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Bioturbation

The earliest case studied of
animals ‘stirring’ their en-
vironment is the subject of
Darwin’s last book.

This was suggested by his
uncle and future father-in-
law Josiah Wedgwood II,
son of the famous potter.

“I was thus led to conclude that

all the vegetable mould over the

whole country has passed many

times through, and will again pass

many times through, the intestinal

canals of worms.”
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Munk’s Idea
Though it had been mentioned earlier, the first to seriously
consider the role of ocean biomixing was Walter Munk (1966):

“. . . I have attempted, without much success, to interpret [the
eddy diffusivity] from a variety of viewpoints: from mixing along
the ocean boundaries, from thermodynamic and biological
processes, and from internal tides.”
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Resurgence

The idea lay dormant for almost 40 years; then

• Huntley & Zhou (2004) analyzed the swimming of 100 (!)
species, ranging from bacteria to blue whales. Turbulent
energy production is ∼ 10−5 W kg−1 for 11 representative
species.

• Total is comparable to energy dissipation by major storms.

• Another estimate comes from the solar energy captured:
63 TeraW, something like 1% of which ends up as mechanical
energy (Dewar et al., 2006).

• Kunze et al. (2006) find that turbulence levels during the day
in an inlet were 2 to 3 orders of magnitude greater than at
night, due to swimming krill.
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In situ experiments
Katija & Dabiri (2009) looked at jellyfish:

[movie 1] (Palau’s Jellyfish Lake.)
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Displacement by a moving body

Maxwell (1869); Darwin (1953); Eames et al. (1994)
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A sequence of kicks

Inspired by Einstein’s theory of
diffusion (Einstein, 1905): a test par-
ticle initially at x(0) = 0 under-
goes N encounters with an axially-
symmetric swimming body:

x(t) =
N∑

k=1

∆L(ak , bk) r̂k

∆L(a, b) is the displacement, ak ,
bk are impact parameters, and r̂k
is a direction vector.

L

a

target particle

swimmer

b

�

(a > 0, but b can have

either sign.)
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Effective diffusivity

Putting this together,〈|x|2〉 =
2Unt

L

∫
∆2

L(a, b) da db = 4κt, 2D

〈|x|2〉 =
2πUnt

L

∫
∆2

L(a, b)a da db = 6κt, 3D

which defines the effective diffusivity κ.

If the number density is low (nLd � 1), then encounters are rare
and we can use this formula for a collection of particles.
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Simplifying assumption

κ = π
3 Un

∫
a2∆2

L(a, b) d(log a) d(b/L) 3D

Notice ∆L(a, b) is nonzero for 0 < b < L; otherwise independent
of b and L.

a∆2
L(a, b) (cylinder) a2∆2

L(a, b) (sphere)
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Displacement for cylinders

Small a: ∆ ∼ − log a

Large a: ∆ ∼ a−3

(Darwin, 1953)∫ 1
0 ∆2(a)da ' 2.31∫∞
1 ∆2(a)da ' .06

−8 −6 −4 −2 0 2 4

−12

−10

−8

−6

−4

−2

0

2

loga

lo
g

∆

log a = −5

log a = 0

log a = 2

=⇒ 97% dominated by “head-on” collisions (similar for spheres)
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Numerical simulation

• Validate theory using simple simple simulations;

• Large periodic box;

• Nswim swimmers (cylinders of radius 1), initially at random
positions, swimming in random direction with constant speed
U = 1;

• Target particle initially at origin advected by the swimmers;

• Since dilute, superimpose velocities;

• Integrate for some time, compute |x(t)|2, repeat for a large
number Nreal of realizations, and average.
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A ‘gas’ of swimmers
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[movie 2] 100 cylinders, box size = 1000
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How well does the dilute theory work?
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Squirmers

Considerable literature on transport due to microorganisms: Wu &

Libchaber (2000); Hernandez-Ortiz et al. (2006); Saintillian & Shelley (2007);

Underhill et al. (2008); Ishikawa (2009); Leptos et al. (2009)

Lighthill (1952), Blake (1971), and more recently Ishikawa et al.
(2006) have considered squirmers:

• Sphere in Stokes flow;

• Steady velocity
specified at surface,
to mimic cilia;

• Steady swimming
condition imposed
(no net force on
fluid). (Drescher et al., 2009) (Ishikawa et al., 2006)
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Typical squirmer

3D axisymmetric streamfunction for a
typical squirmer, in cylindrical coordi-
nates (ρ, z):

ψ = −1
2ρ

2 +
1

2r3
ρ2 +

3β

4r3
ρ2z

(
1

r2
− 1

)
where r =

√
ρ2 + z2, U = 1, radius of

squirmer = 1.

β is the amplitude of the stresslet (dis-
tinguises pushers/pullers).

We will use β = 5 for most of the re-
mainder.
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Squirmer displacements a2∆2
L(a, b)
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Squirmers: Transport
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Squirmers: Trajectories

The two peaks in the displacement plot come from ‘incomplete’
trajectories:

b/λ = 0 b/λ = 0.5 b/λ = 1

For long path length, the effective diffusivity is independent of the
swimming path length, and yet the dominant contribution arises
from the finiteness of the path (uncorrelated turning directions).
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Far field: Displacements a2∆2
L(a, b)
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inset: only stresslet term (far field) (λ ≡ L)

Unlike potential sphere, mid-range field dominates.
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Transport as a function of β

When stresslet dominates, effective diffusivity ∼ β2:
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At these low densities, no difference between pushers and pullers.
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Finite Reynolds number: Displacements
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Finite Reynolds number: Transport
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So, do the fish stir the ocean?

• Consider spheres of radius 1 cm (the size of typical krill)
moving at 5 cm/ sec, with n = 5× 10−3 cm−3, we get an
effective diffusivity of 7× 10−3 cm2/ sec.

• This is 5 times the thermal molecular value
1.5× 10−3 cm2/ sec, and about 500 times the molecular
value 1.6× 10−5 cm2/ sec for salt.

• With viscosity: assume correlation length of L ' 1 m; for rigid
spheres: κ ' 0.8 cm2/ sec, about 500 times the thermal
molecular value. (Compare to Munk’s 1.3 cm2/ sec)

• But buoyancy is the enemy. . . need mechanism to keep fluid
from sinking back.

(Numerical values from Visser (2007).)
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Conclusions

• Biomixing: no verdict yet;

• Simple dilute model works well for a range of swimmers;

• Slip surfaces have an effective diffusivity that is independent
of path length, for long path length;

• Get semi-analytic formula for pusher/pullers at low densities;

• No-slip flows dominated by sticking and have a log
dependence on path length;

Future work:

• Wake models and turbulence;

• PDF of scalar concentration;

• Buoyancy effects;

• Schooling: longer length scale?
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