pseudo-Anosovs with small or large dilatation

Jean-Luc Thiffeault

Department of Mathematics
University of Wisconsin — Madison

Mathematics Colloquium, University of Wisconsin, Madison
8 February 2013

Supported by NSF grants DMS-0806821 and CMMI-1233935 |

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

1/31


http://www.math.wisc.edu/~jeanluc
http://www.math.wisc.edu
http://www.wisc.edu
http://www.wisc.edu

Surface homeomorphisms Y

homeomorphism ¢ : § — 8, where 8 is a compact orientable surface
without boundary, such as 2-torus:

Can visualize by action on loops:
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lsotopy Y

© and v are isotopic if ¥ can be continuously ‘reached’ from ¢ without
moving the rods. Write ¢ ~ .

Defines isotopy classes.

Again, convenient to think of isotopy in terms of loops:

> SO/
0% (o)
= Qo9

° u
(Loops will always mean essential loops.)
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Thurston—Nielsen classification theorem

Theorem

@ Is isotopic to a homeomorphism 1), where 1) is in one of the following
three categories:

finite-order for some integer k > 0, 1k ~ identity;

reducible v leaves invariant a disjoint union of essential simple
closed curves, called reducing curves;

pseudo-Anosov ) leaves invariant a pair of transverse measured singular
foliations, F* and F°, such that (F*, u*) = (F%, A )
and ¥(F°, u5) = (F5, A=), for dilatation X > 1.

The three categories characterize the isotopy class of .

pseudo-Anosov is the most interesting one.
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A singular foliation Y

The ‘pseudo’ in pseudo-Anosov refers to the fact that the foliations can
have a finite number of pronged singularities.

3-pronged singularity
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Example: Dehn twists

Two positive multi-twists (Dehn twists) around curves A, B (Thurston's
construction).

() D O DD

[Leininger, C. J. (2004). Geom. Topol. 8, 1301-1359]
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Example: Translation surface Y

Map all the points on the left by ()‘;1 ?\) with A+ X> - A4 423 4+1=0.

The image is on the right,
which has been cut up to
exhibit the isometry of
the two surfaces.

In this ‘flat surface’
picture, the foliations
consist of straight
horizontal /vertical lines.

The singularities in the foliation live at the corners. There are two, with
angles 47 and 127w. Gauss—Bonnet then tells us this is a surface of genus

four. [Lanneau & J-LT (2011a)]
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The Minimizer problem (‘Systole’)

On a given surface §, which pA has the least A?

The minimum is known to exist (Thurston);
Punctured discs: Known for n = 3 to 7 [Song et al. (2002); Ham & Song
(2007); Lanneau & J-LT (2010, 2011a,b)];

Minimizer is simple for n odd [Hironaka & Kin (2006)], though not
proved in general,

Closed surfaces: known for genus 2 [Zhirov (1995); Cho & Ham (2008);
Lanneau & J-LT (2011a)].
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Orientable minimizer W

e No punctures: surface of genus g;

o If the foliation is orientable, then things are much simpler;
e Action of the pA on first homology captures dilatation \;
e Polynomials of degree 2g;

e Procedure:

We have a guess for the minimizer;

Find all integer-coefficient, reciprocal polynomials that have largest
root smaller than X;

Show that they can't correspond to pAs;

For the smallest one that can, construct pA.

® [Lanneau, E. & J-LT (2011a). Ann. Inst. Fourier, 61 (1), 105-144. See also

article in Dynamical Systems Magazine.]
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Newton's formulas W

We need an efficient way to bound the number of polynomials with largest
root smaller than A. Given a reciprocal polynomial

P(x)=x%6+a1x® 1+ . +ax*+ax+1

we have Newton's formulas for the traces,

Z amTr( — kay,

where
e ¢ is a (hypothetical) pA associated with P(x);
e ¢, is the matrix giving the action of the pA ¢ on first homology;
o Tr(¢,) is its trace.
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Bounding the traces Y

The trace satisfies

Eg:(kfn + 259

m=1

| Tr(¢¥)| = < g(r+r )

where A\, are the roots of ¢y, and r = max,(|Am]).

Bound Tr(¢X) with r < X\, k=1,...,g;

Use these g traces and Newton's formulas to construct
candidate P(x);

Overwhelming majority have fractional coeffs — discard!

Carefully check the remaining polynomials:

Is their largest root real?
Is it strictly greater than all the other roots?
Is it really less than \?

Largest tractable case: g = 8 (10*2 polynomials).
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Lefschetz's fixed point theorem Y

This procedure still leaves a fair number of polynomials — though not
enormous (10's to 100's, even for g = 8.)

The next step involves using Lefschetz's fixed point theorem to eliminate
more polynomials:

L(¢) =2—Tr(¢) = > Ind(g,p)
pEFix(¢)
where

o L(¢) is the Lefschetz number;
e Fix(¢) is set of fixed points of ¢;
e Ind(¢, p) is index of ¢ at p.

Given a polynomial we can easily compute L(¢¥) for every iterate using
Newton's formula. We don’t need to know ¢ itself.
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Topological index at a fixed point Y

The index is defined as the number of revolutions of a vector joining x to
¢(x) as x travels counterclockwise around a small circle.

For this case, each sector can map to itself (left, index 1 — 6 = —5) or to
one of two other sectors (right, index +1).

13 /31



Eliminating polynomials Y

Outline of procedure: for a surface of genus g,

e Use the Euler—Poincaré formula to list possible singularity data for the
foliations;

e For each singularity data, compute possible contributions to the index
(depending on how the singularities and their separatrices are
permuted);

e Check if index is consistent with Lefschetz's theorem.

