The Evolution of

Finite-time Lyapunov Exponents in Chaotic Flows

Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University

http://w3fusion.ph.utexas.edu/~jeanluc/

1 December 1999

with Allen Boozer

Overview

We are interested in the advection-diffusion equation:

$$\frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = \nabla \cdot (D\nabla \phi)$$

where the Eulerian velocity field $\mathbf{v}(\boldsymbol{x},t)$ is some prescribed time-dependent flow, which may or may not be be chaotic. The quantity ϕ represents the concentration of some passive scalar, ρ is the density, and D is the diffusion coefficient.

We assume that the Lagrangian dynamics are strongly chaotic $(\lambda L^2/D \gg 1)$.

Lagrangian Coordinates

The trajectory of a fluid element in Eulerian coordinates \boldsymbol{x} satisfies

$$\frac{d\boldsymbol{x}}{dt}(\boldsymbol{\xi},t) = \mathbf{v}(\boldsymbol{x}(\boldsymbol{\xi},t),t),$$

where $\boldsymbol{\xi}$ are Lagrangian coordinates which label fluid elements. The usual choice is to take as initial condition $\boldsymbol{x}(\boldsymbol{\xi}, t = 0) = \boldsymbol{\xi}$, which says that fluid elements are labeled by their initial position.

 $\boldsymbol{x} = \boldsymbol{x}(\boldsymbol{\xi}, t)$ is thus the transformation from Lagrangian $(\boldsymbol{\xi})$ to Eulerian (\boldsymbol{x}) coordinates.

This transformation gets horrendously complicated as time evolves.

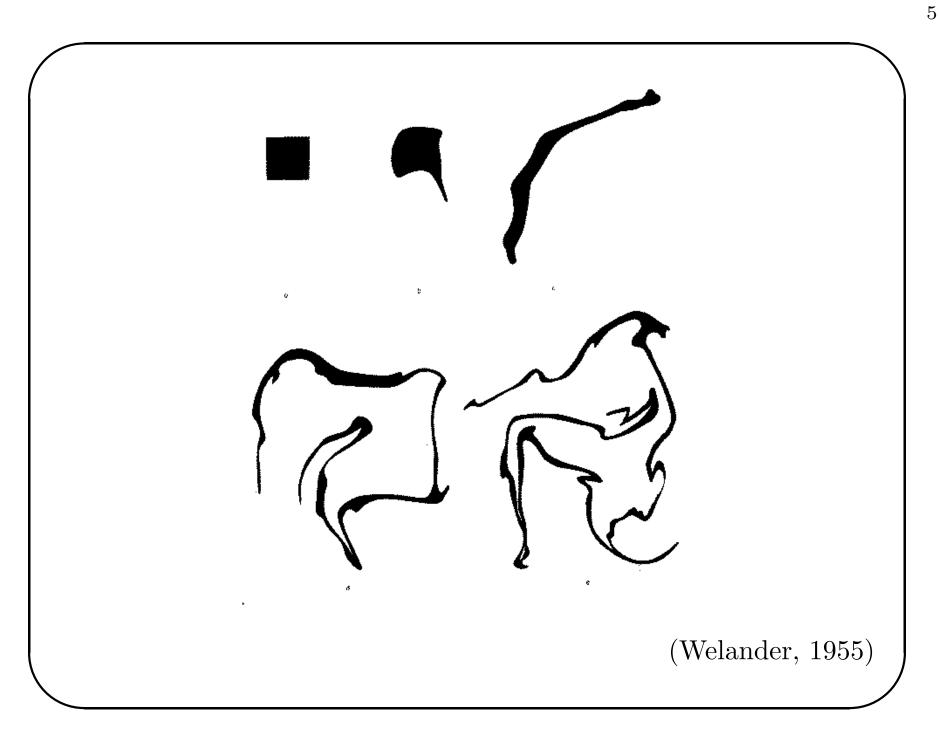
Lyapunov Exponents

The rate of exponential separation of neighbouring Lagrangian trajectories is measured by Lyapunov exponents

$$\lambda_{\infty} = \lim_{t \to \infty} \frac{1}{t} \ln \left\| (T_{\boldsymbol{x}}^{t} \mathbf{v}) \mathbf{w}_{0} \right\|,$$

where $T_{\boldsymbol{x}}^t \mathbf{v}$ is the time-evolved tangent mapping of the velocity field (the matrix $\partial \mathbf{v} / \partial \boldsymbol{x}$) and \mathbf{w}_0 is some constant vector.

