Local and Global Aspects of Mixing

Jean-Luc Thiffeault Department of Mathematics Imperial College London

with

Steve Childress

Courant Institute of Mathematical Sciences

New York University

http://www.ma.imperial.ac.uk/~jeanluc

Experiment of Rothstein *et al.*: **Persistent Pattern**

Disordered array of magnets with oscillatory current drive a thin layer of electrolytic solution.

periods 2, 20, 50, 50.5

[Rothstein, Henry, and Gollub, Nature **401**, 770 (1999)]

Evolution of Pattern

- "Striations"
- Smoothed by diffusion
- Eventually settles into "pattern" (eigenfunction)

Local theory:

• Based on distribution of Lyapunov exponents.

Local theory:

- Based on distribution of Lyapunov exponents.
- [Antonsen et al., Phys. Fluids (1996)]
 [Balkovsky and Fouxon, PRE (1999)]
 [Son, PRE (1999)]

Average over angles Statistical model Statistical model

Local theory:

- Based on distribution of Lyapunov exponents.
- [Antonsen et al., Phys. Fluids (1996)]
 [Balkovsky and Fouxon, PRE (1999)]
 [Son, PRE (1999)]

Average over angles Statistical model Statistical model

Global theory:

• Eigenfunction of advection–diffusion operator.

Local theory:

- Based on distribution of Lyapunov exponents.
- [Antonsen et al., Phys. Fluids (1996)]
 [Balkovsky and Fouxon, PRE (1999)]
 [Son, PRE (1999)]

Average over angles Statistical model Statistical model

- Eigenfunction of advection–diffusion operator.
- [Pierrehumbert, Chaos Sol. Frac. (1994)] Strange eigenmode
 [Fereday et al., Wonhas and Vassilicos, PRE (2002)] Baker's map
 [Sukhatme and Pierrehumbert, PRE (2002)]
 [Fereday and Haynes (2003)] Unified description

Local theory:

- Based on distribution of Lyapunov exponents.
- [Antonsen et al., Phys. Fluids (1996)]
 [Balkovsky and Fouxon, PRE (1999)]
 [Son, PRE (1999)]

Average over angles Statistical model Statistical model

- Eigenfunction of advection–diffusion operator.
- So far, local theories are Lagrangian and global theories are Eulerian.

Local theory:

- Based on distribution of Lyapunov exponents.
- [Antonsen et al., Phys. Fluids (1996)]
 [Balkovsky and Fouxon, PRE (1999)]
 [Son, PRE (1999)]

Average over angles Statistical model Statistical model

- Eigenfunction of advection–diffusion operator.
- So far, local theories are Lagrangian and global theories are Eulerian.
- Today: Try to connect the two pictures.

Local theory:

- Based on distribution of Lyapunov exponents.
- [Antonsen et al., Phys. Fluids (1996)]
 [Balkovsky and Fouxon, PRE (1999)]
 [Son, PRE (1999)]

Average over angles Statistical model Statistical model

- Eigenfunction of advection–diffusion operator.
- So far, local theories are Lagrangian and global theories are Eulerian.
- Today: Try to connect the two pictures.
- Cannot often do this! Map allows (mostly) analytical results.

A Bit of History

Eulerian (spatial) coordinates are due to...

A Bit of History

Eulerian (spatial) coordinates are due to...

d'Alembert

A Bit of History

... and Lagrangian (material) coordinates to...

d'Alembert

Euler

The people responsible for the confusion...

The people responsible for the confusion...

Lagrange

Dirichlet

(See footnote in Truesdell, The Kinematics of Vorticity.)

The Map

We consider a diffeomorphism of the 2-torus $\mathbb{T}^2 = [0, 1]^2$,

$$\mathcal{M}(\boldsymbol{x}) = \mathbb{M} \cdot \boldsymbol{x} + \phi(\boldsymbol{x}),$$

where

$$\mathbb{M} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}; \qquad \phi(\boldsymbol{x}) = \frac{\varepsilon}{2\pi} \begin{pmatrix} \sin 2\pi x_1 \\ \sin 2\pi x_1 \end{pmatrix};$$

 $\mathbb{M} \cdot \boldsymbol{x}$ is the Arnold cat map.

The map \mathcal{M} is area-preserving and chaotic.

For $\varepsilon = 0$ the stretching of fluid elements is homogeneous in space.

For small ε the system is still uniformly hyperbolic.

Iterate the map and apply the heat operator to a scalar field (which we call temperature for concreteness) distribution $\theta^{(i-1)}(\boldsymbol{x})$,

$$\theta^{(i)}(\boldsymbol{x}) = \mathcal{H}_{\kappa} \, \theta^{(i-1)}(\mathcal{M}^{-1}(\boldsymbol{x}))$$

where κ is the diffusivity, with the heat operator \mathcal{H}_{κ} and kernel h_{κ}

$$\mathcal{H}_{\kappa}\theta(\boldsymbol{x}) \coloneqq \int_{\mathbb{T}^2} h_{\kappa}(\boldsymbol{x} - \boldsymbol{y})\theta(\boldsymbol{y}) \,\mathrm{d}\boldsymbol{y};$$
$$h_{\kappa}(\boldsymbol{x}) = \sum_{\boldsymbol{k}} \exp(2\pi \mathrm{i}\boldsymbol{k} \cdot \boldsymbol{x} - \boldsymbol{k}^2 \kappa).$$

In other words: advect instantaneously and then diffuse for one unit of time.

