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Chlamydomonas reinhardtii

play movie

[Guasto, J. S., Johnson, K. A., & Gollub, J. P. (2010). Phys. Rev. Lett. 105, 168102]
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http://www.math.wisc.edu/~jeanluc/movies/Guasto2010_start.mp4


Probability density of displacements

Non-Gaussian PDF with ‘exponential’ tails:

[Leptos, K. C., Guasto, J. S., Gollub, J. P., Pesci, A. I., & Goldstein, R. E. (2009).

Phys. Rev. Lett. 103, 198103]
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Probability density of displacements

Leptos et al. (2009) get a reasonable fit of their PDF with the form

P{Xt ∈ [x , x + dx ]} =
1− f√

2πδ2
g

e−x
2/2δ2

g +
f

2δe
e−|x |/δe .

They observe the scalings δg ≈ Agt
1/2 and δe ≈ Aet

1/2, where Ag and Ae

depend on the volume fraction φ.

They call this a diffusive scaling, since Xt/t
1/2 is a scaling variable. Their

point is that this is strange, since the distribution is not Gaussian.

Commonly observed in diffusive processes that are a combination of
trapped and hopping dynamics (Wang et al., 2012).
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Modeling: the interaction sphere

Vswimmer

interaction sphere

Rλ

Model for effective diffusivity:

[Thiffeault, J.-L. & Childress,

S. (2010). Phys. Lett. A, 374,

3487–3490]

[Lin, Z., Thiffeault, J.-L., &

Childress, S. (2011). J. Fluid

Mech. 669, 167–177]

Expected number of ‘dings’ (close interactions) after time t:

〈Mt〉 = n {Vswept(R, λ) (t/τ) + Vsph(R)}

n is the number density of swimmers, Vswept is the volume swept by the
sphere of radius R moving a distance λ, and τ is the time between turns.
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Parameters in the Leptos et al. experiment

• Velocity U ∼ 100µm/s;

• Volume fraction is less than 2.2%;

• Organisms of radius 5µm;

• Number density n . 4.2× 10−5 µm−3.

• Maximum observation time in PDFs is t ∼ 0.3 s;

• A typical swimmer moves by a distance Ut ∼ 30µm.
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Close encounters of the first kind

Combining this, we find the expected number of ‘dings’ after time t in the
Leptos et al. experiment:

〈Mt〉 . 0.6

for the longest observation time, and interaction sphere R = 10µm.

Conclude: a typical fluid particle is only strongly affected by about one
swimmer during the experiment.

The only displacements that a particle feels ‘often’ are the very small ones
due to all the distant swimmers.

We thus expect the displacement PDF to have a central Gaussian core
(since the central limit theorem will apply for the small displacements),
but strongly non-Gaussian tails.
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Probability of displacements

• Xt is the displacement of a particle after a time t;

• Xm is the displacement of a particle after m encounters;

• But the number of encounters is a random variable Mt .

• How do we relate the two?

P{Xt ∈ [x , x + dx ]} =
∞∑

m=0

P{Xt ∈ [x , x + dx ] , Mt = m}

=
∞∑

m=0

P{Xt ∈ [x , x + dx ] |Mt = m}P{Mt = m}

=
∞∑

m=0

P{Xm ∈ [x , x + dx ]}P{Mt = m}
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Probability of encounters

When the volume is large, the number of interactions obeys a Poisson
distribution:

P{Mt = m} ' 1

m!
〈Mt〉m e−〈Mt〉

We define the probability densities:

ρXm(x)dx := P{Xm ∈ [x , x + dx ]}

ρXt (x) dx := P{Xt ∈ [x , x + dx ]}

From previous slide:

ρXt (x) =
∞∑

m=0

ρXm(x)P{Mt = m}
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Small number of interactions

Normally we would now go to the large m limit and use large-deviation
theory. But this doesn’t hold here. Instead, keep only m ≤ 1,

ρXt (x) =
∞∑

m=0

ρXm(x)P{Mt = m}

' P{Mt = 0} ρX0(x) + P{Mt = 1} ρX1(x) + . . .

i.e., most fluid particles feel only a few close encounters with swimmers.

