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the standard 3-pronged taffy puller

Taffy is a type of candy.

Needs to be pulled: this
aerates it and makes it
lighter and chewier.

We can assign a growth:
length multiplier per
period.

[movie by M. D. Finn]

play movie

2 / 43

http://www.math.wisc.edu/~jeanluc/movies/taffy.mp4


standard 4-pronged taffy puller

play movie http://www.youtube.com/watch?v=Y7tlHDsquVM

[MacKay (2001); Halbert & Yorke (2014)] 3 / 43

http://www.math.wisc.edu/~jeanluc/movies/four_rod_puller.mp4
http://www.youtube.com/watch?v=Y7tlHDsquVM


a simple taffy puller
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[Remark for later: each prong moves in a ‘figure-eight’ orbit.]
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the famous mural

This is the same action as in the famous mural painted at Berkeley by
Thurston and Sullivan in the Fall of 1971:
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linear maps on the torus

The simple taffy puller has a growth factor equal to

φ2 = φ+ 1 = 2.6180 . . .

where φ is the Golden Ratio.

Such quadratic numbers also arise for linear maps on the torus T 2, such as
Arnold’s Cat Map:(

x
y

)
7→

(
2 1
1 1

)(
x
y

)
mod 1, x , y ∈ [0, 1]2

The largest eigenvalue of the matrix

(
2 1
1 1

)
is φ2. Coincidence?

What’s the connection between taffy pullers and these maps?
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the torus

The ‘standard model’ for the torus is the biperiodic unit square:
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action of map on the torus

The Cat Map stretches loops exponentially:

This loop will stand in for a piece of taffy.
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hyperelliptic involution

Consider the linear map ι(x) = −x mod 1. This map is called the
hyperelliptic involution (ι2 = id).

Construct the quotient space

S = T 2/ι

A

A

B

B

=⇒ A B
p0 p1

p3 p2

Claim: the surface S (right) is a sphere with four punctures!

9 / 43



sphere with four punctures

Here’s how we see that S is a sphere:

A B
p0 p1

p3 p2

pacmanize
=⇒ A B

p0

p1

p3

p2
zip

=⇒
p0

p1 p2

p3

The punctures p1,2,3 are the prongs of our taffy puller.

(The fixed puncture p0 plays no role here, other than acting as a topological

obstruction.)

Linear maps commute with ι, so all linear torus maps ‘descend’ to taffy
puller motions.
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Dehn twists

Any 3-pronged taffy puller motion can be represented as a product of

σ1 =

(
1 0
1 1

)
, σ2 =

(
1 −1
0 1

)
and their inverses, known as Dehn twists.

p0 p1 p2 p3

p0 p2

p1

p3

action of σ1

p0 p1 p3 p2

action of σ2

These can also be view as generators for the braid group for 3 strings.
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the Silver Ratio

By decomposing taffy puller motions as a product of the σ1 and σ2

operations, we can find the growth factor for any 3-pronged taffy puller.

For instance, the simple taffy puller has a motion σ1σ
−1
2 which we already

saw gives a growth equal to the Cat Map’s, φ2.

The standard 3-pronged taffy puller has a motion
σ2

1σ
−2
2 , which has matrix representation(

5 2
2 1

)
with growth χ2 = (1 +

√
2)2, where χ is the Silver

Ratio.

Surprisingly, the standard 4-pronged taffy puller has exactly the same
growth factor.
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the Silver Ratio (2)

A rectangle has the proportions of the Silver Ratio if, after taking out two
squares, the remaining rectangle has the same proportions as the original.

χ

1
=

1

χ− 2

χ = 1+
√

2 = 2.4142 . . .

Both major taffy puller
designs (3- and 4-pronged)
have growth χ2.
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the history of taffy pullers

But who invented the well-known designs for taffy pullers?
Google patents is an awesome resource.

The very first: Firchau (1893)

This is a terrible taffy puller. It was likely never built, but plays an
important role in the looming. . .
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taffy patent wars
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the first true taffy puller

I think Herbert M. Dickinson (1906, but filed in 1901) deserves the title of
inventor of the first taffy puller:

Awkward design: the moving prongs get ‘tripped’ each cycle. But it is
topologically the same as the 3-pronged device still in use today.

There seem to be questions as to whether it ever worked, or if it really
pulled taffy rather than mixing candy.
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the modern 3-pronged design

Robinson & Deiter (1908) greatly simplified this design to one still in use
today.
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Herbert L. Hildreth

The uncontested taffy magnate of the early 20th century was Herbert L.
Hildreth of Maine.

The Hotel Velvet in Old Orchard, Maine The Confectioners Gazette (1914)

His hotel was on the beach, and taffy was popular at such resorts. He sold
it wholesale as well.
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the 4-pronged design

The first 4-pronged design is by Thibodeau (1903, filed 1901), an
employee of Hildreth.

Hildreth was not pleased by this but bought the patent for $75,000 (about
two million of today’s dollars).
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some patents have beautiful diagrams

Thibodeau (1903) Richards (1905)
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the patent wars

So many concurrent patents were filed that lawsuits ensued for more than
a decade. Shockingly, the taffy patent wars went all the way to the US
Supreme Court. The opinion of the Court was delivered by Chief Justice
William Howard Taft (Hildreth v. Mastoras, 1921):

The machine shown in the Firchau patent [has two pins that]
pass each other twice during each revolution [. . . ] and move in
concentric circles, but do not have the relative in-and-out motion
or Figure 8 movement of the Dickinson machine. With only two
hooks there could be no lapping of the candy, because there was
no third pin to re-engage the candy while it was held between
the other two pins. The movement of the two pins in concentric
circles might stretch it somewhat and stir it, but it would not pull
it in the sense of the art.

