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The cat’s cradle

(Hands by Sarah Tumasz)
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The cat’s cradle: How to
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Stirring a fluid

[movie 1] [movie 2]
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Surfaces: Holes and handles

torus (genus = 1)

disk with 4 holes

2-torus (genus = 2)
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Mappings of surfaces

A continuous, invertible mapping φ and its action on two closed
loops:

�

φ is called a homeomorphism.

In topology, only care about objects up to continuous deformation
(homotopy) — equivalence classes of loops.
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Torus: Types of mappings

The topological types of mappings define the mapping class group
of a surface. For the torus, all that matters is what a mapping φ
does to loops.

=⇒ count how many times loops wrap around periodic directions.

�

Under the action of φ:

red:

(
1
0

)
7→
(

2
1

)
blue:

(
0
1

)
7→
(

1
1

)

This is a linear transformation.
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Torus: Action on loops

Hence, the action on fundamental loops

red:

(
1
0

)
7→
(

2
1

)
blue:

(
0
1

)
7→
(

1
1

)
can be written as a matrix equation(

x
y

)
7→
(

2 1
1 1

)(
x
y

)
The matrix

M =

(
2 1
1 1

)
encapsulates everything we need to know (topologically) about the
mapping φ.
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Torus: Mapping class group

In mathematical language, we say that the the mapping class
group of the torus is isomorphic to matrices:

MCG(torus) ' SL2(Z)

with SL2(Z) the group of invertible two-by-two matrices with
determinant 1.

(A positive determinant guarantees orientability, and unit
determinant means that the matrices can be inverted over the
integers.)

How can we understand the types of possible behavior of different
elements of the mapping class group?
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Classification of mappings

Consider a general element of MCG(torus), represented here as an
integer matrix

M =

(
a b
c d

)
ad − bc = 1

One way to classify mapping classes is to examine the eigenvalues
of M.

Since det M = λ1λ2 = 1, M has two eigenvalues

λ1 = λ and λ2 = λ−1.

Without loss of generality, we assume |λ| ≥ 1. (λ could be
complex.)

10 / 20



Characteristic polynomial

Recall the characteristic polynomial

p(x) = det(M − x I ) =

∣∣∣∣a− x b
c d − x

∣∣∣∣ = (a− x)(d − x)− bc

= x2 − xd − ax + ad − bc

= x2 − (a + d)x + 1

= x2 − τ x + 1

where τ = a + d is the trace of M.
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Cayley–Hamilton theorem

The Cayley–Hamilton theorem states that any matrix is a zero of
its characteristic equation:

p(M) = M2 − τ M + I = 0 ⇐⇒ M2 = τ M − I

We can write M2 in terms of M!

Example:

M =

(
2 1
1 1

)
=⇒ τ = 2 + 1 = 3,

M2 =

(
5 3
3 2

)
, 3M − I = 3

(
2 1
1 1

)
−
(

1 0
0 1

)
=

(
5 3
3 2

)
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Classification, part 1

M2 = τ M − I

τ = a + d is the sum of two integers, so the smallest values |τ | can
take are 0 and ±1.

τ = 0: then M2 = −I , so M4 = (−I )2 = I .

M4 = I for τ = 0

τ = ±1: then M2 = ±M − I , so

M3 = M(M2) = M(±M − I ) = ±M2 −M = ±(±M − I )−M = ∓I

M6 = I for τ = ±1
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Finite-order mappings

Such mappings are called finite order: the loops eventually return
to their initial winding.

We can combine the previous two statements as

M12 = I |τ | < 2

(12 is the least common multiple of 4 and 6.)
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Classification, part 2

Now consider |τ | > 2.

We solve p(x) = 0, and find the largest eigenvalue

λ = sign τ × 1
2

(
|τ |+

√
τ2 − 4

)
where λ is real and |λ| > 1 (i.e., strict).

The mapping classes with |λ| > 1 are called Anosov.
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Anosov maps

Representing the torus as a doubly-periodic interval [0, 1]× [0.1],
first few iterates on a loop:

Asymptotically, the length of the loop is multiplied by |λ| each
time ⇒ exponential growth.
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Arnold’s Cat map

For our example

M =

(
2 1
1 1

)
(shown on previous slide), we have

λ = 1
2 (3 +

√
5) = ϕ2 ' 2.618 . . .

where ϕ is the Golden ratio.

For historical reasons, this particular linear map is called Arnold’s
cat map, after V. I. Arnold.

Anosov maps exhibit the purest form of chaotic behavior. They
can only exist on a torus.
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Thurston–Nielsen classification theorem

More complex surfaces than the torus, such as the 2-torus or disks
with holes, require a powerful theorem:

Theorem (Thurston–Nielsen classification theorem)

Let φ by a homeomorphism of a surface M. The φ is isotopic to ψ,
where ψ is one of three types:

1. finite-order

2. pseudo-Anosov

3. reducible

(For the experts: this is only for hyperbolic surfaces.)
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pseudo-Anosovs

pseudo-Anosovs are much more complex (and interesting!) than
Anosovs, and are still the subject of active story. The “pseudo”
comes from the presence of singularities.
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Summary

• Mappings of surfaces can be understood from their action on
curves.

• Physically, these arise for instance in fluid dynamics when
stirring with rods.

• In that case, the best stirring methods correspond to
pseudo-Anosov (pA) mappings.

• Many open questions about pAs:
• Spectrum of values of λ;
• How to construct for characteristic polynomial;
• Connection to number theory?

• See article at arxiv.org/abs/0904.0778 for more details.
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