n)e(nz)

be the Fourier expansion of the holomorphic modular form θd,0 at the singular cusp
x. By (4.3) and (4.4), we have

∂
k−1

2

1/2 (θd,0|1/2σx)(z) =
(−1)

k−1
2

(
k−1

2

)
!

(4πy)
k−1

2

∞∑
n=0

ax(n)L
−1/2
k−1

2

(4πny)e(nz)

=
1

(16πy)
k−1

2

∞∑
n=0

ax(n)H̃k−1(2
√
πny)e(nz).

Putting things together, we have

Fd,k(σxz) =
Im(z)k−

1
2

|cz + d|2(k− 1
2

)

1

(16πy)k−1
|cz + d|2(k− 1

2
)

∣∣∣∣∣
∞∑
n=0

ax(n)H̃k−1(2
√
πny)e(nz)

∣∣∣∣∣
2

= y1/2 1

(16π)k−1

∣∣∣∣∣
∞∑
n=0

ax(n)H̃k−1(2
√
πny)e(nz)

∣∣∣∣∣
2

= y1/2 H̃k−1(0)2

(16π)k−1
|ax(0)|2 +Ox(e

−cy)

as y → ∞ for some explicit c > 0. Finally, using the definition of the Hermite

polynomial H̃k−1(x) and that k ≥ 1 is odd, we compute

H̃k−1(0)2 =
(k − 1)!2(
k−1

2

)
!2
,

so that

Fd,k(σxz) = y1/2 (k − 1)!2

(16π)k−1
(
k−1

2

)
!2
|ax(0)|2 +Ox(e

−cy)
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as y →∞.
Suppose that x is nonsingular with respect to the multiplier system ϑ. For such a

cusp one has the Fourier expansion (see [I, (2.63)-(2.64)])

θd,0|1/2σx(z) = e(κxz)
∞∑
n=0

ax(n)e(nz)

with 0 < κx < 1 such that ϑ(σx) = e(κx). Then an argument similar to the one just
given shows that Fd,k has exponential decay at x.

(2) Suppose that k ≥ 1 is even. The proof in this case is similar except that the
zeroth Fourier coefficient in the Fourier expansion of the holomorphic cusp form θd,1
at every singular cusp is zero. �

5. Galois suborbits of Heegner points

Let N be a positive integer such that every prime factor of N is split or ramified
in K = Q(

√
−D). Let ΛD(N) be the set of Heegner points of discriminant −D on

X0(N). The set ΛD(N) is divided into 2t(N) simple, transitive Gal(H/K)-orbits of
size h(−D) where t(N) is the number of prime divisors of N . By Siegel’s theorem,
one knows that #ΛD(N) → ∞ as D → ∞. Therefore, given a subgroup G ⊂
GH := Gal(H/K) and τ ∈ ΛD(N), it is natural to ask how the Galois (sub)orbit
G · τ = {τσ : σ ∈ G} is distributed on X0(N) as D →∞.

In [D], Duke proved that the full Galois orbit GH · τ is equidistributed on X0(1)
as D → ∞. More recently, Harcos and Michel [HM, Theorem 6] proved that if the
index |GH : G| is bounded by a sufficiently small positive power of D, the Galois
suborbit G · τ is equidistributed on X0(N) as D →∞. This theorem rests on a deep
subconvexity bound for Rankin-Selberg L–functions proved by Harcos and Michel in
[HM], and period relations of Waldspurger [Wal] and Zhang [Zh, Zh2] for hyperbolic
Weyl sums associated to Maass cusp forms.

The are many situations in number theory where one would like to use the equidis-
tribution of Heegner points to obtain information about the growth of a certain quan-
tity, but the “test functions” involved are not compactly supported, and in fact, grow
in the cusps of X0(N) as y → ∞. One example is the function Fd,k appearing in
the average formula (2.2). Other examples occur in the work of Duke [D2] on traces
of singular moduli, and the work of Folsom and the second author on the limiting
distribution of traces of Maass-Poincaré series [FM], and the asymptotic distribution
of the partition function [FM2].

In this section we prove an “equidistribution theorem” for test functions satisfying
a moderate growth condition in the cusps of X0(N). The growth condition is defined
as follows: Let F : H → C be a C∞, Γ0(N)-invariant function. We say that F has
cuspidal growth of power α for some α ∈ R if for every cusp x of X0(N) there exists
a constant cx ∈ C (possibly equal to 0) such that for each integer a ∈ Z≥0,

∆a(F (σxz)− cxyα) = O(e−cy) as y = Im(z)→∞
16



for some c = cx(a) > 0. Here ∆ = −y2(∂2
x + ∂2

y) is the hyperbolic Laplacian where
∆a means we apply the Laplacian a-times, and σx ∈ SL2(R) is a scaling matrix such
that σx(∞) = x.

Theorem 5.1. Suppose that F : H → C is a C∞, Γ0(N)-invariant function with
cuspidal growth of power α < 1. Then for all ε > 0 and any fixed Heegner point τ of
discriminant −D,

1

#G

∑
σ∈G

F (τσ) =

∫
Y0(N)

F (z)dµ(z) (5.1)

+O(|GH : G|D−
1

2827 ) +O(|GH : G|D−δε(α)) +O(D−
(1−α)

2 )

as D →∞ where

δε(α) :=

{
1

1889
− ε, if α ≤ 1

2

1
1889
− α(α− 1

2
)− ε, if 1

2
< α < 1

4
+ 1

2

√
1
4

+ 4( 1
1889
− ε).

Moreover, assuming GRH the estimate (5.1) holds with δε(α) replaced by

δ1,ε(α) :=

{
1
2
− ε, if α ≤ 1

2

1
2
− α(α− 1

2
)− ε, if 1

2
< α < 1

4
+ 1

2

√
1
4

+ 4(1
2
− ε).

Remark 5.2. In the special case G = CL(K)2 the constants 1/2827 and 1/1889
in Theorem 5.1 can be replaced by any constant less than 1/8. This is because
for a square suborbit, the class group characters appearing in the hyperbolic Weyl
sums in [HM, section 6.4] are genus characters, which allows one to factor the L–
functions which arise in the period relations for these hyperbolic Weyl sums and
apply a subconvexity bound of Blomer and Harcos [BH, Theorem 2] for degree 2 L-
functions. This accounts for the presence of the exponent δ < 1/8 in the error terms
in Theorem 1.1.

Proof of Theorem 5.1. We begin by constructing a C∞, Γ0(N)-invariant function
with growth coinciding precisely with that of F in the cusps x of X0(N), and which
vanishes on the Heegner points ΛD(N).

