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We give a formula for the values of automorphic Green functions on the special rational 0-cycles (big CM points)

attached to certain maximal tori in the Shimura varieties associated to rational quadratic spaces of signature (2d, 2).

Our approach depends on the fact that the Green functions in question are constructed as regularized theta lifts of

harmonic weak Maass forms, and it involves the Siegel-Weil formula and the central derivatives of incoherent Eisenstein

series for totally real fields. In the case of a weakly holomorphic form, the formula is an explicit combination of

quantities obtained from the Fourier coefficients of the central derivative of the incoherent Eisenstein series. In the case

of a general harmonic weak Maass form, there is an additional term given by the central derivative of a Rankin-Selberg

type convolution.

1 Introduction

In 1985, Gross and Zagier discovered a beautiful factorization formula for singular moduli [16]. This has inspired

a lot of interesting work, including Dorman’s generalization to odd discriminants [13], Elkies’s examples on

Shimura curves [14] and Lauter’s conjecture on the Igusa j-invariants ([15], [40], [39]), among others. In his

thesis, Schofer [37] proved a much more general factorization formula for the ‘small’ CM values of Borcherds

modular functions on a Shimura variety of orthogonal type via regularized theta liftings. The proof is very

natural and is based on a method introduced in [20]. Two of the authors adapted the same idea to study the

‘small’ CM values of automorphic Green functions and discovered a direct link between the CM value and the

central derivative of a certain Rankin-Selberg L-function. This direct link is used to give a different proof of

the well-known Gross-Zagier formula [10]. Here ‘small’ means that the CM cycles are associated to imaginary
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quadratic fields. On the other hand, the two authors also extended Gross and Zagier’s factorization formula,

using a method close to Gross and Zagier’s original idea, to ‘big’ CM values of some Hilbert modular functions

on a Hilbert modular surface. Here ‘big’ means that the CM cycle is associated to a maximal torus of the

reductive group giving the Hilbert modular surface.

A motivating question for this paper is whether this ‘big’ CM value result can also be derived using the

regularized theta lifting method in [37] and [10], which is more natural and simpler. While the small CM cycles

are constructed systematically and associated to rational negative two planes in the quadratic space defining

the Shimura variety, no big CM cycles are constructed this way. In Section 2, we describe a way to construct

big CM cycles in some special Shimura varieties (including Hilbert modular surfaces), and study their Galois

conjugates. Such CM cycles are associated to CM fields of degree 2d+ 2. In Sections 3–5, we extend the CM

value result in [10] to this situation. In Section 6, we restrict to the special case of Hilbert modular surfaces and

give a new proof of the main results in [9] and a generalization. Actually, to get the CM cycles in [9] from our

present construction is not straightforward and quite interesting. An arithmetic application is given at the end

of Section 6. We now describe this work in more detail.

Let (V,QV ) be a rational quadratic space of signature (2d, 2) for some positive integer d ≥ 1. Let

G = GSpin(V ) and let K ⊂ G(Q̂) be a compact open subgroup∗. Let D be the associated Hermitian domain of

oriented negative 2-planes in V (R) = V ⊗Q R, and let

XK = G(Q)\
(

D×G(Q̂)/K
)

(1.1)

be the complex points of the associated Shimura variety, which has a canonical model over Q. Assume that

there is a totally really number field F of degree d+ 1 and a two-dimensional F -quadratic space (W,QW ) of

signature

sig(W ) = ((0, 2), (2, 0), · · · , (2, 0))

with respect to the d+ 1 embeddings {σj}dj=0 such that

V = ResF/Q W, QV (x) = trF/Q QW (x).

Then there is an orthogonal direct sum decomposition

V (R) =
⊕
j

Wσj , Wσj = W ⊗F,σj R.

The negative 2-plane Wσ0 gives rise to two points z±0 in D. Let T be the preimage of ResF/Q SO(W ) ⊂ SO(V )

in G. Then T is a maximal torus associated to the CM number field E = F (
√
−detW ), and we obtain a ‘big’

∗We write Q̂ = Q⊗Z Ẑ for the finite adèles of Q, where Ẑ = lim←−n
Z/nZ.
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CM cycle in XK :

Z(W, z±0 ) = T (Q)\
(
{z±0 } × T (Q̂)/KT

)
,

where KT = T (Q̂) ∩K. The CM cycle Z(W, z±0 ) is defined over F , and the formal sum Z(W ) of all its Galois

conjugates is a 0-cycle in XK is defined over Q. We refer to Section 2 for details.

Let L be an even integral lattice in V such that K preserves L and acts trivially on L′/L, where L′ is

the dual lattice. Let SL be the space of locally constant functions on V̂ = V ⊗ Q̂ which are L̂-invariant and

have support in L̂′, and let ρL be the associated ‘Weil representation’ of SL2(Z) on it. For each harmonic weak

Maass form f ∈ H1−d,ρ̄L , so that f is valued in SL, there is a corresponding special divisor Z(f) (determined

by the principal part of f) and an automorphic Green function Φ(f) which is constructed in [6] as a regularized

theta lift of f (see Section 3). On the other hand, associated to L, there is also an incoherent ( S∨L-valued

and normalized) Hilbert Eisenstein series E∗(~τ , s, L,1) of parallel weight 1 (see Section 4) for the field F . Its

diagonal restriction to Q is a weight d+ 1 non-holomorphic modular form with representation ρL. Due to the

incoherence, E∗(~τ , 0, L,1) = 0. Let E(τ, L) be the ‘holomorphic part’ of E∗,′(τ∆, 0, L,1), where, for τ ∈ H, we

put τ∆ = (τ, · · · , τ) ∈ Hd+1. Finally define the generalized Rankin-Selberg L-function

L(s, ξ(f), L) = 〈E∗(τ∆, s, L,1), ξ(f)〉Pet (1.2)

to be the Petersson inner product of the pullback of the Eisenstein series and the holomorphic cusp form ξ(f)

of weight d+ 1, given by the differential operator ξ(f) = 2iv1−d ∂f
∂τ̄ . In Section 5, we prove the following general

formula.

Theorem 1.1. Let the notation be as above. Then

Φ(Z(W ), f) =
degZ(W, z±0 )
Λ(0, χE/F )

(
CT[〈f+(τ), E(τ, L)〉]− L′(0, ξ(f), L)

)
. (1.3)

Here χE/F is the quadratic Hecke character of F associated to E/F , f+ is the holomorphic part of f , and

CT[〈f+(τ), E(τ, L)〉] is the constant term of

〈f+(τ), E(τ, L)〉 =
∑

µ∈L′/L

f+(τ, µ) E(τ, L, µ),

where f+(τ, µ) is the µ-component of f+, and E(τ, L, µ) is the µ-component of E(τ, L).

In the special case that f is weakly holomorphic, i.e., when ξ(f) = 0, Φ(f) is the Petersson norm of a

meromorphic modular form Ψ(f) on XK given by the Borcherds lift of f . In this case, the second summand

on the right hand side of (1.3) vanishes and the first summand gives an explicit formula for the evaluation of

Ψ(f) on the CM cycle Z(W ). An important point here is that this result shows that the Fourier coefficients of

the modular forms of parallel weight 1 arising from the central derivatives of incoherent Eisenstein series for
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arbitrary totally real fields F carry interesting arithmetic information – about the factorization of Ψ(Z(W ), f)

in the present case, and ultimately about arithmetic intersection numbers.

Note that, in general, the first summand CT[〈f+(τ), E(τ, L)〉] is of arithmetic nature and this theorem

suggests two interesting conjectures about arithmetic intersection numbers and Faltings heights of big CM

cycles, see Conjectures 5.4 and 5.5. In fact, our result can be viewed as a part of the calculation of the height

pairing between the rational 0-cycles defined by big CM points and a certain linear combination of special

divisors, or more precisely, a class in the first arithmetic Chow group, determined by f .

Also note that, in contrast with the situation in [10], the function L(s, ξ(f), L) is not a standard Rankin-

Selberg integral, since it involves the pullback of a Hilbert modular Eisenstein series. We expect that it is related

to a Langlands L-function for the group G and hope to pursue this idea in a subsequent paper.

To explain the Hilbert modular surface case in [9], let E be a non-biquadratic quartic CM number field

with real quadratic subfield F = Q(
√
D) with fundamental discriminant D. Let σ be the non-trivial Galois

automorphism of F . Let

V := {A ∈M2(F ) : σ(A) = Aι} = {A =
(

u b
√
D

a√
D
σ(u)

)
: u ∈ F, a, b ∈ Q}

and let

L = {A =
(

u b
√
D

a√
D
σ(u)

)
: u ∈ OF , a, b ∈ Z}.

Here A 7→ Aι is the main involution of M2(F ). The group

G(Q) = GSpin(V )(Q) = {g ∈ GL2(F ) : det g ∈ Q×}

acts on V via g.A = gAσ(g−1). The Shimura variety XK is a Hilbert modular surface, and, for suitable choice

of K, is isomorphic to SL2(OF ⊕ ∂−1)\H2. Now we describe the CM cycle CM(E) in [9], the locus of abelian

surfaces over C with CM by OE , as a formal sum of Z(W )’s. For a principally polarized CM abelian surface

A = (A, κ, λ) of CM type (OE ,Σ), let M = H1(A,Z) with the action of OE induced by κ and the symplectic

form λ induced by the polarization. Define the lattice

L(A) = {j ∈ End(M) : j ◦ κ(a) = κ(σ(a)) ◦ j, a ∈ OF , j∗ = j}

of special endomorphisms of M with Z-quadratic form Q(j) = j2, where j∗ is the ‘Rosati’ involution induced

by λ. Let V (A) = L(A)⊗Q. Then one can show that the rank 4 quadratic lattice (L(A), Q) ∼= (L,det) is

independent of the choice of A. On the other hand, let E] be the reflex field of (E,Σ), and let F ] = Q(
√
D̃) be

the real quadratic subfield of E]. It turns out ([17], see also Section 6) that V (A) has a natural E]-vector space
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structure together with an F ]-valued quadratic form Q]A such that

NΣ(r) • j = κ(r) ◦ j ◦ κ(r̄)

for any r ∈ E, and

trF ]/Q Q
]
A(j) = Q(j), j ∈ V (A).

Let W (A) = (V (A), Q]A) be the resulting 2-dimensional quadratic space over F ]. Then the rational torus

associated to W (A) is

TE(R) = {r ∈ (R⊗Q E)× : rr̄ ∈ R×}

and its rational points TE(Q) act on W (A) via r • j = 1
rr̄ κ(r) ◦ j ◦ κ(r̄). In Section 6, we will show that the CM

cycle Z(W (A)) is naturally equal to

Z(A) = Z(TE ,A) + Z(TE , ι(A)) + Z(TE , η(A)) + Z(TE , ιη(A)).

Here for a principally polarized CM abelian variety B with CM by OE , we write Z(TE ,B) for the C(TE) =

TE(Q)\TE(Q̂)-orbit of B in XK . We refer to Section 6 for the action of C(TE) on CM abelian varieties.

Furthermore ι(A) is the ‘complex conjugation’ of A, and η ∈ Aut(C) such that η(Σ) is another CM type of

E different from Σ or ι(Σ). Theorem 1.1 gives a formula for Φ(Z(A), f). Notice that W (A) depends on the

choice of the C(TE)-orbit of A in general, and that the set CM(E) of principally polarized abelian CM surfaces

is a finite union of Z(A). So the CM value Φ(CM(E), f) is related to a few, not just one, Eisenstein series and

L-functions (see Corollary 6.9). When D ≡ 1 mod 4 is a prime, however, the formula becomes simple and only

one incoherent Eisenstein series is involved, as in [9] (see Proposition 6.11). We have the following result.

Theorem 1.2. Let E be a CM quartic field with discriminant D2D̃ with D ≡ 1 mod 4 prime and D̃ ≡ 1

mod 4 square free and with real quadratic subfield F = Q(
√
D). Let f ∈ H0,ρ̄L as above. Then

Φ(CM(E), f) =
deg(CM(E))

2Λ(0, χ)
(
CT[〈f+, E(τ, L])〉]− L′(0, ξ(f), L])

)
.

Here L] = OE] with F ]-quadratic form Q](r) = − 1√
D̃
rr̄, and Λ(s, χ) is the complete L-function of the quadratic

Hecke character χ of F associated to E/F defined in (4.6).

We expect the factor deg(CM(E))
2Λ(0,χ) to be 1 and prove it in some special cases in Section 6. We also give a

scalar modular form version of this theorem in Section 6.5. In particular, when f is weakly holomorphic, and D̃

is prime, this theorem recovers the main result in [9], where it was proved using a different method ([9, Theorem

1.4]).

The idea of constructing big CM cycles was communicated to one of the authors (T.Y.) a couple of years
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ago by Eyal Goren in a private conversation. We thank him for sharing his idea. A slightly more general type

of CM point is discussed in [35, Section 5], and our result (Theorem 1.1) can undoubtedly be extended to that

case.