Lyapunov exponents converge very slowly. So, for practical purposes we are always dealing with finite-time Lyapunov exponents.



The Idea

- Can we characterize the spatial and temporal evolution of finite-time Lyapunov exponents in a generic manner?
- Can we quantify the impact of these exponents on diffusion?

Tang and Boozer (1996) brought the tools of differential geometry to bear on this problem.

Results: a generic functional form for the time evolution of finite-time Lyapunov exponents, and a relation between their spatial dependence and the shape of the stable manifolds.

A little differential geometry...

The Jacobian of the transformation from Lagrangian (ξ) to Eulerian (\boldsymbol{x}) coordinates

$$J^i{}_j \equiv \frac{\partial x^i}{\partial \xi^j}$$

The Jacobian tells us how tensors transform:

• Covariant:

$$\tilde{V}_j = J^k{}_j V_k,$$

• Contravariant:

$$\tilde{W}^i = J^i{}_k \, W^k.$$

Measuring distances

The distance between two infinitesimally separated points in Eulerian space is given by

$$ds^2 = d\boldsymbol{x} \cdot d\boldsymbol{x} = \delta_{ij} \, dx^i dx^j \, .$$

Therefore, in Lagrangian coordinates distances are given by

$$ds^{2} = \delta_{ij} \left(\frac{dx^{i}}{d\xi^{k}} d\xi^{k} \right) \left(\frac{dx^{j}}{d\xi^{\ell}} d\xi^{\ell} \right) = \left(J^{i}{}_{k} \delta_{ij} J^{j}{}_{\ell} \right) d\xi^{k} d\xi^{\ell} .$$

The distance function now depends on the Lagrangian coordinate ξ through the Jacobian J.

The Metric Tensor

The tensor δ_{ij} is a metric in the Eulerian (Euclidean) space. The tensor

$$g_{k\ell}(\boldsymbol{\xi},t) \equiv \sum_{i} J^{i}{}_{k} J^{i}{}_{\ell} = \left(J^{T} J\right)_{k\ell}$$

is the same metric tensor but in the Lagrangian coordinate system.

Since the metric tells us about the distance between two neighbouring Lagrangian trajectories, its eigenvalues are related to the finite-time Lyapunov exponents.

2-D Incompressible Flow

We will now restrict ourselves to a 2-D, incompressible velocity field \mathbf{v} . This means that

