pseudo-Anosovs with small or large dilatation

Jean-Luc Thiffeault

Department of Mathematics University of Wisconsin – Madison

Mathematics Colloquium, University of Wisconsin, Madison 8 February 2013

Supported by NSF grants DMS-0806821 and CMMI-1233935

W

homeomorphism $\varphi : S \to S$, where S is a compact orientable surface without boundary, such as 2-torus:

Can visualize by action on loops:

 φ and ψ are isotopic if ψ can be continuously 'reached' from φ without moving the rods. Write $\varphi \simeq \psi$.

Defines isotopy classes.

Again, convenient to think of isotopy in terms of loops:

(Loops will always mean essential loops.)

Theorem

 φ is isotopic to a homeomorphism ψ , where ψ is in one of the following three categories:

finite-order for some integer k > 0, $\psi^k \simeq$ identity;

reducible ψ leaves invariant a disjoint union of essential simple closed curves, called reducing curves;

pseudo-Anosov ψ leaves invariant a pair of transverse measured singular foliations, \mathfrak{F}^{u} and \mathfrak{F}^{s} , such that $\psi(\mathfrak{F}^{u}, \mu^{u}) = (\mathfrak{F}^{u}, \lambda \mu^{u})$ and $\psi(\mathfrak{F}^{s}, \mu^{s}) = (\mathfrak{F}^{s}, \lambda^{-1}\mu^{s})$, for dilatation $\lambda > 1$.

The three categories characterize the isotopy class of φ .

pseudo-Anosov is the most interesting one.

A singular foliation

W

The 'pseudo' in pseudo-Anosov refers to the fact that the foliations can have a finite number of pronged singularities.

Two positive multi-twists (Dehn twists) around curves A, B (Thurston's construction).

[Leininger, C. J. (2004). Geom. Topol. 8, 1301-1359]

Example: Translation surface

The image is on the right, which has been cut up to exhibit the isometry of the two surfaces.

In this 'flat surface' picture, the foliations consist of straight horizontal/vertical lines.

The singularities in the foliation live at the corners. There are two, with angles 4π and 12π . Gauss–Bonnet then tells us this is a surface of genus four. [Lanneau & J-LT (2011a)]

- On a given surface S, which pA has the least λ ?
- The minimum is known to exist (Thurston);
- Punctured discs: Known for *n* = 3 to 7 [Song *et al.* (2002); Ham & Song (2007); Lanneau & J-LT (2010, 2011a,b)];
 - Minimizer is simple for *n* odd [Hironaka & Kin (2006)], though not proved in general;
- Closed surfaces: known for genus 2 [Zhirov (1995); Cho & Ham (2008); Lanneau & J-LT (2011a)].

- No punctures: surface of genus g;
- If the foliation is orientable, then things are much simpler;
- Action of the pA on first homology captures dilatation λ ;
- Polynomials of degree 2g;
- Procedure:
 - We have a guess for the minimizer;
 - Find all integer-coefficient, reciprocal polynomials that have largest root smaller than $\lambda;$
 - Show that they can't correspond to pAs;
 - For the smallest one that can, construct pA.
- [Lanneau, E. & J-LT (2011a). Ann. Inst. Fourier, **61** (1), 105–144. See also article in Dynamical Systems Magazine.]

We need an efficient way to bound the number of polynomials with largest root smaller than λ . Given a reciprocal polynomial

$$P(x) = x^{2g} + a_1 x^{2g-1} + \dots + a_2 x^2 + a_1 x + 1$$

we have Newton's formulas for the traces,

$$\operatorname{Tr}(\phi_*^k) = -\sum_{m=1}^{k-1} a_m \operatorname{Tr}(\phi_*^{k-m}) - k a_k,$$

where

- ϕ is a (hypothetical) pA associated with P(x);
- ϕ_* is the matrix giving the action of the pA ϕ on first homology;
- Tr(φ_{*}) is its trace.

Bounding the traces

The trace satisfies

$$|\operatorname{Tr}(\phi_*^k)| = \left|\sum_{m=1}^g (\lambda_m^k + \lambda_m^{-k})\right| \le g(r^k + r^{-k})$$

where λ_m are the roots of ϕ_* , and $r = \max_m(|\lambda_m|)$.

- Bound $\operatorname{Tr}(\phi_*^k)$ with $r < \lambda$, $k = 1, \dots, g$;
- Use these g traces and Newton's formulas to construct candidate P(x);
- Overwhelming majority have fractional coeffs \rightarrow discard!
- Carefully check the remaining polynomials:
 - Is their largest root real?
 - Is it strictly greater than all the other roots?
 - Is it really less than λ?
- Largest tractable case: g = 8 (10¹² polynomials).