Transfer Matrix

Fourier expand $\theta^{(i)}(\boldsymbol{x})$,

$$\theta^{(i)}(\boldsymbol{x}) = \sum_{\boldsymbol{k}} \hat{\theta}_{\boldsymbol{k}}^{(i)} e^{2\pi i \boldsymbol{k} \cdot \boldsymbol{x}}$$

The effect of advection and diffusion becomes

$$\hat{ heta}_{\boldsymbol{k}}^{(i)}(\boldsymbol{x}) = \sum_{\boldsymbol{q}} \mathbb{T}_{\boldsymbol{k}\boldsymbol{q}} \, \hat{ heta}_{\boldsymbol{q}}^{(i-1)},$$

with the transfer matrix,

$$\begin{split} \mathbb{T}_{\boldsymbol{k}\boldsymbol{q}} &\coloneqq \int_{\mathbb{T}^2} \exp\left(2\pi\mathrm{i}\left(\boldsymbol{q}\cdot\boldsymbol{x}-\boldsymbol{k}\cdot\mathcal{M}(\boldsymbol{x})\right)-\kappa\,\boldsymbol{q}^2\right)\,\mathrm{d}\boldsymbol{x}, \\ &= \mathrm{e}^{-\kappa\,\boldsymbol{q}^2}\,\delta_{0,Q_2}\,\mathrm{i}^{Q_1}\,J_{Q_1}\left(\left(k_1+k_2\right)\varepsilon\right), \qquad \boldsymbol{Q}\coloneqq\boldsymbol{k}\cdot\mathbb{M}-\boldsymbol{q}, \end{split}$$

where the J_Q are the Bessel functions of the first kind.

$$\sigma^{(i)} \coloneqq \int_{\mathbb{T}^2} \left| \theta^{(i)}(\boldsymbol{x}) \right|^2 d\boldsymbol{x} = \sum_{\boldsymbol{k}} \sigma^{(i)}_{\boldsymbol{k}}, \qquad \sigma^{(i)}_{\boldsymbol{k}} \coloneqq \left| \hat{\theta}^{(i)}_{\boldsymbol{k}} \right|^2$$

is preserved. (We assume the spatial mean of θ is zero.) For $\kappa > 0$ the variance decays.

We consider the case $\kappa \ll 1$, of greatest practical interest.

$$\sigma^{(i)} \coloneqq \int_{\mathbb{T}^2} \left| \theta^{(i)}(\boldsymbol{x}) \right|^2 d\boldsymbol{x} = \sum_{\boldsymbol{k}} \sigma^{(i)}_{\boldsymbol{k}}, \qquad \sigma^{(i)}_{\boldsymbol{k}} \coloneqq \left| \hat{\theta}^{(i)}_{\boldsymbol{k}} \right|^2$$

is preserved. (We assume the spatial mean of θ is zero.) For $\kappa > 0$ the variance decays.

We consider the case $\kappa \ll 1$, of greatest practical interest. Three phases:

• The variance is initially constant;

$$\sigma^{(i)} \coloneqq \int_{\mathbb{T}^2} \left| \theta^{(i)}(\boldsymbol{x}) \right|^2 d\boldsymbol{x} = \sum_{\boldsymbol{k}} \sigma^{(i)}_{\boldsymbol{k}}, \qquad \sigma^{(i)}_{\boldsymbol{k}} \coloneqq \left| \hat{\theta}^{(i)}_{\boldsymbol{k}} \right|^2$$

is preserved. (We assume the spatial mean of θ is zero.) For $\kappa > 0$ the variance decays.

We consider the case $\kappa \ll 1$, of greatest practical interest. Three phases:

- The variance is initially constant;
- It then undergoes a rapid superexponential decay;

$$\sigma^{(i)} \coloneqq \int_{\mathbb{T}^2} \left| \theta^{(i)}(\boldsymbol{x}) \right|^2 d\boldsymbol{x} = \sum_{\boldsymbol{k}} \sigma^{(i)}_{\boldsymbol{k}}, \qquad \sigma^{(i)}_{\boldsymbol{k}} \coloneqq \left| \hat{\theta}^{(i)}_{\boldsymbol{k}} \right|^2$$

is preserved. (We assume the spatial mean of θ is zero.) For $\kappa > 0$ the variance decays.

We consider the case $\kappa \ll 1$, of greatest practical interest. Three phases:

- The variance is initially constant;
- It then undergoes a rapid superexponential decay;
- $\theta^{(i)}$ settles into an eigenfunction of the A–D operator that sets the exponential decay rate.