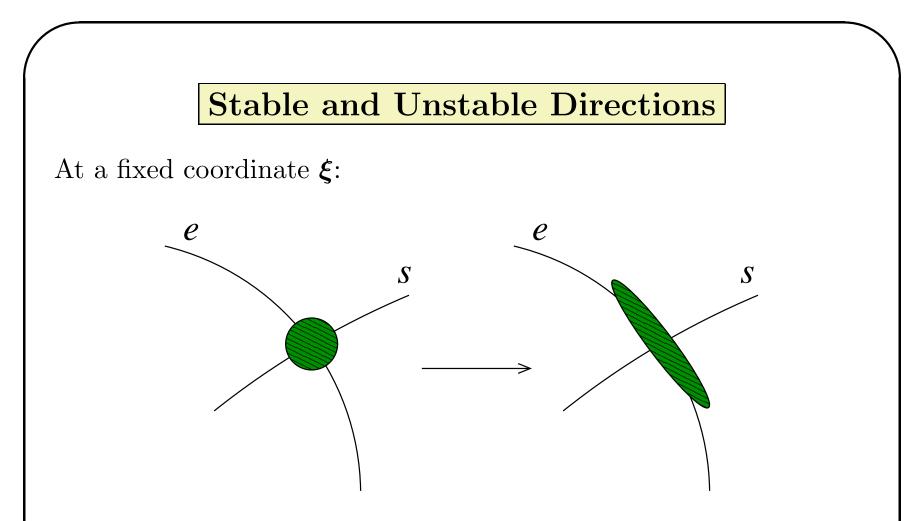
$$\det g = (\det J)^2 = 1.$$

Now, g is a positive-definite symmetric matrix, which implies that it has real positive eigenvalues, $\Lambda(\boldsymbol{\xi}, t) \geq 1$ and $\Lambda^{-1}(\boldsymbol{\xi}, t) \leq 1$, and orthonormal eigenvectors $\hat{\mathbf{e}}(\boldsymbol{\xi}, t)$ and $\hat{\mathbf{s}}(\boldsymbol{\xi}, t)$:

$$g_{k\ell}(\boldsymbol{\xi}, t) = \Lambda \, e_k \, e_\ell + \Lambda^{-1} \, s_k \, s_\ell$$

The finite-time Lyapunov exponents are given by

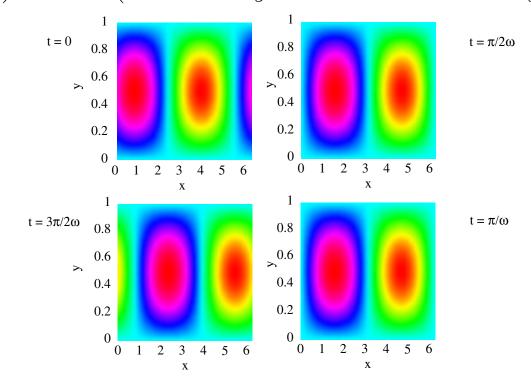
$$\lambda(\boldsymbol{\xi},t) = \ln \Lambda(\boldsymbol{\xi},t)/2 t$$

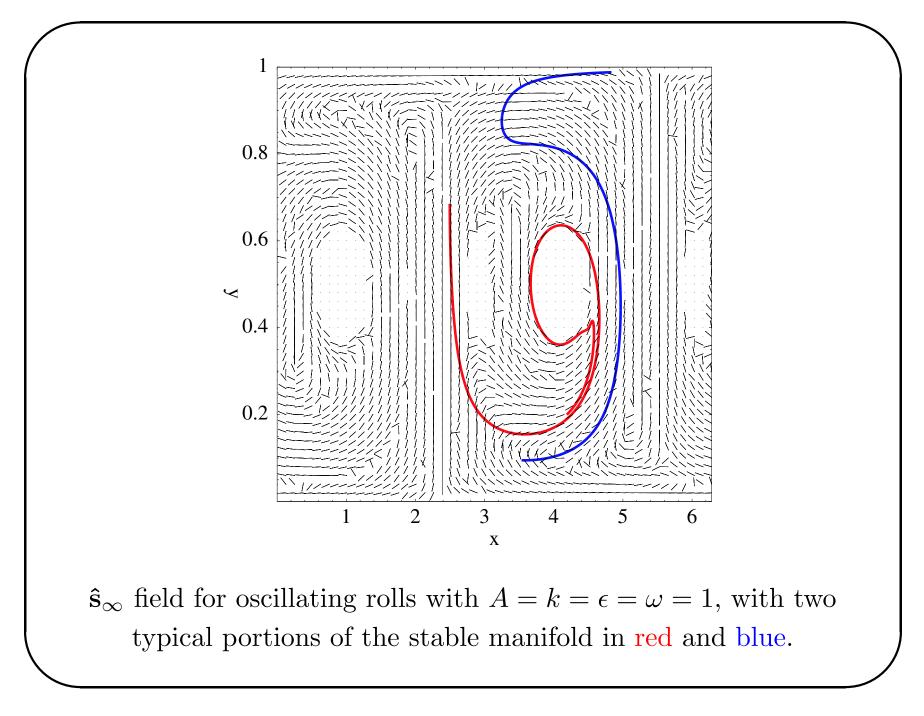


The stable and unstable manifolds $\hat{\mathbf{e}}(\xi, t)$ and $\hat{\mathbf{s}}(\xi, t)$ converge exponentially to their asymptotic values $\hat{\mathbf{e}}_{\infty}(\xi)$ and $\hat{\mathbf{s}}_{\infty}(\xi)$, whereas Lyapunov exponents converge logarithmically.