Lemma 5.3. Let T > 1, α > 0, and cx ∈ C for cusps x of X0(N). Then there exists
a C∞, Γ0(N)-invariant function ηT : H→ C such that

ηT (σxz) =


0, 1 < y < T

cxy
αχ(y/T ), T ≤ y ≤ 2T

cxy
α, y > 2T

where χ : R+ → [0, 1] is a C∞ function such that

χ(t) =

{
0, t < 1

1, t > 2.
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Proof. Define ηT by (see [I2, (3.10)])

ηT (z) :=
∑
x

cx
∑

γ∈Γx\Γ0(N)

ψT (Im(σ−1
x γz))

where ψT ∈ C∞0 (R+) is defined by

ψT (t) := tαχ(
t

T
).

Then [I2, (3.17)] with m = 0 combined with the fact

min

{
c > 0 :

(
∗ ∗
c ∗

)
∈ σ−1

x1
Γ0(N)σx2

}
≥ 1 (5.2)

for all cusps x1, x2 of X0(N) (see [I2, (2.28)-(2.31)]) shows that ηT has the properties
stated in the lemma. �

Lemma 5.4. For T �
√
D, the function ηT vanishes on the Heegner points ΛD(N).

Proof. Recall that a Heegner point τ ∈ ΛD(N) has the form

τ = τ[A] =
b+
√
−D

2Na

where A is a primitive ideal and a = NK/Q(A).
For γ ∈ Γ0(N) write

σ−1
x γ =

(
a′ b′

c d

)
∈ SL2(R).

Then

Im(σ−1
x γτ) =

Im(τ)

|cτ + d|2
≤ 1

|cτ + d|2

√
D

2N
.

Assume that c = 0. Then d = 1 (see [I2, (2.15)-(2.17)]), and we have

Im(σ−1
x γτ) ≤

√
D

2N
. (5.3)

Next, assume that c 6= 0. Write

cτ + d =

(
bc

2Na
+ d

)
+ i

(√
Dc

2Na

)
,

so that

|cτ + d|2 =

(
bc

2Na
+ d

)2

+

(√
Dc

2Na

)2

≥ c2D

4N2a2
.

By Minkowski’s theorem, every class [A] contains an ideal A of norm

NK/Q(A) = a <
2

π

√
D.
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Then

c2D

4N2a2
>
c2D

4N2

π2

4D
=

c2π2

16N2
,

so that

Im(σ−1
x γτ) ≤ 1

|cτ + d|2

√
D

2N
<

16N2

c2π2

√
D

2N
≤ 8N

π2

√
D (5.4)

where for the last inequality we used (5.2).
Since ψT (y) = 0 for y < T , we see from the inequalities (5.3) and (5.4) that for

T �
√
D,

ψT (Im(σ−1
x γτ)) = 0

for all γ ∈ Γx\Γ0(N). It follows from the definition of ηT that ηT (τ) = 0. �

Define the “regularized” function

FT (z) := F (z)− ηT (z).

In light of the preceding lemma, we see that to prove Theorem 5.1 it suffices to prove
the following proposition.

Proposition 5.5. Let the notation be as in Theorem 5.1. We have

1

#G

∑
σ∈G

FT (τσ) =

∫
Y0(N)

F (z)dµ(z)

+O(|GH : G|D−
1

2827 ) +O(|GH : G|D−δ2,ε(α)) +O(D−
(1−α)

2 )

as T �
√
D and D → ∞. Here δ2,ε(α) equals δε(α) in general, and δ1,ε(α) if we

assume GRH.

Proof. Let T ≥ T0 � 1 where T0 is a fixed cutoff parameter which is independent of
D. We introduce T0 in order to decompose FT into a sum of two functions so that
we can isolate the contribution of ηT to the spectral decomposition.

Consider the decomposition

FT (z) = FT0(z) + η̃T (z)

where

η̃T (z) := ηT0(z)− ηT (z).

By the properties of ηT0 given in Lemma 5.3 and our assumption that F has cuspidal
growth of power α < 1, we have

∆aFT0(σxz) = O(e−cy) as y →∞

for each integer a ∈ Z≥0. Therefore the proof of [HM, Theorem 6], combined with
subconvexity bounds of Blomer, Harcos, and Michel [BHM] and Blomer and Harcos
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[BH, Corollary 1], implies that

1

#G

∑
σ∈G

FT0(τσ) =

∫
Y0(N)

FT0(z)dµ(z) +O(|GH : G|D−
1

2827 )

as D →∞.
To complete the proof it suffices to show that

1

#G

∑
σ∈G

η̃T (τσ) =

∫
Y0(N)

ηT0(z)dµ(z) +O(|GH : G|D−δ2(α)) +O(D−
(1−α)

2 )

as T �
√
D and D →∞.

By combining the explicit construction of η̃T in Lemma 5.3 with [I2, (7.12)], [I2,
Theorem 11.3] and [I2, (7.13)], one has

η̃T (z) = 〈η̃T , 1〉2 +
1

2π

∑
x

cx

∫
R

(
ψ̂T0(

1

2
+ it)− ψ̂T (

1

2
+ it)

)
Ex(z,

1

2
+ it)dt (5.5)

where (see [I2, (3.13)])

ψ̂(s) :=

∫ ∞
0

ψ(y)y−(s+1)dy

and Ex(z, s) is the real-analytic Eisenstein series associated to the cusp x.
Averaging (5.5) over the suborbit G · τ yields

1

#G

∑
σ∈G

η̃T (τσ) =

∫
Y0(N)

ηT0(z)dµ(z)−
∫
Y0(N)

ηT (z)dµ(z)

+
1

2π

∑
x

cx

∫
R

(
ψ̂T0(

1

2
+ it)− ψ̂T (

1

2
+ it)

)
Wx(t)dt

where

Wx(t) :=
1

#G

∑
σ∈G

Ex(τ
σ,

1

2
+ it).

Using Fourier analysis one obtains the decomposition

Wx(t) =
1

h(−D)

∑
ξ∈dGH
ξ|G=1

∑
σ∈GH

ξ(σ)Ex(τ
σ,

1

2
+ it).

The argument in [HM, pp. 648-649] can be generalized to modular curves of non-
squarefree level, and the estimate of Wx(t) can be reduced to an analogous estimate
for ∑

σ∈GH

ξ(σ)E(τσ,
1

2
+ it)

where E(z, s) is the full level Eisenstein series for SL2(Z) and {τσ} is the set of
Heegner points of discriminant −D on the modular curve X0(1).1 By a classical

1We thank Philippe Michel for explaining this fact to us.
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formula of Dirichlet one has an identity of the form (see [GZ, p. 248])∣∣∣∣∣∑
σ∈G

ξ(σ)E(τσ,
1

2
+ it)

∣∣∣∣∣
2

=

√
D

2

∣∣∣∣L(Θξ,
1

2
+ it)

∣∣∣∣2
where Θξ is the theta function associated to the class group character ξ. By Blomer,
Harcos, and Michel [BHM] one has the following deep subconvexity bound,

L(Θξ,
1

2
+ it)� (1 + |t|)A1D

1
4
− 1

1889

for some A1 > 0. By combining the preceding facts with Siegel’s theorem

h(−D)�ε D
1
2
−ε

we obtain the estimate

Wx(t)� (1 + |t|)A2
|GH : G|
h(−D)

D
1
2
− 1

1889 �ε (1 + |t|)A2 |GH : G|D−
1

1889
+ε (5.6)

for some A2 > 0
By Lemma 5.6, for all B > 0 we have the estimate∫

R

∣∣∣∣ψ̂T0(
1

2
+ it)− ψ̂T (

1

2
+ it)

∣∣∣∣ (1 + |t|)Bdt� C(α, T ) (5.7)

where

C(α, T ) :=

{
log(T ), α ≤ 1

2

Tα−
1
2 , α > 1

2
.