Decay of Variance

Local and Global Aspects of Mixing - p.11/30

Variance: 5 iterations for $\varepsilon = 0.3$ and $\kappa = 10^{-3}$

Eigenfunction for $\varepsilon = 0.3$ and $\kappa = 10^{-3}$

(Renormalised by decay rate)

For small ε , the dominant Bessel function is J_1 , so the decay factor μ^2 for the variance is given by

$$\mu = \left| \mathbb{T}_{(0\ 1),(0\ 1)} \right| = e^{-\kappa} J_1(\varepsilon) = \frac{1}{2}\varepsilon + \mathcal{O}(\kappa \varepsilon, \varepsilon^2).$$

Hence, for small ε the decay rate is limited by the $(0 \ 1)$ mode. The decay rate is independent of κ for $\kappa \to 0$. For small ε , the dominant Bessel function is J_1 , so the decay factor μ^2 for the variance is given by

$$\mu = \left| \mathbb{T}_{(0\ 1),(0\ 1)} \right| = e^{-\kappa} J_1(\varepsilon) = \frac{1}{2}\varepsilon + \mathcal{O}(\kappa \varepsilon, \varepsilon^2).$$

Hence, for small ε the decay rate is limited by the $(0 \ 1)$ mode. The decay rate is independent of κ for $\kappa \to 0$.

This is an analogous result to the baker's map [Fereday et al., Wonhas and Vassilicos, PRE (2002)]. Here the agreement with numerical results is good for ε quite close to unity.

For small ε , the dominant Bessel function is J_1 , so the decay factor μ^2 for the variance is given by

$$\mu = \left| \mathbb{T}_{(0\ 1),(0\ 1)} \right| = e^{-\kappa} J_1(\varepsilon) = \frac{1}{2}\varepsilon + \mathcal{O}(\kappa \varepsilon, \varepsilon^2).$$

Hence, for small ε the decay rate is limited by the $(0 \ 1)$ mode. The decay rate is independent of κ for $\kappa \to 0$.

This is an analogous result to the baker's map [Fereday et al., Wonhas and Vassilicos, PRE (2002)]. Here the agreement with numerical results is good for ε quite close to unity.

In the baker's map the discontinuity implies a slow convergence of the Fourier modes. However, it is a one-dimensional problem.

Decay Rate as $\kappa \to 0$

• Puzzle: Superexponential decay in Lagrangian coordinates.

- Puzzle: Superexponential decay in Lagrangian coordinates.
- Fix this by averaging over initial conditions: local argument (Antonsen *et al.*, 1996). No "pattern" possible.

- Puzzle: Superexponential decay in Lagrangian coordinates.
- Fix this by averaging over initial conditions: local argument (Antonsen *et al.*, 1996). No "pattern" possible.
- How to reconcile? Try to do analytically as far as feasible, for our map with small ε .

- Puzzle: Superexponential decay in Lagrangian coordinates.
- Fix this by averaging over initial conditions: local argument (Antonsen *et al.*, 1996). No "pattern" possible.
- How to reconcile? Try to do analytically as far as feasible, for our map with small ε .
- Discover what large-scale eigenfunction looks like in Lagrangian coordinates (hint: they are not eigenfunctions!).

- Puzzle: Superexponential decay in Lagrangian coordinates.
- Fix this by averaging over initial conditions: local argument (Antonsen *et al.*, 1996). No "pattern" possible.
- How to reconcile? Try to do analytically as far as feasible, for our map with small ε .
- Discover what large-scale eigenfunction looks like in Lagrangian coordinates (hint: they are not eigenfunctions!).
- Why do this? The two viewpoints are a priori unrelated, because they for these highly-chaotic systems they are connected by an extremely convoluted (*i.e.*, inaccessible) transformation!

- Puzzle: Superexponential decay in Lagrangian coordinates.
- Fix this by averaging over initial conditions: local argument (Antonsen *et al.*, 1996). No "pattern" possible.
- How to reconcile? Try to do analytically as far as feasible, for our map with small ε .
- Discover what large-scale eigenfunction looks like in Lagrangian coordinates (hint: they are not eigenfunctions!).
- Why do this? The two viewpoints are a priori unrelated, because they for these highly-chaotic systems they are connected by an extremely convoluted (*i.e.*, inaccessible) transformation!
- But must give same answer for a scalar quantity like the decay rate.

Advection-diffusion (A–D) equation:

$$\partial_t \theta + \boldsymbol{v} \cdot \partial_{\boldsymbol{x}} \theta = \widetilde{\kappa} \, \partial_{\boldsymbol{x}}^2 \theta.$$

Advection-diffusion (A–D) equation:

$$\partial_t \theta + \boldsymbol{v} \cdot \partial_{\boldsymbol{x}} \theta = \widetilde{\kappa} \, \partial_{\boldsymbol{x}}^2 \theta.$$

We define Lagrangian coordinates X by

$$\dot{\boldsymbol{x}} = \boldsymbol{v}(\boldsymbol{x}, t), \qquad \boldsymbol{x}(0) = \boldsymbol{X}.$$

