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The Taffy Puller

[movie 1]

http://www.ma.imperial.ac.uk/~jeanluc/movies/taffy.avi


Topological Mixers Braids Stretching of Lines The Kenwood Chef Optimisation Conclusions

The Four-pronged Taffy Puller
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Experiment of Boyland, Aref, & Stremler

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]

[P. L. Boyland, M. A. Stremler, and H. Aref, Physica D 175, 69 (2003)]

[movie 2] [movie 3]

http://www.ma.imperial.ac.uk/~jeanluc/movies/boyland1.avi
http://www.ma.imperial.ac.uk/~jeanluc/movies/boyland2.avi
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The Connection with Braids
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Generators of the n-Braid Group

σi

i − 1 i + 1 i + 2i

σ−1
i

i − 1 i + 1 i + 2i

A generator of Artin’s braid group
Bn on n strands, denoted

σi , i = 1, . . . , n − 1

is the clockwise interchange of the
i th and (i + 1)th rod.

Bn is a finitely-generated group,
with an infinite number of ele-
ments, called words.

These generators are used to characterise the topological motion of
the rods.
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Presentation of Artin’s Braid Group

The generators obey the presentation

...... ......

... ...... ... ......

=

=

σi+1 σi σi+1 = σi σi+1 σi

σiσj = σjσi , |i−j | > 1

A presentation means that these are the only rules obeyed by the
generators that are not the consequence of elementary group
properties.
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The Two BAS Stirring Protocols

σ1σ2 protocol

σ−1
1 σ2 protocol

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]
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Train-Tracks
What is the growth rate of an “elastic band” tied to the rods?

Train-tracks give the answer.

a

a
b

b

1

2

3

Elastic band has edges (letters) and infinitesimal loops (numbers).
As the rods are moved, the edges and loops are mapped as

a 7→ a2b, b 7→ a2b3b, 1 7→ 3, 2 7→ 1, 3 7→ 2.
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The Evolution of Edges: Topological Entropy

The edges and loops are mapped according to

a 7→ a2b, b 7→ a2b3b, 1 7→ 3, 2 7→ 1, 3 7→ 2.

A crucial point is that edges are separated by loops: no
cancellations can occur. A transition matrix can be formed:

M =













1 1 0 0 0
1 2 0 0 0

0 0 0 1 0
1 1 0 0 1
0 1 1 0 0













←[ a

←[ b

←[ 1
←[ 2
←[ 3

The largest eigenvalue gives the asymptotic growth factor of the
elastic is the dilatation, 2.6180. The logarithm of the dilatation is
the topological entropy of the braid.

[M. Bestvina and M. Handel, Topology 34, 109 (1995)]
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The Difference between BAS’s Two Protocols

• Practically speaking, the topological entropy of a braid is a
lower bound on the line-stretching exponent of the flow!

• The first (bad) stirring protocol has zero topological entropy.

• The second (good) protocol has topological entropy
log[(3 +

√
5)/2] = 0.96 > 0.

• So for the second protocol the length of a line joining the rods
grows exponentially!

• That is, material lines have to stretch by at least a factor
of 2.6180 each time we execute the protocol σ−1

1 σ2.

• This is guaranteed to hold in some neighbourhood of the rods
(Thurston–Nielsen theorem).
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One Rod Mixer: The Kenwood Chef
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Poincaré Section
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Stretching of Lines: A Ghostly Rod?
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Stretching of Lines: A Ghostly Rod?
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Particle Orbits are Topological Obstacles

Choose any fluid particle orbit (blue dot).

Material lines must bend around the orbit: it acts just like a “rod”!

[J-LT, Phys. Rev. Lett. 94, 084502 (2005)]

Today: focus on periodic orbits.

How do they braid around each other?
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Motion of Islands

Make a braid from the mo-
tion of the rod and the peri-
odic islands.

Most (74%) of the line-
stretching is accounted for
by this braid.

[G–T–F, “Topological Mixing with Ghost Rods,” Phys. Rev. E, in press, 2006.]

http://arxiv.org/nlin/0510075
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Motion of Islands and Unstable Periodic Orbits

Now we also include unstable
periods orbits as well as the sta-
ble ones (islands).

Almost all (99%) of the line-
stretching is accounted for by
this braid.
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Optimisation

• The braid σ1σ
−1
2 is optimal in B3. [Proved by d’Alessandro,

Dahleh, and Mezić (1999)]

• The braid σ1σ
−1
2 σ3σ

−1
2 is optimal in B4. [Conjecture]

• Both have dilatation (1 +
√

5)/2 per generator, the golden
ratio.

• In Bn, for n > 4, the golden ratio dilatation cannot be
attained for an irreducible braid. [Conjecture]

• An artifact of the algebraic representation of the braid group:
not very physical.

• This leads to a class of silver ratio mixers! (dilatation 1 +
√

2)
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Periodic Braid

The dilatation of this braid is 1 +
√

2, the silver ratio.
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Periodic Braid on Annulus
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A LegoTM Implementation

[movie 4]

http://www.ma.imperial.ac.uk/~jeanluc/movies/jltmixer.avi
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Conclusions

• Topological chaos involves moving obstacles in a 2D flow,
which create nontrivial braids.

• A braid with positive topological entropy guarantees chaos in
some region.

• Periodic orbits make great obstacles (in periodic flows),
especially islands.

• This is a good way to “explain” the chaos in a flow —
accounts for stretching of material lines.

• Other studies:
• braids on the torus and sphere;
• random braids;
• optimisation via braids;
• applications to open flows. . .
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Recent Publications by Our Group

• T–G–F, “The Size of Ghost Rods,” in Proceedings of the

Workshop on Analysis and Control of Mixing

(Springer-Verlag, 2006, in press).

• G–T–F, “Topological Mixing with Ghost Rods,” Physical

Review E, in press, 2006.

• F–T–G, “Topological Chaos in Spatially Periodic Mixers,” in
submission, 2006.

• T, “Measuring Topological Chaos,” Physical Review Letters

94 (8), 084502, March 2005.

Preprints and slides available at www.ma.imperial.ac.uk/˜jeanluc

http://arxiv.org/nlin/0510076
http://arxiv.org/nlin/0510075
http://arxiv.org/nlin/0507023
http://arxiv.org/nlin/0409041
http://www.ma.imperial.ac.uk/~jeanluc
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