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Surface homeomorphisms

homeomorphism ϕ : S→ S, where S is a compact orientable surface
without boundary, such as 2-torus:

Can visualize by action on loops:

�
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Isotopy

ϕ and ψ are isotopic if ψ can be continuously ‘reached’ from ϕ without
moving the rods. Write ϕ ' ψ.

Defines isotopy classes.

Again, convenient to think of isotopy in terms of loops:

(Loops will always mean essential loops.)
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Thurston–Nielsen classification theorem

Theorem

ϕ is isotopic to a homeomorphism ψ, where ψ is in one of the following
three categories:

finite-order for some integer k > 0, ψk ' identity;

reducible ψ leaves invariant a disjoint union of essential simple
closed curves, called reducing curves;

pseudo-Anosov ψ leaves invariant a pair of transverse measured singular
foliations, Fu and Fs, such that ψ(Fu, µu) = (Fu, λ µu)
and ψ(Fs, µs) = (Fs, λ−1µs), for dilatation λ > 1.

The three categories characterize the isotopy class of ϕ.

pseudo-Anosov is the most interesting one.
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A singular foliation

The ‘pseudo’ in pseudo-Anosov refers to the fact that the foliations can
have a finite number of pronged singularities.

3-pronged singularity
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Example: Dehn twists

Two positive multi-twists (Dehn twists) around curves A, B (Thurston’s
construction).

1302 Christopher J Leininger

1 Introduction

Let S be a connected finite type oriented surface. In Mod(S), the mapping
class group of S , a particularly tractable class of elements (or automorphisms)
are the positive multi-twists. These are products of positive Dehn twists about
disjoint essential simple closed curves. For a given positive multi-twist, the
union of these simple closed curves is a closed essential 1–manifold, and the
set of positive multi-twists is in a one-to-one correspondence with S �(S), the
set of isotopy classes of essential 1–manifolds on S . Given A ∈ S �(S), we let
TA denote the positive multi-twist which is the product of positive Dehn twists
about the components of A.

This paper is concerned with subgroups of Mod(S) generated by two positive
multi-twists and is based on a construction of Thurston [54] (see also Long [36]
and Veech [56]). When A ∪ B fills the surface (that is, every essential curve
intersects A or B ) Thurston constructs a certain type of Euclidean cone metric,
which we refer to as a flat structure, for which �TA, TB� acts by affine home-
omorphisms. The derivative of this action defines a discrete homomorphism
DAf : �TA, TB� → PSL2(R) with finite kernel. This homomorphism is deter-
mined by a single number, µ(A ∪B), depending on the geometric intersection
numbers of the components of A with those of B .

The novelty in our approach to studying these groups is Proposition 5.1 in
which we show that µ(A∪B) is the spectral radius of the configuration graph,
G(A ∪ B). This graph has a vertex for each component of A and of B and
an edge for every point of intersection between corresponding components (see
Figure 1).

Figure 1: 1–manifolds AL and BL with configuration graph G(AL ∪BL) = Eh10

This observation, along with some elementary hyperbolic geometry and well-
known graph theoretic results, has many interesting consequences.

Geometry & Topology, Volume 8 (2004)

[Leininger, C. J. (2004). Geom. Topol. 8, 1301–1359]
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Example: Translation surface

Map all the points on the left by
(
λ−1 0

0 λ

)
, with λ8 +λ5−λ4 +λ3 + 1 = 0.
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The image is on the right,
which has been cut up to
exhibit the isometry of
the two surfaces.

In this ‘flat surface’
picture, the foliations
consist of straight
horizontal/vertical lines.

The singularities in the foliation live at the corners. There are two, with
angles 4π and 12π. Gauss–Bonnet then tells us this is a surface of genus
four. [Lanneau & J-LT (2011a)]
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The Minimizer problem (‘Systole’)

• On a given surface S, which pA has the least λ?

• The minimum is known to exist (Thurston);

• Punctured discs: Known for n = 3 to 7 [Song et al. (2002); Ham & Song

(2007); Lanneau & J-LT (2010, 2011a,b)];
• Minimizer is simple for n odd [Hironaka & Kin (2006)], though not

proved in general;

• Closed surfaces: known for genus 2 [Zhirov (1995); Cho & Ham (2008);

Lanneau & J-LT (2011a)].
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Orientable minimizer

• No punctures: surface of genus g ;

• If the foliation is orientable, then things are much simpler;

• Action of the pA on first homology captures dilatation λ;

• Polynomials of degree 2g ;

• Procedure:
• We have a guess for the minimizer;
• Find all integer-coefficient, reciprocal polynomials that have largest

root smaller than λ;
• Show that they can’t correspond to pAs;
• For the smallest one that can, construct pA.

