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the taffy puller

Taffy is a type of candy.

Needs to be pulled: this
aerates it and makes it
lighter and chewier.

We can assign a growth:
length multiplier per
period.

[movie by M. D. Finn]

play movie
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http://www.math.wisc.edu/~jeanluc/movies/taffy.mp4


making candy cane

play movie

[Wired: This Is How You Craft 16,000 Candy Canes in a Day]
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http://www.math.wisc.edu/~jeanluc/movies/candy_cane.mp4
http://www.wired.com/design/2012/12/st_makingmints/


four-pronged taffy puller

play movie http://www.youtube.com/watch?v=Y7tlHDsquVM

[MacKay (2001); Halbert & Yorke (2014)] 4 / 38

http://www.math.wisc.edu/~jeanluc/movies/four_rod_puller.mp4
http://www.youtube.com/watch?v=Y7tlHDsquVM


a simple taffy puller
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[Remark for later: each rod moves in a ‘figure-eight’ shape.]

5 / 38



number of folds

[Matlab: demo1]

Let’s count alternating left/right folds. The sequence is

#folds = 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

What is the rule?

#foldsn = #foldsn−1 + #foldsn−2

This is the famous Fibonacci sequence, Fn.
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how fast does the taffy grow?

It is well-known that for large n,

Fn
Fn−1

→ φ =
1 +
√

5

2
= 1.6180 . . .

where φ is the Golden Ratio, also called the Golden Mean.

So the ratio of lengths of the taffy between two successive steps is φ2,
where the squared is due to the left/right alternation.

Hence, the growth factor for this taffy puller is

φ2 = φ+ 1 = 2.6180 . . . .
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the Golden Ratio, φ

A rectangle has the proportions of

the Golden Ratio if, after taking

out a square, the remaining

rectangle has the same

proportions as the original:

φ

1
=

1

φ− 1
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linear maps on the torus

These quadratic numbers are reminiscent of invertible linear maps on the
torus T 2, such as Arnold’s Cat Map:(

x
y

)
7→

(
2 1
1 1

)(
x
y

)
mod 1, x , y ∈ [0, 1]2

The largest eigenvalue of the matrix

M =

(
2 1
1 1

)
is φ2.

What’s the connection between taffy pullers and these maps?
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the torus

The ‘standard model’ for the torus is the biperiodic unit square:
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action of map on the torus

The Cat Map stretches loops exponentially:

This loop will stand in for a piece of taffy.
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hyperelliptic involution

Consider the linear map ι(x) = −x mod 1. This map is called the
hyperelliptic involution (ι2 = id).

Construct the quotient space

S = T 2/ι

A

A

B

B

=⇒ A B
p0 p1

p3 p2

Claim: the surface S (right) is a sphere with four punctures!
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sphere with four punctures

Here’s how we see that S is a sphere:

A B
p0 p1

p3 p2

pacmanize
=⇒ A B

p0

p1

p3

p2
zip

=⇒
p0

p1 p2

p3

The punctures p1,2,3 are the rods of our taffy puller. The puncture p0 is
like a point at infinity on the plane.

Linear maps commute with ι, so all linear torus maps ‘descend’ to taffy
puller motions.
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Dehn twists

Any taffy puller motion can be represented as a product of

σ1 =

(
1 0
1 1

)
, σ2 =

(
1 −1
0 1

)
and their inverses, known as Dehn twists.

p0 p1 p2 p3

p0 p2

p1

p3

action of σ1

p0 p1 p3 p2

action of σ2

These can also be view as generators for the braid group for 3 strings.
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the history of taffy pullers

This past Summer I started wondering about who invented the well-known
designs for taffy pullers. Google patents is an awesome resource.

The very first: Firchau (1893)

This is a terrible taffy puller. It was likely never built, but plays an
important role in the looming. . .
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taffy patent wars
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The first true taffy puller

I think Dickinson (1906, but filed in 1901) deserves the title of inventor of
the first taffy puller:

Awkward design: the moving rods get ‘tripped’ each cycle. But it is
topologically the same as the 3-rod device still in use today.

There seem to be questions as to whether it ever worked, or if it really
pulled taffy rather than mixing candy.
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The modern 3-rod design

Robinson & Deiter (1908) greatly simplified this design to one still in use
today.

18 / 38



Herbert L. Hildreth

The uncontested taffy magnate of the early 20th century was Herbert L.
Hildreth of Maine.

