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advection–diffusion equation in a bounded region

Advection and diffusion of heat in a bounded region Ω, with Dirichlet
boundary conditions:

∂tθ + u · ∇θ = D∆θ, u · n̂|∂Ω = 0, θ|∂Ω = 0,

with ∇ · u = 0 and θ(x, t) ≥ 0.

This is the heat exchanger
configuration: given an initial
distribution of heat, it is
fluxed away through the
cooled boundaries.

This happens through
diffusion (conduction) alone,
but is greatly aided by
stirring.
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heat exchangers

Our domain will be a 2D cross-section of a traditional coil.
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heat flux

Write 〈·〉 for an integral over Ω.

〈·〉 :=

∫
Ω
· dV

The rate of heat loss is equal to the flux through the boundary ∂Ω:

∂t〈θ〉 = D

∫
∂Ω
∇θ · n̂dS =: −F [θ] ≤ 0. *

Goal: find velocity fields u that maximize the heat flux.

Note that * is not so good for this, since velocity does not appear.

The role of u is to increase gradients near the boundary. What it does
internally is not directly relevant. This is in contrast to the traditional
Neumann IVP (chaotic mixing, etc).
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related problem: mean exit time

Take steady velocity u(x). The mean exit time τ(x) of a Brownian particle
initially at x satisfies

−u · ∇τ = D∆τ + 1, τ |∂Ω = 0,

This is a steady advection–diffusion equation with velocity −u and
source 1.

Intuitively, a small integrated mean exit time 〈τ〉 = ‖τ‖1 implies that the
velocity is effecient at taking heat out of the system.

The mean exit time equation is much nicer than the equation for the
concentration: it is steady, and it applies for any initial concentration
θ0(x).
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relationship between exit time and mean temperature

Recall that 〈·〉 is an integral over space, and take 〈θ0〉 = 1. The quantity∫ ∞
0
〈θ〉 dt

is a cooling time. Smaller is better for good heat exchange.

We have the rigorous bounds∫ ∞
0
〈θ〉dt ≤ ‖τ‖∞

∫ ∞
0
〈θ〉 dt ≤ ‖τ‖1 ‖θ0‖∞.

Thus, decreasing a norm like ‖τ‖1 or ‖τ‖∞ will typically decrease the
cooling time, as expected.

6 / 22



relationship between exit time and mean temperature

Recall that 〈·〉 is an integral over space, and take 〈θ0〉 = 1. The quantity∫ ∞
0
〈θ〉 dt

is a cooling time. Smaller is better for good heat exchange.

We have the rigorous bounds∫ ∞
0
〈θ〉dt ≤ ‖τ‖∞

∫ ∞
0
〈θ〉 dt ≤ ‖τ‖1 ‖θ0‖∞.

Thus, decreasing a norm like ‖τ‖1 or ‖τ‖∞ will typically decrease the
cooling time, as expected.

6 / 22



does stirring always help?

[Iyer, G., Novikov, A., Ryzhik, L., & Zlatos̆, A. (2010). SIAM J. Math. Anal. 42 (6),

2484–2498]

Theorem (Iyer et al. 2010)

Ω ∈ Rn bounded, ∂Ω ∈ C 1. Then

‖τ‖Lp(Ω) ≤ ‖τ0‖Lp(B) , 1 ≤ p ≤ ∞,

where B ∈ Rn is a ball of the same volume as Ω, and τ0 is the ‘purely
diffusive’ solution, 0 = D∆τ0 + 1 on B.

That is, measured in any norm, the exit time is maximized for a disk with
no stirring. So for a disk stirring always helps, or at least isn’t harmful.

They also prove that, surprisingly, if Ω is not a disk, then it’s always
possible to make ‖τ‖L∞(Ω) increase by stirring. (Related to unmixing
flows? [Thiffeault (2012)])
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optimization problem

Let’s formulate an optimization problem to find the best incompressible u.

Advection–diffusion operator and its adjoint:

L := u · ∇ − D∆, L† = −u · ∇ − D∆ .

Minimize 〈τ〉 over steady u(x) with fixed total kinetic energy E = 1
2‖u‖

2
2.

The functional to optimize:

F[τ,u, ϑ, µ, p] = 〈τ〉 − 〈ϑ (L†τ − 1)〉+ 1
2µ (‖u‖2

2 − 2E )− 〈p∇ · u〉

Here ϑ, µ, p are Lagrange multipliers.
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Euler–Lagrange equations

Introduce streamfunction Ψ to satisfy ∇ · u = 0:

ux = −∂yψ , uy = ∂xψ.

The variational problem gives the Euler–Lagrange equations

L†τ = 1, τ |∂Ω = 0;

Lϑ = 1, ϑ|∂Ω = 0;

µ∆ψ = J(τ, ϑ), ψ|∂Ω = 0;

〈|∇ψ|2〉 = 2E ,

with the Jacobian
J(τ, ϑ) := (∇τ ×∇ϑ) · ẑ .
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a judicious transformation

Transform to new functions η, ξ

τ = τ0 + 1
2 (η + ξ), ϑ = τ0 + 1

2 (η − ξ)

where recall that τ0 is the solution without flow (purely diffusive).