If α ≤ 1/2, take
√
D � T � D and combine (5.6) and (5.7) to obtain

1

2π

∑
x

cx

∫
R

(
ψ̂T0(

1

2
+ it)− ψ̂T (

1

2
+ it)

)
Wx(t)dt = O

(
|GH : G| log(D)

D
1

1889
−ε

)
.

Similarly, if α > 1/2 take
√
D � T � Dα with α < 1

4
+ 1

2

√
1
4

+ 4( 1
1889
− ε) to

obtain

1

2π

∑
x

cx

∫
R

(
ψ̂T0(

1

2
+ it)− ψ̂T (

1

2
+ it)

)
Wx(t)dt = O

(
|GH : G| 1

D
1

1889
−α(α− 1

2
)−ε

)
.

We conclude that

1

#G

∑
σ∈G

η̃T (τσ) =

∫
Y0(N)

ηT0(z)dµ(z)−
∫
Y0(N)

ηT (z)dµ(z) +O
(
|GH : G|D−δε(α)

)
where

δε(α) :=

{
1

1889
− ε, α ≤ 1

2

1
1889
− α(α− 1

2
)− ε, 1

2
< α < 1

4
+ 1

2

√
1
4

+ 4( 1
1889
− ε).
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Assuming GRH, we can replace 1/1889 with 1/2 in the Blomer-Harcos-Michel sub-
convexity bound, and we get the same estimate with δε(α) replaced by

δ1,ε(α) :=

{
1
2
− ε, α ≤ 1

2

1
2
− α(α− 1

2
)− ε, 1

2
< α < 1

4
+ 1

2

√
1
4

+ 4(1
2
− ε).

Finally, if T �
√
D a straightforward estimate yields∫

Y0(N)

ηT (z)dµ(z) = O(D−
(1−α)

2 ).

�

It remains to prove Lemma 5.6.

Lemma 5.6. For all B > 0,∫
R

∣∣∣∣ψ̂T0(
1

2
+ it)− ψ̂T (

1

2
+ it)

∣∣∣∣ (1 + |t|)Bdt� C(α, T )

where

C(α, T ) :=

{
log(T ), α ≤ 1

2

Tα−
1
2 , α > 1

2
.

Proof. Because χ(y/T0)− χ(y/T ) is supported in (T0, 2T ) we have the identity

fT (t) := ψ̂T0(
1

2
− it)− ψ̂T (

1

2
− it) =

∫ 2T

T0

(χ(y/T0)− χ(y/T )) yit+α−
3
2dy.

Then integrating by parts k-times and using that the k-th derivative χ(k)(y) of χ(y)
is supported in (1, 2) yields

(−1)k
k−1∏
j=0

(
it+

1

2
+ (α− 1) + j

)
fT (t) =

(
T
it+ 1

2
+(α−1)

0 − T it+
1
2

+(α−1)
)∫ 2

1

χ(k)(y)yit+α−
3
2

+kdy.

Suppose that |t| ≥ 1. Then we have the estimate∣∣∣∣∣(−1)k
k−1∏
j=0

(it+
1

2
+ (α− 1) + j)

∣∣∣∣∣ ≤
k−1∏
j=0

(
1

2
+ (1− α) + j + 1

)
|t|k .

Furthermore, we have the estimate∣∣∣T it+ 1
2

+(α−1)

0 − T it+
1
2

+(α−1)
∣∣∣ ≤ C1(α, T )

where

C1(α, T ) :=


2

T
1
2−α

0

, α ≤ 1
2

2Tα−
1
2 , α > 1

2
.
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Then by combining the preceding facts we obtain

|fT (t)| ≤ C1(α, T )
max1≤y≤2

∣∣χ(k)(y)
∣∣∏k−1

j=0

(
1
2

+ (1− α) + j + 1
) |2k+α− 1

2 |∣∣k + α− 1
2

∣∣ |t|−k .
Because B > 0 is fixed and k ≥ 1 is arbitrary, it follows that∫

|t|≥1

|fT (t)| (1 + |t|)Bdt� C1(α, T ).

Next suppose that |t| < 1. For α ≤ 1/2 we have the estimate

|fT (t)| ≤ 2 sup
y∈R+

|χ(y)|
∫ 2T

T0

y−1dy � log(T ),

and for α > 1/2 we have the estimate

|fT (t)| ≤ 2 sup
y∈R+

|χ(y)|
∫ 2T

T0

yα−
3
2dy � Tα−

1
2 .

Then because (1 + |t|)B � 1 for |t| < 1, it follows that∫
|t|<1

|fT (t)| (1 + |t|)Bdt� C(α, T ).

�

6. Proof of Theorem 1.1

The average formula (3.6) yields

1

#CL(2)(K)

∑
ψd,k∈Ψ

(2)
d,k

L(ψd,k, k) = c(k)LD(1)
1

#CL(K)2

∑
C∈CL(K)2

Fd,k(τC)

where {τC : C ∈ CL(K)2} is a CL(K)2-orbit of Heegner points on X0(4d2).
By Proposition 4.4 (and its proof) we know that Fd,k has cuspidal growth of power

α = 1/2. Let GH = CL(K), G = CL(K)2, F = Fd,k and α = 1/2 in Theorem 5.1.
Since

LD(1)�ε D
ε,

and ∣∣CL(K) : CL(K)2
∣∣�ε D

ε

by genus theory, we obtain the asymptotic formula

1

#CL(2)(K)

∑
ψd,k∈Ψ

(2)
d,k

L(ψd,k, k) = c(k)LD(1)〈θd,k−1, θd,k−1〉Pet +Od,k,ε(D
− 1

8
+ε)

as D → ∞. The appearance of the exponent 1/8 is justified in Remark 5.2. This
proves (1.1). A similar argument can be used to prove (1.2).
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7. Proof of Theorem 1.4

Theorem 1.1 implies that

1

#CL(2)(K)

∑
ψd,k∈Ψ

(2)
d,k

L(ψd,k, k)

LD(1)
= c(k)〈θd,k−1, θd,k−1〉Pet + o(1)

as D → ∞. Using CL(2)(K) = CL(K)/CL2(K), the Dirichlet class number formula,
Siegel’s theorem and genus theory, we obtain for every ε > 0,∑

ψd,k∈Ψ
(2)
d,k

L(ψd,k, k) = c(k)π
h(−D)2

#CL2(K)
√
D

(〈θd,k−1, θd,k−1〉Pet + o(1))

�d,k,ε D
1
2
−ε. (7.1)

By Duke, Friedlander, and Iwaniec [DFI] one has the subconvexity bound

L(ψ, k)�d,ε D
1
2
− 1

60
+ε (7.2)

for every ψ ∈ Ψd,k (here ψ corresponds to a CM cuspidal eigenform for Γ0(d2D2) of
weight 2k with trivial nebentypus). It follows from (7.1) and (7.2) that

#{ψd,k ∈ Ψ
(2)
d,k : L(ψd,k, k) 6= 0} �d,k,ε D

1
60
−ε.