Advection-diffusion (A–D) equation:

$$\partial_t \theta + \boldsymbol{v} \cdot \partial_{\boldsymbol{x}} \theta = \widetilde{\kappa} \, \partial_{\boldsymbol{x}}^2 \theta.$$

We define Lagrangian coordinates X by

$$\dot{\boldsymbol{x}} = \boldsymbol{v}(\boldsymbol{x}, t), \qquad \boldsymbol{x}(0) = \boldsymbol{X}.$$

Transform A–D equation to Lagrangian coordinates,

$$\dot{\theta} = \partial_{\boldsymbol{X}} (\mathbb{D} \cdot \partial_{\boldsymbol{X}} \theta).$$

Anisotropic diffusion tensor, in terms of metric or Cauchy–Green strain tensor:

$$\mathbb{D} \coloneqq \widetilde{\kappa} g^{-1}; \qquad g_{pq} \coloneqq \sum_{i} \frac{\partial x^{i}}{\partial X^{p}} \frac{\partial x^{i}}{\partial X^{q}}.$$

From Flow to Map

Velocity field doesn't enter the Lagrangian equation directly: regard the time dependence in \mathbb{D} as given by map rather than flow.

The solution of the A–D equation in Fourier space is then

$$\hat{\theta}_{\boldsymbol{k}}^{(i)} = \sum_{\boldsymbol{\ell}} \exp\left(\mathcal{G}^{(i)}\right)_{\boldsymbol{k}\boldsymbol{\ell}} \hat{\theta}_{\boldsymbol{\ell}}^{(i-1)},$$

where *i* denotes the *i*th iterate of the map, and

$$\mathcal{G}_{\boldsymbol{k}\boldsymbol{\ell}}^{(i)} = -4\pi^2 T \int_{\mathbb{T}^2} (\boldsymbol{k} \cdot \mathbb{D}^{(i)} \cdot \boldsymbol{\ell}) e^{-2\pi i (\boldsymbol{k}-\boldsymbol{\ell}) \cdot \boldsymbol{X}} d^2 X.$$

Velocity field doesn't enter the Lagrangian equation directly: regard the time dependence in \mathbb{D} as given by map rather than flow.

The solution of the A–D equation in Fourier space is then

$$\hat{\theta}_{\boldsymbol{k}}^{(i)} = \sum_{\boldsymbol{\ell}} \exp\left(\mathcal{G}^{(i)}\right)_{\boldsymbol{k}\boldsymbol{\ell}} \hat{\theta}_{\boldsymbol{\ell}}^{(i-1)},$$

where *i* denotes the *i*th iterate of the map, and

$$\mathcal{G}_{\boldsymbol{k}\boldsymbol{\ell}}^{(i)} = -4\pi^2 T \int_{\mathbb{T}^2} (\boldsymbol{k} \cdot \mathbb{D}^{(i)} \cdot \boldsymbol{\ell}) e^{-2\pi i (\boldsymbol{k}-\boldsymbol{\ell}) \cdot \boldsymbol{X}} d^2 X.$$

This is an exact result, but the great difficulty lies in calculating the exponential of $\mathcal{G}^{(i)}$. We shall accomplish this perturbatively.

Back to the Beginning

$$\mathcal{M}(\boldsymbol{x}) = \mathbb{M} \cdot \boldsymbol{x} + \boldsymbol{\phi}(\boldsymbol{x}),$$
$$\mathbb{M} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}; \qquad \boldsymbol{\phi}(\boldsymbol{x}) = \frac{\varepsilon}{2\pi} \begin{pmatrix} \sin 2\pi x_1 \\ \sin 2\pi x_1 \end{pmatrix};$$

The eigenvalues of $\mathbb M$ are

$$\Lambda_{\rm u} = \Lambda = \frac{1}{2}(3 + \sqrt{5}) = \cot^2 \theta, \quad \Lambda_{\rm s} = \Lambda^{-1} = \frac{1}{2}(3 - \sqrt{5}) = \tan^2 \theta$$

and the corresponding eigenvectors,

$$(\hat{\mathbf{u}} \ \hat{\mathbf{s}}) = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$$

Back to the Beginning

$$\mathcal{M}(\boldsymbol{x}) = \mathbb{M} \cdot \boldsymbol{x} + \boldsymbol{\phi}(\boldsymbol{x}),$$
$$\mathbb{M} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}; \qquad \boldsymbol{\phi}(\boldsymbol{x}) = \frac{\varepsilon}{2\pi} \begin{pmatrix} \sin 2\pi x_1 \\ \sin 2\pi x_1 \end{pmatrix};$$

The eigenvalues of \mathbb{M} are

$$\Lambda_{\rm u} = \Lambda = \frac{1}{2}(3 + \sqrt{5}) = \cot^2 \theta, \quad \Lambda_{\rm s} = \Lambda^{-1} = \frac{1}{2}(3 - \sqrt{5}) = \tan^2 \theta$$

and the corresponding eigenvectors, Contract $(\hat{\mathbf{u}} \ \hat{\mathbf{s}}) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \qquad \Lambda^{-1} \qquad \Lambda$

 θ

Stretch

The coefficients of expansion and characteristic directions for the linear cat map are uniform in space. Perturb off this.