It is interesting to note that the Shimura variety Sh(G,D) attached to G = GSpin(V ) is of PEL-type only

for small values of d where accidental isomorphisms occur. In these cases, the moduli theoretic interpretation

of the 0-cycles defined in Section 2 is slightly subtle. Thus, for example, as shown in Section 6, in the Hilbert

modular surface case, the 0-cycle associated to abelian surfaces with CM by a non-biquadratic quartic CM field

E/F is a union of the 0-cycles constructed in Section 3 for the reflex field E]/F ].

The second author would like to thank the Department of Mathematics at the University Paris-Sud at

Orsay, for their hospitality and stimulating working environment during the month of May 2010. The third

author thanks the AMSS, the Morningside Center of Mathematics at Beijing, and the Mathematical Science

Center at Tsinghua University for providing him excellent working conditions during his summer visits to these

institutes.

2 The Shimura variety and its special points

As in Section 1, let F be a totally real number field of degree d+ 1 over Q with embeddings {σj}dj=0 into R.

Let W , ( , )W be a quadratic space over F of dimension 2 with signature

sig(W ) = ((0, 2), (2, 0), . . . , (2, 0)).

Let V = ResF/QW be the underlying rational vector space with bilinear form (x, y)V = trF/Q(x, y)W . There is

an orthogonal direct sum

V ⊗Q R = ⊕jWσj (2.1)

of real quadratic spaces where Wσj = W ⊗F,σj R, and sig(V ) = (2d, 2). Let G = GSpin(V ). Then there is a

homomorphism

ResF/Q GSpin(W ) −→ G (2.2)

of algebraic groups over Q which, on real points, gives the homomorphism

ResF/Q GSpin(W )(R) =
∏
j

GSpin(Wσj ) −→ GSpin(V ⊗Q R) = G(R), (2.3)

associated to the decomposition (2.1).

Lemma 2.1. Let T be the inverse image in G of the subgroup ResF/Q SO(W ) of SO(V ). Then T is a maximal

torus of G and is the image of the homomorphism (2.2).
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Note that there is thus an exact sequence

1 −→ Gm −→ T −→ ResF/Q SO(W ) −→ 1 (2.4)

of algebraic groups over Q, where Gm is the kernel of the homomorphism GSpin(V )→ SO(V ).

A more explicit description of T can be given as follows. The even part C0
F (W ) = E of the Clifford algebra

of W over F is a CM field of degree 2d+ 2 over Q. The odd part of the Clifford algebra C1
F (W ) = W = Ew0 is

a one dimensional vector space over E with quadratic form QW (aw0) = αNE/F (a), where α = QW (w0) ∈ F×

is an element with σ0(α) < 0 and σj(α) > 0 for j ≥ 1. Then, on rational points, we have

ResF/Q GSpin(W )(Q) −→ T (Q) −→ ResF/Q SO(W )(Q)

‖ ‖ ‖

E× −→ E×/F 1 −→ E×/F×

where E×/F× ' E1, via β 7→ β/β̄ is the kernel of NE/F , and F 1 is the kernel of NF/Q.

Fixing an identification S = ResC/R Gm ' GSpin(Wσ0), we obtain a homomorphism h0 : S→ GR of

algebraic groups over R corresponding to the inclusion in the first factor in (2.3). Let D be the G(R)-conjugacy

class of h0. Let {e0, f0} be a standard basis of W0 ⊂ V ⊗Q R, i.e., (e0, e0) = (f0, f0) = −1 and (e0, f0) = 0. Then

it is easy to check that teh map

gh0g
−1 7→ Rge0 + Rgf0

gives a bijection between D and the set of oriented negative 2-planes in V ⊗Q R. We will not distinguish between

the two interpretations of D. Note that the choice of orientation determined by {e0, f0} is equivalent to the

choice of an extension of σ0 to an embedding of E into C, which we also denote by σ0.

Let K be a compact open subgroup of G(Q̂), where F̂ stands for the finite adeles of a number field F . Let

XK = Sh(G, h0)K be the canonical model of the Shimura variety over Q with

XK(C) = G(Q)\
(

D×G(Q̂)/K
)
.

By construction, the homomorphism h0 factors through TR and is fixed by conjugation by T (R), so we have,

for any g ∈ G(Q̂), a special 0-cycle in XK according to [27, Page 325]

Z(T, h0, g)K(C) = T (Q)\
(
{h0} × T (Q̂)/Kg

T

)
→ XK , [h0, t] 7→ [h0, tg] (2.5)

where Kg
T = T (Q̂) ∩ gKg−1. Note that Kg

T depends only on the image of g in SO(V )(Q̂). We will usually drop

the subscript K and identify Z(T, h0, g) with its image in XK , but every point in Z(T, h0, g) is counted with
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multiplicity 2
wK,T,g

and wK,T,g = ](T (Q) ∩ gKg−1). In particular, for a function f on XK , we have

f(Z(T, h0, g)) =
2

wK,T,g

∑
t∈T (Q)\T (Af )/Kg

T

f(h0, tg). (2.6)

When g = 1, we will further abbreviate notation and write Z(T, h0) for Z(T, h0, 1).

The 0-cycle Z(T, h0) is defined over σ0(E), the reflex field of (T, h0). We next describe its Galois conjugates

τ(Z(T, h0)) for τ ∈ Aut(C/Q).

For j ∈ {0, . . . , d}, letW (j) be the unique (up to isomorphism) quadratic space over F such thatW (j)⊗F Fv

and W ⊗F Fv are isometric for all finite place v of F , and such that

sig(W (j)) = ((2, 0), . . . , (2, 0), (0, 2)
j

, (2, 0) . . . , (2, 0)). (2.7)

Note that, although the quadratic spaces W = W (0) and W (j) over F are not isomorphic for j 6= 0, there is

an isomorphism C0
F (W (j)) ' C0

F (W ) = E of their even Clifford algebras. Let V (j) = ResF/QW (j) with bilinear

form (x, y)V (j) = trF/Q(x, y)W (j). The signature of V (j) is (2d, 2) and the quadratic spaces V (j) and V are

isomorphic. We fix an isomorphism

V (j) ∼−→ V (2.8)

and hereafter identity V (j) with V . Let T (j) be the preimage of ResF/Q SO(W (j)) ⊂ SO(V ) in G and let

h0(j) : S→ GR be the homomorphism defined, as above, by an identification of S with GSpin(W (j)⊗F,σj R).

For g ∈ G(Q̂), the analogue of the construction above yields a special 0-cycle Z(T (j), h0(j), g) on XK defined

over σj(E).

We fix an F̂ -linear isometry

µj : W (j)(F̂ ) ∼−→W (F̂ ). (2.9)

Noting that there are canonical identifications W (j)(F̂ ) = V (j)(Q̂) and W (F̂ ) = V (Q̂), and using the fixed

identification of V and V (j), there is a unique element gj,0 ∈ O(V )(Q̂) such that the diagram

W (j)(F̂ )
µj−→ W (F̂ )

|| ||

V (Q̂)
g−1
j,0−→ V (Q̂)

(2.10)

Modifying the isometry µj by an element of O(W )(F̂ ), if necessary, we can assume that gj,0 ∈ SO(V )(Q̂). For

any element gj ∈ G(Q̂) with image gj,0 in SO(V )(Q̂), the finite adele points of the tori T (j) and T are related,

as subgroups of G(Q̂), by

T (j)(Q̂) = gjT (Q̂)g−1
j , (2.11)
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and hence

K
gj
T (j) = gjKT g

−1
j . (2.12)

These relations depend only on the image gj,0 of gj .

The reciprocity laws for the action of Aut(C) on special points of Shimura varieties [29], [30], [27], yields

the following result.

Lemma 2.2. Let the notation be as above and let τ ∈ Aut(C/Q).

(1) If τ = σj ◦ σ−1
0 on σ0(E), then there is a preimage gj of gj,0, unique up to an element of Q×, such that

τ(Z(T, h0)) = Z(T (j), h0(j), gj).

(2) If τ = ρ is complex conjugation, then

τ(Z(T, h0)) = Z(T, h−0 ).

Here h−0 is the map from S to GR induced by S→ GSpin(Wσ0), z 7→ z̄.

We will write

Z(T (j), h±0 (j), gj) = Z(T (j), h+
0 (j), gj) + Z(T (j), h−0 (j), gj).

We will also write z±0 (j) ∈ D for the oriented negative two planes in V (R) associated h±0 (j). Let

Z(W ) =
d∑
j=0

Z(T (j), z±0 (j), gj) ∈ Z2d(XK) (2.13)

Then Z(W ) is a 0-cycle defined over Q.

3 Special divisors and automorphic Green functions

In this section, we briefly review the special divisors defined in [19] and their ‘automorphic’ Green functions

defined by the first author and Funke using regularized theta liftings [4], [6]. We prove that these special cycles

do not intersect with the special cycles defined in Section 2.

Let x ∈ V (Q) be a vector of positive norm. We write Vx for the orthogonal complement of x in V and Gx

for the stabilizer of x in G. So Gx ∼= GSpin(Vx). The sub-Grassmannian

Dx = {z ∈ D; z ⊥ x} (3.1)
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defines an analytic divisor of D. For g ∈ G(Q̂) we consider the natural map

Gx(Q)\Dx ×Gx(Q̂)/(Gx(Q̂) ∩ gKg−1) −→ XK , (z, g1) 7→ (z, g1g). (3.2)

Its image defines a divisor Z(x, g) on XK , which is rational over Q. For m ∈ Q>0 and ϕ ∈ S(V (Q̂))K , if there

is an x0 ∈ V (Q) with Q(x0) = m, we define the weighted cycle

Z(m,ϕ) =
∑

g∈Gx0 (bQ)\G(bQ)/K

ϕ(g−1x0)Z(x0, g). (3.3)

It is a divisor on XK with complex coefficients. Note that, since ϕ has compact support in V (Q̂) and the orbits

of K on the compact set G(Q̂) · x0 ∩ supp(ϕ) are open, the sum is finite. If there is no x0 ∈ V (Q) such that

Q(x0) = m, we set Z(m,ϕ) = 0.

Proposition 3.1. Let the notation be as above. Then Z(m,ϕ) and Z(T (j), h±0 (j), gj) do not intersect in

XK .

Proof . It suffices to show that Z(x, g1) ∩ Z(T, h0, g2) is empty for every x ∈ V (Q) with Q(x) > 0 and

g1, g2 ∈ G(Q̂). Suppose P = [z, hg1] = [z0, tg2] is in the intersection, where z0 = Re0 + Rf0 is the negative two

plane associated to h0, z ∈ Dx is a negative two-plane in V (R) which is orthogonal to x and h ∈ Gx(Q̂). Then

there are γ ∈ G(Q) and k ∈ K such that

(γ)∞z = z0, γ̂hg1k = tg2.

Here γ̂ is the image of γ in G(Q̂). Let y = γx ∈ V (Q). Then x ⊥ z implies that y ⊥ z0, i.e., (σ0(y), e0) =

(σ0(y), f0) = 0. This implies that σ0(y) = 0. But σ0(y) is just the projection of y to the first summand of

W ⊗Q R =
d⊕
j=0

W ⊗F,σj R.

Since this map is injective on rational points and y = γx 6= 0, we must have σ0(y) 6= 0. Thus no such point P

can exist.

Let L be an even integral lattice in V , i.e., Q(x) = 1
2 (x, x) ∈ Z for x ∈ L, and let

L′ = {y ∈ V : (x, y) ∈ Z, for x ∈ L} ⊃ L

be its dual. For µ ∈ L′/L, we write ϕµ = char(µ+ L̂) ∈ S(V (Q̂)) and Z(m,µ) = Z(m,ϕµ), where L̂ = L⊗ Ẑ.

Associated to the reductive dual pair (SL2,O(V )) there is a Weil representation ω = ωψ of SL2(A) on the
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Schwartz space S(V (A)), where ψ is the ‘canonical’ unramified additive character of Q\A with ψ∞(x) = e(x).

Since the subspace SL = ⊕Cϕµ ⊂ S(V (Q̂)) is preserved by the action of SL2(Ẑ), there is a representation ρL of

Γ = SL2(Z) on this space defined by the formula

ρL(γ)ϕ = ω̄(γ̂)ϕ := ω(γ̂)ϕ̄, (3.4)

where γ̂ ∈ SL2(Ẑ) is the image of γ. This representation is given explicitly by Borcherds as

ρL(T )(ϕµ) = e(Q(µ2))ϕµ, (3.5)

ρL(S)(ϕµ) =
e((1− d)/4)√
|L′/L|

∑
ν∈L′/L

e(−(µ, ν))ϕν , (3.6)

where T =

1 1

0 1

 and S =

 0 1

−1 0

, see e.g. [1], [20], [4]. Note that, by (3.4), the complex conjugate ρ̄L is

just the restriction of ω to the subgroup SL2(Z) ⊂ SL2(Ẑ).

Recall that a smooth function f : H→ SL is called a harmonic weak Maass form (of weight k with respect

to Γ and ρL) if it satisfies:

(i) f |k,ρL γ = f for all γ ∈ Γ; i.e.,

f(γτ) = (cτ + d)kρL(γ)f(τ).