• [Lanneau, E. & J-LT (2011a). Ann. Inst. Fourier, 61 (1), 105–144. See also

article in Dynamical Systems Magazine.]
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Newton’s formulas

We need an efficient way to bound the number of polynomials with largest
root smaller than λ. Given a reciprocal polynomial

P(x) = x2g + a1 x
2g−1 + ...+ a2 x

2 + a1 x + 1

we have Newton’s formulas for the traces,

Tr(φk
∗) = −

k−1∑
m=1

amTr(φk−m
∗ )− kak ,

where

• φ is a (hypothetical) pA associated with P(x);

• φ∗ is the matrix giving the action of the pA φ on first homology;

• Tr(φ∗) is its trace.
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Bounding the traces

The trace satisfies

|Tr(φk
∗)| =

∣∣∣∣ g∑
m=1

(λk
m + λ−k

m )

∣∣∣∣ ≤ g(rk + r−k )

where λm are the roots of φ∗, and r = maxm(|λm|).

• Bound Tr(φk
∗) with r < λ, k = 1, . . . , g ;

• Use these g traces and Newton’s formulas to construct
candidate P(x);

• Overwhelming majority have fractional coeffs → discard!

• Carefully check the remaining polynomials:
• Is their largest root real?
• Is it strictly greater than all the other roots?
• Is it really less than λ?

• Largest tractable case: g = 8 (1012 polynomials).
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Lefschetz’s fixed point theorem

This procedure still leaves a fair number of polynomials — though not
enormous (10’s to 100’s, even for g = 8.)

The next step involves using Lefschetz’s fixed point theorem to eliminate
more polynomials:

L(φ) = 2− Tr(φ∗) =
∑

p∈Fix(φ)

Ind(φ, p)

where

• L(φ) is the Lefschetz number;

• Fix(φ) is set of fixed points of φ;

• Ind(φ, p) is index of φ at p.

Given a polynomial we can easily compute L(φk ) for every iterate using
Newton’s formula. We don’t need to know φ itself.
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Topological index at a fixed point

The index is defined as the number of revolutions of a vector joining x to
φ(x) as x travels counterclockwise around a small circle.

For this case, each sector can map to itself (left, index 1− 6 = −5) or to
one of two other sectors (right, index +1).
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Eliminating polynomials

Outline of procedure: for a surface of genus g ,

• Use the Euler–Poincaré formula to list possible singularity data for the
foliations;

• For each singularity data, compute possible contributions to the index
(depending on how the singularities and their separatrices are
permuted);

• Check if index is consistent with Lefschetz’s theorem.

With this, we can reduce the number of polynomials to one or two!
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Minimizers for orientable foliations

g polynomial minimizer

2 X 4 − X 3 − X 2 − X + 1 ' 1.72208 †
3 X 6 − X 4 − X 3 − X 2 + 1 ' 1.40127
4 X 8 − X 5 − X 4 − X 3 + 1 ' 1.28064
5 X 10 + X 9 − X 7 − X 6 − X 5 − X 4 − X 3 + X + 1 ' 1.17628 ∗
6 X 12 − X 7 − X 6 − X 5 + 1 & 1.17628
7 X 14 + X 13 − X 9 − X 8 − X 7 − X 6 − X 5 + X + 1 ' 1.11548
8 X 16 − X 9 − X 8 − X 7 + 1 ' 1.12876

† Zhirov (1995)’s result; also for nonorientable [Lanneau–T];

∗ Lehmer’s number; realized by Leininger (2004)’s pA;

• For genus 6 we have not explicitly constructed the pA;

• Genus 6 is the first nondecreasing case.

• Genus 7 and 8: pA’s found by Aaber & Dunfield (2010) and Kin &
Takasawa (2010b) [g = 7]; Hironaka (2009) [g = 8].
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Question

Examining the cases with even g leads to a natural question:

Is the minimum value of the dilatation of pseudo-Anosov
homeomorphisms on a genus g surface, for g even, with
orientable invariant foliations, equal to the largest root of the
polynomial X 2g − X g+1 − X g − X g−1 + 1?

This would imply that the minimum dilatation asymptotes
to (Golden ratio)2/g for g � 1.

