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[7] G. Schmithiisen, An algorithm for finding the Veech group of an origami, Experiment. Math.
13 (2004), no. 4, 459-472

Finite blocking property in billiards and translation surfaces
THIERRY MONTEIL

The following problem was stated for the Leningrad’s Olympiad of 1989:

“Professor Smith stands in a square hall with mirrored walls. Pro-
fessor Jones intends to arrange several students in the hall so that
Smith can’t see his own reflection. Can Jones reach her goal?
(Professor Smith and the students are considered points; students
can be arranged by the walls and in the corners).”

Note that there are infinitely many light (billiard) trajectories between Jones and
Smith. The square billiard table can be unfolded into a flat torus R?/Z?. A trans-
lation surface T is said to have the finite blocking property (FBP) if, for every pair
(S, J) of points in T', there exists a finite number of “blocking” points Bj, ..., B,
(different from S and J) such that every geodesic from S to J meets one of the
B;’s. Let us solve the Olympiad’s problem by showing that R?/Z? has the FBP.

Let us write the professors’ positions in coordinates: S = (z,y), J = (2/,y’). Any
trajectory between S and .J can be unfolded in R? into a line between S and
J' = (2" +k,y +1) for some (k,l) € Z>.

’+l _________________________________ Ll __L____ ___

M | — |

|| |

— | |

N = |

Ji | _— |

ISty :
A ' +k

The middle of the trajectory is M = ((z + 2’ + k)/2, (y+ vy’ +1)/2). If we project
M back to R?/Z2, we get a point M = ((z+12')/2, (y+y')/2)+ (k/2,1/2) mod Z2.
Since (k/2,1/2) mod Z? can only take four values, the infinite set of trajectories
between S and J in R?/Z? is blocked by at most four points (in some particular
cases, some of the four points could correspond to J or S and should be removed
from the blocking configuration). OJ

Since the FBP is stable under branched coverings and under the action of SL(2,R),
we just saw that any torus branched covering has the FBP. If we try to gen-
eralize the previous construction to another surface T, “ mod Z? ” should be
replaced by “ mod G 7, where G is the group generated by the translations used
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to identify the pairs of edges in some representation of 7' by a glued polygon. The
previous construction of a finite set of points M back in T' works when G is discrete.

The easiest way to make G non-discrete is to have two adjacent parallel cylinders
of uncommensurable perimeters. It turns out that in such a situation, the surface
fails to have the FBP , hence we have a local criterion to start a classification.
Any periodic orbit in a translation surface can be thickened into a cylinder. Un-
fortunately, the set of translation surfaces that contains two parallel cylinders with
uncommensurable perimeters has zero measure, so this local criterion cannot be
often directly used.

We proved that a translation surface with the finite blocking property is com-
pletely periodic. If we merge this result with the local criterion, we proved that
any translation surface with the FBP is purely periodic, where a transla-
tion surface T is said to be purely periodic if, for any direction € S, the existence
of a (non-singular) periodic orbit in the direction 6 implies that the directional flow
¢p is periodic (i.e. there exists ¢ > 0 such that ¢}, = Idg a.e.). Indeed the peri-
odicity of the flow ¢y is equivalent to the existence of a decomposition of 7" into
cylinders of commensurable perimeters in the direction 6.

The geodesic flow on a translation surface 7" is defined on its unit tangent bundle
T x S', it admits two subflows depending on whether we fix the direction 6 € S!
(directional flow) or the starting point J € T (exponential flow). Hence, the
previous results establish a surprising relation between three notions on transla-
tion surfaces, the first involving the global geometry of the surface (being a torus
branched covering), the second involving the exponential flow (the FBP) and the
third involving the directional flow (the pure periodicity). It would be nice to
have an equivalence between those three notions, hence we would like the pure
periodicity to imply being a torus branched covering.

Torus branched coverings can be characterized using translational holonomy: any
curve 7y : [0,1] — T on a translation surface 7' can be lifted as a planar curve 74
which is defined up to translation so that hol(y) = (1) — 7(0) is well defined.
Restricted to the closed curves, the map hol induces a morphism from H;(7,Z)
to R2. The “unfolding group” G previously introduced is actually hol(H' (T, 7Z)).
A translation surface is a torus branched covering if, and only if, hol(H (T, Z)) is
a lattice.

For purely periodic translation surfaces, the J-invariant can be computed through
any pair of periodic directions, and the fact that it does not depend on such a pair
implies that the holonomy of any three periodic orbits are rationally dependent.
Hence, if P(T") denotes the subgroup of H(T,Z) generated by the periodic orbits
(considered as closed curves), then hol(P(T')) is a lattice. Hence, the previous
three notions are equivalent when the periodic orbits of the translation surface
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generates its homology.

In a nutshell, the three notions are known to be equivalent:

e on a dense open subset of full measure in every stratum,

e for Veech surfaces, and more generally for surfaces whose Veech group
contains two non-commuting parabolic elements,

e in genus 2 (using the classification of completely periodic surfaces,

e for surfaces that admit a representation by a convex glued polygon, and
more generally for surfaces which are named face-to-face surfaces.

A natural challenge is therefore to describe the surfaces whose homology
is not generated by the periodic orbits of their geodesic flow. The eier-
legende Wollmilchsau and the translation surface introduced 2008 by Forni and
Matheus constitute the first examples. Indeed, in both cases, the two horizontal
cylinders are homologous. Moreover, the Veech group of those two surfaces is equal
to SL(2,7Z), hence the vertical and horizontal cylinders generate all cylinders (by
making successive twists along both directions), hence the periodic orbits gener-
ate only a subgroup of dimension 2 in H(T,Z). Those two examples are torus
branched coverings, we do not know any primitive example.

Note that

e the set of translation surfaces that do not admit a strictly convex pattern,

e the non face-to-face surfaces,

e the set of translation surfaces whose homology is not generated by periodic
orbits (and some variations on the dimension of the space generated by
the periodic orbits)

are closed SL(2,R)-invariant spaces (containing each other).

Small eigenvalues of the Laplacian in moduli space
SEBASTIEN GOUEZEL
(joint work with Artur Avila)

Let M be a compact hyperbolic surface, we will first mention several classical
facts on such objects.

(1) Analysis. Consider the hyperbolic Laplacian on M coming from the rie-
mannian metric. Since A is a self-adjoint elliptic differential operator, its
spectrum is a sequence of eigenvalues A\g < A1 < Ao < -+ — 00.

(2) Geometry. Let mr be the number of closed geodesics of length at most
T. Using Margulis’ techniques, one can show that 7y ~ el /T. How-
ever, in this situation, much more is known thanks to Selberg’s trace for-
mula. A bold application of this formula leads to the conjecture 7y =
Z]K:o e%T [(a;T) + O(eT/?), where a; is a sequence of numbers in [1/2,1]



