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Tangled magnetic fields (cont’d)

Source: http://www.maths.dundee.ac.uk/mhd/
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Numerical simulations
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Blinking vortex simulations

Winding number for blinking vortex pair in a disk (Aref, 1984):
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The red curve is the sech distribution, with fitted diffusivity.











Distribution of generators in a disk
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Conclusions

• Can generate braids by ‘randomly picking generators’ (random
walk on Cayley graph), but not clear what physical process
that corresponds to;

• Brownian motions have Cauchy-distributed winding angles;

• Random walks have sech-distributed winding angles, as does a
simple chaotic flow;

• The braids created by random walks depend on the shape of
the domain!

• Topological entropy of random braids?
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