8. Proof of Theorem 1.5

We will prove Theorem 1.5 using the main conjecture of Iwasawa theory for imagi-
nary quadratic fields due to Rubin [Ru2]. To deduce Theorem 1.5 from the main con-
jecture, we must use Iwasawa theoretic techniques a number of times. In particular,
we make use of the crucial fact that a certain ideal class group over some Zp-extension
has no non-trivial finite submodule. This type of result is used frequently in Iwasawa
theory (see for example [Gre]).

The hypothesis on p in the statement arises in the following way. Assume p splits
in K. If p is any prime of K above p, then the local condition (defined by Bloch and
Kato) at p is essentially the relaxed local condition and the local condition at p̄ is
the strict local condition. In turn, this enables us to use the Selmer groups over the
Zp-extensions more freely.

It is possible that one might obtain a result similar to Theorem 1.5 when p is inert
in K. For example, Han [Han] obtained a result similar to Theorem 1.5 for both
primes which are split and primes which are inert for imaginary quadratic fields K
of class number 1 by using p-adic Hodge theory instead of the formal group theory
of elliptic curves. In the future, it might be worthwhile to prove our result for inert
primes by adapting Han’s techniques.

First we define a Selmer group for a p-adic representation following Bloch and Kato
([BK]).
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Definition 8.1 (Bloch-Kato Selmer group). Let F be a finite extension of Qp and O
be its ring of integers. Let T be a free O-module of finite rank with Gal(Q̄/K)-action
and V be T ⊗ F and A be V/T . For any prime v not above p we let

H1
f (Kv, V ) = ker

(
H1(Kv, V )→ H1(Kun

v , V )
)

and for any prime v above p we let

H1
f (Kv, V ) = ker

(
H1(Kv, V )→ H1(Kv, V ⊗F Bcris)

)
for Fontaine’s ring Bcris. (The definition of Bcris is quite lengthy and we refer the
reader to [F].) We define the local condition

H1
f (Kv, A) = im

(
H1
f (Kv, V )→ H1(Kv, A)

)
for every prime v and define the Bloch-Kato p-Selmer group for A by

Selp(A/K) := ker

(
H1(K,A)→

∏
v

H1(Kv, A)/H1
f (Kv, A)

)
.

Also, the following relaxed Selmer group will be useful in our argument.

Definition 8.2. Let L be any extension of K. We define

S(A/L) := ker

H1(L,A)→
∏
v-p

H1(Lunv , A)

 .

Now we define a representation attached to a Hecke character. Let ψ be a Hecke
character of K with conductor f . Although our argument does not depend much on
the infinity type, we let its infinity type be (2k − 1, 0).

Throughout this section we let K(g) denote the ray class field of conductor g, and
let GK = Gal(Q̄/K).

Let p be a prime number. By [We] it is well-known that the field extension K(ψ)
of K obtained by adjoining the values of ψ is a finite extension, and if we fix an
embedding ip : Q̄ → Cp, ψ extends continuously to a Galois character which factors
through Gal(K(fp∞)/K). From now on, this Galois character will be denoted by the
same letter ψ.

We fix a prime p that splits completely over K/Q. Assume p is prime to f and
[K(f) : K]. We let p be the prime above p induced by the embedding ip.

Let d = [K(fp) : K]. From now on, we let F be any extension of Qp containing all
the d-th roots of unity and the values of ψ under the embedding ip : Q̄→ Cp, and let
O be OF . We let F (ψ) be the one-dimensional F -representation on which GK acts
through ψ (in other words, for x ∈ F (ψ) and σ ∈ GK , σ · x = ψ(σ|K(fp∞))x), and
define Vψ to be its (−k + 1)−th Tate twist

Vψ := F (ψ)(−k + 1) = F (ψ)(χ−k+1
cyc ),
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and similarly define

Tψ := O(ψ)(−k + 1), Aψ := Vψ/Tψ = F/O(ψ)(−k + 1). (8.1)

Let φ be the Hecke character of K defined by

φ(a) = ψ(a)/NK/Qak−1

for every ideal a prime to f . Its conductor is f and its infinity type is (k,−k + 1).
Since ψ(a)ψ̄(a) = NK/Qa2k−1, we have

Vψ = F (φ), L(φ−1, 0) = L(ψ̄, k).

Now, we will apply Iwasawa theory to relate the order of the Selmer group of Aψ
and the value of L(ψ̄, k). Every assumption we made is still in force. Let K∞ be the
maximal Z2

p-extension of K inside K(fp∞). Because [K(fp∞) : K∞] is prime to p, it
is not hard to see that by the Hochschild-Serre spectral sequence we have

S(Aψ/K∞) ∼= S(Aψ/K(fp∞))Gal(K(fp∞)/K∞).

Let M be the maximal abelian extension of K(fp∞) unramified outside p. Let
X = Gal(M/K(fp∞)). Since GK(fp∞) acts trivially on Aψ, we have

S(Aψ/K(fp∞)) ∼= Hom(X,Aψ).

Thus
S(Aψ/K∞) ∼= Hom(X(φ−1)∆, F/O)

for ∆ = Gal(K(fp∞)/K∞).

Proposition 8.3. Let wf be the group of the roots of unity of K congruent to 1
modulo f . If wf = {1}, φ|∆ is not trivial. (Note that for a square-free D > 4, the
only roots of unity in K = Q(

√
−D) are ±1.)

Proof. First we note that if wf = {1}, there is an elliptic curve E over K(f) with
complex multiplication by OK such that its Hecke character ψE/K(f) of K(f) satisfies

ψE/K(f) = ϕE ◦NK(f)/K

for a Hecke character ϕE of K of infinity type (1, 0) and conductor f (see [deS, p.
41]). Then we can write

φ = ϕkEϕ̄
−k+1
E η

for a finite character η : I(f)/Pf → C×. Through I(f)/Pf ∼= Gal(K(f)/K), η induces
a Galois character which we denote by the same letter. We also use the same letters
ϕE and ϕ̄E to denote the Galois characters of Gal(K(fp∞)/K) induced from them.

Since p splits completely over K/Q, ϕE factors through Gal(K(fp∞)/K) and ϕ̄E
through Gal(K(f p̄∞)/K), and ϕE = χcyc on the decomposition group Dp of p and
ϕ̄E = χcyc on Dp̄.

