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A jet hitting an inclined plane

Plane inclined at 45◦. The flow rate is Q ' 120 cm3 s−1.

[with Andrew Belmonte in Claudia Cenedese and Karl Helfrich’s lab at Woods

Hole, GFD 2008]
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Inviscid theory

Try steady potential flow: u = ∇ϕ, with

∇2ϕ = 0, mass conservation;

1
2 |∇ϕ|

2 +
p

ρ
− g · r = H, Bernoulli’s law;

Boundary conditions:

∂zϕ = 0 at z = 0, no-throughflow at substrate;

∇ϕ · ∇h = ∂zϕ at z = h, kinematic condition at free surface;

p = 0 at z = h, constant pressure at free surface.

Here z is normal to the substrate, x1 and x2 are parallel to it.
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Small-parameter expansion

Expand Bernoulli’s law in the small fluid depth ε:

2∑
j=1

(∂jϕ)2 + ε−2(∂zϕ)2 +
2p

ρ
− 2g · (X + ε z ê3) = 2H,

where X = x1ê1 + x2ê2. Also expand ϕ:

ϕ(x1, x2, z) = ϕ(0) + εϕ(1) + ε2 ϕ(2) + . . . ,

to obtain at leading order ∂zϕ(0) = 0, so that

ϕ(0) = Φ(x1, x2).
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Small-parameter expansion II

At next order:

2∑
j=1

(∂jΦ)2 + (∂zϕ(1))2 +
2p

ρ
− 2g · X = 2H,

Evaluate at z = h and use the boundary conditions:

2∑
j=1

(∂jΦ)2 − 2g · X = 2H,
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Solution in terms of characteristics

Differentiate to get rid of constant:

2∑
j=1

∂jΦ ∂ijΦ = g · ∂iX , i = 1, 2.

Introduce the characteristics x1(τ), x2(τ):

ẋ1 = ∂1Φ(x), ẋ2 = ∂2Φ(x),

We have ∂ijΦ = ∂i ẋj and ẍi = (∂j ẋi )ẋj = ∂jΦ ∂ijΦ, so that

ẍi = g · êi , i = 1, 2.

[Rienstra (1996)]
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Characteristics for a jet striking an inclined plane

The characteristics have a parabolic envelope (blue dashed):

Edwards et al. (2008) used the ‘delta-shock’ framework to account for
characteristics crossing: this lowers the rise distance by 5/9, and the
profile remains essentially parabolic (black dashes).
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Comparison with experiments

Compare ballistic rise distance U2/2g sin θ to experiments:
[Thiffeault & Belmonte (2010)]
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Not so good. . . even if we lower the curves by 5/9 following Edwards et al. (2008).
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Hydraulic jump modeling: Short history

• Watson (1964): inviscid and viscid, but assumes position of jump.

• Many subsequent refinements: Bohr et al. (1993); Godwin (1993);
Bohr et al. (1997); Brechet & Néda (1999); Chang et al. (2001);
Bush & Aristoff (2003). . . .

• Jet striking a horizontal plate at an oblique angle: Sparrow & Lovell
(1980); Rubel (1981); Kate et al. (2007).

• Jet striking a moving plate: Gradeck et al. (2006); Kate et al. (2009).

• Microdecorated surface: Dressaire et al. (2009).

• Here we’ll adapt the model of Bohr et al. (1993) to an inclined plane.
Our main assumption is that, as far as the rise distance is concerned,
the jet is ‘locally’ circular.
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A simple model with viscosity

Let’s cheat and assume that the jet is hitting an inverted cone, so that the
system is axially-symmetric.

Following Bohr et al. (1993), start with boundary layer equations:

u
∂u

∂r
+ w

∂u

∂z
= −g cos θ

dh

dr
− g sin θ + ν

∂2u

∂z2

∂u

∂r
+

u

r
+
∂w

∂z
= 0

where u(r , z) and w(r , z) are respectively the velocity components tangent
and perpendicular to the solid surface.

r is tangent to the solid surface, and z is perpendicular to it.
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A simple model with viscosity II

The boundary conditions at the bottom and top of the fluid are

u = 0, w = 0, at z = 0;

∂u

∂z
= 0, w = u

dh

dr
, at z = h(r).

Integrating gives the mass conservation equation

r

∫ h

0
u(r , z)dz = q

where q = Q/2π, with Q the flow rate of the jet.

In addition, we must specify the velocity u(r0, z) = u0(z) and height
h(r0) = h0 at a radius r0 larger than the jet radius, since the boundary
layer equations are not valid directly under the jet.
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Hydraulic jump scalings

We use the standard hydraulic jump scalings to define dimensionless ‘tilde’
variables:

u = αũ, α = (c
−1/2
1 c

1/8
2 ) q1/8ν1/8(g cos θ)3/8,

w = βw̃ , β = q−1/4ν3/4(g cos θ)1/4,

r = Γr̃ , Γ = (c
1/2
1 c

−3/8
2 ) q5/8ν−3/8(g cos θ)−1/8,

z = δz̃ , δ = (c
1/4
2 ) q1/4ν1/4(g cos θ)−1/4,

except that we included the cos θ dependence in the scalings.