This appears to be the ‘sparsest’ reciprocal polynomial that also satisfies
the Lefschetz formula. Don’t know the pA in general, however.
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The taffy puller

[Photo and movie by M. D. Finn.]

play movie
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The mixograph

Experimental device for kneading bread dough:

play movie

[Department of Food Science, University of Wisconsin. Photos by J-LT.]
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Experiment of Boyland, Aref & Stremler

play movie play movie

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]
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Braid description of taffy puller

�1

�2
-1

t

�1

�2
-1

The three rods of the taffy puller in a space-time diagram. Defines a braid
on n = 3 strands, σ2

1σ
−2
2 (three periods shown).
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Braid description of mixograph

σ3σ2σ3σ5σ
−1
6 σ2σ3σ4σ3σ

−1
1 σ−1

2 σ5

braid on B7, the braid group on 7 strands.
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Topological entropy of a braid

Burau representation for 3-braids:

[σ1] =

(
1 0
−1 1

)
, [σ2] =

(
1 1
0 1

)
,

[σ−1
1 σ2] = [σ−1

1 ] · [σ2] =

(
1 0
1 1

)
·
(

1 1
0 1

)
=

(
1 1
1 2

)
.

This matrix has spectral radius (3 +
√

5)/2 (Golden Ratio2), and hence
the topological entropy is log[(3 +

√
5)/2].

This is the growth rate of a ‘rubber band’ caught on the rods.

This matrix trick only works for 3-braids, unfortunately.
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Optimizing over generators

• Entropy can grow without bound as the length of a braid increases;

• A proper definition of optimal entropy requires a cost associated with
the braid.

• Divide the entropy by the smallest number of generators required to
write the braid word.

• For example, the braid σ−1
1 σ2 has entropy log[(3 +

√
5)/2] and

consists of two generators.

• Its Topological Entropy Per Generator (TEPG) is
thus 1

2 log[(3 +
√

5)/2] = log[Golden Ratio].

• Assume all the generators are used (stronger: irreducible).
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Optimal braid

• In B3 and B4, the optimal TEPG is log[Golden Ratio].

• Realized by σ−1
1 σ2 and σ−1

1 σ2σ
−1
3 σ2, respectively.

• In Bn, n > 4, the optimal TEPG is < log[Golden Ratio].

Why? Recall Burau representation:

[σ1] =

(
1 0
−1 1

)
, [σ2] =

(
1 1
0 1

)
,

Its spectral radius provides a lower bound on entropy. However,

|[σ1]| =

(
1 0
1 1

)
, |[σ2]| =

(
1 1
0 1

)
,

provides an upper bound! Need to find Joint Spectral Radius.
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Periodic array of rods

• Consider periodic lattice of rods.

• Move all the rods such that they execute the Boyland et al. (2000)
rod motion (J-LT & Finn, 2006; Finn & J-LT, 2011).

• The dilatation per period is χ2, where χ = 1 +
√

2 is the Silver Ratio!

• This is optimal for a periodic lattice of two rods (Follows
from D’Alessandro et al. (1999)).
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Silver mixers

• The designs with entropy given by the Silver Ratio can be realized
with simple gears.

• All the rods move at once: very efficient.

play movie
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Build it!

play movie play movie [M. D. Finn and J-LT, SIAM Review 53, 723 (2011)]
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Experiment: Silver mixer with four rods

play movie

[See Finn, M. D. & J-LT (2011). SIAM Rev. 53 (4), 723–743 for proofs, heavily

influenced by work on π1-stirrers of Boyland, P. L. & Harrington, J. (2011). Algeb.

Geom. Topology, 11 (4), 2265–2296.]
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Conclusions

• Having rods undergo ‘braiding’ motion guarantees a minimal amound
of entropy (stretching of material lines).

• Can optimize to find the best rod motions, but depends on choice of
‘cost function.’

• For two natural cost functions, the Golden Ratio and Silver Ratio pop
up!

• Found orientable minimizer on surfaces of genus g ≤ 8; only known
nonorientable case is for genus 2.

29 / 31



References I

Aaber, J. W. & Dunfield, N. M. (2010). Algeb. Geom. Topology, 10, 2315–2342.

Boyland, P. L., Aref, H., & Stremler, M. A. (2000). J. Fluid Mech. 403, 277–304.

Boyland, P. L. & Harrington, J. (2011). Algeb. Geom. Topology, 11 (4), 2265–2296.

Cho, J.-H. & Ham, J.-Y. (2008). Experiment. Math. 17 (3), 257–267.
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