To leading order in ε , the coefficient of expansion is written as

 $\Lambda_{\varepsilon}^{(i)} = \Lambda^i \left(1 + \varepsilon \, \eta^{(i)} \right)$

where Λ is the coefficient of expansion for the unperturbed cat map; the perturbed eigenvectors are similarly written

$$\hat{\mathbf{u}}_{\varepsilon}^{(i)} = \hat{\mathbf{u}} + \varepsilon \,\zeta^{(i)} \,\hat{\mathbf{s}}\,, \qquad \hat{\mathbf{s}}_{\varepsilon}^{(i)} = \hat{\mathbf{s}} - \varepsilon \,\zeta^{(i)} \,\hat{\mathbf{u}}\,.$$

The coefficients of expansion and characteristic directions for the linear cat map are uniform in space. Perturb off this.

To leading order in ε , the coefficient of expansion is written as

 $\Lambda_{\varepsilon}^{(i)} = \Lambda^i \left(1 + \varepsilon \, \eta^{(i)} \right)$

where Λ is the coefficient of expansion for the unperturbed cat map; the perturbed eigenvectors are similarly written

$$\hat{\mathbf{u}}_{\varepsilon}^{(i)} = \hat{\mathbf{u}} + \varepsilon \,\zeta^{(i)} \,\hat{\mathbf{s}} \,, \qquad \hat{\mathbf{s}}_{\varepsilon}^{(i)} = \hat{\mathbf{s}} - \varepsilon \,\zeta^{(i)} \,\hat{\mathbf{u}} \,.$$

Simple application of matrix perturbation theory to Jacobian matrix of the map. The symmetrised Jacobian is the metric:

$$g_{\varepsilon}^{(i)} = [\Lambda_{\varepsilon}^{(i)}]^2 \,\hat{\mathbf{u}}_{\varepsilon}^{(i)} \hat{\mathbf{u}}_{\varepsilon}^{(i)} + [\Lambda_{\varepsilon}^{(i)}]^{-2} \,\hat{\mathbf{s}}_{\varepsilon}^{(i)} \hat{\mathbf{s}}_{\varepsilon}^{(i)} \,.$$

skip

$$\Lambda_{\varepsilon}^{(i)} = \Lambda^{i} (1 + \varepsilon \eta^{(i)}), \quad \hat{\mathbf{u}}_{\varepsilon}^{(i)} = \hat{\mathbf{u}} + \varepsilon \zeta^{(i)} \hat{\mathbf{s}},$$
$$\eta^{(i)} = \frac{1}{2} \sin 2\theta \sum_{j=0}^{i-1} \cos \left(2\pi (\mathbb{M}^{j} \cdot \mathbf{X})_{1}\right);$$
$$\zeta^{(i)} = \frac{1}{\Lambda^{2i} - \Lambda^{-2i}} \left(\zeta_{+}^{(i)} + \zeta_{-}^{(i)}\right),$$
$$\zeta_{\pm}^{(i)} = \frac{1}{2} (\cos 2\theta \mp 1) \sum_{i=0}^{i-1} \Lambda^{\pm 2(i-j)} \cos \left(2\pi (\mathbb{M}^{j} \cdot \mathbf{X})_{1}\right).$$

Observe that the perturbation to the eigenvectors converges exponentially, as required.

j=0

$$\mathbb{D}^{(i)} = \kappa \left[g_{\varepsilon}^{(i)} \right]^{-1}; \qquad [g_{\varepsilon}^{(i)}]^{-1} = [\Lambda_{\varepsilon}^{(i)}]^2 \hat{\mathbf{s}}_{\varepsilon}^{(i)} \hat{\mathbf{s}}_{\varepsilon}^{(i)} + [\Lambda_{\varepsilon}^{(i)}]^{-2} \hat{\mathbf{u}}_{\varepsilon}^{(i)} \hat{\mathbf{u}}_{\varepsilon}^{(i)}$$

To leading order in ε , we have

$$[g_{\varepsilon}^{(i)}]^{-1} = \Lambda^{2i} \,\hat{\mathbf{s}} \,\hat{\mathbf{s}} + \Lambda^{-2i} \,\hat{\mathbf{u}} \,\hat{\mathbf{u}} + 2\varepsilon \,\eta^{(i)} (\Lambda^{2i} \,\hat{\mathbf{s}} \,\hat{\mathbf{s}} - \Lambda^{-2i} \,\hat{\mathbf{u}} \,\hat{\mathbf{u}}) - \varepsilon \,\zeta^{(i)} \left(\Lambda^{2i} - \Lambda^{-2i}\right) (\hat{\mathbf{u}} \,\hat{\mathbf{s}} + \hat{\mathbf{s}} \,\hat{\mathbf{u}}),$$

where the only functions of X are $\eta^{(i)}$ and $\zeta^{(i)}$.