The Supreme Court opinion displays the fundamental insight that at least
three prongs are required to produce some sort of rapid growth.
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the quest for the Golden ratio

Is it possible to build a device that realizes the simplest taffy puller, with
growth φ2?

The problem is that each prong moves in a Figure-eight! This is hard to
do mechanically.

After some digging, found the patent of Nitz (1918):
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the quest for the Golden ratio (2)

There is actually an earlier 4-pronged design by Thibodeau (1904) which
has (Golden ratio)2 growth:

Since it uses four prongs to get a quadratic growth, the map must involve
a branched cover of the torus by a theorem of Franks & Rykken (1999).
(The same happens for the 4- vs 3-pronged ‘standard’ taffy pullers.)
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the quest for the Golden ratio (3)

Thibodeau (1904) once again
gives very nice diagrams for
the action of his taffy puller.

(He has at least 5 patents for
taffy pullers.)
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planetary designs

A few designs are based on ‘planetary’ gears, such as McCarthy (1916):
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the mixograph

A modern planetary design is the mixograph, a device for measuring the
properties of dough:

play movie

[Department of Food Science, University of Wisconsin. Photos by J-LT.]
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http://www.math.wisc.edu/~jeanluc/movies/breadlab.mp4


the mixograph (2)

The mixograph measures the
resistance of the dough to the
pin motion.

This is graphed to determine
properties of the dough, such
as water absorption and ‘peak
time.’

[Wheat and Flour Testing Methods: A Guide to Understanding Wheat and Flour Quality]
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http://www.wheatflourbook.org/


the mixograph as a braid

Encode the topological information
as a sequence of generators of the
Artin braid group Bn.

Equivalent to the 7-braid

σ3σ2σ3σ5σ
−1
6 σ2σ3σ4σ3σ

−1
1 σ−1

2 σ5

We feed this braid to the
Bestvina–Handel algorithm, which
determines the Thurston type of the
braid (pseudo-Anosov) and finds the
growth as the largest root of

x8 − 4x7 − x6 + 4x4 − x2 − 4x + 1

' 4.186
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silver mixers

As part of an optimization procedure, we (Finn & Thiffeault, 2011)
designed a family of planetary mixers with silver ratio expansion:

play movie
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http://www.math.wisc.edu/~jeanluc/movies/gears.mpg


silver mixers: building one out of Legos

play movie
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http://www.math.wisc.edu/~jeanluc/movies/LegoExp_topside_view.avi


silver mixer in action

play movie

[See Finn, M. D. & Thiffeault, J.-L. (2011). SIAM Rev. 53 (4), 723–743 for proofs,

heavily influenced by work on π1-stirrers of Boyland, P. L. & Harrington, J. (2011).

Algeb. Geom. Topology, 11 (4), 2265–2296.]
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http://www.math.wisc.edu/~jeanluc/movies/LegoExp.avi


exotic designs

There remains many patents that I call ‘exotic’ which use nonstandard
motions: such as Jenner (1905):
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exotic designs (2)

Shean & Schmelz (1914):
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exotic designs (3)

My personal favorite, McCarthy & Wilson (1915):
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let’s try our hand at this

6-pronged design with Alex Flanagan:

The software tools allow us to rapidly try designs. This one is simple and
has huge growth (13.9 vs 5.8 for the standard pullers).
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making taffy is hard

Early efforts yielded mixed results: . . . but eventually we got better at it

play movie (BTW: The physics of candy making is fascinating. . . )
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http://www.math.wisc.edu/~jeanluc/movies/Six-pronged_taffy_puller.avi


six-pronged puller: mathematical construction

The six prongs are fixed points of a hyperelliptic involution of a genus-two
surface:

ι2
1 2 3 4 5 6

[See Thiffeault, J.-L. (2018). Math. Intelligencer, 40 (1), 26–35. arXiv:1608.00152.]
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https://arxiv.org/abs/1608.00152


a cut-up genus-two surface

Two tori are glued to make the genus-two surface:

01

02

1

2

3

4

5

6

0

0

1

2

3

4

5

6

A quotient by the involution then gives a sphere with 6 distinguished
points.
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map on a genus-two surface

01

02

2

1

1 3

4

6

6

5
0′1

0′2
2′

4′

4′ 6′

1′

3′

3′

5′

0′

0′

1′

2′

3′

4′

5′

6′

φ(x) =

(
−1 −1
−2 −3

)
· x

0 1 2 3 4 5 6 0′

1′2′

3′4′ 5′6′

39 / 43



there is a deeper point here

• My real interest is in fluid mixing, in particular of viscous substances.

• The taffy pullers illustrate that mixing is a combinatorial process, akin
to shuffling.

• The taffy designs also pop up in ‘serious’ chemical mixers.

• The topological dynamics methods pioneered by Thurston allows us
to understand these prong motions in great detail.

• For example, in addition to the growth, there is a measure that tells
us how taffy is distributed on the prongs.

• pseudo-Anosov maps themselves are still the subject of intense study.
The taffy pullers provide a battery of nice examples.
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