Model System

Oscillating convection rolls: $\mathbf{v} = (-\partial_y \psi, \partial_x \psi)$, with $\psi(\mathbf{x}, t) = Ak^{-1}(\sin kx \sin \pi y + \epsilon \cos \omega t \cos kx \cos \pi y)$





The Advection-diffusion Equation

Under the coordinate change to Lagrangian variables the diffusion term becomes

$$\nabla \cdot (D\nabla \phi) = \frac{\partial}{\partial x^i} (D\delta^{ij} \frac{\partial \phi}{\partial x^j}) = \frac{\partial}{\partial \xi^i} (Dg^{ij} \frac{\partial \phi}{\partial \xi^j}).$$

In Lagrangian coordinates the diffusivity becomes Dg^{ij} : it is no longer isotropic.

The advection-diffusion equation is thus just the diffusion equation,

$$\frac{\partial \phi}{\partial t} = \frac{\partial}{\partial \xi^i} (Dg^{ij} \frac{\partial \phi}{\partial \xi^j}),$$

because by construction the advection term drops out.

Diffusion along \hat{s}_∞ and \hat{e}_∞

The diffusion coefficients along the $\boldsymbol{\hat{s}}_\infty$ and $\boldsymbol{\hat{e}}_\infty$ lines are

$$D^{ss} = s_{\infty i} (Dg^{ij}) s_{\infty j} = D \exp(2\lambda t),$$
$$D^{ee} = e_{\infty i} (Dg^{ij}) e_{\infty j} = D \exp(-2\lambda t).$$

We see that D^{ee} goes to zero exponentially quickly, while D^{ss} grows exponentially.

Hence, essentially all the diffusion occurs along the $\hat{\mathbf{s}}_{\infty}$ -line.

Spatial Dependence of $\lambda(\xi, t)$

Differential geometry tells us if a metric describes a flat space, then its Riemann curvature tensor must vanish in every coordinate system.

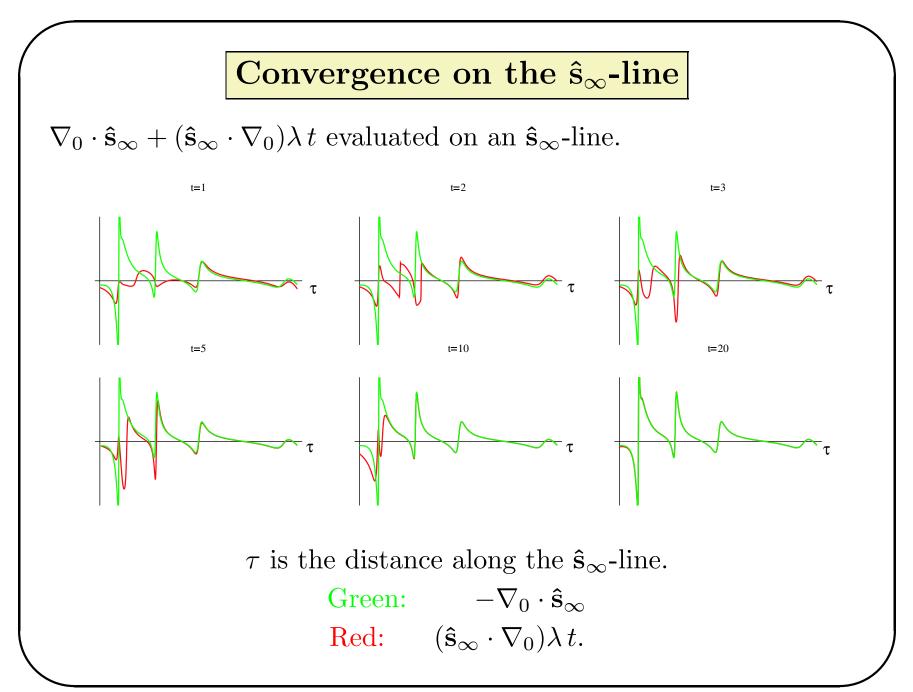
After some tedious algebra, we find this implies that the quantity