$$\mathbb{D}^{(i)} = \kappa \left[g_{\varepsilon}^{(i)} \right]^{-1}; \qquad \left[g_{\varepsilon}^{(i)} \right]^{-1} = \left[\Lambda_{\varepsilon}^{(i)} \right]^2 \hat{\mathbf{s}}_{\varepsilon}^{(i)} \hat{\mathbf{s}}_{\varepsilon}^{(i)} + \left[\Lambda_{\varepsilon}^{(i)} \right]^{-2} \hat{\mathbf{u}}_{\varepsilon}^{(i)} \hat{\mathbf{u}}_{\varepsilon}^{(i)}$$

To leading order in ε , we have

$$[g_{\varepsilon}^{(i)}]^{-1} = \Lambda^{2i} \,\hat{\mathbf{s}} \,\hat{\mathbf{s}} + \Lambda^{-2i} \,\hat{\mathbf{u}} \,\hat{\mathbf{u}} + 2\varepsilon \,\eta^{(i)} (\Lambda^{2i} \,\hat{\mathbf{s}} \,\hat{\mathbf{s}} - \Lambda^{-2i} \,\hat{\mathbf{u}} \,\hat{\mathbf{u}}) - \varepsilon \,\zeta^{(i)} \left(\Lambda^{2i} - \Lambda^{-2i}\right) (\hat{\mathbf{u}} \,\hat{\mathbf{s}} + \hat{\mathbf{s}} \,\hat{\mathbf{u}}),$$

where the only functions of X are $\eta^{(i)}$ and $\zeta^{(i)}$.

Recall the solution to the A–D equation:

$$\hat{\theta}_{\boldsymbol{k}}^{(i)} = \sum_{\boldsymbol{\ell}} \exp\left(\boldsymbol{\mathcal{G}}^{(i)}\right)_{\boldsymbol{k}\boldsymbol{\ell}} \hat{\theta}_{\boldsymbol{\ell}}^{(i-1)} \,.$$

The Exponent $\mathcal{G}^{(i)}$

$$\mathcal{G}_{\boldsymbol{k}\boldsymbol{\ell}}^{(i)} = -4\pi^2 T \int_{\mathbb{T}^2} (\boldsymbol{k} \cdot \mathbb{D}^{(i)} \cdot \boldsymbol{\ell}) e^{-2\pi i (\boldsymbol{k}-\boldsymbol{\ell}) \cdot \boldsymbol{X}} d^2 X$$
$$= A_{\boldsymbol{k}\boldsymbol{\ell}}^{(i)} + \varepsilon B_{\boldsymbol{k}\boldsymbol{\ell}}^{(i)}$$

The Exponent $\mathcal{G}^{(i)}$

skip

$$\mathcal{G}_{\boldsymbol{k}\boldsymbol{\ell}}^{(i)} = -4\pi^2 T \int_{\mathbb{T}^2} (\boldsymbol{k} \cdot \mathbb{D}^{(i)} \cdot \boldsymbol{\ell}) e^{-2\pi i (\boldsymbol{k}-\boldsymbol{\ell}) \cdot \boldsymbol{X}} d^2 X$$
$$= A_{\boldsymbol{k}\boldsymbol{\ell}}^{(i)} + \varepsilon B_{\boldsymbol{k}\boldsymbol{\ell}}^{(i)}$$

where

$$A_{\boldsymbol{k}\boldsymbol{\ell}}^{(i)} = -\kappa \left(\Lambda^{2i} \, k_{\rm s}^2 + \Lambda^{-2i} \, k_{\rm u}^2\right) \delta_{\boldsymbol{k}\boldsymbol{\ell}}, \qquad \kappa \coloneqq 4\pi^2 \widetilde{\kappa} \, T$$

$$B_{\boldsymbol{k}\boldsymbol{\ell}}^{(i)} = -\kappa \left(2 \left(\Lambda^{2i} \, k_{\rm s} \, \ell_{\rm s} - \Lambda^{-2i} \, k_{\rm u} \, \ell_{\rm u} \right) \eta_{\boldsymbol{k}\boldsymbol{\ell}}^{(i)} - \left(k_{\rm u} \, \ell_{\rm s} + k_{\rm s} \, \ell_{\rm u} \right) \left(\zeta_{+}^{(i)} \, {\boldsymbol{k}\boldsymbol{\ell}} + \zeta_{-}^{(i)} \, {\boldsymbol{k}\boldsymbol{\ell}} \right) \right)$$

with $k_{\mathbf{u}} \coloneqq (\mathbf{k} \cdot \hat{\mathbf{u}}), k_{\mathbf{s}} \coloneqq (\mathbf{k} \cdot \hat{\mathbf{s}}).$