This procedure still leaves a fair number of polynomials — though not enormous (10's to 100's, even for g = 8.)

The next step involves using Lefschetz's fixed point theorem to eliminate more polynomials:

$$L(\phi) = 2 - \operatorname{Tr}(\phi_*) = \sum_{p \in \operatorname{Fix}(\phi)} \operatorname{Ind}(\phi, p)$$

where

- $L(\phi)$ is the Lefschetz number;
- Fix(φ) is set of fixed points of φ;
- $Ind(\phi, p)$ is index of ϕ at p.

Given a polynomial we can easily compute $L(\phi^k)$ for every iterate using Newton's formula. We don't need to know ϕ itself.

The index is defined as the number of revolutions of a vector joining x to $\phi(x)$ as x travels counterclockwise around a small circle.

For this case, each sector can map to itself (left, index 1 - 6 = -5) or to one of two other sectors (right, index +1).

Outline of procedure: for a surface of genus g,

- Use the Euler–Poincaré formula to list possible singularity data for the foliations;
- For each singularity data, compute possible contributions to the index (depending on how the singularities and their separatrices are permuted);
- Check if index is consistent with Lefschetz's theorem.

With this, we can reduce the number of polynomials to one or two!

_		~
- 638		100
		× 1
100	•	
		101
		100
- 7		<i></i>

g	polynomial	minimizer
2	$X^4 - X^3 - X^2 - X + 1$	$\simeq 1.72208$ †
3	$X^6 - X^4 - X^3 - X^2 + 1$	$\simeq 1.40127$
4	$X^8 - X^5 - X^4 - X^3 + 1$	$\simeq 1.28064$
5	$X^{10} + X^9 - X^7 - X^6 - X^5 - X^4 - X^3 + X + 1$	$\simeq 1.17628$ *
6	$X^{12} - X^7 - X^6 - X^5 + 1$	$\gtrsim 1.17628$
7	$X^{14} + X^{13} - X^9 - X^8 - X^7 - X^6 - X^5 + X + 1$	$\simeq 1.11548$
8	$X^{16} - X^9 - X^8 - X^7 + 1$	$\simeq 1.12876$

- † Zhirov (1995)'s result; also for nonorientable [Lanneau–T];
- * Lehmer's number; realized by Leininger (2004)'s pA;
- For genus 6 we have not explicitly constructed the pA;
- Genus 6 is the first nondecreasing case.
- Genus 7 and 8: pA's found by Aaber & Dunfield (2010) and Kin & Takasawa (2010b) [g = 7]; Hironaka (2009) [g = 8].

Examining the cases with even g leads to a natural question:

Is the minimum value of the dilatation of pseudo-Anosov homeomorphisms on a genus g surface, for g even, with orientable invariant foliations, equal to the largest root of the polynomial $X^{2g} - X^{g+1} - X^g - X^{g-1} + 1$?

This would imply that the minimum dilatation asymptotes to (Golden ratio)^{2/g} for $g \gg 1$.

This appears to be the 'sparsest' reciprocal polynomial that also satisfies the Lefschetz formula. Don't know the pA in general, however.

The taffy puller

[Photo and movie by M. D. Finn.]

Experimental device for kneading bread dough:

[Department of Food Science, University of Wisconsin. Photos by J-LT.]

Experiment of Boyland, Aref & Stremler

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]

Braid description of taffy puller

The three rods of the taffy puller in a space-time diagram. Defines a braid on n = 3 strands, $\sigma_1^2 \sigma_2^{-2}$ (three periods shown).

Braid description of mixograph

$\sigma_3 \sigma_2 \sigma_3 \sigma_5 \sigma_6^{-1} \sigma_2 \sigma_3 \sigma_4 \sigma_3 \sigma_1^{-1} \sigma_2^{-1} \sigma_5$ braid on B_7 , the braid group on 7 strands.

Burau representation for 3-braids:

$$[\sigma_1] = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \qquad [\sigma_2] = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$
$$[\sigma_1^{-1}\sigma_2] = [\sigma_1^{-1}] \cdot [\sigma_2] = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}.$$

This matrix has spectral radius $(3 + \sqrt{5})/2$ (Golden Ratio²), and hence the topological entropy is log[$(3 + \sqrt{5})/2$].

This is the growth rate of a 'rubber band' caught on the rods.

This matrix trick only works for 3-braids, unfortunately.