$$\mathbf{\hat{s}}_{\infty} \cdot \nabla_0 \lambda(\xi, t) t + \nabla_0 \cdot \mathbf{\hat{s}}_{\infty}$$

converges to 0 exponentially. Hence, it can be shown that the finite-time Lyapunov exponents must have the form

$$\lambda(\xi, t) = \frac{\tilde{\lambda}(\xi)}{t} + \frac{f(\xi, t)}{\sqrt{t}} + \lambda_{\infty},$$

where $\mathbf{\hat{s}}_{\infty} \cdot \nabla_0 f = 0$ (the $1/\sqrt{t}$ factor comes from known results on the variance of the exponents).



Evolution of the Distribution

The time evolution of the probability distribution function of finite-time Lyapunov exponents is given by

$$P(\lambda, t) = \sqrt{\frac{1}{2\pi t \, G''(\lambda_{\infty})}} \exp(-t \, G(\lambda)),$$

where $G(\lambda_{\infty}) = G'(\lambda_{\infty}) = 0$. This is the probability distribution for a random variable that is the average of many independent, identically distributed variables.

The width of the distribution sharpens as time evolves, and becomes a delta function as $t \to \infty$, peaked at λ_{∞} .

If the range of λ of interest is small compared to the standard deviation, we can approximate G by expanding around λ_{∞} ,

$$G(\lambda) \simeq \frac{1}{2} G''(\lambda_{\infty})(\lambda - \lambda_{\infty})^2.$$

so that the probability distribution becomes Gaussian:

$$P(\lambda,t) = \sqrt{\frac{1}{2\pi t \, G''(\lambda_{\infty})}} \exp\left(-\frac{1}{2} \, t \, G''(\lambda_{\infty})(\lambda - \lambda_{\infty})^2\right),$$

Note the standard deviation is $\sigma = 1/\sqrt{G''(\lambda_{\infty}) t}$.

(The Gaussian approximation works best for strongly chaotic flows.)

If we take the spatial average $\langle \cdot \rangle$ of our expression for the finite-time Lyapunov exponents,

$$\langle \lambda \rangle (t) = \frac{\langle \tilde{\lambda} \rangle}{t} + \frac{\langle f(\xi, t) \rangle}{\sqrt{t}} + \lambda_{\infty},$$

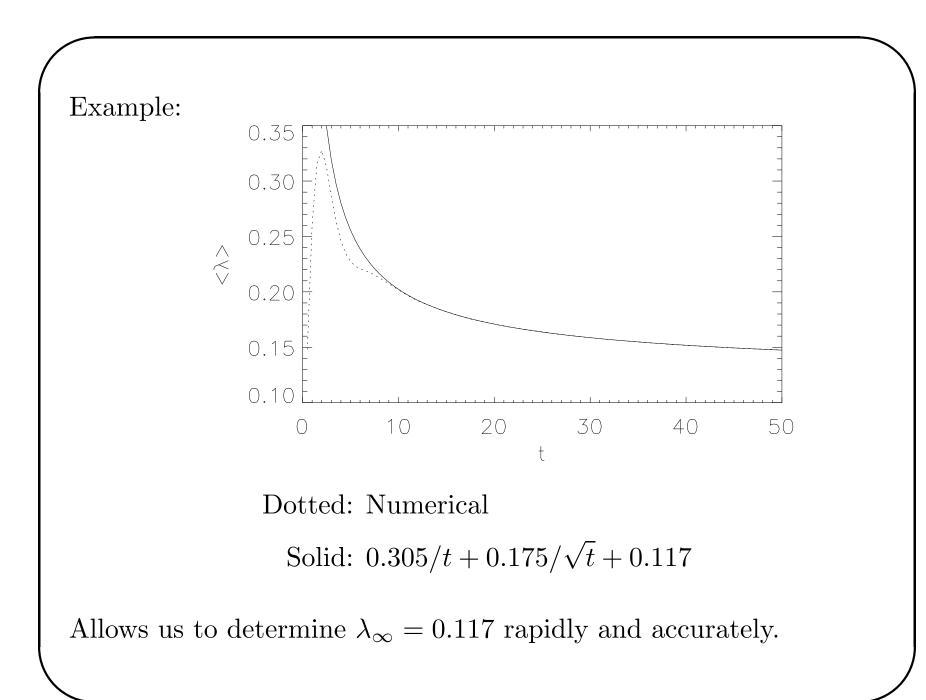
we find that the dominant contribution to the standard deviation for large t is