٠

The diagonal part, $A^{(i)}$, inexorably leads to superexponential decay of variance, because it grows exponentially. Upon making use of the Fourier-transformed $\zeta^{(i)}$ and $\eta^{(i)}$, we find

$$B_{\boldsymbol{k}\boldsymbol{\ell}}^{(i)} = -\frac{1}{2}\kappa \sum_{j=0}^{i-1} \mathcal{B}_{\boldsymbol{k}\boldsymbol{\ell}}^{ij} \left(\delta_{\boldsymbol{k},\boldsymbol{\ell}+\hat{\mathbf{e}}_{1}}\cdot\mathbb{M}^{j} + \delta_{\boldsymbol{k},\boldsymbol{\ell}-\hat{\mathbf{e}}_{1}}\cdot\mathbb{M}^{j}\right)$$

$$\mathcal{B}_{k\ell}^{ij} = \sin 2\theta \left(\Lambda^{2i} k_{\rm s} \ell_{\rm s} - \Lambda^{-2i} k_{\rm u} \ell_{\rm u} \right) + \left(k_{\rm u} \ell_{\rm s} + k_{\rm s} \ell_{\rm u} \right) \left(\Lambda^{2(i-j)} \sin^2 \theta - \Lambda^{-2(i-j)} \cos^2 \theta \right).$$

So $B^{(i)}$ is not diagonal (it couples different modes to each other). \implies Dispersive in Fourier space.

But can we Compute the Exponential, $\exp(\mathcal{G}^{(i)})$?

To leading order in ε , for A diagonal, we have $\mathcal{G}^{(i)} = A^{(i)} + \varepsilon B^{(i)}$,

$$[\exp(A^{(i)} + \varepsilon B^{(i)})]_{\boldsymbol{k}\boldsymbol{\ell}} = e^{A^{(i)}_{\boldsymbol{k}\boldsymbol{k}}} \delta_{\boldsymbol{k}\boldsymbol{\ell}} + \varepsilon E^{(i)}_{\boldsymbol{k}\boldsymbol{\ell}}; \quad E^{(i)}_{\boldsymbol{k}\boldsymbol{\ell}} = B^{(i)}_{\boldsymbol{k}\boldsymbol{\ell}} \frac{e^{A^{(i)}_{\boldsymbol{k}\boldsymbol{k}}} - e^{A^{(i)}_{\boldsymbol{\ell}\boldsymbol{\ell}}}}{A^{(i)}_{\boldsymbol{k}\boldsymbol{k}} - A^{(i)}_{\boldsymbol{\ell}\boldsymbol{\ell}}}$$

• From Eulerian considerations, we know we must avoid superexponential decay of $\theta^{(i)}$ for long times.

To leading order in ε , for A diagonal, we have $\mathcal{G}^{(i)} = A^{(i)} + \varepsilon B^{(i)}$,

$$[\exp(A^{(i)} + \varepsilon B^{(i)})]_{\boldsymbol{k}\boldsymbol{\ell}} = e^{A^{(i)}_{\boldsymbol{k}\boldsymbol{k}}} \delta_{\boldsymbol{k}\boldsymbol{\ell}} + \varepsilon E^{(i)}_{\boldsymbol{k}\boldsymbol{\ell}}; \quad E^{(i)}_{\boldsymbol{k}\boldsymbol{\ell}} = B^{(i)}_{\boldsymbol{k}\boldsymbol{\ell}} \frac{e^{A^{(i)}_{\boldsymbol{k}\boldsymbol{k}}} - e^{A^{(i)}_{\boldsymbol{\ell}\boldsymbol{\ell}}}}{A^{(i)}_{\boldsymbol{k}\boldsymbol{k}} - A^{(i)}_{\boldsymbol{\ell}\boldsymbol{\ell}}}$$

- From Eulerian considerations, we know we must avoid superexponential decay of $\theta^{(i)}$ for long times.
- However, the Λ^{2i} term in $A_{kk}^{(i)}$ precludes any optimism about the situation: it dooms us to a grim superexponential death.

To leading order in ε , for A diagonal, we have $\mathcal{G}^{(i)} = A^{(i)} + \varepsilon B^{(i)}$,

$$[\exp(A^{(i)} + \varepsilon B^{(i)})]_{\boldsymbol{k}\boldsymbol{\ell}} = e^{A^{(i)}_{\boldsymbol{k}\boldsymbol{k}}} \delta_{\boldsymbol{k}\boldsymbol{\ell}} + \varepsilon E^{(i)}_{\boldsymbol{k}\boldsymbol{\ell}}; \quad E^{(i)}_{\boldsymbol{k}\boldsymbol{\ell}} = B^{(i)}_{\boldsymbol{k}\boldsymbol{\ell}} \frac{e^{A^{(i)}_{\boldsymbol{k}\boldsymbol{k}}} - e^{A^{(i)}_{\boldsymbol{\ell}\boldsymbol{\ell}}}}{A^{(i)}_{\boldsymbol{k}\boldsymbol{k}} - A^{(i)}_{\boldsymbol{\ell}\boldsymbol{\ell}}}$$

- From Eulerian considerations, we know we must avoid superexponential decay of $\theta^{(i)}$ for long times.
- However, the Λ²ⁱ term in A⁽ⁱ⁾_{kk} precludes any optimism about the situation: it dooms us to a grim superexponential death.
- For ε = 0, this is indeed what happens. But for a finite value of ε, the E term breaks the diagonality of G, so that given some initial set of wavevectors, the variance contained in those modes can be transferred elsewhere.

