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Experiment of Boyland, Aref, & Stremler

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]

[P. L. Boyland, M. A. Stremler, and H. Aref, Physica D 175, 69 (2003)]
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Two Stirring Protocols

σ1σ2 protocol
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[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]
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The Connection with Braiding
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Generators of the n-Braid GroupPSfrag replacements
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A generator

σi , i = 1, . . . , n − 1

is the clockwise interchange of
the i th and (i + 1)th rod.
The generators obey the presen-
tation

σi+1 σi σi+1 = σi σi+1 σi

σiσj = σjσi, |i − j| > 1

These generators are used to characterise the motion of the rods.
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Three-rod Mixer in a Bounded Domain

[M. D. Finn, S. M. Cox, and H. M. Byrne, J. Fluid Mech.. 493, 345 (2003)]

[A. Vikhansky, Chaos. 14, 14 (2004)]
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Three-rod Mixer in a Bounded Domain

[movie 1: bounded.mpg]
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Computing the Line-stretching from a Braid

• How much are lines stretched by a given braid? What is the
exponential rate? (could be zero)

• This rate is referred to as the braid’s topological entropy.
• This is a lower bound on the flow’s topological entropy!

(line-stretching exponent)
• The T.E. of a braid is found from variations on “train-tracks”

algorithms.
• The T.E. is obtained from a transition matrix.

• What about periodic boundary conditions?
• Cylinders occur in theory and experiments (The Ring of

Solomon).
• Tori certainly popular with theory, and maybe even in

experiments (data analysis).
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Conformal Map from the Cylinder to the Plane

An interesting problem:
what about singly-periodic
boundary conditions?

Conformal map from cylin-
der to punctured plane:

w = exp(2πiz)

The origin in the w-plane
acts as an extra rod!

So it should be possible to
make a nontrivial braid with
just two rods!
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Suggested in [P. L. Boyland, M. A. Stremler, and

H. Aref, Physica D 175, 69 (2003)]
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Two-rod Mixer on a Cylinder
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Two-rod Mixer on a Cylinder

[movie 2: singly.mpg]
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http://www.ma.ic.ac.uk/~jeanluc/movies/singly.mpg


The Torus: Need New Braid Operations

There is no corresponding conformal map for the torus.
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So how do we compute T.E.? Many chaotic systems live on
doubly-periodic domains...
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One-rod Mixer on a Torus: No Entropy
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One-rod Mixer on a Torus: No Entropy

[movie 3: doubly.mpg]
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Torus with Two Rods: Presentation
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[J. S. Birman, Comm. Pure Appl. Math., 22, 41 (1969)]
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The Braid τ1σ1ρ
−1
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Two-rod Mixer on a Torus: τ1σ1ρ
−1

1
σ1

[movie 4: periodic.mpg]
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The Torus Braid τ1σ1ρ
−1

1
σ1: Train Tracks!
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Evolution of Invariant Graph for τ1σ1ρ
−1
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Transition Matrix for τ1σ1ρ
−1

1
σ1

Careful inspection reveals edges are mapped to edge-paths as

a 7→ a2c1a2a1c2a1a2d1a2a1c2a1a2c1a,

b 7→ a2c1a2a1c2a1a2d1a2a1c2a1a2c1a2a1c2a1a2d1a2a1c2a1a2c1a,

c 7→ a2c1a2a1c2a1b2a1c2a1a2c1a,

d 7→ a2c1a2a1c2a1c2a1a2c1a,

1 7→ 1, 2 7→ 2.

Edges alternate with a loops (good). The transition matrix is then
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with largest eigenvalue 14.48, so the braid has a T.E. of 2.67.
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The Sine Flow
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The Sine Flow: Animated Poincaré Map

[movie 5: sf_poincare.mpg]
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Sine Flow: Train Track
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Sine Flow: Evolution of Invariant Graph
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Sine Flow: Transition Matrix

Edges are mapped as

a 7→ e4f3a3f4e,

b 7→ f3a3f4e,

c 7→ a3f,

d 7→ b2c1d1c2b,

e 7→ b2c1e1c,

f 7→ c1d,

1 7→ 3, 2 7→ 4, 3 7→ 1, 4 7→ 2

Transition matrix:
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0 0 0 2 1 0

0 0 0 2 2 1

0 0 0 1 0 1

2 1 0 0 1 0
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with spectral radius 3.32 and topological entropy 1.20.
This proves that there is chaos in the sine flow for this particular
parameter value, but of course it says nothing about the measure
of the chaotic set.
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Conclusions

• Topological chaos is a nice way to (at least partially)
“explain” the growth of material lines.

• Periodic boundary conditions gives rise to more complexity,
especially doubly-periodic (torus).

• Train tracks (invariant graph) harder to find in the case of the
torus.

• You can often glean the invariant graph from a picture of the
flow. In that case the lower bound for the T.E. should do
pretty well.

• Part of a more general programme to inject topological ideas
into the study of the kinematics of mixing.
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