- Entropy can grow without bound as the length of a braid increases;
- A proper definition of optimal entropy requires a cost associated with the braid.
- Divide the entropy by the smallest number of generators required to write the braid word.
- For example, the braid $\sigma_1^{-1} \sigma_2$ has entropy $\log[(3 + \sqrt{5})/2]$ and consists of two generators.
- Its Topological Entropy Per Generator (TEPG) is thus ¹/₂ log[(3 + √5)/2] = log[Golden Ratio].
- Assume all the generators are used (stronger: irreducible).

Optimal braid

- In B_3 and B_4 , the optimal TEPG is log[Golden Ratio].
- Realized by $\sigma_1^{-1}\sigma_2$ and $\sigma_1^{-1}\sigma_2\sigma_3^{-1}\sigma_2$, respectively.
- In B_n , n > 4, the optimal TEPG is $< \log[Golden Ratio]$.

Why? Recall Burau representation:

$$[\sigma_1] = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \qquad [\sigma_2] = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

Its spectral radius provides a lower bound on entropy. However,

$$|[\sigma_1]| = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \qquad |[\sigma_2]| = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

provides an upper bound! Need to find Joint Spectral Radius.

Periodic array of rods

W

- Consider periodic lattice of rods.
- Move all the rods such that they execute the Boyland *et al.* (2000) rod motion (J-LT & Finn, 2006; Finn & J-LT, 2011).

- The dilatation per period is χ^2 , where $\chi = 1 + \sqrt{2}$ is the Silver Ratio!
- This is optimal for a periodic lattice of two rods (Follows from D'Alessandro *et al.* (1999)).

Silver mixers

- The designs with entropy given by the Silver Ratio can be realized with simple gears.
- All the rods move at once: very efficient.

play movie

Build it!

play movie play n

play movie

[M. D. Finn and J-LT, SIAM Review 53, 723 (2011)]

Experiment: Silver mixer with four rods

play movie

[See Finn, M. D. & J-LT (2011). *SIAM Rev.* **53** (4), 723–743 for proofs, heavily influenced by work on π_1 -stirrers of Boyland, P. L. & Harrington, J. (2011). *Algeb. Geom. Topology*, **11** (4), 2265–2296.]

- Having rods undergo 'braiding' motion guarantees a minimal amound of entropy (stretching of material lines).
- Can optimize to find the best rod motions, but depends on choice of 'cost function.'
- For two natural cost functions, the Golden Ratio and Silver Ratio pop up!
- Found orientable minimizer on surfaces of genus $g \le 8$; only known nonorientable case is for genus 2.

References I

- Aaber, J. W. & Dunfield, N. M. (2010). Algeb. Geom. Topology, 10, 2315-2342.
- Boyland, P. L., Aref, H., & Stremler, M. A. (2000). J. Fluid Mech. 403, 277-304.
- Boyland, P. L. & Harrington, J. (2011). Algeb. Geom. Topology, 11 (4), 2265-2296.
- Cho, J.-H. & Ham, J.-Y. (2008). Experiment. Math. 17 (3), 257-267.
- D'Alessandro, D., Dahleh, M., & Mezić, I. (1999). *IEEE Transactions on Automatic Control*, 44 (10), 1852–1863.
- Finn, M. D. & J-LT (2011). SIAM Rev. 53 (4), 723-743.
- Gouillart, E., Finn, M. D., & J-LT (2006). Phys. Rev. E, 73, 036311.
- Ham, J.-Y. & Song, W. T. (2007). Experiment. Math. 16 (2), 167-179.
- Hironaka, E. (2009). Preprint.
- Hironaka, E. & Kin, E. (2006). Algebraic & Geometric Topology, 6, 699-738.
- Kin, E. & Takasawa, M. (2010a). Preprint.
- Kin, E. & Takasawa, M. (2010b). Preprint.
- Lanneau, E. & J-LT (2010). Preprint.
- Lanneau, E. & J-LT (2011a). Ann. Inst. Fourier, 61 (1), 105-144.
- Lanneau, E. & J-LT (2011b). Geometriae Dedicata, 152 (1), 165-182.
- Leininger, C. J. (2004). Geom. Topol. 8, 1301-1359.

References II

Moussafir, J.-O. (2006). Func. Anal. and Other Math. 1 (1), 37-46.

- Song, W. T., Ko, K. H., & Los, J. E. (2002). J. Knot Th. Ramifications, 11 (4), 647-666.
- J-LT & Finn, M. D. (2006). Phil. Trans. R. Soc. Lond. A, 364, 3251-3266.
- J-LT, Finn, M. D., Gouillart, E., & Hall, T. (2008). Chaos, 18, 033123.
- Thurston, W. P. (1988). Bull. Am. Math. Soc. 19, 417-431.
- Zhirov, A. Y. (1995). Russ. Math. Surv. 50 (1), 223-224.