Since k or k − 1 is not divisible by p− 1, it follows that φ on Gal(K(fp)/K(f)) is
not trivial. �
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From now on, we assume wf = 1. We fix the elliptic curve E mentioned in the
proof of Proposition 8.3. If we fix the Weierstrass model

y2 = 4x3 − g2x− g3, g2, g3 ∈ F
of E, we can find a lattice L of C with

g2 = 60 ·
∑

ω∈L−{0}

ω−4, g3 = 140 ·
∑

ω∈L−{0}

ω−6.

Since all Galois conjugates of E are isogenous, by taking a Galois conjugate of E if
necessary, we can assume L = Ωf for some Ω ∈ C×.

Let U(fpn) be the group of local units of K(fpn) ⊗K Kp congruent to 1 modulo
the primes above p and U∞ be lim←−U(fpn). Let C(fpn) be the closure of the group
of elliptic units in U(fpn) and C∞ be lim←−C(fpn). For the definition of elliptic units,
see [deS, chapter 2, section 2].

Remark 8.4. We should note that when f is a power of a prime, the elements defined
in [deS] are not units. However, we can easily fix this. See [Ru2, section 1].

For an algebra R, a finitely generated R-module is called pseudo-null if it is anni-
hilated by an ideal of height 2. A pseudo-isomorphism of R-modules is a map with
pseudo-null kernel and cokernel.

Let Λ be the Iwasawa algebra O[[Gal(K∞/K)]]. It follows from the well-known
classification theorem of Λ-modules that for every finitely generated torsion Λ-module
Y we can find elements fi of Λ and pseudo-isomorphisms

Y → ⊕Λ/fiΛ, ⊕Λ/fiΛ→ Y.

The characteristic ideal charΛ(Y ) := (
∏
fi)Λ is independent of the choice of the

pseudo-isomorphism.

Theorem 8.5 (Rubin [Ru2], Theorem 4.1 (i)). One has

charΛ(Xφ|∆) = charΛ((U∞/C∞)φ|∆).

The following is a generalization of [Ya]. Recall that Ω is the complex period of the
elliptic curve E given by the Weierstrass model, and this number does not depend
on anything but the conductor f and the Weierstrass model of E. In a sense, it does
not depend much on the conductor either because we can use the same elliptic curve
E for any Hecke character with conductor divisible by f .

Theorem 8.6 ([deS], chapter 2, Theorem 4.14). Let R be the ring of integers in Cp

(i.e. p-adic numbers of non-negative p-adic valuation). There is a measure µf on
Gal(K(fp∞)/K) and a p-adic period Ωp ∈ R× such that for any Hecke character χ
of conductor dividing fp∞ and of type (k, j) with 0 ≤ −j < k we have

Ωj−k
p

∫
Gal(K(fp∞)/K)

χ(σ)dµf (σ) = Ωj−k(

√
dK

2π
)jG(χ)(1− χ(p)

p
)Lf p̄(χ

−1, 0)
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which is in Q̄.

Here, Lf p̄(χ
−1, 0) is the sum over all ideals prime to f p̄, and G(χ) is a certain Gauss

sum which is 1 if the conductor of χ is prime to p.
For any integer n, a map

µn : Gal(K(fpn)/K)→ O

given by
µn(σ) = µf (σ ·Gal(K(fp∞)/K(fpn)))

can be canonically identified with an element of the group ring O[Gal(K(fpn)/K)]
by
∑
µn(σ)σ. By taking the inverse limit, µf can be identified with an element g of

O[[Gal(K(fp∞)/K)]].

Let gφ be its image under

φ|∆ : O[[Gal(K(fp∞)/K)]]→ Λ.

We choose topological generators γ1 of

Gal(K(fp∞)/K(fp))

and γ2 of
Gal(K(f p̄∞)/K(f p̄)).

Consider γ1 and γ2 as topological generators of Gal(K(fp∞)/K(fp)) and identify Λ
with the power series ring O[[S, T ]] by identifying γ1 = S + 1 and γ2 = T + 1. We let
gφ(S, T ) be the power series corresponding to gφ under the identification Λ ∼= O[[S, T ]].

Proposition 8.7. We have

charΛ((U/C)φ|∆) = (gφ).

Proof. Since φ|∆ is not trivial (Proposition 8.3), this follows from [deS, p. 105]. �

Thus by Theorem 8.5 we have the following.

Proposition 8.8. We have

charΛ(X(φ−1)∆) = (gφ(φ(γ1)(S + 1)− 1, φ(γ2)(T + 1)− 1)).

Let K ′∞ be the maximal Zp-subextension of K(fp∞). We can easily see that we can
consider γ1 as a topological generator of Γ1 := Gal(K ′∞/K). When Γi is the closed
subgroup of Gal(K∞/K) generated by γi for i = 1, 2, we let Λi denote O[[Γi]].

Proposition 8.9. We have

charΛ1(X(φ−1)∆/(γ2 − 1)X(φ−1)∆) = (gφ(φ(γ1)(S + 1)− 1, φ(γ2)− 1)).

Proof. Let Y be a finitely generated torsion Λ-module with no non-trivial pseudo-null
submodule. Let f(S, T ) denote a generator of charΛ Y .

By [Ru2, Lemma 6.2 (i)], the following are equivalent:

(1) Y/(γ2 − 1)Y is Λ1-torsion,
(2) f(S, 0) is not 0 in Λ1

(3) Y Γ2 is a pseudo-null Λ-module.
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If any of them is true, by [Ru2, Lemma 6.2 (ii)] we have

charΛ1(Y/(γ2 − 1)Y ) = f(S, 0) charΛ1(Y Γ2).

However, Y Γ2 is pseudo-null and by our assumption Y has no non-trivial pseudo-null
submodule, thus Y Γ2 = 0.

By [Ru2, Theorem 5.3] (see also [P, chapter II]) X is O[[Gal(K(fp∞)/K)]]-torsion
and has no non-trivial pseudo-null submodule. Of course the same holds when we
twist X by φ−1. Thus our claim follows. �

Let M∨ denote the Pontryagin dual HomO(M,F/O).

Proposition 8.10. If k − 1 is not divisible by p− 1, then S(Aψ/K
′
∞)∨ has no non-

trivial finite Λ1-submodule and

charΛ1 S(Aψ/K
′
∞)∨ = (gφ(φ(γ1)(S + 1)− 1, φ(γ2)− 1)).

Proof. First we consider the following commutative diagram.

0→ S(Aψ/K
′
∞) → H1(K ′∞, Aψ) →

∏
w′-p

H1(K
′,un
∞,w′ , Aψ)

↓ ↓ ↓
0→ S(Aψ/K∞)Γ2 → H1(K∞, Aψ)Γ2 →

∏
w-p

H1(Kun
∞,w, Aψ).