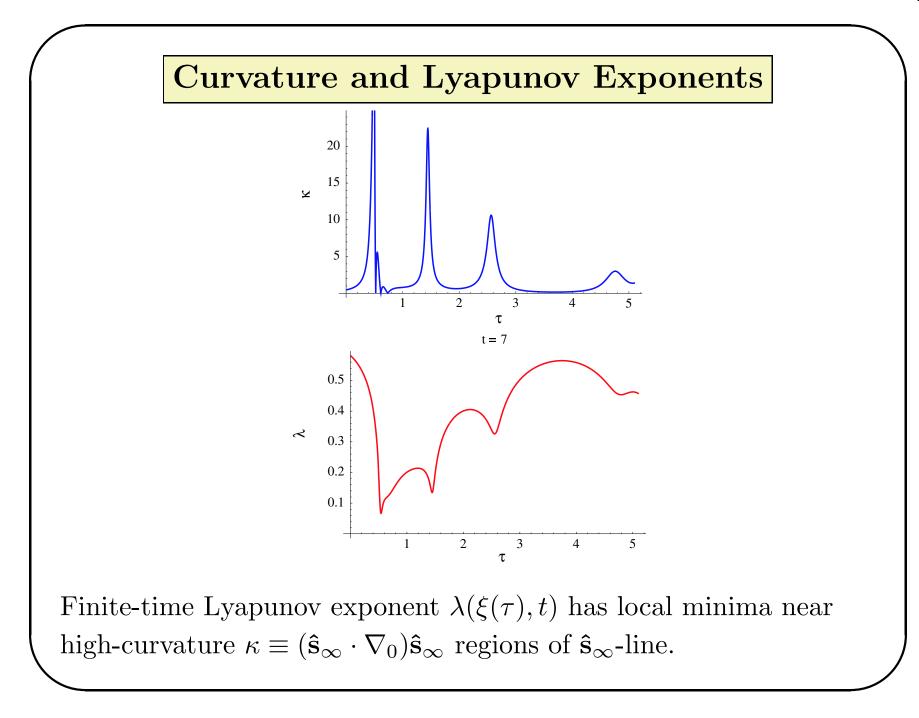
$$\sigma = \frac{\sqrt{\langle \lambda^2 \rangle - \langle \lambda \rangle^2}}{\langle \lambda \rangle} \sim \frac{\sqrt{\langle f(\xi, t)^2 \rangle - \langle f(\xi, t) \rangle^2}}{\lambda_{\infty} \sqrt{t}}$$

To agree with the Gaussian result of $\sigma \sim 1/\sqrt{t}$, we require

$$\lim_{t \to \infty} \langle f(\xi, t) \rangle = f_0, \quad \lim_{t \to \infty} \langle f(\xi, t)^2 \rangle = f_1^2,$$

i.e., the first two moments of f become independent of time for large t.





Conclusions

- Diffusion occurs overwhelmingly along the stable direction.
- The spatial dependence of Lyapunov exponents along $\hat{\mathbf{s}}$ lines is contained in the smooth function $\tilde{\lambda}(\xi)$, which decays as 1/t.
- The notoriously slow convergence of Lyapunov exponents is embodied in the nonsmooth function $f(\xi, t)$, which is constant on $\hat{\mathbf{s}}$ lines and decays as $1/\sqrt{t}$.
- Relationship between $\mathbf{\hat{s}}_{\infty}(\xi)$, $\kappa \equiv (\mathbf{\hat{s}}_{\infty} \cdot \nabla_0)\mathbf{\hat{s}}_{\infty}$, and $\tilde{\lambda}(\xi)$.
- Sharp bends in the **ŝ** line lead to locally small finite-time Lyapunov exponents (diffusion is hindered).
- Tested directly on oscillating-rolls flow.