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Experiment of Boyland et al.

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403,
277 (2000)] (movie by Matthew Finn)
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Four Basic Operations

PSfrag replacements
σ1

σ−1
1

σ2

σ−1
2

PSfrag replacements
σ1

σ−1
1

σ2

σ−1
2

PSfrag replacements
σ1 σ−1

1

σ2

σ−1
2

PSfrag replacements
σ1

σ−1
1

σ2

σ−1
2

σ1 and σ2 are referred to as the generators of the 3-braid group.
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Two Stirring Protocols

σ1σ2 protocol

σ−1
1 σ2 protocol

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]
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Braiding

σ1σ2 protocol σ−1
1 σ2 protocol

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]
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Matrix Representation of σ2
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Let I and II denote the lengths of the two segments. After a σ2

operation, we have
(
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Hence, the matrix representation for σ2 is
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0 1

)

.
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Matrix Representation of σ−1
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Similarly, after a σ−1
1 operation we have
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Hence, the matrix representation for σ−1
1 is
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Matrix Representation of the Braid Group

We now invoke the faithfulness of the representation to complete
the set,

σ1 =

(

1 0

−1 1

)

; σ2 =

(

1 1

0 1

)

;

σ−1
1 =

(

1 0

1 1

)

; σ−1
2 =

(

1 −1

0 1

)

.

Our two protocols have representation

σ1σ2 =

(

1 1

−1 0

)

; σ−1
1 σ2 =

(

1 1

1 2

)

.
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The Difference between the Protocols

• The matrix associated with each generator has unit
eigenvalues.

• The first stirring protocol has eigenvalues on the unit circle
• The second has eigenvalues (3 ±

√
5)/2 = 2.6180 for the

larger eigenvalue.
• So for the second protocol the length of the lines I and II

grows exponentially!
• The larger eigenvalue is a lower bound on the growth factor

of the length of material lines.
• That is, material lines have to stretch by at least a factor

of 2.6180 each time we execute the protocol σ−1
1 σ2.

• This is guaranteed to hold in some neighbourhood of the rods
(Thurston–Nielsen theorem).
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Freely-moving Rods in a Cavity Flow

[A. Vikhansky, Physics of Fluids 15, 1830 (2003)]
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Particle Orbits are Topological Obstacles

Choose any fluid particle orbit (green dot).

Material lines must bend around the orbit: it acts just like a “rod”!
The idea: pick any three fluid particles and follow them.

How do they braid around each other?
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Detecting Braiding Events
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In the second case there is no net braid: the two elements cancel
each other.
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Random Sequence of Braids

We end up with a sequence of braids, with matrix representation

Σ(N) = σ(N) · · · σ(2)σ(1)

where σ(µ) ∈ {σ1, σ2, σ
−1
1 , σ−1

2 } and N is the number of braiding
events detected after a time t.

The largest eigenvalue of Σ(N) is a measure of the complexity of
the braiding motion, called the braiding factor.
Random matrix theory says that the braiding factor can grow
exponentially! We call the rate of exponential growth the braiding
Lyapunov exponent or just braiding exponent.
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Non-braiding Motion

First consider the motion of of three points in concentric circles
with irrationally-related frequencies.
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The braiding factor grows linearly, which means that the braiding
exponent is zero. Notice that the eigenvalue often returns to unity.
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Blinking-vortex Flow

To demonstrate good braiding, we need a chaotic flow on a
bounded domain (a spatially-periodic flow won’t do).
Aref’s blinking-vortex flow is ideal.

Vortex

First half of period Second half of period

Vortex
Active Inactive

The only parameter is the circulation Γ of the vortices.
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Blinking Vortex: Non-braiding Motion

For Γ = 0.5, the blinking vortex has only small chaotic regions.
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One of the orbits is chaotic, the other two are closed.
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Blinking Vortex: Braiding Motion

For Γ = 13, the blinking vortex is globally chaotic.
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The braiding factor now grows exponentially. In the same time
interval as for Γ = 0.5, the final value is now of order 1020 rather
than 80!
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Averaging over many Triplets
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Γ = 13

slope = 0.187

Averaged over 100 random triplets.
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Comparison with Lyapunov Exponents
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Γ varies from 8 to 20.
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Beyond Three Particles
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But does it Saturate?
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Conclusions

• Topological chaos involves moving obstacles in a 2D flow,
which create nontrivial braids.

• The complexity of a braid can be represented by the largest
eigenvalue of a product of matrices—the braiding factor.

• Any collection of n particles can potentially braid.
• The complexity of the braid is a good measure of chaos.
• No need for infinitesimal separation of trajectories or

derivatives of the velocity field.
• For instance, can use all the floats in a data set (J. La Casce).
• Test in 2D turbulent simulations (F. Paparella).
• Many issues to investigate: faithfulness of representation,

lower-bound for topological entropy. . .
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