As we have seen, by the Hochschild-Serre spectral sequence the middle vertical arrow
is an isomorphism. Since any prime of K not above p is unramified over K∞/K and
finitely decomposed over K ′∞/K, the right vertical arrow is injective for primes not
above p.

For a prime of K∞ above p̄ (which we also denote by p̄ since there is only one),
since we assume k − 1 is not divisible by p − 1 and φ is equal to ϕkEϕ̄

−k+1
E η, GKun

∞,p̄

does not act trivially on any non-trivial subgroup of Aψ. Thus by the Hochschild-
Serre spectral sequence the right vertical arrow is injective for p̄. Hence by the Snake
Lemma the left vertical arrow is an isomorphism.

Thus

S(Aψ/K
′
∞)∨ ∼= X(φ−1)∆/(γ2 − 1)X(φ−1)∆

and we know its characteristic ideal from Proposition 8.9.
The proof of [Ru2, Lemma 11.15] shows that X(φ−1)/(γ2 − 1)X(φ−1) has no non-

trivial finite Λ1-submodule if X/(γ2 − 1)X has no non-trivial finite Λ1-submodule.
We have X/(γ2 − 1)X ∼= Gal(M(fp∞p̄)/K(fp∞p̄)) where M(fp∞p̄) is the maximal
abelian extension of K(fp∞p̄) unramified outside p. By [Ru2, Theorem 5.3 (v)] our
claim follows. �

Remark 8.11. We can obtain the characteristic ideal of S(Aψ/K
′
∞)∨ without the

assumption k − 1 is not divisible by p − 1, thus without this assumption we can
prove that Lf p̄(φ

−1, 0) 6= 0 if and only if S(Aψ/K) is finite (which is equivalent to
Selp(Aψ/K) being finite, as we will see later).
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We need to examine the Bloch-Kato local conditions more closely. For a prime
v - p it is clear that H1

f (Kv, Aψ) = 0.

Recall that we can write φ = φkEφ̄
−k+1
E η where φE = χcyc on Dp and φ̄E = χcyc on

Dp̄. (See the proof of Proposition 8.3.) By [BK, section 3] we have

dimF H
1
f (Kv, V ) = dimF (V ⊗BDR)GKv/(V ⊗B0

DR)GKv

for v|p, thus we can see dimF H
1
f (Kp, Vψ) = 1 and dimF H

1
f (Kp̄, Vψ) = 0.

On the other hand, by the local Euler characteristic formula and Tate local duality
we have

dimF H
1(Kv, V ) = [Kv : Qp] dimF V + dimF H

0(Kv, V ) + dimF H
0(Kv, V

∗)

where V ∗ denotes Hom(V, F (1)). It is clear that V
GKp

ψ = 0 and (V ∗ψ )GKp = 0, thus we

have dimF H
1(Kp, Vψ) = 1.

Thus we can conclude that H1
f (Kp̄, Aψ) = 0 and H1

f (Kp, Aψ) is the image of

H1(Kp, Vψ)→ H1(Kp, Aψ).

By the long exact sequence of cohomology groups induced from Tψ → Vψ → Aψ, we
find that the cokernel of the map above is H2(Kp, Tψ)tors. We have∣∣H2(Kp, Tψ)

∣∣ =
∣∣H0(Kp,HomO(Tψ, F/O(1)))

∣∣ =
∣∣F/O(φ−kE φ̄k−1

E η−1)(1)GKp

∣∣
by local Tate duality, and if we assume p − 1 - k − 1, this last group is trivial, thus
we can see H1

f (Kp, Aψ) = H1(Kp, Aψ) if p− 1 - k − 1.
Also, we need to examine the local conditions of S(Aψ/K

′
∞).

Every prime v 6= p of K is unramified and finitely decomposed over K ′∞/K, thus

for any w|v, H1(K
′un
∞,w/K

′
∞,w, A

G
K
′un∞,w

ψ ) = 0.
Our discussion so far helps find the kernel and cokernel of

Selp(Aψ/K)→ S(Aψ/K
′
∞)Gal(K′∞/K),

however for a precise result, we need more techniques. First, we need a generalized
version of the Cassels-Tate theorem. Let Σ be a set of places of K including ∞ and
the prime divisors of pf . We let KΣ denote the maximal extension of K unramified
outside Σ. We define T ∗ψ := HomO(Aψ, F/O(1)), V ∗ψ := T ∗ψ ⊗Qp, and A∗ψ := V ∗ψ /T

∗
ψ.

We note that for any prime v there is the non-degenerate local Tate pairing

H1(Kv, Aψ)×H1(Kv, T
∗
ψ)→ F/O.

We define H1
f (Kv, T

∗
ψ) as the exact annihilator of H1

f (Kv, Aψ) with respect to this

pairing. One consequence is that H1
f (Kv, T

∗
ψ) contains H1(Kv, T

∗
ψ)tors. Another con-

sequence is the following: Define

S(T ∗ψ/K) := ker(H1(KΣ/K, T
∗
ψ)→

∏
v∈Σ

H1(Kv, T
∗
ψ)/H1

f (Kv, T
∗
ψ)).

Note that V ∗ψ
∼= F (ψ−1)(χkcyc)

∼= F (ψ̄)(−k + 1). It is not hard to see S(Aψ/K) is
finite if and only if S(T ∗ψ/K) is finite.
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Proposition 8.12. If S(T ∗ψ/K) is finite,

H1(KΣ/K,Aψ)→
∏
v∈Σ

H1(Kv, Aψ)/H1
f (Kv, Aψ)

is surjective.

Proof. Similar to [Gre, Proposition 4.13] and [K, Proposition 13]. �

For the following proposition, recall that H1(K
′un
∞,w/K

′
∞,w, A

G
K
′un∞,w

ψ ) = 0 for any
prime w not above p.

Proposition 8.13. If k − 1 is not divisible by p− 1, we have

# Selp(Aψ/K)
∏

v∈Σ,v-p

#H0(Kv, Aψ) = #S(Aψ/K
′
∞)Γ1 .

Proof. Recall our discussion about the local conditions. Consider the following com-
mutative diagram.

0→ Selp(Aψ/K) → H1(KΣ/K,Aψ) →
∏

v∈Σ,v 6=p

H1(Kv, Aψ)

↓ ↓ ↓
0→ S(Aψ/K

′
∞)Γ1 → H1(KΣ/K

′
∞, Aψ)Γ1 →

∏
w|Σ,w-p

H1(K ′∞,w, Aψ).

Since AGK′∞ = 0, by Hochschild-Serre, the middle vertical map is an isomorphism.
As for the right vertical map, first we note Gal(K ′∞,w/Kv) ∼= Zp for every w. Let

γw be its topological generator. For H = A
GK′∞,w
ψ we have a short exact sequence

0→ HGKv → H
γw−1→ H → H/(γw − 1)H → 0.