We immediately drop the tildes.

(We will discuss the dimensionless constants c1 and c2 below.)
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Depth-averaging

Upon averaging in the z direction, the boundary-layer equation becomes
after integration by parts

2u
∂u

∂r
+

1

r
u2 +

h′

h
u2
∣∣
z=h

= −c1

(
G +

dh

dr

)
− c1

c2

1

h

∂u

∂z

∣∣∣∣
z=0

where the z-average of a function F (r , z) is

F (r) = (1/h)

∫ h

0
F (r , z)dz

and we defined

G = (c
1/2
1 c

−5/8
2 ) q3/8ν−5/8(g cos θ)1/8 tan θ .
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Separable form

We now assume the separable form

u(r , z) = v(r)f ′(z/h(r)),

where v = u is the averaged profile, f is a given function that describes
the vertical structure of the thin layer, with f (0) = f ′(0) = f ′′(1) = 0,
f (1) = 1.

Mass conservation integral becomes simply vhr = 1, which gives a
relationship between v and h. This allows us to derive the two relations

2u
∂u

∂r
+

1

r
u2 +

h′

h
u2
∣∣
z=h

= c1 v
∂v

∂r
,

∂u

∂z

∣∣∣∣
z=0

= c2
v

h
,

with

c1 =

∫ 1

0
f ′2(η)dη and c2 = f ′′(0).
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ODE for the averaged velocity

The two relations can be used in the earlier averaged equations to obtain

vv ′ + h′ = − v

h2
− G , vhr = 1.

For G = 0 these reduce to the equations of Bohr et al. (1993), which are
essentially as derived by Kurihara (1946) and Tani (1949).

Combine into one ODE for v(r):

r(1− rv3)v ′ = −(1− Gr2v − r4v4)v ,

which must be solved together with the flux boundary
condition v(r0) = v0 at the jet radius r0.
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ODE for the averaged velocity II

r(1− rv3)v ′ = −(1− Gr2v − r4v4)v

Singularity at rv3 = 1 will determine the location of the hydraulic jump
(v ′ → −∞), which we will associate here with the rise distance.

Since G = G (Q, θ), this ODE will have to be solved at each inclination
angle and flow rate.

When doing numerical calculations, use the parabolic profile

f (η) = 3
2η

2 − η3,

from which c1 = 6/5, c2 = 3. A more general approach, using a variable
cubic profile as in Bohr et al. (1997), doesn’t much change the scaling.

16 / 34



Numerical solution

For Q ' 119 cm3 s−1 and θ = 45◦:
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Solid red: G = 67; blue dashed: G = 0.

(Fairly insensitive to jet radius r0.)
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Comparison to experiments

This overestimates the rise height, unsurprisingly:
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But the scaling looks pretty good. . .

18 / 34



Corrected model

Let’s cheat and multiply by fitted parameter 0.76, to adjust for the
singularity position occuring beyond the actual jump:
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Not so bad. . . , except at 90◦ (vertical wall). [Thiffeault & Belmonte (2010)]
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Curved substrates

Rienstra (1996) also applied his inviscid model to curved surfaces (spheres,
cylinders). Here’s my attempt at an experiment [Thiffeault & Kamhawi (2008)]:

Compare to characteristics on a cylinder:
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General curved substrates

Rienstra (1996) treated surfaces with global orthogonal coordinates (plane,
cylinder, sphere).

What about more general surfaces?

Write x1, x2 for general 2D coordinates that locate a point on the
substrate. A small-thickness expansion similar to Rienstra’s yields for the
characteristics [Thiffeault & Kamhawi (2008)]:

ẍσ + Γσαβ ẋ
αẋβ = g · eσ

where Γσαβ are the Christoffel symbols for the shape of the substrate.

This is the geodesic equation with a gravitational forcing. The fluid
particles (characteristics) are trying to follow straight lines, but their
trajectories are bent by the substrate curvature and gravity.
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Chaos?

The geodesic equations are actually a fourth-order autonomous system.

Hence, chaos is a possibility, as long as the substrate does not possess a
continuous symmetry! (Ruled out for plane, cylinder, sphere.)

Consider a simple substrate shape parametrized by:

f (x1, x2) = f0 cos x1 cos x2
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Horizontal substrate: f0 = 0.2

First take g = 0 and keep the surface horizontal.
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Horizontal substrate: f0 = 0.5
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Horizontal substrate: f0 = 0.7
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Horizontal substrate: f0 = 0.9
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Horizontal substrate: f0 = 1.0
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Horizontal substrate: f0 = 1.2

x1

x
2

f0 = 1.2

−20 −10 0 10 20 30

0

10

20

30

28 / 34



Experiments with 3D-printed substrate

Flat substrate Patterned substrate

play movie

Jump is about 50% larger for a flat substrate. [Experiments with Jay Johnson.]
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Inclined substrate: f0 = 0.6
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Experiments: an inclined substrate

The simple model correctly predicts the multiple ‘paths’.
[Experiment with Jay Johnson.]
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Thank you!
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