(ii) there is a SL-valued Fourier polynomial

Pf (τ) =
∑

µ∈L′/L

∑
n≤0

c+(n, µ) qn ϕµ

such that f(τ)− Pf (τ) = O(e−εv) as v →∞ for some ε > 0;

(iii) ∆kf = 0, where

∆k := −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)

is the usual weight k hyperbolic Laplace operator (see [6]).

The Fourier polynomial Pf is called the principal part of f . We denote the vector space of these harmonic weak

Maass forms by Hk,ρL . Any weakly holomorphic modular form is a harmonic weak Maass form. The Fourier
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expansion of any f ∈ Hk,ρL gives a unique decomposition f = f+ + f−, where

f+(τ) =
∑

µ∈L′/L

∑
n∈Q

n�−∞

c+(n, µ) qn ϕµ, (3.7a)

f−(τ) =
∑

µ∈L′/L

∑
n∈Q
n<0

c−(n, µ) Γ(1− k, 4π|n|v) qn ϕµ, (3.7b)

and, for a > 0, Γ(s, a) =
∫∞
a
e−tts−1 dt is the incomplete Γ-function. We refer to f+ as the holomorphic part and

to f− as the non-holomorphic part of f .

Recall that there is an antilinear differential operator ξ = ξk : Hk,ρL → S2−k,ρ̄L , defined by

f(τ) 7→ ξ(f)(τ) := 2ivk
∂

∂τ̄
f(τ). (3.8)

By [6, Corollary 3.8], one has the exact sequence

0 // M !
k,ρL

// Hk,ρL

ξ // S2−k,ρ̄L // 0 . (3.9)

Let f ∈ H1−d,ρ̄L be a harmonic weak Maass form of weight 1− d with representation ρ̄L for Γ, and denote

its Fourier expansion as in (3.7). Let S∨L be the dual space of SL—the space of linear functionals on SL, and let

{ϕ∨µ} be the dual basis in S∨L of the basis {ϕµ} of SL. Recall that the Siegel theta function

θL(τ, z, g) =
∑
µ

θ(τ, z, g, ϕµ)ϕ∨µ

is an S∨L-valued holomorphic modular form of weight d− 1 for Γ and ρL defined as follows (see [10, Section 2]

or [20] for details). For z ∈ D, one has decomposition

V (R) = z ⊕ z⊥, x = xz + xz⊥ .

Let (x, x)z = −(xz, xz) + (xz⊥ , xz⊥) and define the associated Gaussian by

ϕ∞(x, z) = e−π(x,x)z . (3.10)

Then, for τ ∈ H, [z, g] ∈ XK , and ϕ ∈ S(V (Q̂)), the theta function is given by

θ(τ, z, g, ϕ) = v
1
2 (1−d)

∑
x∈V (Q)

ω(gτ )ϕ∞(x, z)ϕ(g−1x), gτ =

v 1
2 uv−

1
2

v−
1
2

 ∈ SL2(R).
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Here g acts on V via its image in SO(V ).

We consider the regularized theta integral

Φ(z, g, f) =
∫ reg

F
〈f(τ), θL(τ, z, g)〉 dµ(τ) (3.11)

for z ∈ D and g ∈ G(Q̂), where F is the standard domain for SL2(Z)\H. The integral is regularized as in [1], [6],

that is, Φ(z, g, f) is defined as the constant term in the Laurent expansion at s = 0 of the function

lim
T→∞

∫
FT
〈f(τ), θL(τ, z, g)〉 v−sdµ(τ). (3.12)

Here FT = {τ ∈ H; |u| ≤ 1/2, |τ | ≥ 1, and v ≤ T} denotes the truncated fundamental domain and the integrand

〈f(τ), θL(τ, z, g)〉 =
∑

µ∈L′/L

fµ(τ)θ(τ, z, g, ϕµ) (3.13)

is the pairing of f with the Siegel theta function, viewed as a linear functional on the space SL.

The following theorem summarizes some properties of the function Φ(z, g, f) in the setup of the present

paper (see [4], [6]).

Theorem 3.2. The function Φ(z, g, f) is smooth on XK\Z(f), where

Z(f) =
∑

µ∈L′/L

∑
m>0

c+(−m,µ)Z(m,µ). (3.14)

It has a logarithmic singularity along the divisor −2Z(f). The (1, 1)-form ddcΦ(z, g, f) can be continued to a

smooth form on all of XK . We have the Green current equation

ddc[Φ(z, g, f)] + δZ(f) = [ddcΦ(z, g, f)], (3.15)

where δZ denotes the Dirac current of a divisor Z. Moreover, if ∆z denotes the invariant Laplace operator on

D, normalized as in [4], we have

∆zΦ(z, g, f) =
d

2
· c+(0, 0). (3.16)

In particular, the theorem implies that Φ(z, g, f) a Green function for the divisor Z(f) in the sense of

Arakelov geometry in the normalization of [38]. More precisely, by the results of Borcherds [1] and Bruinier

[4], [6], Φ(f) = − log ||Ψ(f)||2, for a meromorphic section Ψ(f) of the line bundle L 1
2 c

+(0,0), where the metrized

line bundle (L, || ||) on XK is defined in [20]. If c+(0, 0) = 0, then the meromorphic function Ψ(f) extends to
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a smooth compactification of XK . The line bundle L also has an extension to such a compactification, but the

metric becomes singular along the divisor at infinity. Thus, if the constant term c+(0, 0) of f does not vanish,

one actually has to work with the generalization of Arakelov geometry given in [8]. When c+(0, 0) = 0, Φ(z, g, f)

is harmonic, and we refer to it as the automorphic Green function associated with Z(f). Notice also that Z(f)

has coefficients in Q(f), the field generated by the c+(−m,µ), m > 0.

4 CM values of Siegel theta functions and Eisenstein series

Recall that, for each j, we have fixed an isomorphism V ' V (j) = ResF/QW (j) of rational quadratic spaces,

and hence an identification

S(V (AQ)) = S(W (j)(AF )), ϕ 7→ ϕF,j (4.1)

of the corresponding Schwartz spaces. For example, if ϕF = ⊗wϕF,w ∈ S(W (j)(AF )), with w running over the

places of F , then the corresponding ϕ ∈ S(V (AQ)) is also factorizable, with local component ϕv = ⊗w|vϕF,w in

the space

S(ResF/QW (j)(Qv)) = S(⊕w|vW (j)(Fw)) = ⊗w|vS(W (j)(Fw)).

These identifications are compatible with the Weil representations of SL2(AQ) and SL2(AF ) for our fixed additive

character ψ of AQ and the character ψF = ψ ◦ trF/Q of AF , i.e.,

ωV,ψ(g′)ϕ = ωW (j),ψF (g′)ϕF,j ,

where, on the right side, we view g′ ∈ SL2(AQ) as an element of SL2(AF ). We write ϕF for ϕF,0. Moreover, we

will frequently abuse notation and write ϕ for ϕF and identify S(W (AF )) with S(V (A)). Note that the Weil

representations ωW (j),ψF of SL2(AF ), which are now all realized on S(V (AQ)), via (4.1), do not coincide in

general. The point is that the group SL2(F ) in the dual pair (SL2(F ),ResF/QO(W (j))) arises as the commutant

in the ambient symplectic group of the subgroup ResF/QO(W (j)) ⊂ O(V ), i.e., by a seesaw construction, and

these subgroups do not coincide.

Recall that, for each j, we have fixed an isometry µj : W (j)(F̂ ) ∼−→W (F̂ ), and an element gj,0 ∈ SO(V )(Q̂)

so that the diagram (2.10) commutes.

Lemma 4.1. (i) For any ϕ ∈ S(V (Q̂)), recall that ϕF,0 = ϕF is identified with φ via S(W (F̂ )) ∼= S(V (Q̂)).

Then

µ∗j (ϕ) = (ω(gj,0)ϕ)F,j ,

where g ∈ SO(V )(Q̂) acts on S(V (Q̂)) by (ω(g)ϕ)(x) = ϕ(g−1x).

(ii) The map µ∗j : S(W (F̂ ))→ S(W (j)(F̂ )) intertwines the Weil representations ωW,ψF and ωW (j),ψF of SL2(Q̂)

on these spaces.
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(iii) For g′ ∈ SL2(Q̂), and ϕ ∈ S(V (Q̂)),

ωW (j),ψF (g′)ω(gj,0)ϕ = ω(gj,0)ωW,ψF (g′)ϕ.

Here in parts (i) and (iii), we are working in the fixed space S(V (Q̂)) with natural linear action of

g ∈ SO(V )(Q̂) defined in (i) and the various Weil representation actions of SL2(F̂ ), as described above.

For z ∈ D, the Gaussian ϕ∞(·, z) ∈ S(V (R)) is defined by (3.10). The points z±0 (j) ∈ D are the fixed points

of T (j)(R), and

ϕ∞(·, z±0 (j)) = ⊗iϕ∞,W (j)σi
,

in

S(V (R)) = S(ResF/Q(W (j))(R)) = ⊗iS(W (j)σi),

where W (j)σi = W (j)⊗F,σi R, and

ϕ∞,W (j)σi
(x) = e

−π|(x,x)W (j)σi
|

is the Gaussian for the definite space W (j)σi . Note that ϕ∞,W (j)σi
is SO(Wj,σi)-invariant, and is an eigenfunction

of SO2(R) ⊂ SL2(R) with respect to the Weil representation ωWj,σi
of ‘weight’ +1 for i 6= j and −1 for i = j.

For a K-invariant Schwartz function ϕ ∈ S(V (Q̂))K and τ ∈ H, the theta function

θ(τ, z, g, ϕ) = v
1−d

2

∑
x∈V (Q)

ωV (gτ )ϕ∞(x, z)ϕ(g−1x) (4.2)

is an automorphic function of [z, g] ∈ XK , where z ∈ D and g ∈ G(Q̂). By the preceding discussion, the pullback

of this function to Z(T (j), z±0 (j), gj) coincides with the pullback of the Hilbert theta function associated to the

quadratic space W (j),

θ(~τ , t, (ω(gj,0)ϕ)F,j) = vj N(~v)−
1
2

∑
x∈W (j)(F )

ωW (j)(g~τ )ϕ∞,W (j)(x) (ω(gj,0)ϕ)F,j(t−1x), (4.3)

via the diagonal embedding of H into Hd+1. Here ~τ ∈ Hd+1, with components τr = ur + ivr, N(~v) =
∏
r vr, and

g~τ ∈ SL2(R)d+1 with component gτr in the rth slot. This theta function has weight

1(j) := (1, . . . ,−1, . . . , 1),

with −1 in the jth slot.

Let χ = χE/F be the quadratic Hecke character of F associated to E/F , and let I(s, χ) = ⊗vI(s, χv) be

the representation of SL2(AF ) induced from the character χ | |s of the standard Borel subgroup. We write Φkσi
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for the unique eigenfunction of SO2(R) ⊂ SL2(F ⊗F,σi R) in I(s, χσi) of weight k with Φkσi(1, s) = 1. We define

sections in I∞(s, χ∞) = ⊗iI(s, χσi) by

Φ1
∞(s) = ⊗iΦ1

σi(s),

and

Φ1(j)
∞ (s) = Φ−1

σj (s)⊗ (⊗i6=jΦ1
σi(s)).

For each j, there is an SL2(F̂ )-equivariant map

λj : S(W (j)(F̂ ))→ If (0, χf ), ϕ 7→ λj(ϕ)(g) = ωW (j),ψF (g)ϕ(0).

By (ii) of Lemma 4.1, these maps for various j’s are related as follows.

Lemma 4.2. For ϕ ∈ S(V (Q̂)), one has

λj(µ∗j (ϕF )) = λ0(ϕF )

Let Φϕ(s) ∈ If (s, χf ) be the unique standard section with Φϕ(g, 0) = λ0(ϕ) = λj(µ∗j (ϕ)). For ϕ ∈

S(W (F̂ )) = S(V (Q̂)) and ~τ = (τ0, . . . , τd) ∈ Hd+1 with τr = ur + ivr,, we define the Hilbert-Eisenstein series

E(~τ , s, ϕ,1) = N(~v)−
1
2E(g~τ , s,Φ1

∞ ⊗ Φϕ) (4.4)

and

E(~τ , s, ϕ,1(j)) = vj N(~v)−
1
2E(g~τ , s,Φ1(j)

∞ ⊗ Φϕ). (4.5)

Here N(~v) =
∏
r vr. Note that, Φ1(j)

∞ (s) is associated to the Gaussian ϕ∞,W (j), so that E(~τ , s, ϕ,1(j)) is

a coherent Eisenstein series of weight 1(j) attached to the function ϕ∞,W (j) ⊗ µ∗j (ϕ) ∈ S(W (j)(AF )) and

E(~τ , s, ϕ,1) is an incoherent Eisenstein series of parallel weight 1 (independent of j). The two Eisenstein series

are related as follows by an observation of [20, (2.17)], [10, Lemma 2.3],

Lemma 4.3. Write ∂̄j = ∂
∂τ̄j

dτ̄j . Then

−2∂̄j (E′(~τ , 0, ϕ,1) dτj) = E(~τ , 0, ϕ,1(j)) dµ(τj).