Since H is a finite group, #H/(γw − 1)H = #HGKv . By [Ru3, Lemma B.2.8],

H1(K ′∞,w/Kv, H) ∼= H/(γw − 1)H.

Note that by Proposition 8.12 the last map in the top of the commutative diagram
above is surjective. Thus by the Snake Lemma, our claim follows. �

For a prime v of K, let av denote #H0(Kv, Aψ) which plays the role of the local
Tamagawa number.

We let vp denote the normalized p-adic valuation. Recall the definition of the
complex period Ω, which depends only on the conductor f . Also, recall that ψ is a
Hecke character of infinity type (2k− 1, 0) and conductor f , and recall the definition
of Aψ.

Theorem 8.14. Recall we assume wf = {1} (see Proposition 8.3). Let p be a prime
that splits completely over K/Q and is prime to f .

(1) Selp(Aψ/K) is finite if and only if Lf p̄(ψ̄, k) 6= 0.
31



(2) Additionally, assume k − 1 and k are not divisible by p− 1. If Lf p̄(ψ̄, k) 6= 0,
then

vp(# Selp(Aψ/K)
∏
v∈Σ

av) = [O : Zp] · vp
(

(

√
dK

2π
)−k+1(1− ψ(p)

pk
)
Lf p̄(ψ̄, k)

Ω2k−1

)
.

Proof. The first claim follows from Proposition 8.10 (also see Remark 3).
Let B be a Λ1-torsion module with no non-trivial finite Λ1-submodule and let

f(S) ∈ Λ1
∼= O[[S]] be a generator of the characteristic ideal of B. It is an exercise

in Iwasawa theory to show vp(#B/(γ1 − 1)B) = vp(f(0)). Note that since k − 1 and
k are not divisible by p − 1, H0(Kv, Aψ) = 0 for v = p, p̄. The rest follows from
Theorem 8.6 and Propositions 8.10 and 8.13. �

Remark 8.15. i) The presence of [O : Zp] on the right side in (2) is due to the fact
that the groups we deal with are actually O-modules.

ii) It is likely that (2) should be true for almost all p, but one needs additional
techniques for other primes.

9. Complex periods

To discuss the issue of periods, first we need to explain the Tamagawa number
defined by Bloch and Kato [BK] because in their paper a complex period is simply
the Tamagawa number for infinite places. And, to that end, we need to state their
conjecture in its original form (rather than a more common version like Theorem 8.14).
For the readers not familiar with the Bloch-Kato conjecture, one can consider it as
an analogue of the Birch and Swinnerton-Dyer conjecture for motives.

First, we need to state the conjecture precisely.
Let (V,D) be a motivic pair of Q-vector spaces (see [BK, Definition 5.5]). For

p ≤ ∞, let Vp denote V ⊗Qp and Dp denote D ⊗Qp. Let A = A(Q). Here D has a
filtration structure which induces the (Hodge) filtration of DR(V ⊗ Qp) for p ≤ ∞.
To state the Bloch-Kato conjecture we need to choose a lattice M of V such that
M ⊗ Ẑ is Gal(Q/K)-stable in V ⊗ Af (see [BK, p. 372]). We define the rational
points by

A(Kv) := H1
f (Kv,M ⊗ Ẑ) for a finite place v,

A(C) := ((D∞ ⊗R C)/((D0
∞ ⊗R C) +M))+

where D∞ = D ⊗ R and the inclusion M → D∞ ⊗R C is given by the identification
D∞ ⊗R C = V∞ ⊗ C. (For the definition of H1

f , see [BK].)
Note that for any p ≤ ∞ the exponential map

exp : Dp/D
0
p ⊗Kv → A(Kv) (v|p)

is a local isomorphism.
Fix an isomorphism ω : det(D/D0) ∼= Q. This isomorphism induces a Haar measure

on Dp/D
0
p, thus by the aforementioned exp it induces a Haar measure µv,ω on A(Kv)

for every (finite or infinite) place v. Let S be a sufficiently large set of a finite
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number of places of K including ∞ and the ramified primes. Let l be a fixed prime
number such that no prime in S is lying above it, and for any prime v of K let
Pv(Vl, X) = det(1−Frob−1

v X|V Iv
l ) and let LS(V, s) =

∏
v 6∈S Pv(Vl, Nv

−s)−1. Then by

[BK, Theorem 4.1] we have

LS(V, 0)−1 =
∏
p 6∈S

µv,ω(A(Kv)). (9.1)

if LS(V, s) is convergent at s = 0.
We will not discuss the (somewhat conjectural) group of global rational points

A(K) in detail, but we only mention that A(K)tor ∼= H0(K,M ⊗Q/Z).
We define

Tam(M) = µ((
∏

A(Kv)/A(K)). (9.2)

The following is the Bloch-Kato conjecture, which should be distinguished from the
other Bloch-Kato conjecture in K-theory.

Conjecture 9.1. (1) rankA(K) = ords=0 L(V, s).

(2) Tam(M) =
#(H0(K,M∗ ⊗Q/Z(1)))

#X(M/K)
.

But perhaps most readers are more familiar with the following:

Conjecture 9.2. Let p be any prime number. Define

corankZp A = rankZp Hom(A,Qp/Zp)

for any abelian group A. Then

(1) corankZp Selp(M/K) = ords=0 L(V, s).
(2)

LS(V, 0) =
# Selp(M/K)

#H0(K,M∗ ⊗Q/Z(1))
µ∞,ω(A(C)/A(K))

∏
v∈S−∞

µv,ω(A(Kv)).

Here (2) is induced by (9.1). Note that the right side does not depend on the choice
of ω.

For a finite place v of K let av denote #H0(Kv,M ⊗ Q/Z). By [BK, Lemma
5.10] and its discussion on p. 373, µv,ω(A(Kv)) is the product of some l-power and
H0(Kv,M ⊗

∏
h6=l Qh/Zh) where v lies above l. Thus for any prime p 6= l, we have

µv,ω(A(Kv)) = #H0(Kv,M ⊗Qp/Zp) (9.3)

up to a p-adic unit.
Now we will construct the motivic pair attached to our Hecke character ψ. This is

constructed by Schappacher [Sc] following a much more general result of Jannsen [J]
(see also Scholl [S]), but we need a more specific construction.

Now we define a motivic pair (V,D) and a lattice M ⊂ V attached to ψ. We let
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Vp = Qp(φp)⊕Qp(φp̄)

if (p) = pp̄ in K, and

Vp = Kp(φp)

if p is inert over K/Q. (This is a little misleading because the values of φp and so on
are not necessarily in Qp or Kp, but it seems better to keep the notation simple.)

We define VDR and VB as follows. Recall the elliptic curve E/F we chose earlier.
Also recall that by the Weierstrass model we can identify E with C/L where L = Ωf
for some Ω ∈ C× and some ideal f ⊂ OK . Let F ∈ f be some non-zero number prime
to p. Let (MB(E),MDR(E),Mp) be the motive of E. Then MB(E) is given by

MB(E) = H−1
B (E) = QX1 ⊕QX2

where X1 and X2 are the cycles obtained by the directed line segments from 0 to ΩF
and from 0 to

√
−DΩF on C/L.