A Few Words about Numerics

• Impractical to take the matrix exponential for large matrices.

- Impractical to take the matrix exponential for large matrices.
- Perturbative expansion sidesteps this problem.

- Impractical to take the matrix exponential for large matrices.
- Perturbative expansion sidesteps this problem.
- However, still need to go to extremely high wavenumber ... impossible to use mesh, since would have to refine exponentially fast.

- Impractical to take the matrix exponential for large matrices.
- Perturbative expansion sidesteps this problem.
- However, still need to go to extremely high wavenumber ... impossible to use mesh, since would have to refine exponentially fast.
- So keep track of only the required wavevectors: their number should grow exponentially ... but it doesn't!

- Impractical to take the matrix exponential for large matrices.
- Perturbative expansion sidesteps this problem.
- However, still need to go to extremely high wavenumber ... impossible to use mesh, since would have to refine exponentially fast.
- So keep track of only the required wavevectors: their number should grow exponentially ... but it doesn't!
- This is because as *i* increases, most modes are damped as exp (-κ (Λ²ⁱ k_s² + Λ⁻²ⁱ k_u²)), except for those that have very small k_s = (**k** · ŝ), *i.e.*, those that are aligned with û.

- Impractical to take the matrix exponential for large matrices.
- Perturbative expansion sidesteps this problem.
- However, still need to go to extremely high wavenumber ... impossible to use mesh, since would have to refine exponentially fast.
- So keep track of only the required wavevectors: their number should grow exponentially ... but it doesn't!
- This is because as i increases, most modes are damped as
 exp (-κ (Λ²ⁱ k_s² + Λ⁻²ⁱ k_u²)), except for those that have very
 small k_s = (**k** · ŝ), *i.e.*, those that are aligned with û.
- Just let computer take care of pruning via underflow!

- Impractical to take the matrix exponential for large matrices.
- Perturbative expansion sidesteps this problem.
- However, still need to go to extremely high wavenumber ... impossible to use mesh, since would have to refine exponentially fast.
- So keep track of only the required wavevectors: their number should grow exponentially ... but it doesn't!
- This is because as i increases, most modes are damped as
 exp (-κ (Λ²ⁱ k_s² + Λ⁻²ⁱ k_u²)), except for those that have very
 small k_s = (**k** · ŝ), *i.e.*, those that are aligned with û.
- Just let computer take care of pruning via underflow!
- The surviving modes need to become more and more aligned with \hat{u} as time goes on.

Comparison: Eulerian and Lagrangian Views

Convergence

skip

Local and Global Aspects of Mixing - p.28/30

Rescaled Pattern for $i = 6, \ldots, 12$

• In the Eulerian view, large-scale eigenmode dominates exponential phase, as for baker's map.

- In the Eulerian view, large-scale eigenmode dominates exponential phase, as for baker's map.
- Global structure matters!

- In the Eulerian view, large-scale eigenmode dominates exponential phase, as for baker's map.
- Global structure matters!
- It is not possible to simply transform the Eulerian result to Lagrangian coordinates, since orbits are chaotic ... must solve Lagrangian problem from the start.

- In the Eulerian view, large-scale eigenmode dominates exponential phase, as for baker's map.
- Global structure matters!
- It is not possible to simply transform the Eulerian result to Lagrangian coordinates, since orbits are chaotic ... must solve Lagrangian problem from the start.
- There exists a kind of pattern in Lagrangian coordinates (not eigenfunction) that is cascading to large wavenumbers.

- In the Eulerian view, large-scale eigenmode dominates exponential phase, as for baker's map.
- Global structure matters!
- It is not possible to simply transform the Eulerian result to Lagrangian coordinates, since orbits are chaotic ... must solve Lagrangian problem from the start.
- There exists a kind of pattern in Lagrangian coordinates (not eigenfunction) that is cascading to large wavenumbers.
- Pattern confined to dominant mode in Eulerian coordinates, but dispersed in Lagrangian space.

- In the Eulerian view, large-scale eigenmode dominates exponential phase, as for baker's map.
- Global structure matters!
- It is not possible to simply transform the Eulerian result to Lagrangian coordinates, since orbits are chaotic ... must solve Lagrangian problem from the start.
- There exists a kind of pattern in Lagrangian coordinates (not eigenfunction) that is cascading to large wavenumbers.
- Pattern confined to dominant mode in Eulerian coordinates, but dispersed in Lagrangian space.
- Could the numerical economy be scaled to more complex problems?

- In the Eulerian view, large-scale eigenmode dominates exponential phase, as for baker's map.
- Global structure matters!
- It is not possible to simply transform the Eulerian result to Lagrangian coordinates, since orbits are chaotic ... must solve Lagrangian problem from the start.
- There exists a kind of pattern in Lagrangian coordinates (not eigenfunction) that is cascading to large wavenumbers.
- Pattern confined to dominant mode in Eulerian coordinates, but dispersed in Lagrangian space.
- Could the numerical economy be scaled to more complex problems?
- Still some kinks to iron out!