In this paper, we normalize the Haar measure dh on SO(W (j))(AF ) so that

vol(SO(W (j))(F )\ SO(W (j))(AF )) = 2,
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and write dh = dh∞ dhf where dh∞ =
∏
i dhσi with vol(SO(W (j)σi), dhσi) = 1. For the convenience of the

reader, we first recall [37, Lemma 2.13].

Lemma 4.4. For any function f on

Z(T (j), z0(j), gj) = T (j)(Q)\
(
{z0(j)} × T (j)(Q̂)/Kgj

T (j)

)
,

the weighted sum (2.6) of the values of f over this discrete finite set is given by

f(Z(T (j), z0(j), gj)) =
1
2

degZ(T, z0)
∫

SO(W (j))(F )\ SO(W (j))(F̂ )

f(z0(j), t) dt.

Here

degZ(T, z0) =
4

vol(KT )

is independent of j.

Proof . By [37, Lemma 2.13], the formula holds with degZ(T, z0) replaced by the quantity 2/ vol(Kgj
T (j)). So it

suffices to check vol(Kgj
T (j)) = vol(KT ) is independent of j. But this is immediate by (2.11) and (2.12).

Proposition 4.5. With the notation as above,

θ(τ, Z(T (j), z0(j), gj), ϕ) = C · E(τ∆, 0, ϕ,1(j))

where

C =
1
2

deg(Z(T, z0)).

Proof . Since vol(SO(W (j))σi) = 1, one has by Lemma 4.4 that

θ(τ, Z(T (j), z0(j), gj) =
1
2

degZ(T, z0)
∫

SO(W (j))(F )\ SO(W (j))(AF )

θ(τ∆, t, (ω(gj,0)ϕ)F,j) dt,

where the theta function in the integral is given by (4.3). Now the proposition follows from the Siegel-Weil

formula.

For χ = χE/F as above, let

Λ(s, χ) = A
s
2 (π−

s+1
2 Γ(

s+ 1
2

))d+1L(s, χ), A = NF/Q(∂F dE/F ) (4.6)
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be the complete L-function of χ. It is a holomorphic function of s with functional equation

Λ(s, χ) = Λ(1− s, χ),

and

Λ(1, χ) = Λ(0, χ) = L(0, χ) = 2d−δ
h(E)

w(E)h(F )
∈ Q×,

where 2δ = |O×E : µ(E)O×F | is 1 or 2. Let

E∗(~τ , s, ϕ,1) = Λ(s+ 1, χ)E(~τ , s, ϕ,1)

be the normalized incoherent Eisenstein series.

Proposition 4.6. Let ϕ = ϕF ∈ S(V (Q̂)) = S(W (F̂ )). For a totally positive element t ∈ F×+ , let a(t, ϕ) be the

t-th Fourier coefficient of E∗,′(~τ , 0, ϕ,1). This coefficient is independent of ~v. The constant term of E∗,′(~τ , 0, ϕ,1)

has the form

ϕ(0)
(

Λ(0, χ) log N(~v) + a0(ϕ)
)
,

for a constant a0(ϕ) depending only on ϕ. Let

E(τ, ϕ) = ϕ(0) a0(ϕ) +
∑

n∈Q>0

an(ϕ) qn

where

an(ϕ) =
∑

t∈F×+ , trF/Q t=n

a(t, ϕ).

Then, writing τ∆ for the diagonal image of τ ∈ H in Hd+1,

E∗,′(τ∆, 0, ϕ,1)− E(τ, ϕ)− ϕ(0) Λ(0, χ) (d+ 1) log v

is of exponential decay as v goes to infinity. Moreover, for n > 0

an(ϕ) =
∑
p

an,p(ϕ) log p

with an,p(ϕ) ∈ Q(ϕ), the subfield of C generated by the values ϕ(x), x ∈ V (Q̂).
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Proof . Let C = ⊗vCv be the incoherent collection of local quadratic Fv-spaces with Cv = W ⊗F Fv for all finite

places v and with C∞ is totally positive definite. In particular, Ĉ := ⊗v<∞Cv = W (F̂ ). Then

Φϕ(0)⊗ Φ1
∞(0) = λ(ϕ⊗ ϕ∞,C)

for ϕ⊗ ϕ∞,C ∈ S(C) = S(Ŵ )⊗ S(C∞), where ϕ∞,C = ⊗iϕσi is the product of the Gaussians for the positive

definite binary quadratic spaces Cσi . Thus E(~τ , s, ϕ,1) is an incoherent Eisenstein series according to [18] and

E∗(~τ , 0, ϕ,1) = 0. By linearity, we may assume that the function ϕ = ⊗vϕv ∈ S(W (F̂ )) is factorizable. Then,

the Fourier expansion can be written as

E∗(~τ , s, ϕ,1) = E∗0 (~τ , s, ϕ,1) +
∑
t∈F×

E∗t (~τ , s, ϕ,1)

with

E∗t (~τ , s, ϕ,1) = A
s
2

∏
p<∞

W ∗t,p(1, s, ϕp)
d∏
i=0

W ∗t,σi(τi, s,Φ
1
σi)

and

E∗0 (~τ , s, ϕ,1) = ϕ(0)Λ(s+ 1, χ) N(~v)
s
2 +A

s
2

∏
p<∞

W ∗0,p(1, s, ϕp)
d∏
i=0

W ∗0,σi(τi, s,Φ
1
σi).

Here, for g′ ∈ SL2(Fp),

W ∗t,p(g′, s, ϕp) = Lp(s+ 1, χv)Wt,p(g′, s, ϕp)

and

W ∗t,σi(τi, s,Φ
1
σi) = π−

s+2
2 Γ(

s+ 2
2

) v−
1
2

i Wt,σi(gτi , s,Φ
1
σi)

are the normalized local Whittaker functions, which are computed in [24] and [41] in special cases. In particular,

[24, Proposition 2.6] (see also [41, Proposition 1.4]) asserts that†

W ∗t,σi(τi, 0,Φ
1
σi) = 2 γ(Cσi) e(σi(t)τi), if σi(t) > 0,

W ∗0,σi(τi, s,Φ
1
σi) = γ(Cσi) v

−s/2
i π−

s+1
2 Γ(

s+ 1
2

),

W ∗t,σi(τi, 0,Φ
1
σi) = 0, if σi(t) < 0.

Here γ(Cσi) is the local Weil index, an 8-th root of unity. Moreover, in the last case,

W ∗,′t,σi(τi, 0,Φ
1
σi) = γ(Cσi) e(σi(t)τi)β1(4π|σi(t)|vi)

†The extra ‘−’ in the formula is due to the fact that we use w =
`

0 −1
1 0

´
here for the local Whittaker function instead of w−1 in

[24].
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is of exponential decay when vi goes to infinity. Here

β1(x) =
∫ ∞

1

e−xtt−1 dt, x > 0.

On the other hand, suppose that everything is unramified at a finite prime p. This means that E/Q is

unramified at primes over p, we identify Wp = Ep with quadratic form (x, x)p = αNEp/Fp
(x) for α ∈ O×Fp

,

and ϕp = char(OEp). Then, by [41, Proposition 1.1], for t 6= 0

γ(Cp)−1W ∗t,p(1, s, ϕp) =


0 if t /∈ OFp ,

ordp t+ 1 if p split in E/F, t ∈ OFp ,

1
2 (1 + (−1)ordp t) if p inert in E/F, t ∈ OFp .

In general, γ(Cp)−1W ∗t,p(1, s, ϕp) is a polynomial of N(p)−s with coefficients in Q(ϕp) ([25]). For t 6= 0, let

D(t) = D(t, C) be the ‘Diff’ set of places p of F (including infinite places) such that Cp does not represent t, as

defined in [18]. Then D(t) is a finite set of odd order, and for every p ∈ D(t), the local Whittaker function at v

vanishes at s = 0. So E∗,′t (~τ , 0, ϕ) = 0 unless D(t) has exactly one element. Assuming this and restricting ~τ to

the diagonal τ∆ = (τ, · · · , τ) with τ = u+
√
−1v ∈ H, there are two subcases.

When D(t) = {σi} for some i, the above formulae show that

E∗,′t (τ∆, 0, ϕ,1) = W ∗,′t,σi(τ, 0,Φ
1
σi)

∏
p6=σi

W ∗t,p(1, 0, ϕp)

is of exponential decay when v = Im(τ)→∞.

When D(t) = {p} for some finite prime p, and t ∈ F×+ is totally positive,

E∗,′t (τ∆, 0, ϕ,1) = a(t, ϕ) qtrF/Q t, q = e(τ)

for some a(t, ϕ) ∈ Q(ϕ) log p, where p is the prime below p. Here we have used the fact that

∏
p<∞

γ(Cp)
d∏
i=0

γ(Cσi) = −1.

Finally, for the constant term, one has (see e.g., [41, Section 1] or [25])

E∗0 (~τ , s, ϕ,1) = ϕ(0)
(

N(~v)
s
2 Λ(s+ 1, χ) + N(~v)−

s
2 Λ(1− s, χ)Mϕ(s)

)



Special values of Green functions at big CM points 21

where Mϕ(s) is a product of finitely many polynomials in N(p)−s for finitely many ‘bad’ p, and Mϕ(0) = −1.

Recalling that E∗0 (τ∆, 0, ϕ,1) = 0, this gives, for τ ∈ H,

E∗,′0 (τ∆, 0, ϕ,1) = ϕ(0)
(
Λ(1, χ)(d+ 1) log v + 2Λ′(1, χ) + Λ(1, χ)M ′ϕ(0)

)
. (4.7)

The constant term of E∗,′(τ∆, 0, ϕ,1) as a (non-holomorphic) elliptic modular form is

E∗,′0 (τ∆, 0, ϕ,1) +
∑

06=t∈F,trF/Q t=0

E∗,′t (τ∆, 0, ϕ,1),

where the last sum is of exponential decay when v = Im(τ)→∞. This proves the proposition.

5 The main formula

Let L be an even integral lattice in V , and let K ⊂ G(Q̂) be a compact open subgroup which fixes L and acts

trivially on L′/L. We also assume that K satisfies the condition

K ∩Gm(Q̂) = Ẑ×, (5.1)

where Gm is the kernel of the homomorphism GSpin(V )→ SO(V ). Let f ∈ H1−d,ρ̄L be a harmonic weak Maass

form and let Φ(z, h, f) be the corresponding ‘automorphic’ Green function for the divisor Z(f) defined in (3.14).

For ~τ ∈ Hd+1 and τ ∈ H, define S∨L-valued functions by

E(~τ , s, L,1) =
∑

µ∈L′/L

E(~τ , s, ϕµ,1)ϕ∨µ , E(τ, L) =
∑

µ∈L′/L

E(τ, ϕµ)ϕ∨µ , (5.2)

where E(τ, ϕ) is defined in Proposition 4.6, and the normalized incoherent Eisenstein series

E∗(~τ , s, L,1) = Λ(s+ 1, χ)E(~τ , s, L,1).

Define the L-function for a cuspidal modular form g =
∑
µ gµϕµ ∈ Sd+1,ρL

L(s, g, L) = 〈E∗(τ∆, s, L,1), g〉Pet :=
∫

SL2(Z)\H

∑
µ

gµ(τ)E∗(τ∆, s, ϕµ,1) vd+1 dµ(τ). (5.3)

It can be viewed as the g-isotypical component of diagonal restriction of the Hilbert-Eisenstein series E(~τ , s, L,1).

Remark 5.1. The Eisenstein series E(~τ , s, L,1) depends on the F -quadratic form on L⊗Q = W , not just on

the Q-quadratic form on L⊗Q = V . When we need to emphasize this dependence on the F -quadratic form, we
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will write L(W ) rather than L and

E∗(~τ , s, L(W ),1) = E∗(~τ , s, L,1), E(τ, L(W )) = E(τ, L), L(s, g, L(W )) = L(s, g, L)

We also caution that L(W ) might not be an OF -lattice, i.e., it might not be OF -invariant.

Since the Eisenstein series has an analytic continuation and is incoherent, the L-series L(s, g, L) has an

analytic continuation and is zero at the central point s = 0. Now we are ready to state and prove the main

formula. Here, if
∑
n anq

n is a power series in q, we write

CT
[ ∑

n

anq
n
]

= a0

for the constant term.

Theorem 5.2. For a harmonic weak Maass form f ∈ H1−d,ρ̄L with components f = f+ + f− as in (3.7) and

with other notation as above,

Φ(Z(W ), f) = C(W,K)
(

CT
[
〈f+(τ), E(τ, L(W ))〉

]
− L′(0, ξ(f), L(W ))

)
,

where ξ(f) is the image of f under the anti-holomorphic operator ξ : H1−d,ρ̄L → Sd+1,ρL , cf. (3.8), and

C(W,K) =
deg(Z(T, z±0 ))

Λ(0, χ)
.

Proof . The proof basically follows the same argument as in [10, Theorem 4.8]. We write L in place of L(W ).