Then by using the Euler–Lagrange equations we can eventually show

〈τ〉 = 〈τ0〉 − 1
4〈|∇ξ|

2〉 − 1
4〈|∇η|

2〉.

Hence, solutions to E–L equations cannot make 〈τ〉 increase. So stirring is
always better than not stirring.
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the nonlinear ansatz

For a disk the purely diffusive solution is τ0 = 1
4 (1− r 2). We then make

the ansatz

ξ =
√

2µB(r) cos mθ, η = B(r) sin mθ, ψ = ξ/
√

2µ,

and look for solutions of that form.

Inserting this into the full system gives solutions provided the radial
functions B(r) satisfy the nonlinear eigenvalue problem

r 2B ′′ + rB ′ + (r 2λ−m2)B = 1
2 m2B3, λ = m/

√
2µ.

The left-hand side is Bessel’s equation.

Note that it is rather unusual for such a linear-type ansatz to give nonlinear
solutions. We also have no guarantee that this is the true optimal solution.
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small-E solutions

For small energy E , exact solution in terms of Bessel functions Jm(ρmnr),
where ρmn are zeros:

〈τ〉/〈τ0〉 = 1− (4m2/πρ4
mn)E + O(E 2).

Pick the solution with the smallest 〈τ〉: m = 2, n = 1 for all E � 1:

-8
-6
-4
-2
0
2
4
6
8

×10-3

-3

-2

-1

0

1

2

3

×10-4
u τ − τ0
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large E case: numerics

Numerical solution with Matlab’s bvp5c, using a continuation method:

〈τ
〉

100 102 104 106 108
10-4

10-3

10-2

10-1

100

m = 2
m = 64

m = {2, 10, 14, 18, 24, 32, 48, 64}

E

Larger m worse at small E , then better, then maybe worse again?
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optimal solution for E = 1000, m = 8

PBL

 SZ
 BULK

Three regions:

• Stagnation zone (SZ)

• Bulk

• Peripheral boundary
layer (PBL)
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structure of the radial solution B(r) for large E
B
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large-E asymptotics: outer solution

Rescaled variables B = Eα B̃ and λ = Eβ λ̃:

r 2B̃ ′′Eα + r B̃ ′Eα + r 2λ̃B̃Eα+β −m2B̃Eα = 1
2 m2 B̃3E 3α.

Outside the boundary layer, the large-E balance must occur between the
terms r 2λ̃B̃Eα+β and 1

2 m2 B̃3E 3α, so β = 2α.

This gives the outer solution

Bouter = Eα B̃ =
√

2/m3 λ̃Eα r .

(This does not include the stagnation zone in the center. Neglect for now.)

Cannot satisfy Bouter(1) = 0: need boundary layer.
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large-E asymptotics: inner solution

Inner variable r = 1− ερ:

(1− ερ)2

ε2
B̄ ′′Eα +

(1− ερ)

ε
B̄ ′Eα + (1− ερ)2 λ̃ B̄ E 3α −m2 B̄ Eα

= 1
2 m2 B̄3 E 3α.

Dominant balance: highest derivative with Eα = ε−1:

B̄ ′′ + λ̃B̄ = 1
2 m2 B̄3.

This has an exact tanh solution, which after matching with the outer
solution as ρ→∞ gives After solving this

Binner =

√
2λ̃/m2 Eα tanh

(√
λ/2 ρ

)
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large-E asymptotics: energy constraint

Finally we apply the energy constraint, which reads

2E

π
=

∫ 1

0

{
rB ′2 +

m2

r
B2

}
dr

=

∫ 1−δ

0

{
rB ′2outer +

m2

r
B2

outer

}
dr +

∫ 1

1−δ

{
B ′2inner + m2B2

inner

}
dr .

We skip the details, but dominant balance requires α = 1/3, and so
β = 2α = 2/3.

The optimal integrated exit time thus scales as m−2/3 E−1/3.
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large-E case: asymptotics at fixed m
〈τ
〉

100 102 104 106 108
10-4

10-3

10-2

10-1

100

m = 2
m = 64

m = {2, 10, 14, 18, 24, 32, 48, 64}

(
π4/6

)1/3
m−2/3E−1/3

E

Fixed-E asymptotic optimal 〈τ〉 seems to decrease to zero as m−2/3. This
implies no optimal flow, since arbitrarily efficient at large m. Not so!
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large-E , large-m case
〈τ
〉

100 102 104 106 108
10-4

10-3

10-2

10-1

100
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E

To truly capture the optimal solution, have to let m ∼ E 1/4.

This is the dashed line (envelope).
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conclusions

• Transport in heat exchangers has a very different character than
‘freely-decaying’ problem.

• Using the probabilistic mean exit time formulation simplifies the
problem. (Idea came from Iyer et al. 2010.)

• Optimal solutions for u are reminiscent of Dean flow.

• At small energy optimal solution has m = 2, n = 1.

• At larger energy there is a boundary layer, which enhances the heat
transfer or decreases exit time: 〈τ〉 ∼ m−2/3E−1/3.

• This asymptotic solution breaks down when m gets too large. The
stagnation zone becomes larger and penalizes large m.

• A distinguished limit in m gives 〈τ〉 ∼ E−1/2.

• Generalizations: use different norms, spatial weight. . .
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