The Hotel Velvet in Old Orchard, Maine The Confectioners Gazette (1914)

His hotel was on the beach, and taffy was popular at such resorts. He sold
it wholesale as well.
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the 4-rod design

The first 4-rod design is by Thibodeau (1903, filed 1901), an employee of
Hildreth.

Hildreth was not pleased by this but bought the patent for $75,000 (about
two million of today’s dollars).
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the best patents have beautiful diagrams

Thibodeau (1903) Richards (1905)
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the patent wars

So many concurrent patents were filed that lawsuits ensued for more than
a decade. Shockingly, the taffy patent wars went all the way to the US
Supreme Court. The opinion of the Court was delivered by Chief Justice
William Howard Taft (Hildreth v. Mastoras, 1921):

The machine shown in the Firchau patent [has two pins that]
pass each other twice during each revolution [. . . ] and move in
concentric circles, but do not have the relative in-and-out motion
or Figure 8 movement of the Dickinson machine. With only two
hooks there could be no lapping of the candy, because there was
no third pin to re-engage the candy while it was held between
the other two pins. The movement of the two pins in concentric
circles might stretch it somewhat and stir it, but it would not
pull it in the sense of the art.

The Supreme Court opinion displays the fundamental insight that at least
three rods are required to produce some sort of rapid growth.
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the quest for the Golden ratio

Is it possible to build a device that realizes the simplest taffy puller, with
growth φ2?

The problem is that each rod moves in a Figure-eight! This is hard to do
mechanically.

After some digging, found the patent of Nitz (1918):
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the quest for the Golden ratio (2)

There is actually an earlier 4-rod design by Thibodeau (1904) which has
Golden ratio growth:

Since it uses four rods to get a quadratic growth, the map must involve a
branched cover of the torus by a theorem of Franks & Rykken (1999).
(The same happens for the 4-rod vs 3-rod ‘standard’ taffy pullers.)
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the quest for the Golden ratio (3)

Thibodeau (1904) once again
gives very nice diagrams for
the action of his taffy puller.

(He has at least 5 patents for
taffy pullers.)
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planetary designs

A few designs are based on ‘planetary’ gears, such as McCarthy (1916):
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the mixograph

A modern planetary design is the mixograph, a device for measuring the
properties of dough:

play movie

[Department of Food Science, University of Wisconsin. Photos by J-LT.]
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http://www.math.wisc.edu/~jeanluc/movies/breadlab.mp4


the mixograph (2)

The mixograph measures the
resistance of the dough to the
pin motion.

This is graphed to determine
properties of the dough, such
as water absorption and ‘peak
time.’

Wheat and Flour Testing Methods: A Guide to Understanding Wheat and Flour Quality
28 / 38

http://www.wheatflourbook.org/


the mixograph as a braid

Encode the topological information
as a sequence of generators of the
Artin braid group Bn.

Equivalent to the 7-braid

σ3σ2σ3σ5σ
−1
6 σ2σ3σ4σ3σ

−1
1 σ−1

2 σ5

We feed this braid to the
Bestvina–Handel algorithm, which
determines the Thurston type of the
braid (pseudo-Anosov) and finds the
growth as the largest root of

x8 − 4x7 − x6 + 4x4 − x2 − 4x + 1

' 4.186
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exotic designs

There remains many patents that I call ‘exotic’ which use nonstandard
motions: such as Jenner (1905):
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exotic designs (2)

Shean & Schmelz (1914):
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exotic designs (3)

My personal favorite, McCarthy & Wilson (1915):
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let’s try our hand at this

Six-rod design with Alex Flanagan:

The software tools allow us to rapidly try designs. This one is simple and
has huge growth (13.9 vs 5.8 for the standard pullers).
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making taffy is hard

Early efforts yielded mixed results: . . . but eventually we got better at it

play movie (BTW: The physics of candy making is fascinating. . . )
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http://www.math.wisc.edu/~jeanluc/movies/Six-pronged_taffy_puller.avi


there is a deeper point here

• My real interest is in fluid mixing, in particular of viscous substances.

• Mixing is a combinatorial process, akin to shuffling.

• The taffy designs also pop up in ‘serious’ chemical mixers.

• The topological dynamics methods pioneered by Thurston allows us
to understand these rod motions in great detail.

• For example, in addition to the growth, there is a measure that tells
us how taffy is distributed on the rods.

• pseudo-Anosov maps themselves are still the subject of intense study).
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