First, by Lemma 4.3 and Proposition 4.5, we have

Φ(Z(T (j), z0(j), gj), f) =
∫ reg

F
〈f(τ), θL(τ, Z(T (j), z0(j), gj))〉 dµ(τ)

= C

∫ reg

F
〈f(τ), E(τ∆, 0, L,1(j)) dµ(τ)〉

= −2C
∫ reg

F
〈f(τ), ∂̄j(E′(τ∆, 0, L,1) dτ)〉.
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Here C is the constant in Proposition 4.5. So, summing on j, and recalling the definition (2.13) of Z(W ), we

have

Φ(Z(W ), f) = −4C
∫ reg

F
〈f(τ),

∑
j

∂̄j(E′(τ∆, 0, L,1) dτ)〉

= −4C
∫ reg

F
〈f(τ), ∂̄(E′(τ∆, 0, L,1) dτ)〉

= −4C
∫ reg

F
d(〈f(τ), E′(τ∆, 0, L,1) dτ〉) + 4C

∫ reg

F
〈∂̄f(τ), E′(τ∆, 0, L,1) dτ〉

= −C0I1 + C0I2,

where C0 = 4CΛ(0, χ)−1 = C(W,K), and

I1 =
∫ reg

F
d(〈f(τ), E∗,′(τ∆, 0, L,1) dτ〉),

I2 =
∫ reg

F
〈∂̄f(τ), E∗,′(τ∆, 0, L,1) dτ〉.

Recall that

∂̄f(τ) = − 1
2i
vd−1ξ(f) dτ̄ .

Thus

〈∂̄f(τ), E∗,′(τ∆, 0, L,1) dτ〉 = −〈ξ(f), E∗,′(τ∆, 0, L,1)〉 vd+1 dµ(τ)

is actually integrable over the fundamental domain F , and hence

I2 = −
∫
F
〈ξ(f), E∗,′(τ∆, 0, L,1)〉 vd+1dµ(τ) = −L′(0, ξ(f), L).

By the same argument as in [20, Proposition 2.5], [37, Proposition 2.19], or [10, Lemma 4.6], there is a (unique)

constant A0 such that

I1 = lim
T→∞

(∫
FT

d(〈f(τ), E∗,′(τ∆, 0, L,1) dτ〉)−A0 log T
)

= lim
T→∞

(I1(T )−A0 log T ).

By Stokes’ theorem, one has

I1(T ) =
∫
∂FT
〈f(τ), E∗,′(τ∆, 0, L,1)〉 dτ

= −
∫ iT+1

iT

〈f(τ), E∗,′(τ∆, 0, L,1)〉 du

= −
∫ iT+1

iT

〈f+(τ), E∗,′(τ∆, 0, L,1)〉 du+O(e−εT )
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for some ε > 0 since f− is of exponential decay and E∗,′ is of moderate growth. Proposition 4.6 asserts that

E∗,′(τ∆, 0, L) = E(τ, L) + Λ(0, χ) (d+ 1) log(v) +
∑

µ∈L′/L

∑
m∈Q

a(m,µ, v) qm

such that a(m,µ, v) qm is of exponential decay as v →∞. Thus,

−I1(T ) = CT[〈f+(τ), E(τ, L)〉] + Λ(0, χ) (d+ 1) log T +
∑

µ∈L′/L

∑
m+n=0

c+(m,µ)a(n, µ, T ).

The last sum goes to zero when T →∞. So we can take A0 = (d+ 1) Λ(0, χ), and

I1 = −CT[〈f+(τ), E(τ, L)〉]

as claimed.

Remark 5.3. There is a sign error in front of L′(ξ(f), U, 0) in [10, Theorem 4.7] and throughout that paper

caused by this error. The +L′(ξ(f), U, 0) in that theorem should be −L′(ξ(f), U, 0). Accidently, in the proof of

[10, Theorem 7.7], there is another sign error relating the Faltings’ height and the Neron-Tate height. Two wrong

signs give the correct formula in [10, Theorem 7.7], which somehow prevented the authors from discovering the

sign error earlier.

As in [10], this theorem raises two interesting conjectures. We very briefly describe them and refer to

[10, Section 5] for details. Assume that there is a regular scheme XK → Spec Z, projective and flat over Z,

whose associated complex variety is a smooth compactification Xc
K of XK . Let Z(m,µ) and Z(W ) be suitable

extensions to XK of the cycles Z(m,µ) and Z(W ), respectively. Such extensions can be found in low dimensional

cases using a moduli interpretation of XK . For an f ∈ H1−g,ρ̄L , the function Φ(f) is a Green function for the

divisor Z(f). Set Z(f) =
∑
µ

∑
m>0 c

+(−m,µ)Z(m,µ). Then the pair

Ẑ(f) = (Z(f),Φ(·, f))

defines an arithmetic divisor in ĈH
1
(XK)C. Theorem 5.2 provides a formula for the quantity

〈Ẑ(f),Z(W )〉∞ =
1
2

Φ(Z(W ), f), (5.4)

and inspires the following ‘equivalent’ conjectures.

Conjecture 5.4. Let µ ∈ L′/L, and let m ∈ Q(µ) + Z be positive. Then Z(m,µ) and Z(W ) intersect properly,

and the arithmetic intersection number 〈Z(m,µ),Z(W )〉fin is equal to − 1
2C(W,K) times the (m,µ)-th Fourier

coefficient of E(τ, L).
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Conjecture 5.5. For any f ∈ H1−d,ρ̄L , one has

〈Ẑ(f),Z(W )〉Fal =
1
2
C(W,K)

(
c+(0, 0)κ(0, 0)− L′(0, ξ(f), L)

)
. (5.5)

Here κ(0, 0) is the constant term of E(τ, L)

6 Hilbert modular surfaces

In general, the Shimura varieties attached to orthogonal groups of signature (n, 2) are of Hodge but not PEL

type, so our special cycles do not have a simple description in terms of moduli of abelian varieties. However, in

the case of signature (2, 2), such an interpretation is always possible, cf. [23]. In this section, we consider the

case of Hilbert modular surfaces and explain how our earlier construction of 0-cycles can be given a modular

interpretation. The most efficient way to do this is based on the machinery set up in [17], where the quadratic

space of signature (2, 2) arises as a space of special endomorphisms and the quartic CM points are linked to the

cycles of section 2 by a reflex field construction.

6.1 RM abelian surfaces

Let F = Q(
√
D) be a real quadratic field with fundamental discriminant D, ring of integers OF , and different

∂ = ∂F =
√
DOF . We fix an embedding of F into R with

√
D > 0 and write σ for the other real embedding and

for the nontrivial Galois automorphism of F/Q.

We begin with some algebra. Let M be a free Z-module of rank 4 with a perfect alternating pairing λ :

M ×M → Z. For an element j ∈ End(M), let j∗ be the adjoint of j with respect to λ, i.e., λ(jx, y) = λ(x, j∗y).

Let κ : OF ↪→ End(M) be an action of OF on M such that κ(a)∗ = κ(a). Such a triple (M,κ, λ) is unique up to

isomorphism and is called a principally polarized RM module in [17]. Note that there is a unique OF -bilinear

alternating pairing Λ : M ×M → ∂−1 such that λ(x, y) = trF/Q(Λ(x, y)). Define the lattice L(M) of special

endomorphisms of (M,κ, λ) by

L(M) = { j ∈ End(M) : j ◦ κ(a) = κ(σ(a)) ◦ j, j∗ = j },

and let V (M) = L(M)⊗Z Q. There is a Z-valued quadratic form Q on L(M) defined by j2 = Q(j) 1M .

As a standard principally polarized RM module (
o

M,
o
κ,

o

λ), we take
o

MQ = F 2, (column vectors),

o

M = {x : tx ∈ OF ⊕ ∂−1}
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and
o

Λ(x, y) = x1y2 − x2y1, where tx = (x1, x2) and ty = (y1, y2). Then

EndOF (
o

M) =
{ a b

c d

 : a, d ∈ OF , c ∈ ∂−1, b ∈ ∂
}
.

Let Γ = EndOF (
o

M) ∩ SL2(F ). Let G be the algebraic group over Q defined by

G(R) = { g ∈ GL2(F ⊗Q R) : det(g) ∈ R× },

and note that Γ ⊂ G(Q) is an arithmetic subgroup. There is a natural homomorphism G→ GSp(
o

MQ,
o

λ) whose

image is precisely the OF -linear similitudes, and the restriction of the similitude scale to G is given by the

determinant. Let Z be the center of G and note that the map r 7→ r · 12 gives an isomorphism of R× with a

subgroup of Z(R) of index 2.

Define j0 ∈ L(
o

M) by j0(t(x1, x2)) = t(σ(x1), σ(x2)). Then there is an isomorphism

{  a b
√
D

c/
√
D σ(a)

 : a ∈ OF , b, c ∈ Z
} ∼−→ L(

o

M), x 7→ x ◦ j0.

Under this isomorphism, the quadratic form Q on L(
o

M) is given by Q(x ◦ j0) = det(x) = NF/Q(a)− bc, and, in

particular, has signature (2, 2). Note that the natural action of G(Q) on V := V (
o

M) by conjugation preserves

the quadratic form Q, and this provides an identification G
∼−→ GSpin(V,Q). For any principally polarized

RM module (M,κ, λ), we can choose an isomorphism

(∗) : (M,κ, λ) ∼−→ (
o

M,
o
κ,

o

λ)

with the standard module. Any two such isomorphisms differ by an element of Γ.

Let

D = { h ∈ G(R) : h2 = −1,
o

λ(hx, y) is symmetric and positive definite }

be the space of admissible complex structures on
o

MR =
o

M ⊗Z R. Such an h determines a homomorphism

h : S→ GR given on real points by C× → G(R), h(a+ ib) = a+ hb, where we identify R× with a subgroup

of Z(R), as above. Let D be the space of oriented negative 2-planes in V (R), where V = V (
o

M). As explained

in [17, section 3.4], there is an isomorphism D ∼−→ D+ ⊂ D of D with one of the two components of D given by

sending h ∈ D to

z(h) = { j ∈ V (R) : j ◦ h = −h ◦ j}.
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The orientation of z(h) is given by the action of h(C×) on it by conjugation. If an oriented negative 2-plane

z ∈ D+ is given, we write hz for the corresponding complex structure on
o

MR.

Recall that a principally polarized RM abelian surface over a connected scheme S is a collection (A, κA, λA)

consisting of an abelian scheme A over S together with an action κA : OF → End(A) and a principal polarization

λA : A→ A∨ such that κA(a)∗ = κA(a) for all a ∈ OF , where ∗ denotes the Rosati involution associated to λA.

Moreover, the Kottwitz condition is imposed, i.e., for a ∈ OF , the characteristic polynomial of the endomorphism

of Lie(A) determined by κA(a) is required to coincide with the polynomial (T − a)(T − σ(a)). Let M be the

moduli stack over Spec(Z) of principally polarized RM surfaces – cf [17, section 3.1] for more details.

If a principally polarized RM abelian surface (A, κ, λ) over C is given, (H1(A,Z), κ, λ) is a principally

polarized RM module with admissible complex structure determined by the isomorphismH1(A,Z)⊗ R = Lie(A).

If we choose an isomorphism (*) of (H1(A,Z), κ, λ) with (
o

M,
o
κ,

o

λ), this complex structure determines a point of

D ' D+. The action of Γ removes the ambiguity involved in the choice of (*). Conversely, for z ∈ D+, there is a

principally polarized RM surface Az over C determined by the data (
o

MR,
o

M,κ,
o

λ, hz). The action of an element

γ ∈ Γ on
o

M yields an OF -linear isomorphism of Az and Aγ(z). In this way, we obtain a uniformization of the

space of RM abelian surfaces over C. Indeed, the map z 7→ Az induces an isomorphism of orbifolds

[Γ\D] ' [Γ\D+] ∼−→ M(C).

The image of a point z ∈ D+ is counted with multiplicity |Γz|−1. Finally, if we let

K = AutOF (
o

M ⊗ Ẑ) ∩G(Q̂),

and let G(R)+ be the stabilizer of D+ in G(R), we have Γ = G(Q) ∩G(R)+K, and, by strong approximation,

XK(C) = [G(Q)\( D×G(Q̂)/K)] ' [Γ\D+] ∼−→ M(C),

where XK(C) is the orbifold of complex points of the Shimura variety XK arising from V as in section 2.

6.2 Non-biquadratic CM points

Next we turn to the quartic CM points, again beginning with some algebra. Let E be a non-biquadratic

quartic CM field with real subfield F and denote the non-trivial Galois automorphism of E/F by a 7→ ā.

Again following [17], we consider principally polarized CM modules (M,κE , λ) where M and λ are as before and

κE : OE ↪→ End(M) is an OE-action with κE(a)∗ = κE(ā). In particular, M is a projective OE-module of rank

1, and (M,κE |OF , λ) is a principally polarized RM module. Let V (M) be the space of special endomorphisms of

(M,κE |OF , λ). We now recall the definition of the reflex action on V (M) introduced in [17, section 2]. Consider
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the Q-algebra

R = E ⊗id,F,σ E,

and define automorphisms τ and ρ by τ(a⊗ b) = b⊗ a and ρ(a⊗ b) = b̄⊗ a. Then E] = Rτ=1, the subalgebra

fixed by τ , is again a non-biquadratic CM field with ‘real’ subfield F ] = Rτ=1,ρ2=1. Let a 7→ a† = ρ2(a) denote

the ‘complex conjugation’ E]. (The quotation marks are due to the fact that E] is not identified with a subfield

of C.) Note that E] is spanned by elements of the form α = a⊗ b+ b⊗ a, for a and b ∈ E, and that there is a

norm map N ] : E −→ E], a 7→ a⊗ a. A key observation from [17] is that the action κE of OE on M determines

an action of E] on V (M) given by

α • j = (a⊗ b+ b⊗ a) • j = κE(a) ◦ j ◦ κE(b̄) + κE(b) ◦ j ◦ κE(ā).