With this, we can reduce the number of polynomials to one or two!
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Minimizers for orientable foliations W

g polynomial minimizer
2 XP-X3-X?2-X+1 ~ 1.72208 t
3 X0 X*-—X3-_X%2+1 ~ 1.40127
4 X8 _X5—_X*—X3+1 ~ 1.28064
5 X0 4 X9 X7 X0 — X5 X*—X34+X+4+1 ~1.17628 %
6 X2 -X"-X0-Xx5+1 > 1.17628
7 XM XB X9 X8 _XT X0 —X®4+X+4+1 ~1.11548
8 X0 _X9_X8_X"+1 ~ 1.12876

T Zhirov (1995)'s result; also for nonorientable [Lanneau-TJ;
« Lehmer’s number; realized by Leininger (2004)'s pA;

For genus 6 we have not explicitly constructed the pA;

Genus 6 is the first nondecreasing case.

Genus 7 and 8: pA’s found by Aaber & Dunfield (2010) and Kin &
Takasawa (2010b) [g = 7]; Hironaka (2009) [g = 8].
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Examining the cases with even g leads to a natural question:

Is the minimum value of the dilatation of pseudo-Anosov
homeomorphisms on a genus g surface, for g even, with
orientable invariant foliations, equal to the largest root of the
polynomial X8 — X8+t — X8 — x&=1 417

This would imply that the minimum dilatation asymptotes
to (Golden ratio)?/& for g > 1.

This appears to be the ‘sparsest’ reciprocal polynomial that also satisfies
the Lefschetz formula. Don’t know the pA in general, however.
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The taffy puller Y

[Photo and movie by M. D. Finn.]

play movie
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http://www.math.wisc.edu/~jeanluc/movies/taffy.avi

The mixograph Y

Experimental device for kneading bread dough:

play movie

[Department of Food Science, University of Wisconsin. Photos by J-LT.]
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http://www.math.wisc.edu/~jeanluc/movies/breadlab.mp4

Experiment of Boyland, Aref & Stremler W

play movie play movie

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]
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http://www.math.wisc.edu/~jeanluc/movies/boyland1.avi
http://www.math.wisc.edu/~jeanluc/movies/boyland2.avi

Braid description of taffy puller Y

The three rods of the taffy puller in a space-time diagram. Defines a braid

on n = 3 strands, 070, 2 (three periods shown).
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Braid description of mixograph Y

0302030506_10203040301_102_105

braid on By, the braid group on 7 strands.
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Topological entropy of a braid Y

Burau representation for 3-braids:

= (2 0) = (1)
ted =l = (1 9) (5 1) = (3 3)-

This matrix has spectral radius (3 + v/5)/2 (Golden Ratio?), and hence
the topological entropy is log[(3 + v/5)/2].

This is the growth rate of a ‘rubber band’ caught on the rods.

This matrix trick only works for 3-braids, unfortunately.
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Optimizing over generators Y

e Entropy can grow without bound as the length of a braid increases;

o A proper definition of optimal entropy requires a cost associated with
the braid.

e Divide the entropy by the smallest number of generators required to
write the braid word.

e For example, the braid 07! o5 has entropy log[(3 + /5)/2] and
consists of two generators.

e lIts Topological Entropy Per Generator (TEPG) is
thus 3 log[(3 + v/5)/2] = log[Golden Ratio].

o Assume all the generators are used (stronger: irreducible).
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Optimal braid Y

e In B3 and Ba, the optimal TEPG is log[Golden Ratio].
e Realized by aflag and aflagaglag, respectively.
e In By, n > 4, the optimal TEPG is < log[Golden Ratio].

Why? Recall Burau representation:

= (2 1) = 1)

Its spectral radius provides a lower bound on entropy. However,

= (1 1) lell=(p 1)

provides an upper bound! Need to find Joint Spectral Radius.
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Periodic array of rods Y

e Consider periodic lattice of rods.
e Move all the rods such that they execute the Boyland et al. (2000)
rod motion (J-LT & Finn, 2006; Finn & J-LT, 2011).

—@ L @ L @ o @

w2 e e e
ZEAC )

e The dilatation per period is x2, where x = 1 + /2 is the Silver Ratio!
e This is optimal for a periodic lattice of two rods (Follows
from D'Alessandro et al. (1999)).
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Silver mixers W

e The designs with entropy given by the Silver Ratio can be realized
with simple gears.
o All the rods move at once: very efficient.

play movie
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http://www.math.wisc.edu/~jeanluc/movies/gears.mpg

play movie  play movie [M D. Finn and J—LT, SIAM Review 53, 723 (2011)]
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http://www.math.wisc.edu/~jeanluc/movies/LegoExp_topside_view.avi
http://www.math.wisc.edu/~jeanluc/movies/LegoExp.avi

Experiment: Silver mixer with four rods Y

play movie

[See Finn, M. D. & J-LT (2011). SIAM Rev. 53 (4), 723-743 for proofs, heavily
influenced by work on mi-stirrers of Boyland, P. L. & Harrington, J. (2011). Algeb.
Geom. Topology, 11 (4), 2265-2296.]
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http://www.math.wisc.edu/~jeanluc/movies/LegoExp.avi

Conclusions W

e Having rods undergo ‘braiding’ motion guarantees a minimal amound
of entropy (stretching of material lines).

e Can optimize to find the best rod motions, but depends on choice of
‘cost function.’

e For two natural cost functions, the Golden Ratio and Silver Ratio pop
up!

e Found orientable minimizer on surfaces of genus g < 8; only known
nonorientable case is for genus 2.
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