The de Rham realization MDR(E) is given by

MDR(E) = Qω̂1 ⊕Qω̂2

where ω̂1 corresponds to d̂z and ω̂2 corresponds to d̂z̄ such that

FiliMDR = 0, i > 0,

F il0MDR = Qω2,

F iliMDR = MDR, otherwise.

Similarly, let (MB(Gm),MDR(Gm),Mp(Gm) be the motive of the multiplicative
group Gm. First, identify exp(C) with C/2πiZ, then MB(Gm) is

MB(Gm) = QX
where X is the directed path from 0 to 2πi on C/2πiZ. The de Rham realization
MDR(Gm) is given by Qε̂ where ε̂ is the dual basis of the differential ε = dz/z.

Now similar to [Gu2, section 2], for any subset π of {1, 2, . . . , n} we define

π(i) = 1 if i ∈ π,
π(i) = 2 if i 6∈ π.

As in [Gu2] we define the Betti realization

VB := (Qe1 ⊕Qe2)⊗QX1−k

where e1 and e2 are defined by

1

(−D)2k−1

∑
π⊂{1,...,2k−1}

D#π/2Xπ(1) ⊗ · · · ⊗Xπ(2k−1) = e1 +
1√
−D

e2.

And, define the de Rham realization
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VDR = (Qω̂⊗2k−1
1 ⊕Qω̂⊗2k−1

2 )⊗Qε̂⊗−k+1.

Now we define a strongly divisible (see [BK, p. 362] for its definition) lattice M
inside V by

MB = (Ze1 + Ze2)⊗ ZX⊗−k+1

such that MB ⊗Z Zp is mapped onto the lattice Mp of Vp

Zp(φp)⊕ Zp(φp̄)

if p splits and

OK,p(φp)

otherwise.
On the other hand, define a vector space with a filtration D by D = Qx1 ⊕ Qx2

such that

Fili(D) = 0, i > k − 1,

F ili(D) = Qx2, −k < i ≤ k − 1,

F ili(D) = D, i ≤ −k.

Similar to [Gu2, Lemma 3.1] we obtain

µ∞,ω(A(C)/A(K)) = α(
√
dK/2π)2(−k+1)(NK/QFΩΩ̄)2k−1

for some α ∈ Q×. (In [Gu2], µ∞,ω is normalized. This process seems equivalent to
multiplying µ∞,ω by some α ∈ Q×. This makes sense because µ∞,ω(A(C)/A(K))
plays the role of a complex period, and a complex period is in general defined up
to some algebraic number.) Assume p is prime to αF . If Lf p̄(V, 0) is nonvanishing,
Conjecture 9.2 can be rewritten as follows.

Conjecture 9.3. (1) Selp(Mp ⊗Q/Z/K) is finite.

(2) Lf p̄(V, 0) =
# Selp(Mp ⊗Q/Z/K)

#H0(K,M∗ ⊗Qp/Zp(1))
(
√
dK/2π)2(−k+1)(ΩΩ̄)2k−1

∏
v

av up to

a p-adic unit.

By the functional equation we have L(φ−1, 0) = L(ψ̄, k), and we also note that
LS(V, 0) = L(φ−1, 0) · L(φ̄−1, 0). Similarly, we note that Selp(M/K) ∼= Selp(Aψ) ⊕
Selp(Aψ̄). Since L(φ−1, 0) = L(φ̄−1, 0) and Selp(Aψ) ∼= Selp(Aψ̄), we see that Conjec-
ture 9.3 follows from Theorem 8.14 under the assumed conditions.
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10. Proofs of Theorem 1.7 and Corollary 1.8

Proof of Theorem 1.7. Liu and Xu [LX] (extending earlier work of Miller and

Yang [MiY]) proved that if (2k − 1, h(−D)) = 1 and |d| �k,ε D
1
12
−ε, then

#{ψd,k ∈ Ψd,k : L(ψd,k, k) 6= 0} = h(−D). (10.1)

Part (1) follows by combining Theorem 1.5 with (10.1). Similarly, part (2) follows by
combining Theorem 1.5 with Theorem 1.4. �

Proof of Corollary 1.8. Recall the p∞-descent sequence

0→ A(D)(H)⊗Qp/Zp → Selp(A(D)/H)→X(A(D)/H)p → 0.

One can show that Selp(A(D)/H) ∼= Selp(χH/H), and by Shapiro’s lemma

Selp(χH/H) ∼
∏

ξ∈CL(K)∧

Selp(ψ1ξ/K) =
∏

ψ1∈Ψ1,1

Selp(ψ1/K)

where ∼ means there is a homomorphism with finite kernel and cokernel. Thus
Theorem 1.7 (1) implies that Selp(A(D)/H) is finite, which implies that A(D)(H)
and X(A(D)/H)p are finite. �
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submitted.

[FM2] A. Folsom and R. Masri, Equidistribution of Heegner points and the partition function, Math-
ematische Annalen, DOI: 10.1007/s00208-010-0478-6.

[F] J-M. Fontaine, Sur certains types de representations p-adiques du groupe de Galois d’un corps
local; construction d’un anneau de Barsotti-Tate. Ann. of Math. 115 (1982), 529–577.

[Gre] R. Greenberg, Iwasawa theory for elliptic curves. Arithmetic theory of elliptic curves (Cetraro,
1997), 51–144, Lecture Notes in Math., 1716, Springer, Berlin, 1999.

[Gr] B. Gross, Arithmetic on elliptic curves with complex multiplication. With an appendix by B.
Mazur. Lecture Notes in Mathematics, 776. Springer, Berlin, 1980. iii+95 pp.

[GZ] B. Gross and D. Zagier, Heegner points and derivatives of L–series. Invent. Math. 84 (1986),
225–320.

[Gu1] L. Guo, General Selmer groups and critical values of Hecke L–functions. Math. Ann. 297
(1993), 221–233.

36



[Gu2] L. Guo, On the Bloch-Kato conjecture for Hecke L-functions. J. Number Theory 57 (1996),
340–365.

[Han] B. Han, On Bloch-Kato Conjecture of Tamagawa Numbers for Hecke Characters of Imaginary
Quadratic Number Field. Ph. D. Thesis, the University of Chicago, 1997.

[HM] G. Harcos and P. Michel, The subconvexity problem for Rankin-Selberg L-functions and equidis-
tribution of Heegner points. II. Invent. Math. 163 (2006), 581–655.

[I] H. Iwaniec, Topics in classical automorphic forms. Graduate Studies in Mathematics, 17. Amer-
ican Mathematical Society, Providence, RI, 1997. xii+259 pp.

[I2] H. Iwaniec, Introduction to the spectral theory of automorphic forms. Biblioteca de la Revista
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