Moreover, if ( , ) is the bilinear form on V (M) associated to Q, then (α • j1, j2) = (j1, α† • j2), where α† = ρ2(α)

is the ‘complex conjugation’ on E]. It follows that there is a unique hermitian form ( , )E] on the 1-dimensional

E] vector space V (M) such that (x, y) = trE]/Q(x, y)E] . Similarly, we can view V (M) as a 2-dimensional vector

space over F ] with a unique F ]-quadratic form Q]M such that Q(x) = trF ]/Q Q
]
M (x). We will write (W (M), Q]M )

for this space, although it depends, of course, on the principally polarized CM module (M,κE , λ). Notice that

Q]M depends on the CM module (M,κE , λ) although Q does not.

It is easily checked, cf. [17, Section 2], that the four CM types of the field E are in bijection with the four

complex embeddings of the field E], via the map Σ 7→ φΣ given by

φΣ(α) = φΣ(a⊗ b+ b⊗ a) = τ1(a)τ2(b) + τ1(b)τ2(a), Σ = {τ1, τ2},

where the τi, 1 ≤ i ≤ 4, are the complex embeddings of E. A CM type Σ of E determines an isomorphism

iΣ : ER = E ⊗Q R ∼−→ C2 and hence, if a principally polarized CM module (M,κE , λ) is given, Σ determines a

complex structure hΣ on MR, via the action of the diagonally embedded C in C2, i.e,

hΣ = κE ◦ i−1
Σ (i, i). (6.1)

Moreover, for a given principally polarized CM module (M,κE , λ), there exists a unique CM type Σ of E such

that the form λ(hΣx, y) is symmetric and positive definite, [17, Section 2.3], in which case, (M,κE , λ) is said to

be of type Σ. The following result is [17, Proposition 2.3.5].

Lemma 6.1. Suppose that (M,κE , λ) is of type Σ. Let ∞−Σ be the restriction of φΣ to F ] and let ∞+
Σ be the

other real embedding of F ]. Then the signature of the binary quadratic space (W (M), Q]M ) over F ] is (0, 2) at

∞−Σ and (2, 0) at ∞+
Σ .

For a fixed CM type Σ = {τ1, τ2} of E, let OΣ be the ring of integers in EΣ = φΣ(E]). For a connected



Special values of Green functions at big CM points 29

OΣ-scheme S, a principally polarized CM abelian surface over S is a collection (A, κA, λA) consisting of an

abelian scheme A over S with an action κA : OE → End(A) of OE and a principal polarization λA such that, for

b ∈ OE , κA(b)∗ = κA(b̄). In addition, the Σ-Kottwitz condition is imposed, i.e., the characteristic polynomial of

the endomorphism of Lie(A) determined by κA(b) coincides with the the image of (T − τ1(b))(T − τ2(b)) ∈ OΣ[T ]

in OS [T ]. We let CMΣ
E be the moduli stack over Spec(OΣ) of CM abelian surfaces of type Σ – cf. [17, Section

3.3] for more details.

It will be useful to consider the action of an ideal class group on the CM points. Let C(E) be the generalized

ideal class group of E whose elements are equivalence classes [a, ξ] of pairs (a, ξ), where a is a fractional ideal of E

and ξ ∈ F× is such that NE/F a = ξ OF . Pairs (a1, ξ1) and (a2, ξ2) are equivalent if there is an element α ∈ E×

such that a1 = αa2 and ξ1 = NE/F (α) ξ2. Let C+(E) be the subgroup of classes [a, ξ] for which ξ is totally

positive. For a pair c = (a, ξ) with ξ totally positive and a principally polarized CM abelian surface (A, κA, λA)

define (B, κB , λB) = c • (A, κA, λA) as follows. Let B = a⊗OE A be given by the Serre construction, [33], and let

κB(r) = r ⊗ 1A be the natural action. Let f ∈ Hom(B,A)⊗Z Q be the natural OE-linear quasi-isogeny defined

by f(a⊗ x) = κA(a)x, and define the polarization λB by

λB = f∨ ◦ λA ◦ f ◦ κB(ξ−1).

As explained in [17, Section 3, pp. 29–30], (B, κB , λB) is again a principally polarized CM abelian surface, and

this construction defines an action of such pairs on the stack CMΣ
E .

Now suppose that (A, κA, λA) is in CMΣ
E(C). The associated CM modules (M(A), κA, λA) and

(M(B), κB , λB), where M(A) = H1(A,Z) and M(B) = H1(A,Z), are related by M(B) = a⊗OE M(A) and the

polarization form λB on M(B) is given by

λB(a⊗ x, b⊗ y) = λA(κA(ξ−1 ab̄)x, y). (6.2)

In particular, there is a natural E-linear isomorphism

f∗ : M(B)Q = a⊗OE M(A)Q
∼−→ M(A)Q, a⊗ x 7→ κA(a)x. (6.3)

If we identify M(B)Q and M(A)Q via f∗ and if t ∈ Ê× is such that a = tOE , then the lattice M(B) is identified

with the lattice κA(t)M(A). The isomorphism f∗ also induces an E]-linear isomorphism of the spaces of special

endomorphisms

V (M(B)) ∼−→ V (M(A)), j 7→ κA(ξ−1) · f∗ ◦ j ◦ f−1
∗ . (6.4)

which gives an isometry of the F ]-quadratic spaces (W (M(B)), Q]M(B)) and (W (M(A)), NF/Q(ξ)Q]M(A)). Note

that there is an isometry of rational quadratic spaces (V (M(A)), NF/Q(ξ)Q) ' (V (M(A)), Q), but this map is
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not F ]-linear, in general. The principally polarized CM modules (M(A), κA, λA) and (M(B), κB , λB) have the

same CM type.

In fact, the action of pairs c = (a, ξ) on CM modules is well defined with no positivity restriction on ξ, where

the CM type Σ is changed according to the signature of ξ. For example, the pair (OF ,−1) carries (M,κE , λ),

of type Σ, to (M,κE ,−λ), of type Σ̄. The results of [17, Sections 2 and 3] imply the following.

Proposition 6.2. Fix a principally polarized abelian surface A = (A, κA, λA) over C of type Σ.

(i) There is an isomorphism of orbifolds

[µ(E)\C+(E)] ∼−→ CMΣ
E(C), c 7→ c •A,

where µ(E) is the group of roots of unity in E, and this group acts trivially on C+(E).

(ii) Suppose that c = (a, ξ) is a pair representing a class [a, ξ] ∈ C(E). Choose t ∈ Ê× such that a = tOE ,

and let genf (c) = ξ−1 t t̄ ∈ Ô×F /NE/F (Ô×E) be the genus invariant of c. For a principally polarized CM module

M = (M,κ, λ) of type Σ, let M′ = (M ′, κ′, λ′) = c •M. Then there is an isometry

(Ŵ (M ′), Q]M ′)
∼−→ (Ŵ (M), NF/Q(g̃enf (c))−1 ·Q]M )

of quadratic spaces over F̂ ] carrying L̂(M ′) to L̂(M). Here g̃enf (c) ∈ Ô×F is any representative for genf (c).

Remark 6.3. By [17, (2.4.3)], if

Gen(E/F ) = F×∞/NE/F (E×∞)× Ô×F /NE/F (Ô×E),

and it χE/F is the quadratic character of F×∞ × F̂× associated to E/F , then

C(E)
gen−→ Gen(E/F )

χE/F−→ {±1} −→ 1,

is exact.

Slightly smaller orbits will also be of interest. Let TE and SE] be algebraic tori over Q, where, for any

Q-algebra R,

TE(R) = { t ∈ (E ⊗Q R)× : tt̄ ∈ R× }, and SE](R) = { t ∈ (E] ⊗Q R)× : tt̄ = 1 }.

Note that SE] = ResF ]/Q SO(W (M)) ⊂ SO(V (M)), while, the action of TE(Q) on V (M) defined by

t • j =
1
tt̄
κE(t) ◦ j ◦ κE(t̄)
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lifts to an embedding TE ⊂ GSpin(V (M)) compatible with the exact sequence, [17, Lemma 1.4.1],

1 −→ Gm −→ TE
νE−→ SE] −→ 1, νE(t) =

N ](t)
tt̄

. (6.5)

Let KT = TE(Q̂) ∩ Ô×E . Then there is an injective homomorphism, [17, (2.4.1)],

C(TE) := TE(Q)\TE(Q̂)/KT −→ C+(E), [t] 7→ [t], t := (tOE , ξ),

where tOE is the fractional ideal generated by t and ξ ∈ Q×>0 is the unique element such that tt̄Z = ξZ.

For a fixed principally polarized CM abelian surface A = (A, κA, λA) over C of type Σ, as above, we obtain

a variant of Proposition 6.2. There is an isomorphism of orbifolds

[TE(Q)\(TE(Q̂)/KT )] = [µ(E)\C(TE)] ∼−→ Z(C(TE),A) ⊂ CMΣ
E(C), (6.6)

where Z(C(TE),A) is the subgroupoid whose objects are the t •A for t ∈ TE(Q̂).

Finally, there is an action of the group Aut(C/EΣ) on CMΣ
E(C) described by the theory of complex

multiplication, [34], [36], [26], [28]. We adopt (some of) the notation of Milne. Let EΣ be the reflex field of (E,Σ)

and let NΣ : E×Σ −→ E× be the reflex norm map. If η ∈ Aut(C/EΣ) and s ∈ Ê×Σ is such that η |Eab
Σ

= artEΣ(s),

let t = NΣ(s) ∈ TE(Q̂) be the image of s. The basic theory of CM, [28, Theorem 3.13], asserts that, for a

principally polarized CM abelian surface A = (A, κA, λA) over C of type Σ, the action of η coincides with the

action of t = (tOF , ξ) up to isomorphism, i.e.,

η(A) ' t •A.

Here note that t · t̄ = ξ · χcyc(η) ∈ Q̂× = Q×+ × Ẑ×, where ξ is as above and χcyc : Aut(C)→ Ẑ× is as in [28].

Thus the Aut(C/EΣ) orbits coincide with the orbits of the subgroup NΣ(Ê×Σ ) of TE(Q̂).

Next suppose that η ∈ Aut(C) does not restrict to the identity on EΣ. Then there is an element

fΣ(η) ∈ Ê×/E×, the Tate cocycle, [28, section 4], such that η(A) ∈ CMηΣ
E (C) has the following description.

Let t ∈ Ê× be an element of the coset fΣ(η), and note that t · t̄ = χcyc(η) · ξ, where ξ ∈ F×, [28, Proposition 4.6

(b)]. Here χcyc is the cyclotomic character

χcyc : Aut(C)→ Gal(Q̄/Q)→ Ẑ×.

Let a = tOE be the fractional ideal generated by t and note that NE/F a = ξOF , so that c = (a, ξ) is a

pair defining a class in C(E). Note that g̃enf (c) = χcyc(η). Then, by the extension of CM theory due to Tate,
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Langlands and Deligne, cf. [28, Theorem 4.1],

M(η(A)) ' c •M(A), (6.7)

where M(η(A)) is the principally polarized CM module of η(A). In particular, this module, which determines the

isomorphism class of η(A), has type ηΣ. For example, let ι ∈ Aut(C) be complex conjugation. Then fΣ(ι) = 1,

[28, Proposition 4.8 (c)], and χcyc(ι) = −1. Thus M(ι(A)) ' (M(A), κ(A),−λA); this module has type Σ̄, and

the corresponding complex structure on M(A)R is −hA. Moreover, note that, by (ii) of Proposition 6.2, there is

an isomorphism

(Ŵ (M(η(A))), Q]M(η(A)))
∼−→ (Ŵ (M(A)), Q]M(A)), (6.8)

carrying L̂(η(A)) to L̂(A), since g̃enf (c) = χcyc(η) implies that NF/Q(g̃enf (c)) ∈ (Ẑ×)2 is the square of a unit.

6.3 The forgetful morphism

There is a forgetful morphism

jΣ
E : CMΣ

E →M/OΣ (6.9)

given by restricting the OE action to an action of OF , i.e., sending (A, κA, λA) to (A, κA |OF , λA). Here M/OΣ

denotes the base change of M to Spec(OΣ). We now describe the induced map of orbifolds CMΣ
E(C)→M(C)

and its relation to the special 0-cycles of section 2. Fix A = (A, κA, λA), as before, and choose an isomorphism

(∗) : (M(A), κA |OF , λA) ∼−→ (
o

M,
o
κ,

o

λ).

of the associated RM module with the standard one. This induces an isomorphism of V (M(A)) with V and of

GSpin(V (M(A))) with GSpin(V ). Moreover, for the F ]-quadratic space (W (M(A)), Q]M(A)), we have

ResF ]/Q(W (M(A))) ' V, trF ]/Q(Q]M(A)) = Q,

and the signature is given by Proposition 6.1. The torus TE in GSpin(V (M(A))) and the extension (6.5) is

identified with the torus T in GSpin(V ) of Lemma 2.1 and the extension (2.4) associated to W = W (M(A)).