ρX0(x) is due to thermal noise (or the combined effect of distant
swimmers), so is Gaussian.

ρX1(x) is the displacement probability after one close interaction with a
swimmer, which has strongly non-Gaussian tails.
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Geometry of an encounter

λ

a

target particle

swimmer

b

Δ

R

C
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The single-encounter probability ρX1
(x)

We can show that (Thiffeault, 2014)

ρX1(x) = 1
2

∫
Ωab

ρAB(a, b)

∆λ(a, b)
χ{∆λ>|x |}

(a, b) da db,

where

• a and b are the impact parameters that describe the geometry of an
encounter;

• ∆λ is the drift function;

• χ is an indicator function (i.e., 0 or 1);

• ρAB(a, b) = 2πa/Vswept(R, λ) is the probability density of the random
impact parameters A and B.

The drift function is computed (laboriously) by integrating over fluid
trajectories.

[Thiffeault, J.-L. (2014). arXiv:1408.4781]
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http://arxiv.org/abs/1408.4781


More encounters

What about the density function for two encounters, ρX2(x)?

Since X2 is the sum of two i.i.d. random variables X1, its PDF is just the
convolution of ρX1(x) with itself:

ρX2(x) =

∫ ∞
−∞

ρX1(x − y) ρX1(y) dy =: (ρX1 ∗ ρX1)(x).

For m steps we have ρXm(x) = (ρX1 ∗ · · · ∗ ρX1)(x).

[The central limit theorem / large deviation theory are estimates of this
convolution for large m.]
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A model swimmer

This is as far as we can go without introducing a model swimmer.

We take a squirmer, with axisymmetric streamfunction:

Ψsf(ρ, z) = 1
2ρ

2 U

{
−1 +

`3

(ρ2 + z2)3/2
+ 3

2

β`2z

(ρ2 + z2)3/2

(
`2

ρ2 + z2
− 1

)}
[See for example Lighthill (1952); Blake (1971); Ishikawa et al. (2006); Ishikawa &

Pedley (2007b); Drescher et al. (2009)]

We use the stresslet strength β = 0.6, which is close to a treadmiller:

U
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ρXm
(x) for the squirmer

−20 −10 0 10 20

10
−6

10
−4

10
−2

10
0

x [µm]

ρ
X

m
(x
)

m
=
1
510

5010
0

15 / 25



Comparing to Leptos et al.
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The only fitted parameter is the stresslet strength β = 0.6.
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Comparing to Eckhardt & Zammert

Eckhardt & Zammert (2012) have a beautiful fit to the data based on a
phenomenological continuous-time random walk model (dashed):
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Our models disagree in the tails, but there is no data there.
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The diffusive scaling

What about the ‘diffusive scaling’ mentioned at the start?
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The diffusive scaling: model

It’s present in our model as well:
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(Earlier times are a bit worse.)
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The diffusive scaling: tails

It persists (except for cut-off) further in the tails:
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Note that the times are still short enough that the organisms don’t have
time to turn.
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The diffusive scaling: single encounter

Appears to hold for a single encounter, for ρX1(x):
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This means the scaling is not really statistical in nature: it’s a property of
the drift function ∆λ itself for this type of swimmer.
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The diffusive scaling: reorientation

If we go further in time and allow the organisms to reorient, the scaling
seems to disappear completely:
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Conclusions

• Times in Leptos et al. (2009) are so short that the tails are not
determined by asymptotic laws, such as the central limit theorem or
large-deviation theory.

• Retaining only 0 and 1 close interactions gives a linear combination of
a Gaussian and a distribution with non-Gaussian tails, as observed by
Leptos et al. (2009).

• The Gaussian core arises because of the net effect of the distant
swimmers, far from the test particle.

• Preprint: http://arxiv.org/abs/1408.4781.
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