Having fixed the isomorphism (*), let zA = z(hA) ∈ D+ be the oriented negative 2-plane associated to hA ∈ D.

Let hA be the associated homomorphism of S into GR.

Proposition 6.4. (i) Under the forgetful morphism,

[µ(E)\C(TE)] ∼−→ Z(C(TE),A) −→ M(C)

‖ ↓ o ↓ o (∗∗)

[T (Q)\({hA} × T (Q̂)/KT )] === Z(T, hA) −→ [G(Q)\D×G(Q̂)/K]
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where Z(T, hA) is the cycle defined in section 2.

(ii) Let ι(A) be the transform of A under complex conjugation ι ∈ Aut(C). Let h−A be the complex structure

corresponding to z̄A ∈ D−, the 2-plane zA but with the opposite orientation. Then

[µ(E)\C(TE)] ∼−→ Z(C(TE), ι(A)) −→ M(C)

‖ ↓ o ↓ o (∗∗)

[T (Q)\({h−A} × T (Q̂)/KT )] === Z(T, h−A) −→ [G(Q)\D×G(Q̂)/K]

Finally, let Σ′ be a CM type for E distinct from Σ and Σ̄, and take η ∈ Aut(C) such that Σ′ = ηΣ. Let

B = η(A). Fixing an isomorphism (***) of (M(B), κB |OF , λB) with (
o

M,
o
κ,

o

λ), we obtain a point hB ∈ D, an

isomorphism V (B) ∼−→ V = V (
o

M) of rational quadratic spaces, and an embedding iB : TE → G. Let c = (tOE , ξ)

be the pair determined by η, as described above, and fix the isomorphism (6.7) of M(B) and c •M(A). By

(6.8), we then obtain an isometry ϕ : Ŵ (M(B)) ∼−→ Ŵ (M(A)) of F̂ ]-quadratic spaces carrying L̂(M(B)) to

L̂(M(A)). Combining these, we determine a unique element g0 ∈ SO(V )(Q̂) such that the diagram

V (Q̂)
g−1

0−→ V (Q̂)

‖ ‖

Ŵ (M(B)) ∼−→
ϕ

Ŵ (M(A))

commutes. Let T ′ be the torus iB(TE) in G. Note that, for s ∈ TE(Q̂), iB(s) = g0 iA(s) g−1
0 , and that

L̂(B) = g−1
0 L̂(A).

Proposition 6.5. With the notation just introduced, for any element g ∈ G(Q̂) with image g0 in SO(V )(Q̂),

[µ(E)\C(TE)] ∼−→ Z(C(TE),B) −→ M(C)

‖ ↓ o ↓ o (∗∗)

[T ′(Q)\({hB} × T ′(Q̂)/KT ′)] === Z(T ′, hB, g) −→ [G(Q)\D×G(Q̂)/K].

Here note that the uniformization (**) depends on the choice of base point A.

Corollary 6.6. The morphism (6.9) induces an isomorphism of orbifolds

Z(C(TE),A) ∪ Z(C(TE), ι(A)) ∪ Z(C(TE), η(A)) ∪ Z(C(TE), ιη(A)) ∼−→ Z(T, h±A) ∪ Z(T ′, h±η(A), g).
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The 0-cycle on the right here was denoted by Z(W ) in section 2, where W = W (M(A)). To lighten notation,

we will now write Z(A) for this cycle. Similarly, we will write L(A) for L(M(A)) for the lattice of special

endomorphisms of M(A).

Remark 6.7. A key point here is that the 0-cycle jE : CME(C)→M(C) associated to the non-biquadratic

CM field E/F via moduli coincides with a union of 0-cycles associated to the binary quadratic spaces for the

non-biquadratic CM fields E]/F ] via the Shimura variety construction of Section 2.

Remark 6.8. Let Ā = (A, κ̄A, λA) ∈ CMΣ̄
E(C) where κ̄A(a) = κA(ā). Note that the underlying RM modules

(M(A), κA |OF , λA) and (M(A), κ̄A |OF , λA) coincide‡ and that, by (6.1), the complex structures hA and hĀ

also coincide. Thus, the images of Z(C(TE),A) and Z(C(TE), Ā) in M(C) coincide, and both are identified

with Z(T, hA) under the uniformization isomorphism (**).

Combining Theorem 5.2 with Corollary 6.6, we obtain the following result.

Corollary 6.9. Let f ∈ H0,ρ̄L , and let E be a non-biquadratic CM quartic field with real subfield F and a CM

type Σ. Let

c(E) =
4
wE

|C(T )|
Λ(0, χ)

.

(i) For A ∈ CMΣ
E(C),

Φ(Z(A), f) = c(E)
(
CT[〈f+, E(τ, L(A))〉]− L′(0, ξ(f), L(A))

)
.

(ii) Thus

j∗Φ(f)(CME(C)) = c(E)
∑

A∈C(TE)\CMΣ(E)(C)

(
CT[〈f+, E(τ, L(A))〉]− L′(0, ξ(f), L(A))

)
.

where CMΣ(E)(C) is the set of isomorphism classes of objects in CMΣ
E(C).

Note that Theorem 5.2 gives (i) here but with the constant

c1(E) =
degZ(W (A), z±0 )

Λ(0, χΣ)
.

in place of c(E), where χΣ is the quadratic Hecke character of FΣ associated to EΣ/FΣ. By the proof of [42,

Proposition 3.3], one has Λ(s, χ) = Λ(s, χΣ), so c1(E) = c(E).

6.4 Integral Structure

Let E = F (
√

∆) be again a quartic CM number field with real quadratic subfield F . Let Σ be a CM type of E

and let EΣ be its reflex field.

‡And we use the same isomorphism (*) for both.
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Hypothesis 6.10. From now on, we assume that D ≡ 1 mod 4 is prime and dE = D2D̃ with D̃ ≡ 1 mod 4

squarefree. In this case, we can find ∆ with E = F (
√

∆) such that

∆ =
a+ b

√
D

2

is primitive in the sense that a and b are relatively prime rational integers (see [9, (4.20)] and [9, Lemma 4.4]).

For convenience, we will identify EΣ = φΣ(E]) with E] and its real quadratic subfield FΣ = φΣ(F ]) =

Q(
√
D̃) with F ]. We use the abbreviations W (A) = W (M(A)), L(A) = L(M(A)), and so on. Finally, we write

CMΣ(E) for CMΣ
E(C).

We consider the F ]-quadratic space

W ] = E], Q](z) = − zz̄√
D̃

(6.10)

with the even integral lattice L] = OE] . The main purpose of this subsection is to prove

Proposition 6.11. Let the notation and assumption be as above. Then for any A ∈ CMΣ(E), there is an

F ]-quadratic isomorphism

φA : (W (A), Q]A) ∼= (W ], Q])

such that φA(L(A)) is in the same genus as L]. In particular L(A) is an OE] -module and all (L(A), Q]A) are in

the same genus.

Proof . We divide the proof in to several steps.

Step 1: Preparation. To prove Proposition 6.11, we need a concrete model of A ∈ CMΣ(E). Let A be a

fractional ideal of E and ξ ∈ E such that

ξ̄ = −ξ, Σ(ξ) = (σ1(ξ), σ2(ξ)) ∈ H2,
(
ξ∂E/F NE/F A

)
∩ F = ∂−1

F . (6.11)

Here ∂E/F is the relative different of E/F . Then there is an CM abelian surface A = A(A, ξ) ∈ CMΣ(E)

associated to it, given as follows. First, A = A⊗Z R/A with OE-multiplication on the left as the OE-action

κ, second the following symplectic form

λ = λξ : A× A→ Z, (x, y) 7→ trE/Q(ξx̄y)

gives rise to a Riemmann form on A and thus a polarization λ, which is principal. Conversely, every principally

polarized CM abelian surface A ∈ CMΣ(E) can be constructed this way (see for example [9, Section 3]). Let
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A = A(A, ξ) ∈ CMΣ(E). By [9, Lemma 3.2] or direct checking, one can choose α and β such that

A = OFα+ ∂−1β, ξ (ᾱβ − αβ̄) = 1. (6.12)

Then we put

f := fα,β : A→ t(OF ⊕ ∂−1), xα+ yβ 7→

x
y

 ,

and define

κ := κα,β :OE → EndOF
t(OF ⊕ ∂−1) ⊂M2(F ),

by

(rα, rβ)

x
y

 = (α, β)κ(r)

x
y

 .

Then fα,β gives an isomorphism between the principally polarized RM modules M(A) and (
o

M,
o
κ,

o

λ). Recall

that we can and will identity L(
o

M), and thus L(A), with

L =


 a b

√
D

c/
√
D σ(a)

 : a ∈ OF , b, c ∈ Z

 ,

and V (
o

M), and thus V (A), with V = L⊗Z Q. Notice that W (A) = V (A) as vector spaces over Q.

Step 2: Define an isomorphism

φ : W (A) = V
∼−→ E], φ(A) =

1√
D

(σ1(α), σ1(β))Aw(σ2(α), σ2(β))t, w =

 0 1

−1 0

 .

We prove that φ is an isomorphism of quadratic spaces over F ] between (W (A), Q]A)) and (E],− zz̄√
D̃N(A)

). To

verify the claim, let

V1 =
{
A ∈M2(F ) : σ(A) = At

}
=
{(

b u
σ(u) a

)
: a, b ∈ Q, u ∈ F

}
(6.13)

with the quadratic form Q1(A) = D detA, and let

φ1 :V → V1, A 7→ 1√
D
Aw, (6.14)

φ2 :V1 → E], A 7→ (σ1(α), σ1(β))A(σ2(α), σ2(β))t. (6.15)
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Then φ = φ2 ◦ φ1. It is easy to check that φ1 is a Q-isomorphism between (V,det) and (V1, D det). On

the other hand, φ2 is basically the map in [9, (4.11)], and is a Q-isomorphism between (V1, D det) and

(E],− trF ]/Q
zz̄√
D̃N(A)

). So φ is a Q-quadratic space isomorphism. Next, For r] = NΣ(r) ∈ E] with r ∈ E×,

one has

φ(r] •A) =
1√
D

(σ1(α), σ1(β))κ(r)Aσ(κ(r)ι)w(σ2(α), σ2(β))t

=
1√
D

(σ1(rα), σ1(rβ))Awσ(κ(r)ι)t(σ2(α), σ2(β))t

=
1√
D

(σ1(rα), σ1(rβ))Aw(σ2(rα), σ2(rβ))t

= σ1(r)σ2(r)φ(A) = r]φ(A).

So φ is E]-linear. So φ is an F ]-quadratic space isomorphism between (W (A), Q]A) and (E],− zz̄√
D̃N(A)

), as

claimed.

Step 3: Let

L0(∂−1
F ) =


 b λ

σ(λ) a

 ∈ V1 : a ∈ 1
D

Z, b ∈ Z, λ ∈ ∂−1


be a lattice in (V1, D det). Then, by [9, Proposition 4.7], one has

φ(L(A)) = φ2φ1(L)

= φ2(L0(∂−1
F ))

= NΣ(A).

Here NΣ(A) is the type norm of A defined as

NΣ(A) = σ1(A)σ2(A)OM ∩ E]

for any Galois extension M of Q containing both E and E]. Thus, φ(L(A)) is actually a fractional ideal in E],

and in particular an OF ]-lattice, and we have

φ : (L(A), Q]A) ∼= (NΣ(A),− zz̄√
D̃N(A)

). (6.16)

Step 4: We prove that for every A = A(A, ξ) ∈ CMΣ(E), one has for every finite prime p of F ]

(NΣ(A)p,−
1√
D̃

zz̄

N(A)
) ∼= (L]p, Q]). (6.17)
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Notice that ([9, Corollary 4.5])

NE]/Q ∂E]/F ] = D, NE]/F ](NΣ(A)) = N(A)OF ] . (6.18)

In particular, E]/F ] is ramified at exactly one prime D of F ] and this prime D is above D. For each prime ideal

p 6= D of F ], there is a generator α of (NΣ(A))×p such that αᾱ = N(A). So r 7→ r/α gives

((NΣ A)p,−
1√
D̃

zz̄

N(A)
) ∼= (OE],p,−

1√
D̃
zz̄) = (L]p, Q]).

For p = D, one has similarly,

(NΣ(A),− zz̄√
D̃N(A)

) ∼= (OE],D,−c
1√
D̃
zz̄)

for some some c ∈ O×
F ],D

with

N(A) = cαᾱ, α ∈ NΣ(A)D.

Notice that (W (A), Q]A) ∼= (E],− 1√
D̃

zz̄
N(A) ) and (W ], Q]) are global F ]-vector spaces, which are isomorphic

at every prime p 6= D by the above argument. So they have to be isomorphic at D too, which implies that

c ∈ NE]D/F
]
D

(O×
E],D

), and one has again (6.17) for the prime p = D. Finally, W (A) and W ] are clearly isomorphic

at all infinite places of F ] by (6.16). So there is an AF ] isomorphism of AF ] -quadratic spaces

φ′A : (W (A)A, Q
]
A) ∼= (W ]

A, Q
])

such that φ′A(L̂(A)) = L̂]. By the Hasse principle, one proves the proposition.

Remark 6.12. Once one knows, say by the explicit calculations above, that L(A) is actually an OE] -module,

one can prove without explicit computation that the genus of (L(A), Q]A) does not depend on the choice of

A ∈ CMΣ(E). The basic idea is the following fact ([17, Lemma 2.4.4]). When B = c •A with c = (a, ξ) ∈ C+(E),

there is a F̂ ]-isometry

φ : (Ŵ (B), Q]B) ∼= (Ŵ (A),NF/Q(zf )Q]A),

which sends L̂(B) onto L̂(A). Here zf = ξ−1tt̄ ∈ Ô×F corresponds to the finite genus genf (c) of c and t ∈ Ê×

with tOE = a. One uses again the fact that E]/F ] ramifies at only one prime D (see last step of the proof

of Proposition 6.11) to show NF/Q(zf ) ∈ NE]/F](Ô
×
E]

). This proves the claim. Note, however, that the explicit

calculation gives more information. Most importantly, it gives a concrete model for L(A), with which one can

explicitly compute the Eisenstein series and thus the right hand side of the main formula in Corollary 6.9. We

will use the explicit model to compare our formula with the main result of [9] in the next subsection.
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Let

E∗(~τ , s, L],1) =
∑

µ∈L],′/L]
E∗(~τ , s, ϕµ,1)ϕµ (6.19)

be the incoherent Eisenstein series associated to L], and let E(τ, L]) be the holomorphic part of E∗,′(τ∆, 0, L])

with τ ∈ H. Note that

L],′/L] ' ∂−1
E]/F ]

/OE] ' Z/DZ.

Proof of Theorem 1.2: Now Theorem 1.2 is a direct consequence of Corollary 6.9 and Proposition 6.11.

6.5 Scalar modular forms

In this subsection, we again assume that dE = D2D̃ with D ≡ 1 mod 4 prime and D̃ ≡ 1 mod 4 square-free.

We translate Theorem 1.2 into the usual language of scalar modular forms and finally compare it with [9,

Theorem 1.4] in the special case considered there. Let H be the upper half plane. For (z1, z2) ∈ H2, let

w(z1, z2) =

1
√
D


−1z1z2 z1

z2 1


1

√
D

 ∈ V (C),

and let U(z1, z2) be the oriented negative 2-plane in V (R) whose complexification U(z1, z2)(C) is spanned by

w(z1, z2) and w(z1, z2) and whose orientation is give by w(z1, z2) ∧ w(z1, z2). This gives an identification of H2

with D+, equivariant for the action of SL2(OF ) ' Γ. Under the resulting identification

X = XK(C) ' SL2(OF )\H2,

the Hirzebruch-Zagier divisor Tn defined in [9] is related to the special divisor Z(m,µ) via

Tn =
1
2


Z( nD , 0) if D|n,

Z( nD , µ) + Z( nD ,−µ) if D - n.
(6.20)

Here, in the second case, µ ∈ L],′/L] is determined by the condition that Q(µ) ≡ n
D mod 1. Let k be an even

integer, and let Ak,ρ be the space of real analytic modular forms of weight k with representation ρ, where ρ = ρL

or ρ̄L. Let A+
k (D, (D· )) be the space of real analytic modular forms fsc(τ) =

∑
n a(n, v)qn of weight k for the

group Γ0(D) with character (D· ) such that a(n, v) = 0 whenever (Dn ) = −1. Here we use fsc to denote a scalar

valued modular form to distinguish it from vector valued modular forms in this paper. Then the following lemma

is proved in [5].
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Lemma 6.13. There is an isomorphism of vector spaces Ak,ρ → A+
k (D, (D· )),

f =
∑

µ∈L′/L

fµϕµ 7→ fsc = D
1−k

2 f0|WD.

The inverse map is given by

fsc 7→ f =
1
2
D

k−1
2

∑
γ∈Γ0(D)\ SL2(Z)

(fsc|WD|γ) ρ(γ)−1ϕ0,

where WD =
(

0 −1
D 0

)
denotes the Fricke involution. Moreover, if fsc(τ) =

∑
n a(n, v)qn, then f has the Fourier

expansion

f =
1
2

∑
µ∈L′/L

∑
n∈Z

n≡DQ(µ) (D)

ã(n, v) qn/D φµ,

where ã(n, v) = a(n, v) if n 6≡ 0 mod D, and ã(n, v) = 2 a(n, v) if n ≡ 0 mod D.

In particular, the constant term of fsc agrees with the constant term of f in the ϕ0-component. The

isomorphisms of Lemma 6.13 take harmonic weak Maass forms to harmonic weak Maass forms, (weakly)

holomorphic modular forms to (weakly) holomorphic modular forms, and cusp forms to cusp forms.

Let

E∗sc(τ, s) =
1√
D
E∗(τ∆, s, φ0,1)|WD (6.21)

be the scalar image of E∗(τ∆, s, L],1), and let Esc(τ) be the holomorphic part of

f̃(τ) =
d

ds
E∗sc(τ, s)|s=0.

Then f̃(τ) is the function defined in [9, (7.2)]. By [9, Theorem 7.2], we have the following lemma, which reveals

the nature of the coefficients in the q-expansion of Esc(τ).

Lemma 6.14. Let the notation be as above. Then

Esc(τ) = −2Λ′(0, χ)− 4
∑

m∈Z>0

bmq
m

with

bm =
∑

t=n+m
√
D̃

2D ∈d−1
E]/F]

|n|<m
√
D̃

Bt.

Here

Bt = (ordl(t) + 1) · ρ(tdE]/F ] l
−1) · log N(l)
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if there is a unique prime ideal l of F ] with χ̃l(t) = −1, and otherwise Bt = 0. Here χ̃ is the quadratic Hecke

character of F ] associated to E]/F ]. Finally

ρ(a) = |{A ⊂ OE] : NE]/F ] A = a}|.

Now let fsc = f+
sc + f−sc ∈ H+

0 (D, (D· )) be a harmonic weak Maass form with holomorphic part

f+
sc(τ) =

∑
n�−∞

c+(n)qn,

and let

c̃+(n) =


2c+(n) if D|n,

c+(n) if D - n.

Let f ∈ H0,ρ̄
L]

be the associated vector valued harmonic weak Maass form. We define a divisor on X and a

Green function associated to fsc by

T (fsc) =
∑
n>0

c̃+(−n)Tn, (6.22)

Φ(z, fsc) = Φ(z, f). (6.23)

Then one sees that T (fsc) = Z(f) by (6.20). We also define the Rankin-Selberg L-series

Lsc(s, ξ(fsc)) = 〈E∗sc(τ, s), ξ(fsc)〉Pet. (6.24)

A straightforward calculation gives

Lemma 6.15. (1)

L(s, ξ(f), L]) =
1
2
D(D + 1)Lsc(s, ξ(fsc)).

(2)

CT[〈f+, E(τ, L])〉] = −2c+(0)Λ′(0, χ)− 2
∑
n>0

c̃+(−n)bn.

Combining this with Theorem 1.2, we obtain:
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Corollary 6.16. Let F = Q(
√
D) with D ≡ 1 mod 4 prime, and let E be a CM non-biquadratic field with

absolute discriminant dE = D2D̃ where D̃ ≡ 1 mod 4 is square free. If fsc ∈ H+
0 (D, (D· )), then

Φ(CM(E), fsc) = −2c′(E)

[∑
n>0

c̃+(−n)bn + c+(0)Λ′(0, χ) +
D(D + 1)

4
L′sc(0, ξ(fsc))

]
.

Now we assume that fsc =
∑
c+(n)qn ∈ H+

0 (D, (D· )) is weakly holomorphic, i.e., ξ(fsc) = 0, and that

c̃+(n) ∈ Z for n < 0. Then there is a (up to a constant of modulus 1 unique) memomorphic Hilbert modular

form Ψ(z, fsc) of weight c+(0) with a Borcherds product expansion whose divisor is given by

div(Ψ) = T (fsc),

see [5, Theorem 9]. Morever, by construction it satisfies

− log ‖Ψ(z, fsc)‖2Pet = Φ(z, fsc),

where

‖Ψ(z1, z2, fsc)‖2Pet = |Ψ(z1, z2, fsc)|2(4πe−γy1y2)c
+(0)

is the Petersson metric (normalized in a way which is convenient for our purposes), and γ = −Γ′(1) is Euler’s

constant.

Corollary 6.17. Let the notation be as in Corollary 6.16 and assume that fsc is weakly homomorphic. Then

log ‖Ψ(CM(E), fsc)‖Pet = c′(E)
∑
n>0

c̃+(−n)bn + c′(E)c+(0)Λ′(0, χ).

When D̃ is also prime, we have c′(E) = 1. Then this corollary coincides with [9, Theorem 1.4], since the

CM points in this paper are counted with multiplicity 2
wE

, and our CM cycle is twice the CM cycle there as a

set with multiplicities.
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divisant le discriminant.” Compositio Math. 90 (1994), 59–79.

[13] D. Dorman, “Special values of the elliptic modular function and factorization formulae.” J. Reine

Angew. Math. 383, (1988), 207–220.

[14] N. D. Elkies, “Shimura Curve Computations.” In Algorithmic number theory (Portland, OR, 1998),

1–47, Lecture Notes in Comput. Sci. 1423, Springer, Berlin, 1998.

[15] E. Goren and K. Lauter, “Class invariants for quartic CM fields.” Ann. Inst. Fourier 57, (2007),

457–480.

[16] B. Gross and D. Zagier, “On singular moduli.” J. Reine Angew. Math. 355, (1985), 191–220.



44 J. Bruinier, S. Kudla, and T. H. Yang

[17] B. Howard and T.H. Yang, “Intersections of Hirzebruch-Zagier divisors and CM cycles.” preprint

(2010).

[18] S. Kudla, “Central derivatives of Eisenstein series and height pairings.” Annals of Math. (2) 146,

(1997), 545–646.

[19] , “Algebraic cycles on Shimura varieties of orthogonal type.” Duke Math. J. 86, (1997), no. 1,

39–78.

[20] , “Integrals of Borcherds forms.” Compositio Math. 137, (2003), 293–349.

[21] , “Seesaw dual reductive pairs.” Automorphic forms of several variables (Katata, 1983), 244–

268, Progr. Math., 46, Birkhuser Boston, Boston, MA, 1984.

[22] S. Kudla and S. Rallis, “On the Weil-Siegel formula.” J. reine angew. Math. 387, (1988), 1–68.

[23] S. Kudla and M. Rapoport, “Arithmetic Hirzebruch-Zagier cycles.” J. reine angew. Math. 515, (1999),

155–244.

[24] S. Kudla, M. Rapoport, and T.H. Yang, “On the derivative of an Eisenstein series of weight one.”

Internat. Math. Res. Notices, no. 7 (1999), 347–385.

[25] S. Kudla and T.H. Yang, “Eisenstein series for SL2.” Science of China, 53 (2010), 2275–23116.

[26] S. Lang, Complex Multiplication, Grundlehren d. math. Wissen. 255, Springer Verlag, New York 1983.

[27] J. Milne, “Canonical models of (mixed) Shimura varieties and automorphic vector bundles.” in

Automorphic Forms, Shimura Varieties and L-functions, I (Ann Arbor 1988), Perspectives in Math.

10, 1990, 284–414.

[28] , “The fundamental theorem of complex multiplication”, preprint 2007,

http://www.jmilne.org/math/articles/

[29] J. Milne and K.-Y. Shih, “Langlands’ construction of the Taniyama group.” Chapter III of Lecture

Notes in Math. 900, Deligne, Milne, Ogus, and Shih, Springer-Verlag, 1982.

[30] , “Conjugates of Shimura varieties.” Chapter V of Lecture Notes in Math. 900, Deligne, Milne,

Ogus, and Shih, Springer-Verlag, 1982.

[31] D. Ramakrishnan and R. J. Valenza, Fourier analysis on number fields, GTM 186, Springer, New

York, 1998.

[32] M. Rapoport, “Compactifications de l’espace de modules Hilbert-Blumenthal.” Compositio Math. 36,

(1978), 255–335.

[33] J.P. Serre, ..



Special values of Green functions at big CM points 45

[34] G. Shimura and Y. Taniyama, Complex multiplication of abelian varieties and its applications to

number theory, Publications of the Mathematical Society of Japan 6, Tokyo, 1961.

[35] G. Shimura, “The arithmetic of certain zeta functions and automorphic forms on orthogonal groups.”

Annals of Math. 111, (1980), 313–375.

[36] , Abelian varieties with complex multiplication and modular functions, Princeton Mathematical

Series 46, Princeton University Press, Princeton, New Jersey 1998.

[37] J. Schofer, “Borcherds forms and generalizations of singular moduli.” J. Reine Angew. Math. 629,

(2009), 1–36.
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